Home | History | Annotate | Line # | Download | only in arm32
bus_dma.c revision 1.150
      1 /*	$NetBSD: bus_dma.c,v 1.150 2025/09/26 07:48:46 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997, 1998, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #define _ARM32_BUS_DMA_PRIVATE
     34 
     35 #include "opt_arm_bus_space.h"
     36 #include "opt_cputypes.h"
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.150 2025/09/26 07:48:46 skrll Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <sys/bus.h>
     44 #include <sys/cpu.h>
     45 #include <sys/kmem.h>
     46 #include <sys/mbuf.h>
     47 
     48 #include <uvm/uvm.h>
     49 
     50 #include <arm/cpuconf.h>
     51 #include <arm/cpufunc.h>
     52 
     53 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
     54 #include <dev/mm.h>
     55 #endif
     56 
     57 #ifdef BUSDMA_COUNTERS
     58 static struct evcnt bus_dma_creates =
     59 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
     60 static struct evcnt bus_dma_bounced_creates =
     61 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
     62 static struct evcnt bus_dma_loads =
     63 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
     64 static struct evcnt bus_dma_bounced_loads =
     65 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
     66 static struct evcnt bus_dma_coherent_loads =
     67 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
     68 static struct evcnt bus_dma_read_bounces =
     69 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
     70 static struct evcnt bus_dma_write_bounces =
     71 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
     72 static struct evcnt bus_dma_bounced_unloads =
     73 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
     74 static struct evcnt bus_dma_bounced_mbuf_loads =
     75 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced mbuf loads");
     76 static struct evcnt bus_dma_unloads =
     77 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
     78 static struct evcnt bus_dma_bounced_destroys =
     79 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
     80 static struct evcnt bus_dma_destroys =
     81 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
     82 static struct evcnt bus_dma_sync_prereadwrite =
     83 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
     84 static struct evcnt bus_dma_sync_preread_begin =
     85 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
     86 static struct evcnt bus_dma_sync_preread =
     87 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
     88 static struct evcnt bus_dma_sync_preread_tail =
     89 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
     90 static struct evcnt bus_dma_sync_prewrite =
     91 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
     92 static struct evcnt bus_dma_sync_postread =
     93 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
     94 static struct evcnt bus_dma_sync_postreadwrite =
     95 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
     96 static struct evcnt bus_dma_sync_postwrite =
     97 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
     98 static struct evcnt bus_dma_inrange_fail =
     99 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "inrange check failed");
    100 
    101 static struct evcnt bus_dma_sync_coherent_prereadwrite =
    102 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prereadwrite");
    103 static struct evcnt bus_dma_sync_coherent_preread =
    104 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent preread");
    105 static struct evcnt bus_dma_sync_coherent_prewrite =
    106 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent prewrite");
    107 static struct evcnt bus_dma_sync_coherent_postread =
    108 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postread");
    109 static struct evcnt bus_dma_sync_coherent_postreadwrite =
    110 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postreadwrite");
    111 static struct evcnt bus_dma_sync_coherent_postwrite =
    112 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync coherent postwrite");
    113 
    114 EVCNT_ATTACH_STATIC(bus_dma_creates);
    115 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
    116 EVCNT_ATTACH_STATIC(bus_dma_loads);
    117 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
    118 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
    119 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
    120 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
    121 EVCNT_ATTACH_STATIC(bus_dma_unloads);
    122 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
    123 EVCNT_ATTACH_STATIC(bus_dma_destroys);
    124 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
    125 EVCNT_ATTACH_STATIC(bus_dma_bounced_mbuf_loads);
    126 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
    127 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
    128 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
    129 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
    130 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
    131 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
    132 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
    133 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
    134 EVCNT_ATTACH_STATIC(bus_dma_inrange_fail);
    135 
    136 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prereadwrite);
    137 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_preread);
    138 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_prewrite);
    139 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postread);
    140 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postreadwrite);
    141 EVCNT_ATTACH_STATIC(bus_dma_sync_coherent_postwrite);
    142 
    143 #define	STAT_INCR(x)	(bus_dma_ ## x.ev_count++)
    144 #else
    145 #define	STAT_INCR(x)	__nothing
    146 #endif
    147 
    148 int	_bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
    149 	    bus_size_t, struct vmspace *, int);
    150 
    151 /*
    152  * Check to see if the specified page is in an allowed DMA range.
    153  */
    154 static inline struct arm32_dma_range *
    155 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
    156     bus_addr_t curaddr)
    157 {
    158 	struct arm32_dma_range *dr;
    159 	int i;
    160 
    161 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
    162 		if (curaddr >= dr->dr_sysbase &&
    163 		    curaddr < (dr->dr_sysbase + dr->dr_len))
    164 			return dr;
    165 	}
    166 
    167 	return NULL;
    168 }
    169 
    170 /*
    171  * Check to see if the specified busaddr is in an allowed DMA range.
    172  */
    173 static inline paddr_t
    174 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
    175 {
    176 	struct arm32_dma_range *dr;
    177 	u_int i;
    178 
    179 	if (t->_nranges == 0)
    180 		return curaddr;
    181 
    182 	for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
    183 		if (dr->dr_busbase <= curaddr
    184 		    && curaddr < dr->dr_busbase + dr->dr_len)
    185 			return curaddr - dr->dr_busbase + dr->dr_sysbase;
    186 	}
    187 	panic("%s: curaddr %#" PRIxBUSADDR "not in range", __func__, curaddr);
    188 }
    189 
    190 /*
    191  * Common function to load the specified physical address into the
    192  * DMA map, coalescing segments and boundary checking as necessary.
    193  */
    194 static int
    195 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
    196     bus_addr_t paddr, bus_size_t size, bool coherent)
    197 {
    198 	bus_dma_segment_t * const segs = map->dm_segs;
    199 	int nseg = map->dm_nsegs;
    200 	bus_addr_t lastaddr;
    201 	bus_addr_t bmask = ~(map->_dm_boundary - 1);
    202 	bus_addr_t curaddr;
    203 	bus_size_t sgsize;
    204 	uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
    205 
    206 	if (nseg > 0)
    207 		lastaddr = segs[nseg - 1].ds_addr + segs[nseg - 1].ds_len;
    208 	else
    209 		lastaddr = 0xdead;
    210 
    211  again:
    212 	sgsize = size;
    213 
    214 	/* Make sure we're in an allowed DMA range. */
    215 	if (t->_ranges != NULL) {
    216 		/* XXX cache last result? */
    217 		const struct arm32_dma_range * const dr =
    218 		    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
    219 		if (__predict_false(dr == NULL)) {
    220 			STAT_INCR(inrange_fail);
    221 			return EINVAL;
    222 		}
    223 
    224 		/*
    225 		 * If this region is coherent, mark the segment as coherent.
    226 		 */
    227 		_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
    228 
    229 		/*
    230 		 * In a valid DMA range.  Translate the physical
    231 		 * memory address to an address in the DMA window.
    232 		 */
    233 		curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
    234 #if 0
    235 		printf("%p: %#" PRIxPADDR
    236 		    ": range %#" PRIxPADDR "/%#" PRIxBUSADDR
    237 		    "/%#" PRIxBUSSIZE "/%#" PRIx32 ": %#" PRIx32
    238 		    " <-- %#" PRIxBUSADDR "\n",
    239 		    t, paddr, dr->dr_sysbase, dr->dr_busbase,
    240 		    dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
    241 #endif
    242 	} else
    243 		curaddr = paddr;
    244 
    245 	/*
    246 	 * Make sure we don't cross any boundaries.
    247 	 */
    248 	if (map->_dm_boundary > 0) {
    249 		bus_addr_t baddr;	/* next boundary address */
    250 
    251 		baddr = (curaddr + map->_dm_boundary) & bmask;
    252 		if (sgsize > (baddr - curaddr))
    253 			sgsize = (baddr - curaddr);
    254 	}
    255 
    256 	/*
    257 	 * Insert chunk into a segment, coalescing with the
    258 	 * previous segment if possible.
    259 	 */
    260 	if (nseg > 0 && curaddr == lastaddr &&
    261 	    segs[nseg - 1].ds_len + sgsize <= map->dm_maxsegsz &&
    262 	    ((segs[nseg - 1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
    263 	    (map->_dm_boundary == 0 ||
    264 	     (segs[nseg - 1].ds_addr & bmask) == (curaddr & bmask))) {
    265 		/* coalesce */
    266 		segs[nseg - 1].ds_len += sgsize;
    267 	} else if (__predict_false(nseg >= map->_dm_segcnt)) {
    268 		return EFBIG;
    269 	} else {
    270 		/* new segment */
    271 		segs[nseg].ds_addr = curaddr;
    272 		segs[nseg].ds_len = sgsize;
    273 		segs[nseg]._ds_paddr = curaddr;
    274 		segs[nseg]._ds_flags = _ds_flags;
    275 		nseg++;
    276 	}
    277 
    278 	lastaddr = curaddr + sgsize;
    279 
    280 	paddr += sgsize;
    281 	size -= sgsize;
    282 	if (size > 0)
    283 		goto again;
    284 
    285 	map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
    286 	map->dm_nsegs = nseg;
    287 	return 0;
    288 }
    289 
    290 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
    291 	    int direction);
    292 
    293 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    294 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
    295 	    bus_size_t size, int flags);
    296 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
    297 
    298 static int
    299 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    300 	size_t buflen, int buftype, int flags)
    301 {
    302 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    303 	struct vmspace * const vm = vmspace_kernel();
    304 	int error;
    305 
    306 	KASSERT(cookie != NULL);
    307 	KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
    308 
    309 	/*
    310 	 * Allocate bounce pages, if necessary.
    311 	 */
    312 	if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
    313 		error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
    314 		if (__predict_false(error))
    315 			return error;
    316 	}
    317 
    318 	/*
    319 	 * Since we're trying again, clear the previous attempt.
    320 	 */
    321 	map->dm_mapsize = 0;
    322 	map->dm_nsegs = 0;
    323 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    324 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    325 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    326 
    327 	/*
    328 	 * Cache a pointer to the caller's buffer and load the DMA map
    329 	 * with the bounce buffer.
    330 	 */
    331 	cookie->id_origbuf = buf;
    332 	cookie->id_origbuflen = buflen;
    333 	error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
    334 	    buflen, vm, flags);
    335 	if (__predict_false(error))
    336 		return error;
    337 
    338 	STAT_INCR(bounced_loads);
    339 	map->dm_mapsize = buflen;
    340 	map->_dm_vmspace = vm;
    341 	map->_dm_buftype = buftype;
    342 
    343 	/* ...so _bus_dmamap_sync() knows we're bouncing */
    344 	map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
    345 	cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
    346 	return 0;
    347 }
    348 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    349 
    350 /*
    351  * Common function for DMA map creation.  May be called by bus-specific
    352  * DMA map creation functions.
    353  */
    354 int
    355 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
    356     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
    357 {
    358 	struct arm32_bus_dmamap *map;
    359 	void *mapstore;
    360 	int error = 0;
    361 
    362 #ifdef DEBUG_DMA
    363 	printf("dmamap_create: t=%p size=%#" PRIxBUSSIZE
    364 	    " nseg=%#x msegsz=%#" PRIxBUSSIZE
    365 	    " boundary=%#" PRIxBUSSIZE
    366 	    " flags=%#x\n", t, size, nsegments, maxsegsz, boundary, flags);
    367 #endif	/* DEBUG_DMA */
    368 
    369 	/*
    370 	 * Allocate and initialize the DMA map.  The end of the map
    371 	 * is a variable-sized array of segments, so we allocate enough
    372 	 * room for them in one shot.
    373 	 *
    374 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
    375 	 * of ALLOCNOW notifies others that we've reserved these resources,
    376 	 * and they are not to be freed.
    377 	 *
    378 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
    379 	 * the (nsegments - 1).
    380 	 */
    381 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    382 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
    383 	const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
    384 	if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
    385 		return ENOMEM;
    386 
    387 	map = (struct arm32_bus_dmamap *)mapstore;
    388 	map->_dm_size = size;
    389 	map->_dm_segcnt = nsegments;
    390 	map->_dm_maxmaxsegsz = maxsegsz;
    391 	map->_dm_boundary = boundary;
    392 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK | BUS_DMA_NOWAIT);
    393 	map->_dm_origbuf = NULL;
    394 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    395 	map->_dm_vmspace = vmspace_kernel();
    396 	map->_dm_cookie = NULL;
    397 	map->dm_maxsegsz = maxsegsz;
    398 	map->dm_mapsize = 0;		/* no valid mappings */
    399 	map->dm_nsegs = 0;
    400 
    401 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    402 	struct arm32_bus_dma_cookie *cookie;
    403 	int cookieflags;
    404 	void *cookiestore;
    405 
    406 	cookieflags = 0;
    407 
    408 	if (t->_may_bounce != NULL) {
    409 		error = (*t->_may_bounce)(t, map, flags, &cookieflags);
    410 		if (error != 0)
    411 			goto out;
    412 	}
    413 
    414 	if (t->_ranges != NULL) {
    415 		/*
    416 		 * If ranges are defined, we may have to bounce. The only
    417 		 * exception is if there is exactly one range that covers
    418 		 * all of physical memory.
    419 		 */
    420 		switch (t->_nranges) {
    421 		case 1:
    422 			if (t->_ranges[0].dr_sysbase == 0 &&
    423 			    t->_ranges[0].dr_len == UINTPTR_MAX) {
    424 				break;
    425 			}
    426 			/* FALLTHROUGH */
    427 		default:
    428 			cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
    429 		}
    430 	}
    431 
    432 	if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
    433 		STAT_INCR(creates);
    434 		*dmamp = map;
    435 		return 0;
    436 	}
    437 
    438 	const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    439 	    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    440 
    441 	/*
    442 	 * Allocate our cookie.
    443 	 */
    444 	if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
    445 		error = ENOMEM;
    446 		goto out;
    447 	}
    448 	cookie = (struct arm32_bus_dma_cookie *)cookiestore;
    449 	cookie->id_flags = cookieflags;
    450 	map->_dm_cookie = cookie;
    451 	STAT_INCR(bounced_creates);
    452 
    453 	error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
    454  out:
    455 	if (error)
    456 		_bus_dmamap_destroy(t, map);
    457 	else
    458 		*dmamp = map;
    459 #else
    460 	*dmamp = map;
    461 	STAT_INCR(creates);
    462 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
    463 #ifdef DEBUG_DMA
    464 	printf("dmamap_create:map=%p\n", map);
    465 #endif	/* DEBUG_DMA */
    466 	return error;
    467 }
    468 
    469 /*
    470  * Common function for DMA map destruction.  May be called by bus-specific
    471  * DMA map destruction functions.
    472  */
    473 void
    474 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
    475 {
    476 
    477 #ifdef DEBUG_DMA
    478 	printf("dmamap_destroy: t=%p map=%p\n", t, map);
    479 #endif	/* DEBUG_DMA */
    480 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    481 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    482 
    483 	/*
    484 	 * Free any bounce pages this map might hold.
    485 	 */
    486 	if (cookie != NULL) {
    487 		const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
    488 		    (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
    489 
    490 		if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
    491 			STAT_INCR(bounced_unloads);
    492 		map->dm_nsegs = 0;
    493 		if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
    494 			_bus_dma_free_bouncebuf(t, map);
    495 		STAT_INCR(bounced_destroys);
    496 		kmem_intr_free(cookie, cookiesize);
    497 	} else
    498 #endif
    499 	STAT_INCR(destroys);
    500 
    501 	if (map->dm_nsegs > 0)
    502 		STAT_INCR(unloads);
    503 
    504 	const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
    505 	    (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
    506 	kmem_intr_free(map, mapsize);
    507 }
    508 
    509 /*
    510  * Common function for loading a DMA map with a linear buffer.  May
    511  * be called by bus-specific DMA map load functions.
    512  */
    513 int
    514 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
    515     bus_size_t buflen, struct proc *p, int flags)
    516 {
    517 	struct vmspace *vm;
    518 	int error;
    519 
    520 #ifdef DEBUG_DMA
    521 	printf("dmamap_load: t=%p map=%p buf=%p len=%#" PRIxBUSSIZE
    522 	    " p=%p f=%#x\n", t, map, buf, buflen, p, flags);
    523 #endif	/* DEBUG_DMA */
    524 
    525 	if (map->dm_nsegs > 0) {
    526 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    527 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    528 		if (cookie != NULL) {
    529 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    530 				STAT_INCR(bounced_unloads);
    531 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    532 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    533 			}
    534 		} else
    535 #endif
    536 		STAT_INCR(unloads);
    537 	}
    538 
    539 	/*
    540 	 * Make sure that on error condition we return "no valid mappings".
    541 	 */
    542 	map->dm_mapsize = 0;
    543 	map->dm_nsegs = 0;
    544 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    545 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    546 	    "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
    547 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    548 
    549 	if (__predict_false(buflen > map->_dm_size))
    550 		return EINVAL;
    551 
    552 	if (p != NULL) {
    553 		vm = p->p_vmspace;
    554 	} else {
    555 		vm = vmspace_kernel();
    556 	}
    557 
    558 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    559 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    560 
    561 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
    562 	if (__predict_true(error == 0)) {
    563 		map->dm_mapsize = buflen;
    564 		map->_dm_vmspace = vm;
    565 		map->_dm_origbuf = buf;
    566 		map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
    567 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    568 			STAT_INCR(coherent_loads);
    569 		} else {
    570 			STAT_INCR(loads);
    571 		}
    572 		return 0;
    573 	}
    574 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    575 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    576 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    577 		error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
    578 		    _BUS_DMA_BUFTYPE_LINEAR, flags);
    579 	}
    580 #endif
    581 	return error;
    582 }
    583 
    584 /*
    585  * Like _bus_dmamap_load(), but for mbufs.
    586  */
    587 int
    588 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
    589     int flags)
    590 {
    591 	struct mbuf *m;
    592 	int error;
    593 
    594 #ifdef DEBUG_DMA
    595 	printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%#x\n",
    596 	    t, map, m0, flags);
    597 #endif	/* DEBUG_DMA */
    598 
    599 	if (map->dm_nsegs > 0) {
    600 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    601 		struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
    602 		if (cookie != NULL) {
    603 			if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
    604 				STAT_INCR(bounced_unloads);
    605 				cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
    606 				map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
    607 			}
    608 		} else
    609 #endif
    610 		STAT_INCR(unloads);
    611 	}
    612 
    613 	/*
    614 	 * Make sure that on error condition we return "no valid mappings."
    615 	 */
    616 	map->dm_mapsize = 0;
    617 	map->dm_nsegs = 0;
    618 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    619 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    620 	    "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
    621 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    622 
    623 	KASSERT(m0->m_flags & M_PKTHDR);
    624 
    625 	if (__predict_false(m0->m_pkthdr.len > map->_dm_size))
    626 		return EINVAL;
    627 
    628 	/* _bus_dmamap_load_paddr() clears this if we're not... */
    629 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    630 
    631 	error = 0;
    632 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
    633 		int offset;
    634 		int remainbytes;
    635 		const struct vm_page * const *pgs;
    636 		paddr_t paddr;
    637 		int size;
    638 
    639 		if (m->m_len == 0)
    640 			continue;
    641 		/*
    642 		 * Don't allow reads in read-only mbufs.
    643 		 */
    644 		if (__predict_false(M_ROMAP(m) && (flags & BUS_DMA_READ))) {
    645 			error = EFAULT;
    646 			break;
    647 		}
    648 		switch (m->m_flags & (M_EXT | M_EXT_CLUSTER | M_EXT_PAGES)) {
    649 		case M_EXT | M_EXT_CLUSTER:
    650 			KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
    651 			paddr = m->m_ext.ext_paddr +
    652 			    (m->m_data - m->m_ext.ext_buf);
    653 			size = m->m_len;
    654 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    655 			    false);
    656 			break;
    657 
    658 		case M_EXT | M_EXT_PAGES:
    659 			KASSERT(m->m_ext.ext_buf <= m->m_data);
    660 			KASSERT(m->m_data <=
    661 			    m->m_ext.ext_buf + m->m_ext.ext_size);
    662 
    663 			offset = (vaddr_t)m->m_data -
    664 			    trunc_page((vaddr_t)m->m_ext.ext_buf);
    665 			remainbytes = m->m_len;
    666 
    667 			/* skip uninteresting pages */
    668 			pgs = (const struct vm_page * const *)
    669 			    m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
    670 
    671 			offset &= PAGE_MASK;	/* offset in the first page */
    672 
    673 			/* load each page */
    674 			while (remainbytes > 0) {
    675 				const struct vm_page *pg;
    676 
    677 				size = MIN(remainbytes, PAGE_SIZE - offset);
    678 
    679 				pg = *pgs++;
    680 				KASSERT(pg);
    681 				paddr = VM_PAGE_TO_PHYS(pg) + offset;
    682 
    683 				error = _bus_dmamap_load_paddr(t, map,
    684 				    paddr, size, false);
    685 				if (__predict_false(error))
    686 					break;
    687 				offset = 0;
    688 				remainbytes -= size;
    689 			}
    690 			break;
    691 
    692 		case 0:
    693 			paddr = m->m_paddr + M_BUFOFFSET(m) +
    694 			    (m->m_data - M_BUFADDR(m));
    695 			size = m->m_len;
    696 			error = _bus_dmamap_load_paddr(t, map, paddr, size,
    697 			    false);
    698 			break;
    699 
    700 		default:
    701 			error = _bus_dmamap_load_buffer(t, map, m->m_data,
    702 			    m->m_len, vmspace_kernel(), flags);
    703 		}
    704 	}
    705 	if (__predict_true(error == 0)) {
    706 		map->dm_mapsize = m0->m_pkthdr.len;
    707 		map->_dm_origbuf = m0;
    708 		map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
    709 		map->_dm_vmspace = vmspace_kernel();	/* always kernel */
    710 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    711 			STAT_INCR(coherent_loads);
    712 		} else {
    713 			STAT_INCR(loads);
    714 		}
    715 		return 0;
    716 	}
    717 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    718 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    719 	if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
    720 		error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
    721 		    _BUS_DMA_BUFTYPE_MBUF, flags);
    722 		STAT_INCR(bounced_mbuf_loads);
    723 	}
    724 #endif
    725 	return error;
    726 }
    727 
    728 /*
    729  * Like _bus_dmamap_load(), but for uios.
    730  */
    731 int
    732 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
    733     int flags)
    734 {
    735 	bus_size_t minlen, resid;
    736 	struct iovec *iov;
    737 	void *addr;
    738 	int i, error;
    739 
    740 	/*
    741 	 * Make sure that on error condition we return "no valid mappings."
    742 	 */
    743 	map->dm_mapsize = 0;
    744 	map->dm_nsegs = 0;
    745 	KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
    746 	    "dm_maxsegsz %" PRIuBUSSIZE " _dm_maxmaxsegsz %" PRIuBUSSIZE,
    747 	    map->dm_maxsegsz, map->_dm_maxmaxsegsz);
    748 
    749 	resid = uio->uio_resid;
    750 	iov = uio->uio_iov;
    751 
    752 	/* _bus_dmamap_load_buffer() clears this if we're not... */
    753 	map->_dm_flags |= _BUS_DMAMAP_COHERENT;
    754 
    755 	error = 0;
    756 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
    757 		/*
    758 		 * Now at the first iovec to load.  Load each iovec
    759 		 * until we have exhausted the residual count.
    760 		 */
    761 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
    762 		addr = (void *)iov[i].iov_base;
    763 
    764 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
    765 		    uio->uio_vmspace, flags);
    766 
    767 		resid -= minlen;
    768 	}
    769 	if (__predict_true(error == 0)) {
    770 		map->dm_mapsize = uio->uio_resid;
    771 		map->_dm_origbuf = uio;
    772 		map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
    773 		map->_dm_vmspace = uio->uio_vmspace;
    774 		if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
    775 			STAT_INCR(coherent_loads);
    776 		} else {
    777 			STAT_INCR(loads);
    778 		}
    779 	}
    780 	return error;
    781 }
    782 
    783 /*
    784  * Like _bus_dmamap_load(), but for raw memory allocated with
    785  * bus_dmamem_alloc().
    786  */
    787 int
    788 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
    789     bus_dma_segment_t *segs, int nsegs, bus_size_t size0, int flags)
    790 {
    791 
    792 	bus_size_t size;
    793 	int i, error = 0;
    794 
    795 	/*
    796 	 * Make sure that on error conditions we return "no valid mappings."
    797 	 */
    798 	map->dm_mapsize = 0;
    799 	map->dm_nsegs = 0;
    800 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
    801 
    802 	if (__predict_false(size0 > map->_dm_size))
    803 		return EINVAL;
    804 
    805 	for (i = 0, size = size0; i < nsegs && size > 0; i++) {
    806 		bus_dma_segment_t *ds = &segs[i];
    807 		bus_size_t sgsize;
    808 
    809 		sgsize = MIN(ds->ds_len, size);
    810 		if (sgsize == 0)
    811 			continue;
    812 		const bool coherent =
    813 		    (ds->_ds_flags & _BUS_DMAMAP_COHERENT) != 0;
    814 		error = _bus_dmamap_load_paddr(t, map, ds->ds_addr,
    815 		    sgsize, coherent);
    816 		if (__predict_false(error != 0))
    817 			break;
    818 		size -= sgsize;
    819 	}
    820 
    821 	if (__predict_false(error != 0)) {
    822 		map->dm_mapsize = 0;
    823 		map->dm_nsegs = 0;
    824 		return error;
    825 	}
    826 
    827 	/* XXX TBD bounce */
    828 
    829 	map->dm_mapsize = size0;
    830 	map->_dm_origbuf = NULL;
    831 	map->_dm_buftype = _BUS_DMA_BUFTYPE_RAW;
    832 	map->_dm_vmspace = NULL;
    833 	return 0;
    834 }
    835 
    836 /*
    837  * Common function for unloading a DMA map.  May be called by
    838  * bus-specific DMA map unload functions.
    839  */
    840 void
    841 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
    842 {
    843 
    844 #ifdef DEBUG_DMA
    845 	printf("dmamap_unload: t=%p map=%p\n", t, map);
    846 #endif	/* DEBUG_DMA */
    847 
    848 	/*
    849 	 * No resources to free; just mark the mappings as
    850 	 * invalid.
    851 	 */
    852 	map->dm_mapsize = 0;
    853 	map->dm_nsegs = 0;
    854 	map->_dm_origbuf = NULL;
    855 	map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
    856 	map->_dm_vmspace = NULL;
    857 }
    858 
    859 static void
    860 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops,
    861     bool readonly_p)
    862 {
    863 
    864 #if defined(ARM_MMU_EXTENDED)
    865 	/*
    866 	 * No optimisations are available for readonly mbufs on armv6+, so
    867 	 * assume it's not readonly from here on.
    868 	 *
    869  	 * See the comment in _bus_dmamap_sync_mbuf
    870 	 */
    871 	readonly_p = false;
    872 #endif
    873 
    874 	KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
    875 	    "va %#" PRIxVADDR " pa %#" PRIxPADDR, va, pa);
    876 #if 0
    877 	printf("sync_segment: va=%#" PRIxVADDR
    878 	    " pa=%#" PRIxPADDR " len=%#" PRIxVSIZE " ops=%#x\n",
    879 	    va, pa, len, ops);
    880 #endif
    881 
    882 	switch (ops) {
    883 	case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
    884 		if (!readonly_p) {
    885 			STAT_INCR(sync_prereadwrite);
    886 			cpu_dcache_wbinv_range(va, len);
    887 			cpu_sdcache_wbinv_range(va, pa, len);
    888 			break;
    889 		}
    890 		/* FALLTHROUGH */
    891 
    892 	case BUS_DMASYNC_PREREAD: {
    893 		const size_t line_size = arm_dcache_align;
    894 		const size_t line_mask = arm_dcache_align_mask;
    895 		vsize_t misalignment = va & line_mask;
    896 		if (misalignment) {
    897 			va -= misalignment;
    898 			pa -= misalignment;
    899 			len += misalignment;
    900 			STAT_INCR(sync_preread_begin);
    901 			cpu_dcache_wbinv_range(va, line_size);
    902 			cpu_sdcache_wbinv_range(va, pa, line_size);
    903 			if (len <= line_size)
    904 				break;
    905 			va += line_size;
    906 			pa += line_size;
    907 			len -= line_size;
    908 		}
    909 		misalignment = len & line_mask;
    910 		len -= misalignment;
    911 		if (len > 0) {
    912 			STAT_INCR(sync_preread);
    913 			cpu_dcache_inv_range(va, len);
    914 			cpu_sdcache_inv_range(va, pa, len);
    915 		}
    916 		if (misalignment) {
    917 			va += len;
    918 			pa += len;
    919 			STAT_INCR(sync_preread_tail);
    920 			cpu_dcache_wbinv_range(va, line_size);
    921 			cpu_sdcache_wbinv_range(va, pa, line_size);
    922 		}
    923 		break;
    924 	}
    925 
    926 	case BUS_DMASYNC_PREWRITE:
    927 		STAT_INCR(sync_prewrite);
    928 		cpu_dcache_wb_range(va, len);
    929 		cpu_sdcache_wb_range(va, pa, len);
    930 		break;
    931 
    932 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
    933 
    934 	/*
    935 	 * Cortex CPUs can do speculative loads so we need to clean the cache
    936 	 * after a DMA read to deal with any speculatively loaded cache lines.
    937 	 * Since these can't be dirty, we can just invalidate them and don't
    938 	 * have to worry about having to write back their contents.
    939 	 */
    940 	case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
    941 		STAT_INCR(sync_postreadwrite);
    942 		cpu_dcache_inv_range(va, len);
    943 		cpu_sdcache_inv_range(va, pa, len);
    944 		break;
    945 
    946 	case BUS_DMASYNC_POSTREAD:
    947 		STAT_INCR(sync_postread);
    948 		cpu_dcache_inv_range(va, len);
    949 		cpu_sdcache_inv_range(va, pa, len);
    950 		break;
    951 #endif
    952 	}
    953 }
    954 
    955 static inline void
    956 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
    957     bus_size_t len, int ops)
    958 {
    959 	bus_dma_segment_t *ds = map->dm_segs;
    960 	vaddr_t va = (vaddr_t) map->_dm_origbuf;
    961 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    962 	if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
    963 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
    964 		va = (vaddr_t) cookie->id_bouncebuf;
    965 	}
    966 #endif
    967 
    968 	while (len > 0) {
    969 		while (offset >= ds->ds_len) {
    970 			offset -= ds->ds_len;
    971 			va += ds->ds_len;
    972 			ds++;
    973 		}
    974 
    975 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
    976 		size_t seglen = uimin(len, ds->ds_len - offset);
    977 
    978 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
    979 			_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
    980 			    false);
    981 
    982 		offset += seglen;
    983 		len -= seglen;
    984 	}
    985 }
    986 
    987 static inline void
    988 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
    989     bus_size_t len, int ops)
    990 {
    991 	bus_dma_segment_t *ds = map->dm_segs;
    992 	struct mbuf *m = map->_dm_origbuf;
    993 	bus_size_t voff = offset;
    994 	bus_size_t ds_off = offset;
    995 
    996 	while (len > 0) {
    997 		/* Find the current dma segment */
    998 		while (ds_off >= ds->ds_len) {
    999 			ds_off -= ds->ds_len;
   1000 			ds++;
   1001 		}
   1002 		/* Find the current mbuf. */
   1003 		while (voff >= m->m_len) {
   1004 			voff -= m->m_len;
   1005 			m = m->m_next;
   1006 		}
   1007 
   1008 		/*
   1009 		 * Now at the first mbuf to sync; nail each one until
   1010 		 * we have exhausted the length.
   1011 		 */
   1012 		vsize_t seglen = uimin(len, uimin(m->m_len - voff, ds->ds_len - ds_off));
   1013 		vaddr_t va = mtod(m, vaddr_t) + voff;
   1014 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1015 
   1016 		/*
   1017 		 * We can save a lot of work here if we know the mapping
   1018 		 * is read-only at the MMU and we aren't using the armv6+
   1019 		 * MMU:
   1020 		 *
   1021 		 * If a mapping is read-only, no dirty cache blocks will
   1022 		 * exist for it.  If a writable mapping was made read-only,
   1023 		 * we know any dirty cache lines for the range will have
   1024 		 * been cleaned for us already.  Therefore, if the upper
   1025 		 * layer can tell us we have a read-only mapping, we can
   1026 		 * skip all cache cleaning.
   1027 		 *
   1028 		 * NOTE: This only works if we know the pmap cleans pages
   1029 		 * before making a read-write -> read-only transition.  If
   1030 		 * this ever becomes non-true (e.g. Physically Indexed
   1031 		 * cache), this will have to be revisited.
   1032 		 */
   1033 
   1034 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
   1035 			/*
   1036 			 * If we are doing preread (DMAing into the mbuf),
   1037 			 * this mbuf better not be readonly,
   1038 			 */
   1039 			KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
   1040 			_bus_dmamap_sync_segment(va, pa, seglen, ops,
   1041 			    M_ROMAP(m));
   1042 		}
   1043 		voff += seglen;
   1044 		ds_off += seglen;
   1045 		len -= seglen;
   1046 	}
   1047 }
   1048 
   1049 static inline void
   1050 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1051     bus_size_t len, int ops)
   1052 {
   1053 	bus_dma_segment_t *ds = map->dm_segs;
   1054 	struct uio *uio = map->_dm_origbuf;
   1055 	struct iovec *iov = uio->uio_iov;
   1056 	bus_size_t voff = offset;
   1057 	bus_size_t ds_off = offset;
   1058 
   1059 	while (len > 0) {
   1060 		/* Find the current dma segment */
   1061 		while (ds_off >= ds->ds_len) {
   1062 			ds_off -= ds->ds_len;
   1063 			ds++;
   1064 		}
   1065 
   1066 		/* Find the current iovec. */
   1067 		while (voff >= iov->iov_len) {
   1068 			voff -= iov->iov_len;
   1069 			iov++;
   1070 		}
   1071 
   1072 		/*
   1073 		 * Now at the first iovec to sync; nail each one until
   1074 		 * we have exhausted the length.
   1075 		 */
   1076 		vsize_t seglen = uimin(len, uimin(iov->iov_len - voff, ds->ds_len - ds_off));
   1077 		vaddr_t va = (vaddr_t) iov->iov_base + voff;
   1078 		paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
   1079 
   1080 		if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
   1081 			_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
   1082 
   1083 		voff += seglen;
   1084 		ds_off += seglen;
   1085 		len -= seglen;
   1086 	}
   1087 }
   1088 
   1089 /*
   1090  * Common function for DMA map synchronization.  May be called
   1091  * by bus-specific DMA map synchronization functions.
   1092  *
   1093  * XXX Should have separate versions for write-through vs.
   1094  * XXX write-back caches.  We currently assume write-back
   1095  * XXX here, which is not as efficient as it could be for
   1096  * XXX the write-through case.
   1097  */
   1098 void
   1099 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
   1100     bus_size_t len, int ops)
   1101 {
   1102 #ifdef DEBUG_DMA
   1103 	printf("dmamap_sync: t=%p map=%p offset=%#" PRIxBUSADDR
   1104 	    " len=%#" PRIxBUSSIZE " ops=%#x\n", t, map, offset, len, ops);
   1105 #endif	/* DEBUG_DMA */
   1106 
   1107 	/*
   1108 	 * Mixing of PRE and POST operations is not allowed.
   1109 	 */
   1110 	KASSERTMSG((((ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) == 0)
   1111 	    || ((ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)) == 0)),
   1112 	    "%s: mix PRE and POST", __func__);
   1113 
   1114 	KASSERTMSG(offset < map->dm_mapsize,
   1115 	    "offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
   1116 	    offset, map->dm_mapsize);
   1117 	KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
   1118 	    "len %" PRIuBUSSIZE " offset %" PRIxBUSADDR " mapsize %" PRIuBUSSIZE,
   1119 	    len, offset, map->dm_mapsize);
   1120 
   1121 	/*
   1122 	 * For a write-back cache, we need to do the following things:
   1123 	 *
   1124 	 *	PREREAD -- Invalidate the D-cache.  We do this
   1125 	 *	here in case a write-back is required by the back-end.
   1126 	 *
   1127 	 *	PREWRITE -- Write-back the D-cache.  Note that if
   1128 	 *	we are doing a PREREAD | PREWRITE, we can collapse
   1129 	 *	the whole thing into a single Wb-Inv.
   1130 	 *
   1131 	 *	POSTREAD -- Re-invalidate the D-cache in case speculative
   1132 	 *	memory accesses caused cachelines to become valid with now
   1133 	 *	invalid data.
   1134 	 *
   1135 	 *	POSTWRITE -- Nothing.
   1136 	 */
   1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1138 	const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
   1139 #else
   1140 	const bool bouncing = false;
   1141 #endif
   1142 
   1143 	const int pre_ops = ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1144 #if defined(CPU_CORTEX) || defined(CPU_ARMV8)
   1145 	const int post_ops = ops & (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1146 #else
   1147 	const int post_ops = 0;
   1148 #endif
   1149 	if (pre_ops == 0 && post_ops == 0)
   1150 		return;
   1151 
   1152 	if (post_ops == BUS_DMASYNC_POSTWRITE) {
   1153 		KASSERT(pre_ops == 0);
   1154 		if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1155 			STAT_INCR(sync_coherent_postwrite);
   1156 		} else {
   1157 			STAT_INCR(sync_postwrite);
   1158 		}
   1159 		return;
   1160 	}
   1161 
   1162 	KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
   1163 	    "pre_ops %#x post_ops %#x", pre_ops, post_ops);
   1164 
   1165 	if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
   1166 		struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1167 		STAT_INCR(write_bounces);
   1168 		char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1169 		/*
   1170 		 * Copy the caller's buffer to the bounce buffer.
   1171 		 */
   1172 		switch (map->_dm_buftype) {
   1173 		case _BUS_DMA_BUFTYPE_LINEAR:
   1174 			memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
   1175 			break;
   1176 
   1177 		case _BUS_DMA_BUFTYPE_MBUF:
   1178 			m_copydata(cookie->id_origmbuf, offset, len, dataptr);
   1179 			break;
   1180 
   1181 		case _BUS_DMA_BUFTYPE_UIO:
   1182 			_bus_dma_uiomove(dataptr, cookie->id_origuio, len,
   1183 			    UIO_WRITE);
   1184 			break;
   1185 
   1186 #ifdef DIAGNOSTIC
   1187 		case _BUS_DMA_BUFTYPE_RAW:
   1188 			panic("%s:(pre): _BUS_DMA_BUFTYPE_RAW", __func__);
   1189 			break;
   1190 
   1191 		case _BUS_DMA_BUFTYPE_INVALID:
   1192 			panic("%s(pre): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1193 			break;
   1194 
   1195 		default:
   1196 			panic("%s(pre): map %p: unknown buffer type %d\n",
   1197 			    __func__, map, map->_dm_buftype);
   1198 			break;
   1199 #endif /* DIAGNOSTIC */
   1200 		}
   1201 	}
   1202 
   1203 	/*
   1204 	 * Provide appropriate memory barriers, and skip cache frobbing
   1205 	 * if mapping is COHERENT.
   1206 	 *
   1207 	 * The case of PREREAD is as follows:
   1208 	 *
   1209 	 * 1. loads and stores before DMA buffer may be allocated for the purpose
   1210 	 * 2. bus_dmamap_sync(BUS_DMASYNC_PREREAD)
   1211 	 * 3. store to register or DMA descriptor to trigger DMA
   1212 	 *
   1213 	 *    The load/store-before-store ordering is ensured by dma_rw_w().
   1214 	 *
   1215 	 * The case of PREWRITE is as follows:
   1216 	 *
   1217 	 * 1. stores to DMA buffer. loads can happen later as the buffer is not changed
   1218 	 *    by the device.
   1219 	 * 2. bus_dmamap_sync(BUS_DMASYNC_PREWRITE)
   1220 	 * 3. store to register or DMA descriptor to trigger DMA
   1221 	 *
   1222 	 *    The store-before-store ordering is ensured by dma_w_w().
   1223 	 *
   1224 	 * The case of POSTREAD is as follows:
   1225 	 *
   1226 	 * 1. load from register or DMA descriptor notifying DMA completion
   1227 	 * 2. bus_dmamap_sync(BUS_DMASYNC_POSTREAD)
   1228 	 * 3. loads from DMA buffer to use data, and stores to reuse buffer
   1229 	 *
   1230 	 *    The stores in (3) will not be speculated and, therefore, don't need
   1231 	 *    specific handling. The load-before-load ordering is ensured by
   1232 	 *    dma_r_r().
   1233 	 *
   1234 	 * The case of POSTWRITE is as follows:
   1235 	 *
   1236 	 * 1. load from register or DMA descriptor notifying DMA completion
   1237 	 * 2. bus_dmamap_sync(BUS_DMASYNC_POSTWRITE)
   1238 	 * 3. loads and stores to reuse buffer
   1239 	 *
   1240 	 *    The stores in (3) will not be speculated, and the load can happen at any
   1241 	 *    time as the DMA buffer is not changed by the device so no barrier is
   1242 	 *    required.
   1243 	 */
   1244 
   1245 	if ((map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
   1246 		switch (ops) {
   1247 		case BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE:
   1248 			dma_rw_w();
   1249 			STAT_INCR(sync_coherent_prereadwrite);
   1250 			break;
   1251 
   1252 		case BUS_DMASYNC_PREREAD:
   1253 			dma_rw_w();
   1254 			STAT_INCR(sync_coherent_preread);
   1255 			break;
   1256 
   1257 		case BUS_DMASYNC_PREWRITE:
   1258 			dma_w_w();
   1259 			STAT_INCR(sync_coherent_prewrite);
   1260 			break;
   1261 
   1262 		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
   1263 			dma_r_r();
   1264 			STAT_INCR(sync_coherent_postreadwrite);
   1265 			break;
   1266 
   1267 		case BUS_DMASYNC_POSTREAD:
   1268 			dma_r_r();
   1269 			STAT_INCR(sync_coherent_postread);
   1270 			break;
   1271 
   1272 		/* BUS_DMASYNC_POSTWRITE was aleady handled as a fastpath */
   1273 		}
   1274 
   1275 		/*
   1276 		 * Only thing left to do for COHERENT mapping is copy from bounce
   1277 		 * in the POSTREAD case.
   1278 		 */
   1279 		if (bouncing && (post_ops & BUS_DMASYNC_POSTREAD))
   1280 			goto bounce_it;
   1281 
   1282 		return;
   1283 	}
   1284 
   1285 #if !defined(ARM_MMU_EXTENDED)
   1286 	/*
   1287 	 * If the mapping belongs to a non-kernel vmspace, and the
   1288 	 * vmspace has not been active since the last time a full
   1289 	 * cache flush was performed, we don't need to do anything.
   1290 	 */
   1291 	if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
   1292 	    vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
   1293 		return;
   1294 #endif
   1295 
   1296 	int buftype = map->_dm_buftype;
   1297 	if (bouncing) {
   1298 		buftype = _BUS_DMA_BUFTYPE_LINEAR;
   1299 	}
   1300 
   1301 	switch (buftype) {
   1302 	case _BUS_DMA_BUFTYPE_LINEAR:
   1303 	case _BUS_DMA_BUFTYPE_RAW:
   1304 		_bus_dmamap_sync_linear(t, map, offset, len, ops);
   1305 		break;
   1306 
   1307 	case _BUS_DMA_BUFTYPE_MBUF:
   1308 		_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
   1309 		break;
   1310 
   1311 	case _BUS_DMA_BUFTYPE_UIO:
   1312 		_bus_dmamap_sync_uio(t, map, offset, len, ops);
   1313 		break;
   1314 
   1315 	case _BUS_DMA_BUFTYPE_INVALID:
   1316 		panic("%s: _BUS_DMA_BUFTYPE_INVALID", __func__);
   1317 		break;
   1318 
   1319 	default:
   1320 		panic("%s: map %p: unknown buffer type %d\n", __func__, map,
   1321 		    map->_dm_buftype);
   1322 	}
   1323 
   1324 	/* Drain the write buffer. */
   1325 	cpu_drain_writebuf();
   1326 
   1327 	if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
   1328 		return;
   1329 
   1330   bounce_it:
   1331 	STAT_INCR(read_bounces);
   1332 
   1333 	struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
   1334 	char * const dataptr = (char *)cookie->id_bouncebuf + offset;
   1335 	/*
   1336 	 * Copy the bounce buffer to the caller's buffer.
   1337 	 */
   1338 	switch (map->_dm_buftype) {
   1339 	case _BUS_DMA_BUFTYPE_LINEAR:
   1340 		memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
   1341 		break;
   1342 
   1343 	case _BUS_DMA_BUFTYPE_MBUF:
   1344 		m_copyback(cookie->id_origmbuf, offset, len, dataptr);
   1345 		break;
   1346 
   1347 	case _BUS_DMA_BUFTYPE_UIO:
   1348 		_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
   1349 		break;
   1350 
   1351 #ifdef DIAGNOSTIC
   1352 	case _BUS_DMA_BUFTYPE_RAW:
   1353 		panic("%s(post): _BUS_DMA_BUFTYPE_RAW", __func__);
   1354 		break;
   1355 
   1356 	case _BUS_DMA_BUFTYPE_INVALID:
   1357 		panic("%s(post): _BUS_DMA_BUFTYPE_INVALID", __func__);
   1358 		break;
   1359 
   1360 	default:
   1361 		panic("%s(post): map %p: unknown buffer type %d\n", __func__,
   1362 		    map, map->_dm_buftype);
   1363 		break;
   1364 #endif
   1365 	}
   1366 }
   1367 
   1368 /*
   1369  * Common function for DMA-safe memory allocation.  May be called
   1370  * by bus-specific DMA memory allocation functions.
   1371  */
   1372 
   1373 int
   1374 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1375     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1376     int flags)
   1377 {
   1378 	struct arm32_dma_range *dr;
   1379 	int error, i;
   1380 
   1381 #ifdef DEBUG_DMA
   1382 	printf("dmamem_alloc t=%p size=%#" PRIxBUSSIZE
   1383 	    " align=%#" PRIxBUSSIZE
   1384 	    " boundary=%#" PRIxBUSSIZE " "
   1385 	    "segs=%p nsegs=%#x rsegs=%p flags=%#x\n", t, size, alignment,
   1386 	    boundary, segs, nsegs, rsegs, flags);
   1387 #endif
   1388 
   1389 	if ((dr = t->_ranges) != NULL) {
   1390 		error = ENOMEM;
   1391 		for (i = 0; i < t->_nranges; i++, dr++) {
   1392 			if (dr->dr_len == 0
   1393 			    || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
   1394 				continue;
   1395 			error = _bus_dmamem_alloc_range(t, size, alignment,
   1396 			    boundary, segs, nsegs, rsegs, flags,
   1397 			    trunc_page(dr->dr_sysbase),
   1398 			    trunc_page(dr->dr_sysbase + dr->dr_len));
   1399 			if (error == 0)
   1400 				break;
   1401 		}
   1402 	} else {
   1403 		error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
   1404 		    segs, nsegs, rsegs, flags, 0UL, ~0UL);
   1405 	}
   1406 
   1407 #ifdef DEBUG_DMA
   1408 	printf("dmamem_alloc: =%d\n", error);
   1409 #endif
   1410 
   1411 	return error;
   1412 }
   1413 
   1414 /*
   1415  * Common function for freeing DMA-safe memory.  May be called by
   1416  * bus-specific DMA memory free functions.
   1417  */
   1418 void
   1419 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
   1420 {
   1421 	struct vm_page *m;
   1422 	bus_addr_t addr;
   1423 	struct pglist mlist;
   1424 	int curseg;
   1425 
   1426 #ifdef DEBUG_DMA
   1427 	printf("dmamem_free: t=%p segs=%p nsegs=%#x\n", t, segs, nsegs);
   1428 #endif	/* DEBUG_DMA */
   1429 
   1430 	/*
   1431 	 * Build a list of pages to free back to the VM system.
   1432 	 */
   1433 	TAILQ_INIT(&mlist);
   1434 	for (curseg = 0; curseg < nsegs; curseg++) {
   1435 		for (addr = segs[curseg].ds_addr;
   1436 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1437 		    addr += PAGE_SIZE) {
   1438 			m = PHYS_TO_VM_PAGE(addr);
   1439 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
   1440 		}
   1441 	}
   1442 	uvm_pglistfree(&mlist);
   1443 }
   1444 
   1445 /*
   1446  * Common function for mapping DMA-safe memory.  May be called by
   1447  * bus-specific DMA memory map functions.
   1448  */
   1449 int
   1450 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1451     size_t size, void **kvap, int flags)
   1452 {
   1453 	vaddr_t va;
   1454 	paddr_t pa;
   1455 	int curseg;
   1456 	const uvm_flag_t kmflags = UVM_KMF_VAONLY
   1457 	    | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
   1458 	vsize_t align = 0;
   1459 
   1460 #ifdef DEBUG_DMA
   1461 	printf("dmamem_map: t=%p segs=%p nsegs=%#x size=%#zx flags=%#x\n", t,
   1462 	    segs, nsegs, size, flags);
   1463 #endif	/* DEBUG_DMA */
   1464 
   1465 #ifdef PMAP_MAP_POOLPAGE
   1466 	/*
   1467 	 * If all of memory is mapped, and we are mapping a single physically
   1468 	 * contiguous area then this area is already mapped.  Let's see if we
   1469 	 * avoid having a separate mapping for it.
   1470 	 */
   1471 	if (nsegs == 1 &&
   1472 	    (flags & (BUS_DMA_PREFETCHABLE|BUS_DMA_NOCACHE)) == 0) {
   1473 		/*
   1474 		 * If this is a non-COHERENT mapping, then the existing kernel
   1475 		 * mapping is already compatible with it.
   1476 		 */
   1477 		bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
   1478 		pa = segs[0].ds_addr;
   1479 
   1480 		/*
   1481 		 * This is a COHERENT mapping which, unless this address is in
   1482 		 * a COHERENT dma range, will not be compatible.
   1483 		 */
   1484 		if (t->_ranges != NULL) {
   1485 			const struct arm32_dma_range * const dr =
   1486 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1487 			if (dr != NULL
   1488 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1489 				direct_mapable = true;
   1490 			}
   1491 		}
   1492 
   1493 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   1494 		/*
   1495 		 * The page can only be direct mapped if was allocated out
   1496 		 * of the arm poolpage vm freelist.
   1497 		 */
   1498 		uvm_physseg_t upm = uvm_physseg_find(atop(pa), NULL);
   1499 		KASSERT(uvm_physseg_valid_p(upm));
   1500 		if (direct_mapable) {
   1501 			direct_mapable =
   1502 			    (arm_poolpage_vmfreelist == uvm_physseg_get_free_list(upm));
   1503 		}
   1504 #endif
   1505 
   1506 		if (direct_mapable) {
   1507 			*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
   1508 #ifdef DEBUG_DMA
   1509 			printf("dmamem_map: =%p\n", *kvap);
   1510 #endif	/* DEBUG_DMA */
   1511 			return 0;
   1512 		}
   1513 	}
   1514 #endif
   1515 
   1516 	size = round_page(size);
   1517 
   1518 #ifdef PMAP_MAPSIZE1
   1519 	if (size >= PMAP_MAPSIZE1)
   1520 		align = PMAP_MAPSIZE1;
   1521 
   1522 #ifdef PMAP_MAPSIZE2
   1523 
   1524 #if PMAP_MAPSIZE1 > PMAP_MAPSIZE2
   1525 #error PMAP_MAPSIZE1 must be smaller than PMAP_MAPSIZE2
   1526 #endif
   1527 
   1528 	if (size >= PMAP_MAPSIZE2)
   1529 		align = PMAP_MAPSIZE2;
   1530 
   1531 #ifdef PMAP_MAPSIZE3
   1532 
   1533 #if PMAP_MAPSIZE2 > PMAP_MAPSIZE3
   1534 #error PMAP_MAPSIZE2 must be smaller than PMAP_MAPSIZE3
   1535 #endif
   1536 
   1537 	if (size >= PMAP_MAPSIZE3)
   1538 		align = PMAP_MAPSIZE3;
   1539 #endif
   1540 #endif
   1541 #endif
   1542 
   1543 	va = uvm_km_alloc(kernel_map, size, align, kmflags);
   1544 	if (__predict_false(va == 0 && align > 0)) {
   1545 		align = 0;
   1546 		va = uvm_km_alloc(kernel_map, size, 0, kmflags);
   1547 	}
   1548 
   1549 	if (va == 0)
   1550 		return ENOMEM;
   1551 
   1552 	*kvap = (void *)va;
   1553 
   1554 	for (curseg = 0; curseg < nsegs; curseg++) {
   1555 		for (pa = segs[curseg].ds_addr;
   1556 		    pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
   1557 		    pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
   1558 			bool uncached =
   1559 			    (flags & (BUS_DMA_COHERENT | BUS_DMA_NOCACHE)) != 0;
   1560 			bool prefetchable = (flags & BUS_DMA_PREFETCHABLE);
   1561 #ifdef DEBUG_DMA
   1562 			printf("wiring P%#" PRIxPADDR
   1563 			    " to V%#" PRIxVADDR "\n", pa, va);
   1564 #endif	/* DEBUG_DMA */
   1565 			if (size == 0)
   1566 				panic("_bus_dmamem_map: size botch");
   1567 
   1568 			const struct arm32_dma_range * const dr =
   1569 			    _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
   1570 			/*
   1571 			 * If this dma region is coherent then there is
   1572 			 * no need for an uncached mapping.
   1573 			 */
   1574 			if ((flags & BUS_DMA_NOCACHE) == 0 &&
   1575 			    dr != NULL
   1576 			    && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
   1577 				uncached = false;
   1578 			}
   1579 
   1580 			u_int pmap_flags = PMAP_WIRED;
   1581 			if (prefetchable)
   1582 				pmap_flags |= PMAP_WRITE_COMBINE;
   1583 			else if (uncached)
   1584 				pmap_flags |= PMAP_NOCACHE;
   1585 
   1586 			pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   1587 			    pmap_flags);
   1588 		}
   1589 	}
   1590 	pmap_update(pmap_kernel());
   1591 #ifdef DEBUG_DMA
   1592 	printf("dmamem_map: =%p\n", *kvap);
   1593 #endif	/* DEBUG_DMA */
   1594 	return 0;
   1595 }
   1596 
   1597 /*
   1598  * Common function for unmapping DMA-safe memory.  May be called by
   1599  * bus-specific DMA memory unmapping functions.
   1600  */
   1601 void
   1602 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
   1603 {
   1604 
   1605 #ifdef DEBUG_DMA
   1606 	printf("dmamem_unmap: t=%p kva=%p size=%#zx\n", t, kva, size);
   1607 #endif	/* DEBUG_DMA */
   1608 	KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
   1609 	    "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
   1610 
   1611 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   1612 	/*
   1613 	 * Check to see if this used direct mapped memory.  Get its physical
   1614 	 * address and try to map it.  If the resultant matches the kva, then
   1615 	 * it was and so we can just return since we have nothing to free up.
   1616 	 */
   1617 	paddr_t pa;
   1618 	vaddr_t va;
   1619 	(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
   1620 	if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
   1621 		return;
   1622 #endif
   1623 
   1624 	size = round_page(size);
   1625 	pmap_kremove((vaddr_t)kva, size);
   1626 	pmap_update(pmap_kernel());
   1627 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
   1628 }
   1629 
   1630 /*
   1631  * Common function for mmap(2)'ing DMA-safe memory.  May be called by
   1632  * bus-specific DMA mmap(2)'ing functions.
   1633  */
   1634 paddr_t
   1635 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
   1636     off_t off, int prot, int flags)
   1637 {
   1638 	paddr_t map_flags;
   1639 	int i;
   1640 
   1641 	for (i = 0; i < nsegs; i++) {
   1642 		KASSERTMSG((off & PAGE_MASK) == 0,
   1643 		    "off %#jx (%#x)", (uintmax_t)off, (int)off & PAGE_MASK);
   1644 		KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
   1645 		    "ds_addr %#lx (%#x)", segs[i].ds_addr,
   1646 		    (int)segs[i].ds_addr & PAGE_MASK);
   1647 		KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
   1648 		    "ds_len %#lx (%#x)", segs[i].ds_addr,
   1649 		    (int)segs[i].ds_addr & PAGE_MASK);
   1650 		if (off >= segs[i].ds_len) {
   1651 			off -= segs[i].ds_len;
   1652 			continue;
   1653 		}
   1654 
   1655 		map_flags = 0;
   1656 		if (flags & BUS_DMA_PREFETCHABLE)
   1657 			map_flags |= ARM_MMAP_WRITECOMBINE;
   1658 
   1659 		return arm_btop((u_long)segs[i].ds_addr + off) | map_flags;
   1660 
   1661 	}
   1662 
   1663 	/* Page not found. */
   1664 	return -1;
   1665 }
   1666 
   1667 /**********************************************************************
   1668  * DMA utility functions
   1669  **********************************************************************/
   1670 
   1671 /*
   1672  * Utility function to load a linear buffer.  lastaddrp holds state
   1673  * between invocations (for multiple-buffer loads).  segp contains
   1674  * the starting segment on entrance, and the ending segment on exit.
   1675  * first indicates if this is the first invocation of this function.
   1676  */
   1677 int
   1678 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
   1679     bus_size_t buflen, struct vmspace *vm, int flags)
   1680 {
   1681 	bus_size_t sgsize;
   1682 	bus_addr_t curaddr;
   1683 	vaddr_t vaddr = (vaddr_t)buf;
   1684 	int error;
   1685 
   1686 #ifdef DEBUG_DMA
   1687 	printf("_bus_dmamap_load_buffer(buf=%p, len=%#" PRIxBUSSIZE
   1688 	    ", flags=%#x)\n", buf, buflen, flags);
   1689 #endif /* DEBUG_DMA */
   1690 
   1691 	pmap_t pmap = vm_map_pmap(&vm->vm_map);
   1692 
   1693 	while (buflen > 0) {
   1694 		/*
   1695 		 * Get the physical address for this segment.
   1696 		 *
   1697 		 */
   1698 		bool coherent;
   1699 		bool ok __diagused;
   1700 		ok = pmap_extract_coherency(pmap, vaddr, &curaddr, &coherent);
   1701 
   1702 		/*
   1703 		 * trying to bus_dmamap_load an unmapped buffer is a
   1704 		 * programming error.
   1705 		 */
   1706 		KASSERT(ok);
   1707 
   1708 		KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
   1709 		    "va %#" PRIxVADDR " curaddr %#" PRIxBUSADDR, vaddr, curaddr);
   1710 
   1711 		/*
   1712 		 * Compute the segment size, and adjust counts.
   1713 		 */
   1714 		sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
   1715 		if (buflen < sgsize)
   1716 			sgsize = buflen;
   1717 
   1718 		error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
   1719 		    coherent);
   1720 		if (__predict_false(error))
   1721 			return error;
   1722 
   1723 		vaddr += sgsize;
   1724 		buflen -= sgsize;
   1725 	}
   1726 
   1727 	return 0;
   1728 }
   1729 
   1730 /*
   1731  * Allocate physical memory from the given physical address range.
   1732  * Called by DMA-safe memory allocation methods.
   1733  */
   1734 int
   1735 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
   1736     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
   1737     int flags, paddr_t low, paddr_t high)
   1738 {
   1739 	paddr_t curaddr, lastaddr;
   1740 	struct vm_page *m;
   1741 	struct pglist mlist;
   1742 	int curseg, error;
   1743 
   1744 	KASSERTMSG(boundary == 0 || (boundary & (boundary - 1)) == 0,
   1745 	    "invalid boundary %#" PRIxBUSSIZE, boundary);
   1746 
   1747 #ifdef DEBUG_DMA
   1748 	printf("alloc_range: t=%p size=%#" PRIxBUSSIZE
   1749 	    " align=%#" PRIxBUSSIZE " boundary=%#" PRIxBUSSIZE
   1750 	    " segs=%p nsegs=%#x rsegs=%p flags=%#x"
   1751 	    " lo=%#" PRIxPADDR " hi=%#" PRIxPADDR "\n",
   1752 	    t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
   1753 #endif	/* DEBUG_DMA */
   1754 
   1755 	/* Always round the size. */
   1756 	size = round_page(size);
   1757 
   1758 	/*
   1759 	 * We accept boundaries < size, splitting in multiple segments
   1760 	 * if needed. uvm_pglistalloc does not, so compute an appropriate
   1761 	 * boundary: next power of 2 >= size
   1762 	 */
   1763 	bus_size_t uboundary = boundary;
   1764 	if (uboundary <= PAGE_SIZE) {
   1765 		uboundary = 0;
   1766 	} else {
   1767 		while (uboundary < size) {
   1768 			uboundary <<= 1;
   1769 		}
   1770 	}
   1771 
   1772 	/*
   1773 	 * Allocate pages from the VM system.
   1774 	 */
   1775 	error = uvm_pglistalloc(size, low, high, alignment, uboundary,
   1776 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
   1777 	if (error)
   1778 		return error;
   1779 
   1780 	/*
   1781 	 * Compute the location, size, and number of segments actually
   1782 	 * returned by the VM code.
   1783 	 */
   1784 	m = TAILQ_FIRST(&mlist);
   1785 	curseg = 0;
   1786 	lastaddr = segs[curseg].ds_addr = segs[curseg]._ds_paddr =
   1787 	    VM_PAGE_TO_PHYS(m);
   1788 	segs[curseg].ds_len = PAGE_SIZE;
   1789 #ifdef DEBUG_DMA
   1790 	printf("alloc: page %#" PRIxPADDR "\n", lastaddr);
   1791 #endif	/* DEBUG_DMA */
   1792 	m = TAILQ_NEXT(m, pageq.queue);
   1793 
   1794 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
   1795 		curaddr = VM_PAGE_TO_PHYS(m);
   1796 		KASSERTMSG(low <= curaddr && curaddr < high,
   1797 		    "uvm_pglistalloc returned non-sensicaladdress %#" PRIxPADDR
   1798 		    "(low=%#" PRIxPADDR ", high=%#" PRIxPADDR "\n",
   1799 		    curaddr, low, high);
   1800 #ifdef DEBUG_DMA
   1801 		printf("alloc: page %#" PRIxPADDR "\n", curaddr);
   1802 #endif	/* DEBUG_DMA */
   1803 		if (curaddr == lastaddr + PAGE_SIZE
   1804 		    && (lastaddr & boundary) == (curaddr & boundary))
   1805 			segs[curseg].ds_len += PAGE_SIZE;
   1806 		else {
   1807 			curseg++;
   1808 			if (curseg >= nsegs) {
   1809 				uvm_pglistfree(&mlist);
   1810 				return EFBIG;
   1811 			}
   1812 			segs[curseg].ds_addr = curaddr;
   1813 			segs[curseg]._ds_paddr = curaddr;
   1814 			segs[curseg].ds_len = PAGE_SIZE;
   1815 		}
   1816 		lastaddr = curaddr;
   1817 	}
   1818 
   1819 	*rsegs = curseg + 1;
   1820 
   1821 	return 0;
   1822 }
   1823 
   1824 /*
   1825  * Check if a memory region intersects with a DMA range, and return the
   1826  * page-rounded intersection if it does.
   1827  */
   1828 int
   1829 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
   1830     paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
   1831 {
   1832 	struct arm32_dma_range *dr;
   1833 	int i;
   1834 
   1835 	if (ranges == NULL)
   1836 		return 0;
   1837 
   1838 	for (i = 0, dr = ranges; i < nranges; i++, dr++) {
   1839 		if (dr->dr_sysbase <= pa &&
   1840 		    pa < (dr->dr_sysbase + dr->dr_len)) {
   1841 			/*
   1842 			 * Beginning of region intersects with this range.
   1843 			 */
   1844 			*pap = trunc_page(pa);
   1845 			*sizep = round_page(uimin(pa + size,
   1846 			    dr->dr_sysbase + dr->dr_len) - pa);
   1847 			return 1;
   1848 		}
   1849 		if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
   1850 			/*
   1851 			 * End of region intersects with this range.
   1852 			 */
   1853 			*pap = trunc_page(dr->dr_sysbase);
   1854 			*sizep = round_page(uimin((pa + size) - dr->dr_sysbase,
   1855 			    dr->dr_len));
   1856 			return 1;
   1857 		}
   1858 	}
   1859 
   1860 	/* No intersection found. */
   1861 	return 0;
   1862 }
   1863 
   1864 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1865 static int
   1866 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
   1867     bus_size_t size, int flags)
   1868 {
   1869 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1870 	int error = 0;
   1871 
   1872 	KASSERT(cookie != NULL);
   1873 
   1874 	cookie->id_bouncebuflen = round_page(size);
   1875 	error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
   1876 	    PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
   1877 	    map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
   1878 	if (error == 0) {
   1879 		error = _bus_dmamem_map(t, cookie->id_bouncesegs,
   1880 		    cookie->id_nbouncesegs, cookie->id_bouncebuflen,
   1881 		    (void **)&cookie->id_bouncebuf, flags);
   1882 		if (error) {
   1883 			_bus_dmamem_free(t, cookie->id_bouncesegs,
   1884 			    cookie->id_nbouncesegs);
   1885 			cookie->id_bouncebuflen = 0;
   1886 			cookie->id_nbouncesegs = 0;
   1887 		} else {
   1888 			cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
   1889 		}
   1890 	} else {
   1891 		cookie->id_bouncebuflen = 0;
   1892 		cookie->id_nbouncesegs = 0;
   1893 	}
   1894 
   1895 	return error;
   1896 }
   1897 
   1898 static void
   1899 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
   1900 {
   1901 	struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
   1902 
   1903 	KASSERT(cookie != NULL);
   1904 
   1905 	_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
   1906 	_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
   1907 	cookie->id_bouncebuflen = 0;
   1908 	cookie->id_nbouncesegs = 0;
   1909 	cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
   1910 }
   1911 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   1912 
   1913 /*
   1914  * This function does the same as uiomove, but takes an explicit
   1915  * direction, and does not update the uio structure.
   1916  */
   1917 static int
   1918 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
   1919 {
   1920 	struct iovec *iov;
   1921 	int error;
   1922 	struct vmspace *vm;
   1923 	char *cp;
   1924 	size_t resid, cnt;
   1925 	int i;
   1926 
   1927 	iov = uio->uio_iov;
   1928 	vm = uio->uio_vmspace;
   1929 	cp = buf;
   1930 	resid = n;
   1931 
   1932 	for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
   1933 		iov = &uio->uio_iov[i];
   1934 		if (iov->iov_len == 0)
   1935 			continue;
   1936 		cnt = MIN(resid, iov->iov_len);
   1937 
   1938 		if (!VMSPACE_IS_KERNEL_P(vm)) {
   1939 			preempt_point();
   1940 		}
   1941 		if (direction == UIO_READ) {
   1942 			error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
   1943 		} else {
   1944 			error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
   1945 		}
   1946 		if (error)
   1947 			return error;
   1948 		cp += cnt;
   1949 		resid -= cnt;
   1950 	}
   1951 	return 0;
   1952 }
   1953 
   1954 int
   1955 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
   1956     bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
   1957 {
   1958 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   1959 	if (min_addr >= max_addr)
   1960 		return EOPNOTSUPP;
   1961 
   1962 	struct arm32_dma_range *dr;
   1963 	bool psubset = true;
   1964 	size_t nranges = 0;
   1965 	size_t i;
   1966 	for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
   1967 		/*
   1968 		 * If the new {min,max}_addr are narrower than any of the
   1969 		 * ranges in the parent tag then we need a new tag;
   1970 		 * otherwise the parent tag is a subset of the new
   1971 		 * range and can continue to be used.
   1972 		 */
   1973 		if (min_addr > dr->dr_sysbase
   1974 		    || max_addr < dr->dr_sysbase + dr->dr_len - 1) {
   1975 			psubset = false;
   1976 		}
   1977 		if (min_addr <= dr->dr_sysbase + dr->dr_len
   1978 		    && max_addr >= dr->dr_sysbase) {
   1979 			nranges++;
   1980 		}
   1981 	}
   1982 	if (nranges == 0) {
   1983 		nranges = 1;
   1984 		psubset = false;
   1985 	}
   1986 	if (psubset) {
   1987 		*newtag = tag;
   1988 		/* if the tag must be freed, add a reference */
   1989 		if (tag->_tag_needs_free)
   1990 			(tag->_tag_needs_free)++;
   1991 		return 0;
   1992 	}
   1993 
   1994 	const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
   1995 	if ((*newtag = kmem_intr_zalloc(tagsize,
   1996 	    (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
   1997 		return ENOMEM;
   1998 
   1999 	dr = (void *)(*newtag + 1);
   2000 	**newtag = *tag;
   2001 	(*newtag)->_tag_needs_free = 1;
   2002 	(*newtag)->_ranges = dr;
   2003 	(*newtag)->_nranges = nranges;
   2004 
   2005 	if (tag->_ranges == NULL) {
   2006 		dr->dr_sysbase = min_addr;
   2007 		dr->dr_busbase = min_addr;
   2008 		dr->dr_len = max_addr + 1 - min_addr;
   2009 	} else {
   2010 		struct arm32_dma_range *pdr;
   2011 
   2012 		for (i = 0, pdr = tag->_ranges; i < tag->_nranges; i++, pdr++) {
   2013 			KASSERT(nranges != 0);
   2014 
   2015 			if (min_addr > pdr->dr_sysbase + pdr->dr_len
   2016 			    || max_addr < pdr->dr_sysbase) {
   2017 				/*
   2018 				 * this range doesn't overlap with new limits,
   2019 				 * so skip.
   2020 				 */
   2021 				continue;
   2022 			}
   2023 			/*
   2024 			 * Copy the range and adjust to fit within the new
   2025 			 * limits
   2026 			 */
   2027 			dr[0] = pdr[0];
   2028 			if (dr->dr_sysbase < min_addr) {
   2029 				psize_t diff = min_addr - dr->dr_sysbase;
   2030 				dr->dr_busbase += diff;
   2031 				dr->dr_len -= diff;
   2032 				dr->dr_sysbase += diff;
   2033 			}
   2034 			if (max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
   2035 				dr->dr_len = max_addr + 1 - dr->dr_sysbase;
   2036 			}
   2037 			dr++;
   2038 			nranges--;
   2039 		}
   2040 	}
   2041 
   2042 	return 0;
   2043 #else
   2044 	return EOPNOTSUPP;
   2045 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
   2046 }
   2047 
   2048 void
   2049 _bus_dmatag_destroy(bus_dma_tag_t tag)
   2050 {
   2051 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
   2052 	switch (tag->_tag_needs_free) {
   2053 	case 0:
   2054 		break;				/* not allocated with kmem */
   2055 	case 1: {
   2056 		const size_t tagsize = sizeof(*tag)
   2057 		    + tag->_nranges * sizeof(*tag->_ranges);
   2058 		kmem_intr_free(tag, tagsize);	/* last reference to tag */
   2059 		break;
   2060 	}
   2061 	default:
   2062 		(tag->_tag_needs_free)--;	/* one less reference */
   2063 	}
   2064 #endif
   2065 }
   2066