bus_dma.c revision 1.150 1 /* $NetBSD: bus_dma.c,v 1.150 2025/09/26 07:48:46 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36 #include "opt_cputypes.h"
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.150 2025/09/26 07:48:46 skrll Exp $");
40
41 #include <sys/param.h>
42
43 #include <sys/bus.h>
44 #include <sys/cpu.h>
45 #include <sys/kmem.h>
46 #include <sys/mbuf.h>
47
48 #include <uvm/uvm.h>
49
50 #include <arm/cpuconf.h>
51 #include <arm/cpufunc.h>
52
53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
54 #include <dev/mm.h>
55 #endif
56
57 #ifdef BUSDMA_COUNTERS
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_coherent_loads =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
68 static struct evcnt bus_dma_read_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
70 static struct evcnt bus_dma_write_bounces =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
72 static struct evcnt bus_dma_bounced_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
74 static struct evcnt bus_dma_bounced_mbuf_loads =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced mbuf loads");
76 static struct evcnt bus_dma_unloads =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
78 static struct evcnt bus_dma_bounced_destroys =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
80 static struct evcnt bus_dma_destroys =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
82 static struct evcnt bus_dma_sync_prereadwrite =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
84 static struct evcnt bus_dma_sync_preread_begin =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
86 static struct evcnt bus_dma_sync_preread =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
88 static struct evcnt bus_dma_sync_preread_tail =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
90 static struct evcnt bus_dma_sync_prewrite =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
92 static struct evcnt bus_dma_sync_postread =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
94 static struct evcnt bus_dma_sync_postreadwrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
96 static struct evcnt bus_dma_sync_postwrite =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
98 static struct evcnt bus_dma_inrange_fail =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "inrange check failed");
100
101 static struct evcnt bus_dma_sync_coherent_prereadwrite =
102 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
103 static struct evcnt bus_dma_sync_coherent_preread =
104 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
105 static struct evcnt bus_dma_sync_coherent_prewrite =
106 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
107 static struct evcnt bus_dma_sync_coherent_postread =
108 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
109 static struct evcnt bus_dma_sync_coherent_postreadwrite =
110 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
111 static struct evcnt bus_dma_sync_coherent_postwrite =
112 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
113
114 EVCNT_ATTACH_STATIC(bus_dma_creates);
115 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
116 EVCNT_ATTACH_STATIC(bus_dma_loads);
117 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
118 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
119 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
120 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
121 EVCNT_ATTACH_STATIC(bus_dma_unloads);
122 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
123 EVCNT_ATTACH_STATIC(bus_dma_destroys);
124 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
125 EVCNT_ATTACH_STATIC(bus_dma_bounced_mbuf_loads);
126 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
127 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
128 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
129 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
130 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
131 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
132 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
133 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
134 EVCNT_ATTACH_STATIC(bus_dma_inrange_fail);
135
136 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
137 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
138 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
139 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
140 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
141 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
142
143 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
144 #else
145 #define STAT_INCR(x) __nothing
146 #endif
147
148 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
149 bus_size_t, struct vmspace *, int);
150
151 /*
152 * Check to see if the specified page is in an allowed DMA range.
153 */
154 static inline struct arm32_dma_range *
155 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
156 bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 int i;
160
161 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
162 if (curaddr >= dr->dr_sysbase &&
163 curaddr < (dr->dr_sysbase + dr->dr_len))
164 return dr;
165 }
166
167 return NULL;
168 }
169
170 /*
171 * Check to see if the specified busaddr is in an allowed DMA range.
172 */
173 static inline paddr_t
174 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
175 {
176 struct arm32_dma_range *dr;
177 u_int i;
178
179 if (t->_nranges == 0)
180 return curaddr;
181
182 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
183 if (dr->dr_busbase <= curaddr
184 && curaddr < dr->dr_busbase + dr->dr_len)
185 return curaddr - dr->dr_busbase + dr->dr_sysbase;
186 }
187 panic("%s: curaddr %#" PRIxBUSADDR "not in range", __func__, curaddr);
188 }
189
190 /*
191 * Common function to load the specified physical address into the
192 * DMA map, coalescing segments and boundary checking as necessary.
193 */
194 static int
195 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
196 bus_addr_t paddr, bus_size_t size, bool coherent)
197 {
198 bus_dma_segment_t * const segs = map->dm_segs;
199 int nseg = map->dm_nsegs;
200 bus_addr_t lastaddr;
201 bus_addr_t bmask = ~(map->_dm_boundary - 1);
202 bus_addr_t curaddr;
203 bus_size_t sgsize;
204 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
205
206 if (nseg > 0)
207 lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
208 else
209 lastaddr = 0xdead;
210
211 again:
212 sgsize = size;
213
214 /* Make sure we're in an allowed DMA range. */
215 if (t->_ranges != NULL) {
216 /* XXX cache last result? */
217 const struct arm32_dma_range * const dr =
218 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
219 if (__predict_false(dr == NULL)) {
220 STAT_INCR(inrange_fail);
221 return EINVAL;
222 }
223
224 /*
225 * If this region is coherent, mark the segment as coherent.
226 */
227 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
228
229 /*
230 * In a valid DMA range. Translate the physical
231 * memory address to an address in the DMA window.
232 */
233 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
234 #if 0
235 printf("%p: %#" PRIxPADDR
236 ": range %#" PRIxPADDR "/%#" PRIxBUSADDR
237 "/%#" PRIxBUSSIZE "/%#" PRIx32 ": %#" PRIx32
238 " <-- %#" PRIxBUSADDR "\n",
239 t, paddr, dr->dr_sysbase, dr->dr_busbase,
240 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
241 #endif
242 } else
243 curaddr = paddr;
244
245 /*
246 * Make sure we don't cross any boundaries.
247 */
248 if (map->_dm_boundary > 0) {
249 bus_addr_t baddr; /* next boundary address */
250
251 baddr = (curaddr + map->_dm_boundary) & bmask;
252 if (sgsize > (baddr - curaddr))
253 sgsize = (baddr - curaddr);
254 }
255
256 /*
257 * Insert chunk into a segment, coalescing with the
258 * previous segment if possible.
259 */
260 if (nseg > 0 && curaddr == lastaddr &&
261 segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
262 ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
263 (map->_dm_boundary == 0 ||
264 (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
265 /* coalesce */
266 segs[nseg - 1].ds_len += sgsize;
267 } else if (__predict_false(nseg >= map->_dm_segcnt)) {
268 return EFBIG;
269 } else {
270 /* new segment */
271 segs[nseg].ds_addr = curaddr;
272 segs[nseg].ds_len = sgsize;
273 segs[nseg]._ds_paddr = curaddr;
274 segs[nseg]._ds_flags = _ds_flags;
275 nseg++;
276 }
277
278 lastaddr = curaddr + sgsize;
279
280 paddr += sgsize;
281 size -= sgsize;
282 if (size > 0)
283 goto again;
284
285 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
286 map->dm_nsegs = nseg;
287 return 0;
288 }
289
290 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
291 int direction);
292
293 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
294 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
295 bus_size_t size, int flags);
296 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
297
298 static int
299 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
300 size_t buflen, int buftype, int flags)
301 {
302 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
303 struct vmspace * const vm = vmspace_kernel();
304 int error;
305
306 KASSERT(cookie != NULL);
307 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
308
309 /*
310 * Allocate bounce pages, if necessary.
311 */
312 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
313 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
314 if (__predict_false(error))
315 return error;
316 }
317
318 /*
319 * Since we're trying again, clear the previous attempt.
320 */
321 map->dm_mapsize = 0;
322 map->dm_nsegs = 0;
323 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
324 /* _bus_dmamap_load_buffer() clears this if we're not... */
325 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
326
327 /*
328 * Cache a pointer to the caller's buffer and load the DMA map
329 * with the bounce buffer.
330 */
331 cookie->id_origbuf = buf;
332 cookie->id_origbuflen = buflen;
333 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
334 buflen, vm, flags);
335 if (__predict_false(error))
336 return error;
337
338 STAT_INCR(bounced_loads);
339 map->dm_mapsize = buflen;
340 map->_dm_vmspace = vm;
341 map->_dm_buftype = buftype;
342
343 /* ...so _bus_dmamap_sync() knows we're bouncing */
344 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
345 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
346 return 0;
347 }
348 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
349
350 /*
351 * Common function for DMA map creation. May be called by bus-specific
352 * DMA map creation functions.
353 */
354 int
355 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
356 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
357 {
358 struct arm32_bus_dmamap *map;
359 void *mapstore;
360 int error = 0;
361
362 #ifdef DEBUG_DMA
363 printf("dmamap_create: t=%p size=%#" PRIxBUSSIZE
364 " nseg=%#x msegsz=%#" PRIxBUSSIZE
365 " boundary=%#" PRIxBUSSIZE
366 " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
367 #endif /* DEBUG_DMA */
368
369 /*
370 * Allocate and initialize the DMA map. The end of the map
371 * is a variable-sized array of segments, so we allocate enough
372 * room for them in one shot.
373 *
374 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
375 * of ALLOCNOW notifies others that we've reserved these resources,
376 * and they are not to be freed.
377 *
378 * The bus_dmamap_t includes one bus_dma_segment_t, hence
379 * the (nsegments - 1).
380 */
381 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
382 (sizeof(bus_dma_segment_t) * (nsegments - 1));
383 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
384 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
385 return ENOMEM;
386
387 map = (struct arm32_bus_dmamap *)mapstore;
388 map->_dm_size = size;
389 map->_dm_segcnt = nsegments;
390 map->_dm_maxmaxsegsz = maxsegsz;
391 map->_dm_boundary = boundary;
392 map->_dm_flags = flags & ~(BUS_DMA_WAITOK | BUS_DMA_NOWAIT);
393 map->_dm_origbuf = NULL;
394 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
395 map->_dm_vmspace = vmspace_kernel();
396 map->_dm_cookie = NULL;
397 map->dm_maxsegsz = maxsegsz;
398 map->dm_mapsize = 0; /* no valid mappings */
399 map->dm_nsegs = 0;
400
401 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
402 struct arm32_bus_dma_cookie *cookie;
403 int cookieflags;
404 void *cookiestore;
405
406 cookieflags = 0;
407
408 if (t->_may_bounce != NULL) {
409 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
410 if (error != 0)
411 goto out;
412 }
413
414 if (t->_ranges != NULL) {
415 /*
416 * If ranges are defined, we may have to bounce. The only
417 * exception is if there is exactly one range that covers
418 * all of physical memory.
419 */
420 switch (t->_nranges) {
421 case 1:
422 if (t->_ranges[0].dr_sysbase == 0 &&
423 t->_ranges[0].dr_len == UINTPTR_MAX) {
424 break;
425 }
426 /* FALLTHROUGH */
427 default:
428 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
429 }
430 }
431
432 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
433 STAT_INCR(creates);
434 *dmamp = map;
435 return 0;
436 }
437
438 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
439 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
440
441 /*
442 * Allocate our cookie.
443 */
444 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
445 error = ENOMEM;
446 goto out;
447 }
448 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
449 cookie->id_flags = cookieflags;
450 map->_dm_cookie = cookie;
451 STAT_INCR(bounced_creates);
452
453 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
454 out:
455 if (error)
456 _bus_dmamap_destroy(t, map);
457 else
458 *dmamp = map;
459 #else
460 *dmamp = map;
461 STAT_INCR(creates);
462 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
463 #ifdef DEBUG_DMA
464 printf("dmamap_create:map=%p\n", map);
465 #endif /* DEBUG_DMA */
466 return error;
467 }
468
469 /*
470 * Common function for DMA map destruction. May be called by bus-specific
471 * DMA map destruction functions.
472 */
473 void
474 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
475 {
476
477 #ifdef DEBUG_DMA
478 printf("dmamap_destroy: t=%p map=%p\n", t, map);
479 #endif /* DEBUG_DMA */
480 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
481 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
482
483 /*
484 * Free any bounce pages this map might hold.
485 */
486 if (cookie != NULL) {
487 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
488 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
489
490 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
491 STAT_INCR(bounced_unloads);
492 map->dm_nsegs = 0;
493 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
494 _bus_dma_free_bouncebuf(t, map);
495 STAT_INCR(bounced_destroys);
496 kmem_intr_free(cookie, cookiesize);
497 } else
498 #endif
499 STAT_INCR(destroys);
500
501 if (map->dm_nsegs > 0)
502 STAT_INCR(unloads);
503
504 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
505 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
506 kmem_intr_free(map, mapsize);
507 }
508
509 /*
510 * Common function for loading a DMA map with a linear buffer. May
511 * be called by bus-specific DMA map load functions.
512 */
513 int
514 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
515 bus_size_t buflen, struct proc *p, int flags)
516 {
517 struct vmspace *vm;
518 int error;
519
520 #ifdef DEBUG_DMA
521 printf("dmamap_load: t=%p map=%p buf=%p len=%#" PRIxBUSSIZE
522 " p=%p f=%#x\n", t, map, buf, buflen, p, flags);
523 #endif /* DEBUG_DMA */
524
525 if (map->dm_nsegs > 0) {
526 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
527 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
528 if (cookie != NULL) {
529 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
530 STAT_INCR(bounced_unloads);
531 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
532 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
533 }
534 } else
535 #endif
536 STAT_INCR(unloads);
537 }
538
539 /*
540 * Make sure that on error condition we return "no valid mappings".
541 */
542 map->dm_mapsize = 0;
543 map->dm_nsegs = 0;
544 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
545 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
546 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
547 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
548
549 if (__predict_false(buflen > map->_dm_size))
550 return EINVAL;
551
552 if (p != NULL) {
553 vm = p->p_vmspace;
554 } else {
555 vm = vmspace_kernel();
556 }
557
558 /* _bus_dmamap_load_buffer() clears this if we're not... */
559 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
560
561 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
562 if (__predict_true(error == 0)) {
563 map->dm_mapsize = buflen;
564 map->_dm_vmspace = vm;
565 map->_dm_origbuf = buf;
566 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
567 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
568 STAT_INCR(coherent_loads);
569 } else {
570 STAT_INCR(loads);
571 }
572 return 0;
573 }
574 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
575 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
576 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
577 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
578 _BUS_DMA_BUFTYPE_LINEAR, flags);
579 }
580 #endif
581 return error;
582 }
583
584 /*
585 * Like _bus_dmamap_load(), but for mbufs.
586 */
587 int
588 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
589 int flags)
590 {
591 struct mbuf *m;
592 int error;
593
594 #ifdef DEBUG_DMA
595 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
596 t, map, m0, flags);
597 #endif /* DEBUG_DMA */
598
599 if (map->dm_nsegs > 0) {
600 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
601 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
602 if (cookie != NULL) {
603 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
604 STAT_INCR(bounced_unloads);
605 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
606 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
607 }
608 } else
609 #endif
610 STAT_INCR(unloads);
611 }
612
613 /*
614 * Make sure that on error condition we return "no valid mappings."
615 */
616 map->dm_mapsize = 0;
617 map->dm_nsegs = 0;
618 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
619 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
620 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
621 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
622
623 KASSERT(m0->m_flags & M_PKTHDR);
624
625 if (__predict_false(m0->m_pkthdr.len > map->_dm_size))
626 return EINVAL;
627
628 /* _bus_dmamap_load_paddr() clears this if we're not... */
629 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
630
631 error = 0;
632 for (m = m0; m != NULL && error == 0; m = m->m_next) {
633 int offset;
634 int remainbytes;
635 const struct vm_page * const *pgs;
636 paddr_t paddr;
637 int size;
638
639 if (m->m_len == 0)
640 continue;
641 /*
642 * Don't allow reads in read-only mbufs.
643 */
644 if (__predict_false(M_ROMAP(m) && (flags & BUS_DMA_READ))) {
645 error = EFAULT;
646 break;
647 }
648 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER | M_EXT_PAGES)) {
649 case M_EXT | M_EXT_CLUSTER:
650 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
651 paddr = m->m_ext.ext_paddr +
652 (m->m_data - m->m_ext.ext_buf);
653 size = m->m_len;
654 error = _bus_dmamap_load_paddr(t, map, paddr, size,
655 false);
656 break;
657
658 case M_EXT | M_EXT_PAGES:
659 KASSERT(m->m_ext.ext_buf <= m->m_data);
660 KASSERT(m->m_data <=
661 m->m_ext.ext_buf + m->m_ext.ext_size);
662
663 offset = (vaddr_t)m->m_data -
664 trunc_page((vaddr_t)m->m_ext.ext_buf);
665 remainbytes = m->m_len;
666
667 /* skip uninteresting pages */
668 pgs = (const struct vm_page * const *)
669 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
670
671 offset &= PAGE_MASK; /* offset in the first page */
672
673 /* load each page */
674 while (remainbytes > 0) {
675 const struct vm_page *pg;
676
677 size = MIN(remainbytes, PAGE_SIZE - offset);
678
679 pg = *pgs++;
680 KASSERT(pg);
681 paddr = VM_PAGE_TO_PHYS(pg) + offset;
682
683 error = _bus_dmamap_load_paddr(t, map,
684 paddr, size, false);
685 if (__predict_false(error))
686 break;
687 offset = 0;
688 remainbytes -= size;
689 }
690 break;
691
692 case 0:
693 paddr = m->m_paddr + M_BUFOFFSET(m) +
694 (m->m_data - M_BUFADDR(m));
695 size = m->m_len;
696 error = _bus_dmamap_load_paddr(t, map, paddr, size,
697 false);
698 break;
699
700 default:
701 error = _bus_dmamap_load_buffer(t, map, m->m_data,
702 m->m_len, vmspace_kernel(), flags);
703 }
704 }
705 if (__predict_true(error == 0)) {
706 map->dm_mapsize = m0->m_pkthdr.len;
707 map->_dm_origbuf = m0;
708 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
709 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
710 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
711 STAT_INCR(coherent_loads);
712 } else {
713 STAT_INCR(loads);
714 }
715 return 0;
716 }
717 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
718 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
719 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
720 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
721 _BUS_DMA_BUFTYPE_MBUF, flags);
722 STAT_INCR(bounced_mbuf_loads);
723 }
724 #endif
725 return error;
726 }
727
728 /*
729 * Like _bus_dmamap_load(), but for uios.
730 */
731 int
732 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
733 int flags)
734 {
735 bus_size_t minlen, resid;
736 struct iovec *iov;
737 void *addr;
738 int i, error;
739
740 /*
741 * Make sure that on error condition we return "no valid mappings."
742 */
743 map->dm_mapsize = 0;
744 map->dm_nsegs = 0;
745 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
746 "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
747 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
748
749 resid = uio->uio_resid;
750 iov = uio->uio_iov;
751
752 /* _bus_dmamap_load_buffer() clears this if we're not... */
753 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
754
755 error = 0;
756 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
757 /*
758 * Now at the first iovec to load. Load each iovec
759 * until we have exhausted the residual count.
760 */
761 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
762 addr = (void *)iov[i].iov_base;
763
764 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
765 uio->uio_vmspace, flags);
766
767 resid -= minlen;
768 }
769 if (__predict_true(error == 0)) {
770 map->dm_mapsize = uio->uio_resid;
771 map->_dm_origbuf = uio;
772 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
773 map->_dm_vmspace = uio->uio_vmspace;
774 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
775 STAT_INCR(coherent_loads);
776 } else {
777 STAT_INCR(loads);
778 }
779 }
780 return error;
781 }
782
783 /*
784 * Like _bus_dmamap_load(), but for raw memory allocated with
785 * bus_dmamem_alloc().
786 */
787 int
788 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
789 bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
790 {
791
792 bus_size_t size;
793 int i, error = 0;
794
795 /*
796 * Make sure that on error conditions we return "no valid mappings."
797 */
798 map->dm_mapsize = 0;
799 map->dm_nsegs = 0;
800 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
801
802 if (__predict_false(size0 > map->_dm_size))
803 return EINVAL;
804
805 for (i = 0, size = size0; i < nsegs && size > 0; i++) {
806 bus_dma_segment_t *ds = &segs[i];
807 bus_size_t sgsize;
808
809 sgsize = MIN(ds->ds_len, size);
810 if (sgsize == 0)
811 continue;
812 const bool coherent =
813 (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
814 error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
815 sgsize, coherent);
816 if (__predict_false(error != 0))
817 break;
818 size -= sgsize;
819 }
820
821 if (__predict_false(error != 0)) {
822 map->dm_mapsize = 0;
823 map->dm_nsegs = 0;
824 return error;
825 }
826
827 /* XXX TBD bounce */
828
829 map->dm_mapsize = size0;
830 map->_dm_origbuf = NULL;
831 map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
832 map->_dm_vmspace = NULL;
833 return 0;
834 }
835
836 /*
837 * Common function for unloading a DMA map. May be called by
838 * bus-specific DMA map unload functions.
839 */
840 void
841 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
842 {
843
844 #ifdef DEBUG_DMA
845 printf("dmamap_unload: t=%p map=%p\n", t, map);
846 #endif /* DEBUG_DMA */
847
848 /*
849 * No resources to free; just mark the mappings as
850 * invalid.
851 */
852 map->dm_mapsize = 0;
853 map->dm_nsegs = 0;
854 map->_dm_origbuf = NULL;
855 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
856 map->_dm_vmspace = NULL;
857 }
858
859 static void
860 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
861 bool readonly_p)
862 {
863
864 #if defined(ARM_MMU_EXTENDED)
865 /*
866 * No optimisations are available for readonly mbufs on armv6+, so
867 * assume it's not readonly from here on.
868 *
869 * See the comment in _bus_dmamap_sync_mbuf
870 */
871 readonly_p = false;
872 #endif
873
874 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
875 "va %#" PRIxVADDR " pa %#" PRIxPADDR, va, pa);
876 #if 0
877 printf("sync_segment: va=%#" PRIxVADDR
878 " pa=%#" PRIxPADDR " len=%#" PRIxVSIZE " ops=%#x\n",
879 va, pa, len, ops);
880 #endif
881
882 switch (ops) {
883 case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
884 if (!readonly_p) {
885 STAT_INCR(sync_prereadwrite);
886 cpu_dcache_wbinv_range(va, len);
887 cpu_sdcache_wbinv_range(va, pa, len);
888 break;
889 }
890 /* FALLTHROUGH */
891
892 case BUS_DMASYNC_PREREAD: {
893 const size_t line_size = arm_dcache_align;
894 const size_t line_mask = arm_dcache_align_mask;
895 vsize_t misalignment = va & line_mask;
896 if (misalignment) {
897 va -= misalignment;
898 pa -= misalignment;
899 len += misalignment;
900 STAT_INCR(sync_preread_begin);
901 cpu_dcache_wbinv_range(va, line_size);
902 cpu_sdcache_wbinv_range(va, pa, line_size);
903 if (len <= line_size)
904 break;
905 va += line_size;
906 pa += line_size;
907 len -= line_size;
908 }
909 misalignment = len & line_mask;
910 len -= misalignment;
911 if (len > 0) {
912 STAT_INCR(sync_preread);
913 cpu_dcache_inv_range(va, len);
914 cpu_sdcache_inv_range(va, pa, len);
915 }
916 if (misalignment) {
917 va += len;
918 pa += len;
919 STAT_INCR(sync_preread_tail);
920 cpu_dcache_wbinv_range(va, line_size);
921 cpu_sdcache_wbinv_range(va, pa, line_size);
922 }
923 break;
924 }
925
926 case BUS_DMASYNC_PREWRITE:
927 STAT_INCR(sync_prewrite);
928 cpu_dcache_wb_range(va, len);
929 cpu_sdcache_wb_range(va, pa, len);
930 break;
931
932 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
933
934 /*
935 * Cortex CPUs can do speculative loads so we need to clean the cache
936 * after a DMA read to deal with any speculatively loaded cache lines.
937 * Since these can't be dirty, we can just invalidate them and don't
938 * have to worry about having to write back their contents.
939 */
940 case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
941 STAT_INCR(sync_postreadwrite);
942 cpu_dcache_inv_range(va, len);
943 cpu_sdcache_inv_range(va, pa, len);
944 break;
945
946 case BUS_DMASYNC_POSTREAD:
947 STAT_INCR(sync_postread);
948 cpu_dcache_inv_range(va, len);
949 cpu_sdcache_inv_range(va, pa, len);
950 break;
951 #endif
952 }
953 }
954
955 static inline void
956 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
957 bus_size_t len, int ops)
958 {
959 bus_dma_segment_t *ds = map->dm_segs;
960 vaddr_t va = (vaddr_t) map->_dm_origbuf;
961 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
962 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
963 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
964 va = (vaddr_t) cookie->id_bouncebuf;
965 }
966 #endif
967
968 while (len > 0) {
969 while (offset >= ds->ds_len) {
970 offset -= ds->ds_len;
971 va += ds->ds_len;
972 ds++;
973 }
974
975 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
976 size_t seglen = uimin(len, ds->ds_len - offset);
977
978 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
979 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
980 false);
981
982 offset += seglen;
983 len -= seglen;
984 }
985 }
986
987 static inline void
988 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
989 bus_size_t len, int ops)
990 {
991 bus_dma_segment_t *ds = map->dm_segs;
992 struct mbuf *m = map->_dm_origbuf;
993 bus_size_t voff = offset;
994 bus_size_t ds_off = offset;
995
996 while (len > 0) {
997 /* Find the current dma segment */
998 while (ds_off >= ds->ds_len) {
999 ds_off -= ds->ds_len;
1000 ds++;
1001 }
1002 /* Find the current mbuf. */
1003 while (voff >= m->m_len) {
1004 voff -= m->m_len;
1005 m = m->m_next;
1006 }
1007
1008 /*
1009 * Now at the first mbuf to sync; nail each one until
1010 * we have exhausted the length.
1011 */
1012 vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
1013 vaddr_t va = mtod(m, vaddr_t) + voff;
1014 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1015
1016 /*
1017 * We can save a lot of work here if we know the mapping
1018 * is read-only at the MMU and we aren't using the armv6+
1019 * MMU:
1020 *
1021 * If a mapping is read-only, no dirty cache blocks will
1022 * exist for it. If a writable mapping was made read-only,
1023 * we know any dirty cache lines for the range will have
1024 * been cleaned for us already. Therefore, if the upper
1025 * layer can tell us we have a read-only mapping, we can
1026 * skip all cache cleaning.
1027 *
1028 * NOTE: This only works if we know the pmap cleans pages
1029 * before making a read-write -> read-only transition. If
1030 * this ever becomes non-true (e.g. Physically Indexed
1031 * cache), this will have to be revisited.
1032 */
1033
1034 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
1035 /*
1036 * If we are doing preread (DMAing into the mbuf),
1037 * this mbuf better not be readonly,
1038 */
1039 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
1040 _bus_dmamap_sync_segment(va, pa, seglen, ops,
1041 M_ROMAP(m));
1042 }
1043 voff += seglen;
1044 ds_off += seglen;
1045 len -= seglen;
1046 }
1047 }
1048
1049 static inline void
1050 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1051 bus_size_t len, int ops)
1052 {
1053 bus_dma_segment_t *ds = map->dm_segs;
1054 struct uio *uio = map->_dm_origbuf;
1055 struct iovec *iov = uio->uio_iov;
1056 bus_size_t voff = offset;
1057 bus_size_t ds_off = offset;
1058
1059 while (len > 0) {
1060 /* Find the current dma segment */
1061 while (ds_off >= ds->ds_len) {
1062 ds_off -= ds->ds_len;
1063 ds++;
1064 }
1065
1066 /* Find the current iovec. */
1067 while (voff >= iov->iov_len) {
1068 voff -= iov->iov_len;
1069 iov++;
1070 }
1071
1072 /*
1073 * Now at the first iovec to sync; nail each one until
1074 * we have exhausted the length.
1075 */
1076 vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
1077 vaddr_t va = (vaddr_t) iov->iov_base + voff;
1078 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
1079
1080 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
1081 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
1082
1083 voff += seglen;
1084 ds_off += seglen;
1085 len -= seglen;
1086 }
1087 }
1088
1089 /*
1090 * Common function for DMA map synchronization. May be called
1091 * by bus-specific DMA map synchronization functions.
1092 *
1093 * XXX Should have separate versions for write-through vs.
1094 * XXX write-back caches. We currently assume write-back
1095 * XXX here, which is not as efficient as it could be for
1096 * XXX the write-through case.
1097 */
1098 void
1099 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
1100 bus_size_t len, int ops)
1101 {
1102 #ifdef DEBUG_DMA
1103 printf("dmamap_sync: t=%p map=%p offset=%#" PRIxBUSADDR
1104 " len=%#" PRIxBUSSIZE " ops=%#x\n", t, map, offset, len, ops);
1105 #endif /* DEBUG_DMA */
1106
1107 /*
1108 * Mixing of PRE and POST operations is not allowed.
1109 */
1110 KASSERTMSG((((ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) == 0)
1111 || ((ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)) == 0)),
1112 "%s: mix PRE and POST", __func__);
1113
1114 KASSERTMSG(offset < map->dm_mapsize,
1115 "offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
1116 offset, map->dm_mapsize);
1117 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1118 "len %" PRIuBUSSIZE " offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
1119 len, offset, map->dm_mapsize);
1120
1121 /*
1122 * For a write-back cache, we need to do the following things:
1123 *
1124 * PREREAD -- Invalidate the D-cache. We do this
1125 * here in case a write-back is required by the back-end.
1126 *
1127 * PREWRITE -- Write-back the D-cache. Note that if
1128 * we are doing a PREREAD | PREWRITE, we can collapse
1129 * the whole thing into a single Wb-Inv.
1130 *
1131 * POSTREAD -- Re-invalidate the D-cache in case speculative
1132 * memory accesses caused cachelines to become valid with now
1133 * invalid data.
1134 *
1135 * POSTWRITE -- Nothing.
1136 */
1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1138 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1139 #else
1140 const bool bouncing = false;
1141 #endif
1142
1143 const int pre_ops = ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1144 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
1145 const int post_ops = ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1146 #else
1147 const int post_ops = 0;
1148 #endif
1149 if (pre_ops == 0 && post_ops == 0)
1150 return;
1151
1152 if (post_ops == BUS_DMASYNC_POSTWRITE) {
1153 KASSERT(pre_ops == 0);
1154 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1155 STAT_INCR(sync_coherent_postwrite);
1156 } else {
1157 STAT_INCR(sync_postwrite);
1158 }
1159 return;
1160 }
1161
1162 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1163 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1164
1165 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1166 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1167 STAT_INCR(write_bounces);
1168 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1169 /*
1170 * Copy the caller's buffer to the bounce buffer.
1171 */
1172 switch (map->_dm_buftype) {
1173 case _BUS_DMA_BUFTYPE_LINEAR:
1174 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_MBUF:
1178 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1179 break;
1180
1181 case _BUS_DMA_BUFTYPE_UIO:
1182 _bus_dma_uiomove(dataptr, cookie->id_origuio, len,
1183 UIO_WRITE);
1184 break;
1185
1186 #ifdef DIAGNOSTIC
1187 case _BUS_DMA_BUFTYPE_RAW:
1188 panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
1189 break;
1190
1191 case _BUS_DMA_BUFTYPE_INVALID:
1192 panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
1193 break;
1194
1195 default:
1196 panic("%s(pre): map %p: unknown buffer type %d\n",
1197 __func__, map, map->_dm_buftype);
1198 break;
1199 #endif /* DIAGNOSTIC */
1200 }
1201 }
1202
1203 /*
1204 * Provide appropriate memory barriers, and skip cache frobbing
1205 * if mapping is COHERENT.
1206 *
1207 * The case of PREREAD is as follows:
1208 *
1209 * 1. loads and stores before DMA buffer may be allocated for the purpose
1210 * 2. bus_dmamap_sync(BUS_DMASYNC_PREREAD)
1211 * 3. store to register or DMA descriptor to trigger DMA
1212 *
1213 * The load/store-before-store ordering is ensured by dma_rw_w().
1214 *
1215 * The case of PREWRITE is as follows:
1216 *
1217 * 1. stores to DMA buffer. loads can happen later as the buffer is not changed
1218 * by the device.
1219 * 2. bus_dmamap_sync(BUS_DMASYNC_PREWRITE)
1220 * 3. store to register or DMA descriptor to trigger DMA
1221 *
1222 * The store-before-store ordering is ensured by dma_w_w().
1223 *
1224 * The case of POSTREAD is as follows:
1225 *
1226 * 1. load from register or DMA descriptor notifying DMA completion
1227 * 2. bus_dmamap_sync(BUS_DMASYNC_POSTREAD)
1228 * 3. loads from DMA buffer to use data, and stores to reuse buffer
1229 *
1230 * The stores in (3) will not be speculated and, therefore, don't need
1231 * specific handling. The load-before-load ordering is ensured by
1232 * dma_r_r().
1233 *
1234 * The case of POSTWRITE is as follows:
1235 *
1236 * 1. load from register or DMA descriptor notifying DMA completion
1237 * 2. bus_dmamap_sync(BUS_DMASYNC_POSTWRITE)
1238 * 3. loads and stores to reuse buffer
1239 *
1240 * The stores in (3) will not be speculated, and the load can happen at any
1241 * time as the DMA buffer is not changed by the device so no barrier is
1242 * required.
1243 */
1244
1245 if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1246 switch (ops) {
1247 case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
1248 dma_rw_w();
1249 STAT_INCR(sync_coherent_prereadwrite);
1250 break;
1251
1252 case BUS_DMASYNC_PREREAD:
1253 dma_rw_w();
1254 STAT_INCR(sync_coherent_preread);
1255 break;
1256
1257 case BUS_DMASYNC_PREWRITE:
1258 dma_w_w();
1259 STAT_INCR(sync_coherent_prewrite);
1260 break;
1261
1262 case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1263 dma_r_r();
1264 STAT_INCR(sync_coherent_postreadwrite);
1265 break;
1266
1267 case BUS_DMASYNC_POSTREAD:
1268 dma_r_r();
1269 STAT_INCR(sync_coherent_postread);
1270 break;
1271
1272 /* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
1273 }
1274
1275 /*
1276 * Only thing left to do for COHERENT mapping is copy from bounce
1277 * in the POSTREAD case.
1278 */
1279 if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
1280 goto bounce_it;
1281
1282 return;
1283 }
1284
1285 #if !defined(ARM_MMU_EXTENDED)
1286 /*
1287 * If the mapping belongs to a non-kernel vmspace, and the
1288 * vmspace has not been active since the last time a full
1289 * cache flush was performed, we don't need to do anything.
1290 */
1291 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1292 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1293 return;
1294 #endif
1295
1296 int buftype = map->_dm_buftype;
1297 if (bouncing) {
1298 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1299 }
1300
1301 switch (buftype) {
1302 case _BUS_DMA_BUFTYPE_LINEAR:
1303 case _BUS_DMA_BUFTYPE_RAW:
1304 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1305 break;
1306
1307 case _BUS_DMA_BUFTYPE_MBUF:
1308 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1309 break;
1310
1311 case _BUS_DMA_BUFTYPE_UIO:
1312 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1313 break;
1314
1315 case _BUS_DMA_BUFTYPE_INVALID:
1316 panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
1317 break;
1318
1319 default:
1320 panic("%s: map %p: unknown buffer type %d\n", __func__, map,
1321 map->_dm_buftype);
1322 }
1323
1324 /* Drain the write buffer. */
1325 cpu_drain_writebuf();
1326
1327 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1328 return;
1329
1330 bounce_it:
1331 STAT_INCR(read_bounces);
1332
1333 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1334 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1335 /*
1336 * Copy the bounce buffer to the caller's buffer.
1337 */
1338 switch (map->_dm_buftype) {
1339 case _BUS_DMA_BUFTYPE_LINEAR:
1340 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1341 break;
1342
1343 case _BUS_DMA_BUFTYPE_MBUF:
1344 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1345 break;
1346
1347 case _BUS_DMA_BUFTYPE_UIO:
1348 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1349 break;
1350
1351 #ifdef DIAGNOSTIC
1352 case _BUS_DMA_BUFTYPE_RAW:
1353 panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
1354 break;
1355
1356 case _BUS_DMA_BUFTYPE_INVALID:
1357 panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
1358 break;
1359
1360 default:
1361 panic("%s(post): map %p: unknown buffer type %d\n", __func__,
1362 map, map->_dm_buftype);
1363 break;
1364 #endif
1365 }
1366 }
1367
1368 /*
1369 * Common function for DMA-safe memory allocation. May be called
1370 * by bus-specific DMA memory allocation functions.
1371 */
1372
1373 int
1374 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1375 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1376 int flags)
1377 {
1378 struct arm32_dma_range *dr;
1379 int error, i;
1380
1381 #ifdef DEBUG_DMA
1382 printf("dmamem_alloc t=%p size=%#" PRIxBUSSIZE
1383 " align=%#" PRIxBUSSIZE
1384 " boundary=%#" PRIxBUSSIZE " "
1385 "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
1386 boundary, segs, nsegs, rsegs, flags);
1387 #endif
1388
1389 if ((dr = t->_ranges) != NULL) {
1390 error = ENOMEM;
1391 for (i = 0; i < t->_nranges; i++, dr++) {
1392 if (dr->dr_len == 0
1393 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1394 continue;
1395 error = _bus_dmamem_alloc_range(t, size, alignment,
1396 boundary, segs, nsegs, rsegs, flags,
1397 trunc_page(dr->dr_sysbase),
1398 trunc_page(dr->dr_sysbase + dr->dr_len));
1399 if (error == 0)
1400 break;
1401 }
1402 } else {
1403 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1404 segs, nsegs, rsegs, flags, 0UL, ~0UL);
1405 }
1406
1407 #ifdef DEBUG_DMA
1408 printf("dmamem_alloc: =%d\n", error);
1409 #endif
1410
1411 return error;
1412 }
1413
1414 /*
1415 * Common function for freeing DMA-safe memory. May be called by
1416 * bus-specific DMA memory free functions.
1417 */
1418 void
1419 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1420 {
1421 struct vm_page *m;
1422 bus_addr_t addr;
1423 struct pglist mlist;
1424 int curseg;
1425
1426 #ifdef DEBUG_DMA
1427 printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
1428 #endif /* DEBUG_DMA */
1429
1430 /*
1431 * Build a list of pages to free back to the VM system.
1432 */
1433 TAILQ_INIT(&mlist);
1434 for (curseg = 0; curseg < nsegs; curseg++) {
1435 for (addr = segs[curseg].ds_addr;
1436 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1437 addr += PAGE_SIZE) {
1438 m = PHYS_TO_VM_PAGE(addr);
1439 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1440 }
1441 }
1442 uvm_pglistfree(&mlist);
1443 }
1444
1445 /*
1446 * Common function for mapping DMA-safe memory. May be called by
1447 * bus-specific DMA memory map functions.
1448 */
1449 int
1450 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1451 size_t size, void **kvap, int flags)
1452 {
1453 vaddr_t va;
1454 paddr_t pa;
1455 int curseg;
1456 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1457 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1458 vsize_t align = 0;
1459
1460 #ifdef DEBUG_DMA
1461 printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#zx flags=%#x\n", t,
1462 segs, nsegs, size, flags);
1463 #endif /* DEBUG_DMA */
1464
1465 #ifdef PMAP_MAP_POOLPAGE
1466 /*
1467 * If all of memory is mapped, and we are mapping a single physically
1468 * contiguous area then this area is already mapped. Let's see if we
1469 * avoid having a separate mapping for it.
1470 */
1471 if (nsegs == 1 &&
1472 (flags & (BUS_DMA_PREFETCHABLE|BUS_DMA_NOCACHE)) == 0) {
1473 /*
1474 * If this is a non-COHERENT mapping, then the existing kernel
1475 * mapping is already compatible with it.
1476 */
1477 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1478 pa = segs[0].ds_addr;
1479
1480 /*
1481 * This is a COHERENT mapping which, unless this address is in
1482 * a COHERENT dma range, will not be compatible.
1483 */
1484 if (t->_ranges != NULL) {
1485 const struct arm32_dma_range * const dr =
1486 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1487 if (dr != NULL
1488 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1489 direct_mapable = true;
1490 }
1491 }
1492
1493 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1494 /*
1495 * The page can only be direct mapped if was allocated out
1496 * of the arm poolpage vm freelist.
1497 */
1498 uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
1499 KASSERT(uvm_physseg_valid_p(upm));
1500 if (direct_mapable) {
1501 direct_mapable =
1502 (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
1503 }
1504 #endif
1505
1506 if (direct_mapable) {
1507 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1508 #ifdef DEBUG_DMA
1509 printf("dmamem_map: =%p\n", *kvap);
1510 #endif /* DEBUG_DMA */
1511 return 0;
1512 }
1513 }
1514 #endif
1515
1516 size = round_page(size);
1517
1518 #ifdef PMAP_MAPSIZE1
1519 if (size >= PMAP_MAPSIZE1)
1520 align = PMAP_MAPSIZE1;
1521
1522 #ifdef PMAP_MAPSIZE2
1523
1524 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
1525 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
1526 #endif
1527
1528 if (size >= PMAP_MAPSIZE2)
1529 align = PMAP_MAPSIZE2;
1530
1531 #ifdef PMAP_MAPSIZE3
1532
1533 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
1534 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
1535 #endif
1536
1537 if (size >= PMAP_MAPSIZE3)
1538 align = PMAP_MAPSIZE3;
1539 #endif
1540 #endif
1541 #endif
1542
1543 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1544 if (__predict_false(va == 0 && align > 0)) {
1545 align = 0;
1546 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1547 }
1548
1549 if (va == 0)
1550 return ENOMEM;
1551
1552 *kvap = (void *)va;
1553
1554 for (curseg = 0; curseg < nsegs; curseg++) {
1555 for (pa = segs[curseg].ds_addr;
1556 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1557 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1558 bool uncached =
1559 (flags & (BUS_DMA_COHERENT | BUS_DMA_NOCACHE)) != 0;
1560 bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
1561 #ifdef DEBUG_DMA
1562 printf("wiring P%#" PRIxPADDR
1563 " to V%#" PRIxVADDR "\n", pa, va);
1564 #endif /* DEBUG_DMA */
1565 if (size == 0)
1566 panic("_bus_dmamem_map: size botch");
1567
1568 const struct arm32_dma_range * const dr =
1569 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1570 /*
1571 * If this dma region is coherent then there is
1572 * no need for an uncached mapping.
1573 */
1574 if ((flags & BUS_DMA_NOCACHE) == 0 &&
1575 dr != NULL
1576 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1577 uncached = false;
1578 }
1579
1580 u_int pmap_flags = PMAP_WIRED;
1581 if (prefetchable)
1582 pmap_flags |= PMAP_WRITE_COMBINE;
1583 else if (uncached)
1584 pmap_flags |= PMAP_NOCACHE;
1585
1586 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1587 pmap_flags);
1588 }
1589 }
1590 pmap_update(pmap_kernel());
1591 #ifdef DEBUG_DMA
1592 printf("dmamem_map: =%p\n", *kvap);
1593 #endif /* DEBUG_DMA */
1594 return 0;
1595 }
1596
1597 /*
1598 * Common function for unmapping DMA-safe memory. May be called by
1599 * bus-specific DMA memory unmapping functions.
1600 */
1601 void
1602 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1603 {
1604
1605 #ifdef DEBUG_DMA
1606 printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
1607 #endif /* DEBUG_DMA */
1608 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1609 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1610
1611 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1612 /*
1613 * Check to see if this used direct mapped memory. Get its physical
1614 * address and try to map it. If the resultant matches the kva, then
1615 * it was and so we can just return since we have nothing to free up.
1616 */
1617 paddr_t pa;
1618 vaddr_t va;
1619 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1620 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1621 return;
1622 #endif
1623
1624 size = round_page(size);
1625 pmap_kremove((vaddr_t)kva, size);
1626 pmap_update(pmap_kernel());
1627 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1628 }
1629
1630 /*
1631 * Common function for mmap(2)'ing DMA-safe memory. May be called by
1632 * bus-specific DMA mmap(2)'ing functions.
1633 */
1634 paddr_t
1635 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1636 off_t off, int prot, int flags)
1637 {
1638 paddr_t map_flags;
1639 int i;
1640
1641 for (i = 0; i < nsegs; i++) {
1642 KASSERTMSG((off & PAGE_MASK) == 0,
1643 "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
1644 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1645 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1646 (int)segs[i].ds_addr & PAGE_MASK);
1647 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1648 "ds_len %#lx (%#x)", segs[i].ds_addr,
1649 (int)segs[i].ds_addr & PAGE_MASK);
1650 if (off >= segs[i].ds_len) {
1651 off -= segs[i].ds_len;
1652 continue;
1653 }
1654
1655 map_flags = 0;
1656 if (flags & BUS_DMA_PREFETCHABLE)
1657 map_flags |= ARM_MMAP_WRITECOMBINE;
1658
1659 return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
1660
1661 }
1662
1663 /* Page not found. */
1664 return -1;
1665 }
1666
1667 /**********************************************************************
1668 * DMA utility functions
1669 **********************************************************************/
1670
1671 /*
1672 * Utility function to load a linear buffer. lastaddrp holds state
1673 * between invocations (for multiple-buffer loads). segp contains
1674 * the starting segment on entrance, and the ending segment on exit.
1675 * first indicates if this is the first invocation of this function.
1676 */
1677 int
1678 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1679 bus_size_t buflen, struct vmspace *vm, int flags)
1680 {
1681 bus_size_t sgsize;
1682 bus_addr_t curaddr;
1683 vaddr_t vaddr = (vaddr_t)buf;
1684 int error;
1685
1686 #ifdef DEBUG_DMA
1687 printf("_bus_dmamap_load_buffer(buf=%p, len=%#" PRIxBUSSIZE
1688 ", flags=%#x)\n", buf, buflen, flags);
1689 #endif /* DEBUG_DMA */
1690
1691 pmap_t pmap = vm_map_pmap(&vm->vm_map);
1692
1693 while (buflen > 0) {
1694 /*
1695 * Get the physical address for this segment.
1696 *
1697 */
1698 bool coherent;
1699 bool ok __diagused;
1700 ok = pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
1701
1702 /*
1703 * trying to bus_dmamap_load an unmapped buffer is a
1704 * programming error.
1705 */
1706 KASSERT(ok);
1707
1708 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1709 "va %#" PRIxVADDR " curaddr %#" PRIxBUSADDR, vaddr, curaddr);
1710
1711 /*
1712 * Compute the segment size, and adjust counts.
1713 */
1714 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1715 if (buflen < sgsize)
1716 sgsize = buflen;
1717
1718 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1719 coherent);
1720 if (__predict_false(error))
1721 return error;
1722
1723 vaddr += sgsize;
1724 buflen -= sgsize;
1725 }
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * Allocate physical memory from the given physical address range.
1732 * Called by DMA-safe memory allocation methods.
1733 */
1734 int
1735 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1736 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1737 int flags, paddr_t low, paddr_t high)
1738 {
1739 paddr_t curaddr, lastaddr;
1740 struct vm_page *m;
1741 struct pglist mlist;
1742 int curseg, error;
1743
1744 KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
1745 "invalid boundary %#" PRIxBUSSIZE, boundary);
1746
1747 #ifdef DEBUG_DMA
1748 printf("alloc_range: t=%p size=%#" PRIxBUSSIZE
1749 " align=%#" PRIxBUSSIZE " boundary=%#" PRIxBUSSIZE
1750 " segs=%p nsegs=%#x rsegs=%p flags=%#x"
1751 " lo=%#" PRIxPADDR " hi=%#" PRIxPADDR "\n",
1752 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1753 #endif /* DEBUG_DMA */
1754
1755 /* Always round the size. */
1756 size = round_page(size);
1757
1758 /*
1759 * We accept boundaries < size, splitting in multiple segments
1760 * if needed. uvm_pglistalloc does not, so compute an appropriate
1761 * boundary: next power of 2 >= size
1762 */
1763 bus_size_t uboundary = boundary;
1764 if (uboundary <= PAGE_SIZE) {
1765 uboundary = 0;
1766 } else {
1767 while (uboundary < size) {
1768 uboundary <<= 1;
1769 }
1770 }
1771
1772 /*
1773 * Allocate pages from the VM system.
1774 */
1775 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1776 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1777 if (error)
1778 return error;
1779
1780 /*
1781 * Compute the location, size, and number of segments actually
1782 * returned by the VM code.
1783 */
1784 m = TAILQ_FIRST(&mlist);
1785 curseg = 0;
1786 lastaddr = segs[curseg].ds_addr = segs[curseg]._ds_paddr =
1787 VM_PAGE_TO_PHYS(m);
1788 segs[curseg].ds_len = PAGE_SIZE;
1789 #ifdef DEBUG_DMA
1790 printf("alloc: page %#" PRIxPADDR "\n", lastaddr);
1791 #endif /* DEBUG_DMA */
1792 m = TAILQ_NEXT(m, pageq.queue);
1793
1794 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1795 curaddr = VM_PAGE_TO_PHYS(m);
1796 KASSERTMSG(low <= curaddr && curaddr < high,
1797 "uvm_pglistalloc returned non-sensicaladdress %#" PRIxPADDR
1798 "(low=%#" PRIxPADDR ", high=%#" PRIxPADDR "\n",
1799 curaddr, low, high);
1800 #ifdef DEBUG_DMA
1801 printf("alloc: page %#" PRIxPADDR "\n", curaddr);
1802 #endif /* DEBUG_DMA */
1803 if (curaddr == lastaddr + PAGE_SIZE
1804 && (lastaddr & boundary) == (curaddr & boundary))
1805 segs[curseg].ds_len += PAGE_SIZE;
1806 else {
1807 curseg++;
1808 if (curseg >= nsegs) {
1809 uvm_pglistfree(&mlist);
1810 return EFBIG;
1811 }
1812 segs[curseg].ds_addr = curaddr;
1813 segs[curseg]._ds_paddr = curaddr;
1814 segs[curseg].ds_len = PAGE_SIZE;
1815 }
1816 lastaddr = curaddr;
1817 }
1818
1819 *rsegs = curseg + 1;
1820
1821 return 0;
1822 }
1823
1824 /*
1825 * Check if a memory region intersects with a DMA range, and return the
1826 * page-rounded intersection if it does.
1827 */
1828 int
1829 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1830 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1831 {
1832 struct arm32_dma_range *dr;
1833 int i;
1834
1835 if (ranges == NULL)
1836 return 0;
1837
1838 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1839 if (dr->dr_sysbase <= pa &&
1840 pa < (dr->dr_sysbase + dr->dr_len)) {
1841 /*
1842 * Beginning of region intersects with this range.
1843 */
1844 *pap = trunc_page(pa);
1845 *sizep = round_page(uimin(pa + size,
1846 dr->dr_sysbase + dr->dr_len) - pa);
1847 return 1;
1848 }
1849 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1850 /*
1851 * End of region intersects with this range.
1852 */
1853 *pap = trunc_page(dr->dr_sysbase);
1854 *sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
1855 dr->dr_len));
1856 return 1;
1857 }
1858 }
1859
1860 /* No intersection found. */
1861 return 0;
1862 }
1863
1864 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1865 static int
1866 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1867 bus_size_t size, int flags)
1868 {
1869 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1870 int error = 0;
1871
1872 KASSERT(cookie != NULL);
1873
1874 cookie->id_bouncebuflen = round_page(size);
1875 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1876 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1877 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1878 if (error == 0) {
1879 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1880 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1881 (void **)&cookie->id_bouncebuf, flags);
1882 if (error) {
1883 _bus_dmamem_free(t, cookie->id_bouncesegs,
1884 cookie->id_nbouncesegs);
1885 cookie->id_bouncebuflen = 0;
1886 cookie->id_nbouncesegs = 0;
1887 } else {
1888 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1889 }
1890 } else {
1891 cookie->id_bouncebuflen = 0;
1892 cookie->id_nbouncesegs = 0;
1893 }
1894
1895 return error;
1896 }
1897
1898 static void
1899 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1900 {
1901 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1902
1903 KASSERT(cookie != NULL);
1904
1905 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1906 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1907 cookie->id_bouncebuflen = 0;
1908 cookie->id_nbouncesegs = 0;
1909 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1910 }
1911 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1912
1913 /*
1914 * This function does the same as uiomove, but takes an explicit
1915 * direction, and does not update the uio structure.
1916 */
1917 static int
1918 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1919 {
1920 struct iovec *iov;
1921 int error;
1922 struct vmspace *vm;
1923 char *cp;
1924 size_t resid, cnt;
1925 int i;
1926
1927 iov = uio->uio_iov;
1928 vm = uio->uio_vmspace;
1929 cp = buf;
1930 resid = n;
1931
1932 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1933 iov = &uio->uio_iov[i];
1934 if (iov->iov_len == 0)
1935 continue;
1936 cnt = MIN(resid, iov->iov_len);
1937
1938 if (!VMSPACE_IS_KERNEL_P(vm)) {
1939 preempt_point();
1940 }
1941 if (direction == UIO_READ) {
1942 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1943 } else {
1944 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1945 }
1946 if (error)
1947 return error;
1948 cp += cnt;
1949 resid -= cnt;
1950 }
1951 return 0;
1952 }
1953
1954 int
1955 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1956 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1957 {
1958 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1959 if (min_addr >= max_addr)
1960 return EOPNOTSUPP;
1961
1962 struct arm32_dma_range *dr;
1963 bool psubset = true;
1964 size_t nranges = 0;
1965 size_t i;
1966 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1967 /*
1968 * If the new {min,max}_addr are narrower than any of the
1969 * ranges in the parent tag then we need a new tag;
1970 * otherwise the parent tag is a subset of the new
1971 * range and can continue to be used.
1972 */
1973 if (min_addr > dr->dr_sysbase
1974 || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
1975 psubset = false;
1976 }
1977 if (min_addr <= dr->dr_sysbase + dr->dr_len
1978 && max_addr >= dr->dr_sysbase) {
1979 nranges++;
1980 }
1981 }
1982 if (nranges == 0) {
1983 nranges = 1;
1984 psubset = false;
1985 }
1986 if (psubset) {
1987 *newtag = tag;
1988 /* if the tag must be freed, add a reference */
1989 if (tag->_tag_needs_free)
1990 (tag->_tag_needs_free)++;
1991 return 0;
1992 }
1993
1994 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1995 if ((*newtag = kmem_intr_zalloc(tagsize,
1996 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1997 return ENOMEM;
1998
1999 dr = (void *)(*newtag + 1);
2000 **newtag = *tag;
2001 (*newtag)->_tag_needs_free = 1;
2002 (*newtag)->_ranges = dr;
2003 (*newtag)->_nranges = nranges;
2004
2005 if (tag->_ranges == NULL) {
2006 dr->dr_sysbase = min_addr;
2007 dr->dr_busbase = min_addr;
2008 dr->dr_len = max_addr + 1 - min_addr;
2009 } else {
2010 struct arm32_dma_range *pdr;
2011
2012 for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
2013 KASSERT(nranges != 0);
2014
2015 if (min_addr > pdr->dr_sysbase + pdr->dr_len
2016 || max_addr < pdr->dr_sysbase) {
2017 /*
2018 * this range doesn't overlap with new limits,
2019 * so skip.
2020 */
2021 continue;
2022 }
2023 /*
2024 * Copy the range and adjust to fit within the new
2025 * limits
2026 */
2027 dr[0] = pdr[0];
2028 if (dr->dr_sysbase < min_addr) {
2029 psize_t diff = min_addr - dr->dr_sysbase;
2030 dr->dr_busbase += diff;
2031 dr->dr_len -= diff;
2032 dr->dr_sysbase += diff;
2033 }
2034 if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
2035 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
2036 }
2037 dr++;
2038 nranges--;
2039 }
2040 }
2041
2042 return 0;
2043 #else
2044 return EOPNOTSUPP;
2045 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
2046 }
2047
2048 void
2049 _bus_dmatag_destroy(bus_dma_tag_t tag)
2050 {
2051 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
2052 switch (tag->_tag_needs_free) {
2053 case 0:
2054 break; /* not allocated with kmem */
2055 case 1: {
2056 const size_t tagsize = sizeof(*tag)
2057 + tag->_nranges * sizeof(*tag->_ranges);
2058 kmem_intr_free(tag, tagsize); /* last reference to tag */
2059 break;
2060 }
2061 default:
2062 (tag->_tag_needs_free)--; /* one less reference */
2063 }
2064 #endif
2065 }
2066