bus_dma.c revision 1.60 1 /* $NetBSD: bus_dma.c,v 1.60 2012/10/06 02:58:39 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.60 2012/10/06 02:58:39 matt Exp $");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/reboot.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/vnode.h>
49 #include <sys/device.h>
50
51 #include <uvm/uvm.h>
52
53 #include <sys/bus.h>
54 #include <machine/cpu.h>
55
56 #include <arm/cpufunc.h>
57
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_read_bounces =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
68 static struct evcnt bus_dma_write_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
70 static struct evcnt bus_dma_bounced_unloads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
72 static struct evcnt bus_dma_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
74 static struct evcnt bus_dma_bounced_destroys =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
76 static struct evcnt bus_dma_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
78
79 EVCNT_ATTACH_STATIC(bus_dma_creates);
80 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
81 EVCNT_ATTACH_STATIC(bus_dma_loads);
82 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
83 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
84 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
85 EVCNT_ATTACH_STATIC(bus_dma_unloads);
86 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
87 EVCNT_ATTACH_STATIC(bus_dma_destroys);
88 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
89
90 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
91
92 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
93 bus_size_t, struct vmspace *, int);
94 static struct arm32_dma_range *
95 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
96
97 /*
98 * Check to see if the specified page is in an allowed DMA range.
99 */
100 inline struct arm32_dma_range *
101 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
102 bus_addr_t curaddr)
103 {
104 struct arm32_dma_range *dr;
105 int i;
106
107 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
108 if (curaddr >= dr->dr_sysbase &&
109 round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
110 return (dr);
111 }
112
113 return (NULL);
114 }
115
116 /*
117 * Check to see if the specified busaddr is in an allowed DMA range.
118 */
119 static inline paddr_t
120 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
121 {
122 struct arm32_dma_range *dr;
123 u_int i;
124
125 if (t->_nranges == 0)
126 return curaddr;
127
128 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
129 if (dr->dr_busbase <= curaddr
130 && round_page(curaddr) <= dr->dr_busbase + dr->dr_len)
131 return curaddr - dr->dr_busbase + dr->dr_sysbase;
132 }
133 panic("%s: curaddr %#lx not in range", __func__, curaddr);
134 }
135
136 /*
137 * Common function to load the specified physical address into the
138 * DMA map, coalescing segments and boundary checking as necessary.
139 */
140 static int
141 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
142 bus_addr_t paddr, bus_size_t size)
143 {
144 bus_dma_segment_t * const segs = map->dm_segs;
145 int nseg = map->dm_nsegs;
146 bus_addr_t lastaddr;
147 bus_addr_t bmask = ~(map->_dm_boundary - 1);
148 bus_addr_t curaddr;
149 bus_size_t sgsize;
150
151 if (nseg > 0)
152 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
153 else
154 lastaddr = 0xdead;
155
156 again:
157 sgsize = size;
158
159 /* Make sure we're in an allowed DMA range. */
160 if (t->_ranges != NULL) {
161 /* XXX cache last result? */
162 const struct arm32_dma_range * const dr =
163 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
164 if (dr == NULL)
165 return (EINVAL);
166
167 /*
168 * In a valid DMA range. Translate the physical
169 * memory address to an address in the DMA window.
170 */
171 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
172 } else
173 curaddr = paddr;
174
175 /*
176 * Make sure we don't cross any boundaries.
177 */
178 if (map->_dm_boundary > 0) {
179 bus_addr_t baddr; /* next boundary address */
180
181 baddr = (curaddr + map->_dm_boundary) & bmask;
182 if (sgsize > (baddr - curaddr))
183 sgsize = (baddr - curaddr);
184 }
185
186 /*
187 * Insert chunk into a segment, coalescing with the
188 * previous segment if possible.
189 */
190 if (nseg > 0 && curaddr == lastaddr &&
191 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
192 (map->_dm_boundary == 0 ||
193 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
194 /* coalesce */
195 segs[nseg-1].ds_len += sgsize;
196 } else if (nseg >= map->_dm_segcnt) {
197 return (EFBIG);
198 } else {
199 /* new segment */
200 segs[nseg].ds_addr = curaddr;
201 segs[nseg].ds_len = sgsize;
202 nseg++;
203 }
204
205 lastaddr = curaddr + sgsize;
206
207 paddr += sgsize;
208 size -= sgsize;
209 if (size > 0)
210 goto again;
211
212 map->dm_nsegs = nseg;
213 return (0);
214 }
215
216 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
217 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
218 bus_size_t size, int flags);
219 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
220 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
221 int direction);
222
223 static int
224 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
225 size_t buflen, int buftype, int flags)
226 {
227 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
228 struct vmspace * const vm = vmspace_kernel();
229 int error;
230
231 KASSERT(cookie != NULL);
232 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
233
234 /*
235 * Allocate bounce pages, if necessary.
236 */
237 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
238 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
239 if (error)
240 return (error);
241 }
242
243 /*
244 * Cache a pointer to the caller's buffer and load the DMA map
245 * with the bounce buffer.
246 */
247 cookie->id_origbuf = buf;
248 cookie->id_origbuflen = buflen;
249 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
250 buflen, vm, flags);
251 if (error)
252 return (error);
253
254 STAT_INCR(bounced_loads);
255 map->dm_mapsize = buflen;
256 map->_dm_vmspace = vm;
257 map->_dm_buftype = buftype;
258
259 /* ...so _bus_dmamap_sync() knows we're bouncing */
260 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
261 return 0;
262 }
263 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
264
265 /*
266 * Common function for DMA map creation. May be called by bus-specific
267 * DMA map creation functions.
268 */
269 int
270 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
271 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
272 {
273 struct arm32_bus_dmamap *map;
274 void *mapstore;
275 size_t mapsize;
276
277 #ifdef DEBUG_DMA
278 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
279 t, size, nsegments, maxsegsz, boundary, flags);
280 #endif /* DEBUG_DMA */
281
282 /*
283 * Allocate and initialize the DMA map. The end of the map
284 * is a variable-sized array of segments, so we allocate enough
285 * room for them in one shot.
286 *
287 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
288 * of ALLOCNOW notifies others that we've reserved these resources,
289 * and they are not to be freed.
290 *
291 * The bus_dmamap_t includes one bus_dma_segment_t, hence
292 * the (nsegments - 1).
293 */
294 mapsize = sizeof(struct arm32_bus_dmamap) +
295 (sizeof(bus_dma_segment_t) * (nsegments - 1));
296 const int mallocflags = M_ZERO|(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK;
297 if ((mapstore = malloc(mapsize, M_DMAMAP, mallocflags)) == NULL)
298 return (ENOMEM);
299
300 map = (struct arm32_bus_dmamap *)mapstore;
301 map->_dm_size = size;
302 map->_dm_segcnt = nsegments;
303 map->_dm_maxmaxsegsz = maxsegsz;
304 map->_dm_boundary = boundary;
305 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
306 map->_dm_origbuf = NULL;
307 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
308 map->_dm_vmspace = vmspace_kernel();
309 map->_dm_cookie = NULL;
310 map->dm_maxsegsz = maxsegsz;
311 map->dm_mapsize = 0; /* no valid mappings */
312 map->dm_nsegs = 0;
313
314 *dmamp = map;
315
316 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
317 struct arm32_bus_dma_cookie *cookie;
318 int cookieflags;
319 void *cookiestore;
320 size_t cookiesize;
321 int error;
322
323 cookieflags = 0;
324
325 if (t->_may_bounce != NULL) {
326 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
327 if (error != 0)
328 goto out;
329 }
330
331 if (t->_ranges != NULL)
332 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
333
334 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
335 STAT_INCR(creates);
336 return 0;
337 }
338
339 cookiesize = sizeof(struct arm32_bus_dma_cookie) +
340 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
341
342 /*
343 * Allocate our cookie.
344 */
345 if ((cookiestore = malloc(cookiesize, M_DMAMAP, mallocflags)) == NULL) {
346 error = ENOMEM;
347 goto out;
348 }
349 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
350 cookie->id_flags = cookieflags;
351 map->_dm_cookie = cookie;
352 STAT_INCR(bounced_creates);
353
354 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
355 out:
356 if (error)
357 _bus_dmamap_destroy(t, map);
358 #else
359 STAT_INCR(creates);
360 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
361
362 #ifdef DEBUG_DMA
363 printf("dmamap_create:map=%p\n", map);
364 #endif /* DEBUG_DMA */
365 return (0);
366 }
367
368 /*
369 * Common function for DMA map destruction. May be called by bus-specific
370 * DMA map destruction functions.
371 */
372 void
373 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
374 {
375
376 #ifdef DEBUG_DMA
377 printf("dmamap_destroy: t=%p map=%p\n", t, map);
378 #endif /* DEBUG_DMA */
379 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
380 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
381
382 /*
383 * Free any bounce pages this map might hold.
384 */
385 if (cookie != NULL) {
386 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
387 STAT_INCR(bounced_unloads);
388 map->dm_nsegs = 0;
389 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
390 _bus_dma_free_bouncebuf(t, map);
391 STAT_INCR(bounced_destroys);
392 free(cookie, M_DMAMAP);
393 } else
394 #endif
395 STAT_INCR(destroys);
396
397 if (map->dm_nsegs > 0)
398 STAT_INCR(unloads);
399
400 free(map, M_DMAMAP);
401 }
402
403 /*
404 * Common function for loading a DMA map with a linear buffer. May
405 * be called by bus-specific DMA map load functions.
406 */
407 int
408 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
409 bus_size_t buflen, struct proc *p, int flags)
410 {
411 struct vmspace *vm;
412 int error;
413
414 #ifdef DEBUG_DMA
415 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
416 t, map, buf, buflen, p, flags);
417 #endif /* DEBUG_DMA */
418
419 if (map->dm_nsegs > 0) {
420 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
421 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
422 if (cookie != NULL) {
423 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
424 STAT_INCR(bounced_unloads);
425 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
426 }
427 } else
428 #endif
429 STAT_INCR(unloads);
430 }
431
432 /*
433 * Make sure that on error condition we return "no valid mappings".
434 */
435 map->dm_mapsize = 0;
436 map->dm_nsegs = 0;
437 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
438 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
439
440 if (buflen > map->_dm_size)
441 return (EINVAL);
442
443 if (p != NULL) {
444 vm = p->p_vmspace;
445 } else {
446 vm = vmspace_kernel();
447 }
448
449 /* _bus_dmamap_load_buffer() clears this if we're not... */
450 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
451
452 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
453 if (error == 0) {
454 map->dm_mapsize = buflen;
455 map->_dm_vmspace = vm;
456 map->_dm_origbuf = buf;
457 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
458 return 0;
459 }
460 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
461 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
462 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
463 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
464 _BUS_DMA_BUFTYPE_LINEAR, flags);
465 }
466 #endif
467 return (error);
468 }
469
470 /*
471 * Like _bus_dmamap_load(), but for mbufs.
472 */
473 int
474 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
475 int flags)
476 {
477 int error;
478 struct mbuf *m;
479
480 #ifdef DEBUG_DMA
481 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
482 t, map, m0, flags);
483 #endif /* DEBUG_DMA */
484
485 if (map->dm_nsegs > 0) {
486 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
487 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
488 if (cookie != NULL) {
489 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
490 STAT_INCR(bounced_unloads);
491 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
492 }
493 } else
494 #endif
495 STAT_INCR(unloads);
496 }
497
498 /*
499 * Make sure that on error condition we return "no valid mappings."
500 */
501 map->dm_mapsize = 0;
502 map->dm_nsegs = 0;
503 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
504 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
505
506 #ifdef DIAGNOSTIC
507 if ((m0->m_flags & M_PKTHDR) == 0)
508 panic("_bus_dmamap_load_mbuf: no packet header");
509 #endif /* DIAGNOSTIC */
510
511 if (m0->m_pkthdr.len > map->_dm_size)
512 return (EINVAL);
513
514 /*
515 * Mbuf chains should almost never have coherent (i.e.
516 * un-cached) mappings, so clear that flag now.
517 */
518 map->_dm_flags &= ~_BUS_DMAMAP_COHERENT;
519
520 error = 0;
521 for (m = m0; m != NULL && error == 0; m = m->m_next) {
522 int offset;
523 int remainbytes;
524 const struct vm_page * const *pgs;
525 paddr_t paddr;
526 int size;
527
528 if (m->m_len == 0)
529 continue;
530 /*
531 * Don't allow reads in read-only mbufs.
532 */
533 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
534 error = EFAULT;
535 break;
536 }
537 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
538 case M_EXT|M_CLUSTER:
539 /* XXX KDASSERT */
540 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
541 paddr = m->m_ext.ext_paddr +
542 (m->m_data - m->m_ext.ext_buf);
543 size = m->m_len;
544 error = _bus_dmamap_load_paddr(t, map, paddr, size);
545 break;
546
547 case M_EXT|M_EXT_PAGES:
548 KASSERT(m->m_ext.ext_buf <= m->m_data);
549 KASSERT(m->m_data <=
550 m->m_ext.ext_buf + m->m_ext.ext_size);
551
552 offset = (vaddr_t)m->m_data -
553 trunc_page((vaddr_t)m->m_ext.ext_buf);
554 remainbytes = m->m_len;
555
556 /* skip uninteresting pages */
557 pgs = (const struct vm_page * const *)
558 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
559
560 offset &= PAGE_MASK; /* offset in the first page */
561
562 /* load each page */
563 while (remainbytes > 0) {
564 const struct vm_page *pg;
565
566 size = MIN(remainbytes, PAGE_SIZE - offset);
567
568 pg = *pgs++;
569 KASSERT(pg);
570 paddr = VM_PAGE_TO_PHYS(pg) + offset;
571
572 error = _bus_dmamap_load_paddr(t, map,
573 paddr, size);
574 if (error)
575 break;
576 offset = 0;
577 remainbytes -= size;
578 }
579 break;
580
581 case 0:
582 paddr = m->m_paddr + M_BUFOFFSET(m) +
583 (m->m_data - M_BUFADDR(m));
584 size = m->m_len;
585 error = _bus_dmamap_load_paddr(t, map, paddr, size);
586 break;
587
588 default:
589 error = _bus_dmamap_load_buffer(t, map, m->m_data,
590 m->m_len, vmspace_kernel(), flags);
591 }
592 }
593 if (error == 0) {
594 map->dm_mapsize = m0->m_pkthdr.len;
595 map->_dm_origbuf = m0;
596 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
597 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
598 return 0;
599 }
600 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
601 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
602 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
603 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
604 _BUS_DMA_BUFTYPE_MBUF, flags);
605 }
606 #endif
607 return (error);
608 }
609
610 /*
611 * Like _bus_dmamap_load(), but for uios.
612 */
613 int
614 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
615 int flags)
616 {
617 int i, error;
618 bus_size_t minlen, resid;
619 struct iovec *iov;
620 void *addr;
621
622 /*
623 * Make sure that on error condition we return "no valid mappings."
624 */
625 map->dm_mapsize = 0;
626 map->dm_nsegs = 0;
627 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
628
629 resid = uio->uio_resid;
630 iov = uio->uio_iov;
631
632 /* _bus_dmamap_load_buffer() clears this if we're not... */
633 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
634
635 error = 0;
636 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
637 /*
638 * Now at the first iovec to load. Load each iovec
639 * until we have exhausted the residual count.
640 */
641 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
642 addr = (void *)iov[i].iov_base;
643
644 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
645 uio->uio_vmspace, flags);
646
647 resid -= minlen;
648 }
649 if (error == 0) {
650 map->dm_mapsize = uio->uio_resid;
651 map->_dm_origbuf = uio;
652 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
653 map->_dm_vmspace = uio->uio_vmspace;
654 }
655 return (error);
656 }
657
658 /*
659 * Like _bus_dmamap_load(), but for raw memory allocated with
660 * bus_dmamem_alloc().
661 */
662 int
663 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
664 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
665 {
666
667 panic("_bus_dmamap_load_raw: not implemented");
668 }
669
670 /*
671 * Common function for unloading a DMA map. May be called by
672 * bus-specific DMA map unload functions.
673 */
674 void
675 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
676 {
677
678 #ifdef DEBUG_DMA
679 printf("dmamap_unload: t=%p map=%p\n", t, map);
680 #endif /* DEBUG_DMA */
681
682 /*
683 * No resources to free; just mark the mappings as
684 * invalid.
685 */
686 map->dm_mapsize = 0;
687 map->dm_nsegs = 0;
688 map->_dm_origbuf = NULL;
689 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
690 map->_dm_vmspace = NULL;
691 }
692
693 static void
694 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
695 {
696 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
697
698 switch (ops) {
699 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
700 if (!readonly_p) {
701 cpu_dcache_wbinv_range(va, len);
702 cpu_sdcache_wbinv_range(va, pa, len);
703 break;
704 }
705 /* FALLTHROUGH */
706
707 case BUS_DMASYNC_PREREAD: {
708 const size_t line_size = arm_dcache_align;
709 const size_t line_mask = arm_dcache_align_mask;
710 vsize_t misalignment = va & line_mask;
711 if (misalignment) {
712 va -= misalignment;
713 pa -= misalignment;
714 len += misalignment;
715 cpu_dcache_wbinv_range(va, line_size);
716 cpu_sdcache_wbinv_range(va, pa, line_size);
717 if (len <= line_size)
718 break;
719 va += line_size;
720 pa += line_size;
721 len -= line_size;
722 }
723 misalignment = len & line_mask;
724 len -= misalignment;
725 cpu_dcache_inv_range(va, len);
726 cpu_sdcache_inv_range(va, pa, len);
727 if (misalignment) {
728 va += len;
729 pa += len;
730 cpu_dcache_wbinv_range(va, line_size);
731 cpu_sdcache_wbinv_range(va, pa, line_size);
732 }
733 break;
734 }
735
736 case BUS_DMASYNC_PREWRITE:
737 cpu_dcache_wb_range(va, len);
738 cpu_sdcache_wb_range(va, pa, len);
739 break;
740 }
741 }
742
743 static inline void
744 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
745 bus_size_t len, int ops)
746 {
747 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
748 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
749 bool bouncing = (cookie != NULL && (cookie->id_flags & _BUS_DMA_IS_BOUNCING));
750 #endif
751 bus_dma_segment_t *ds = map->dm_segs;
752 vaddr_t va = (vaddr_t) map->_dm_origbuf;
753 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
754 if (bouncing) {
755 va = (vaddr_t) cookie->id_bouncebuf;
756 }
757 #endif
758
759 while (len > 0) {
760 while (offset >= ds->ds_len) {
761 offset -= ds->ds_len;
762 va += ds->ds_len;
763 ds++;
764 }
765
766 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
767 size_t seglen = min(len, ds->ds_len - offset);
768
769 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops, false);
770
771 offset += seglen;
772 len -= seglen;
773 }
774 }
775
776 static inline void
777 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
778 bus_size_t len, int ops)
779 {
780 bus_dma_segment_t *ds = map->dm_segs;
781 struct mbuf *m = map->_dm_origbuf;
782 bus_size_t voff = offset;
783 bus_size_t ds_off = offset;
784
785 while (len > 0) {
786 /* Find the current dma segment */
787 while (ds_off >= ds->ds_len) {
788 ds_off -= ds->ds_len;
789 ds++;
790 }
791 /* Find the current mbuf. */
792 while (voff >= m->m_len) {
793 voff -= m->m_len;
794 m = m->m_next;
795 }
796
797 /*
798 * Now at the first mbuf to sync; nail each one until
799 * we have exhausted the length.
800 */
801 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
802 vaddr_t va = mtod(m, vaddr_t) + voff;
803 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
804
805 /*
806 * We can save a lot of work here if we know the mapping
807 * is read-only at the MMU:
808 *
809 * If a mapping is read-only, no dirty cache blocks will
810 * exist for it. If a writable mapping was made read-only,
811 * we know any dirty cache lines for the range will have
812 * been cleaned for us already. Therefore, if the upper
813 * layer can tell us we have a read-only mapping, we can
814 * skip all cache cleaning.
815 *
816 * NOTE: This only works if we know the pmap cleans pages
817 * before making a read-write -> read-only transition. If
818 * this ever becomes non-true (e.g. Physically Indexed
819 * cache), this will have to be revisited.
820 */
821
822 _bus_dmamap_sync_segment(va, pa, seglen, ops, M_ROMAP(m));
823 voff += seglen;
824 ds_off += seglen;
825 len -= seglen;
826 }
827 }
828
829 static inline void
830 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
831 bus_size_t len, int ops)
832 {
833 bus_dma_segment_t *ds = map->dm_segs;
834 struct uio *uio = map->_dm_origbuf;
835 struct iovec *iov = uio->uio_iov;
836 bus_size_t voff = offset;
837 bus_size_t ds_off = offset;
838
839 while (len > 0) {
840 /* Find the current dma segment */
841 while (ds_off >= ds->ds_len) {
842 ds_off -= ds->ds_len;
843 ds++;
844 }
845
846 /* Find the current iovec. */
847 while (voff >= iov->iov_len) {
848 voff -= iov->iov_len;
849 iov++;
850 }
851
852 /*
853 * Now at the first iovec to sync; nail each one until
854 * we have exhausted the length.
855 */
856 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
857 vaddr_t va = (vaddr_t) iov->iov_base + voff;
858 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
859
860 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
861
862 voff += seglen;
863 ds_off += seglen;
864 len -= seglen;
865 }
866 }
867
868 /*
869 * Common function for DMA map synchronization. May be called
870 * by bus-specific DMA map synchronization functions.
871 *
872 * This version works for the Virtually Indexed Virtually Tagged
873 * cache found on 32-bit ARM processors.
874 *
875 * XXX Should have separate versions for write-through vs.
876 * XXX write-back caches. We currently assume write-back
877 * XXX here, which is not as efficient as it could be for
878 * XXX the write-through case.
879 */
880 void
881 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
882 bus_size_t len, int ops)
883 {
884 bool bouncing = false;
885
886 #ifdef DEBUG_DMA
887 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
888 t, map, offset, len, ops);
889 #endif /* DEBUG_DMA */
890
891 /*
892 * Mixing of PRE and POST operations is not allowed.
893 */
894 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
895 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
896 panic("_bus_dmamap_sync: mix PRE and POST");
897
898 #ifdef DIAGNOSTIC
899 if (offset >= map->dm_mapsize)
900 panic("_bus_dmamap_sync: bad offset %lu (map size is %lu)",
901 offset, map->dm_mapsize);
902 if (len == 0 || (offset + len) > map->dm_mapsize)
903 panic("_bus_dmamap_sync: bad length");
904 #endif
905
906 /*
907 * For a virtually-indexed write-back cache, we need
908 * to do the following things:
909 *
910 * PREREAD -- Invalidate the D-cache. We do this
911 * here in case a write-back is required by the back-end.
912 *
913 * PREWRITE -- Write-back the D-cache. Note that if
914 * we are doing a PREREAD|PREWRITE, we can collapse
915 * the whole thing into a single Wb-Inv.
916 *
917 * POSTREAD -- Nothing.
918 *
919 * POSTWRITE -- Nothing.
920 */
921 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
922 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
923 bouncing = (cookie != NULL && (cookie->id_flags & _BUS_DMA_IS_BOUNCING));
924 #endif
925
926 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 if (!bouncing && pre_ops == 0)
928 return;
929
930 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
931 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
932 STAT_INCR(write_bounces);
933 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
934 /*
935 * Copy the caller's buffer to the bounce buffer.
936 */
937 switch (map->_dm_buftype) {
938 case _BUS_DMA_BUFTYPE_LINEAR:
939 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
940 break;
941 case _BUS_DMA_BUFTYPE_MBUF:
942 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
943 break;
944 case _BUS_DMA_BUFTYPE_UIO:
945 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
946 break;
947 #ifdef DIAGNOSTIC
948 case _BUS_DMA_BUFTYPE_RAW:
949 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
950 break;
951
952 case _BUS_DMA_BUFTYPE_INVALID:
953 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
954 break;
955
956 default:
957 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
958 map, map->_dm_buftype);
959 break;
960 #endif /* DIAGNOSTIC */
961 }
962 }
963 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
964
965 /* Skip cache frobbing if mapping was COHERENT. */
966 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
967 /* Drain the write buffer. */
968 cpu_drain_writebuf();
969 return;
970 }
971
972 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
973 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
974 goto bounce_it;
975 }
976 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
977
978 /*
979 * If the mapping belongs to a non-kernel vmspace, and the
980 * vmspace has not been active since the last time a full
981 * cache flush was performed, we don't need to do anything.
982 */
983 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
984 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
985 return;
986
987 int buftype = map->_dm_buftype;
988 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
989 if (bouncing) {
990 buftype = _BUS_DMA_BUFTYPE_LINEAR;
991 }
992 #endif
993
994 switch (buftype) {
995 case _BUS_DMA_BUFTYPE_LINEAR:
996 _bus_dmamap_sync_linear(t, map, offset, len, ops);
997 break;
998
999 case _BUS_DMA_BUFTYPE_MBUF:
1000 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1001 break;
1002
1003 case _BUS_DMA_BUFTYPE_UIO:
1004 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1005 break;
1006
1007 case _BUS_DMA_BUFTYPE_RAW:
1008 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1009 break;
1010
1011 case _BUS_DMA_BUFTYPE_INVALID:
1012 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1013 break;
1014
1015 default:
1016 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1017 map, map->_dm_buftype);
1018 }
1019
1020 /* Drain the write buffer. */
1021 cpu_drain_writebuf();
1022
1023 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1024 bounce_it:
1025 if ((ops & BUS_DMASYNC_POSTREAD) == 0
1026 || cookie == NULL
1027 || (cookie->id_flags & _BUS_DMA_IS_BOUNCING) == 0)
1028 return;
1029
1030 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1031 STAT_INCR(read_bounces);
1032 /*
1033 * Copy the bounce buffer to the caller's buffer.
1034 */
1035 switch (map->_dm_buftype) {
1036 case _BUS_DMA_BUFTYPE_LINEAR:
1037 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1038 break;
1039
1040 case _BUS_DMA_BUFTYPE_MBUF:
1041 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1042 break;
1043
1044 case _BUS_DMA_BUFTYPE_UIO:
1045 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1046 break;
1047 #ifdef DIAGNOSTIC
1048 case _BUS_DMA_BUFTYPE_RAW:
1049 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1050 break;
1051
1052 case _BUS_DMA_BUFTYPE_INVALID:
1053 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1054 break;
1055
1056 default:
1057 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1058 map, map->_dm_buftype);
1059 break;
1060 #endif
1061 }
1062 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1063 }
1064
1065 /*
1066 * Common function for DMA-safe memory allocation. May be called
1067 * by bus-specific DMA memory allocation functions.
1068 */
1069
1070 extern paddr_t physical_start;
1071 extern paddr_t physical_end;
1072
1073 int
1074 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1075 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1076 int flags)
1077 {
1078 struct arm32_dma_range *dr;
1079 int error, i;
1080
1081 #ifdef DEBUG_DMA
1082 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1083 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1084 boundary, segs, nsegs, rsegs, flags);
1085 #endif
1086
1087 if ((dr = t->_ranges) != NULL) {
1088 error = ENOMEM;
1089 for (i = 0; i < t->_nranges; i++, dr++) {
1090 if (dr->dr_len == 0)
1091 continue;
1092 error = _bus_dmamem_alloc_range(t, size, alignment,
1093 boundary, segs, nsegs, rsegs, flags,
1094 trunc_page(dr->dr_sysbase),
1095 trunc_page(dr->dr_sysbase + dr->dr_len));
1096 if (error == 0)
1097 break;
1098 }
1099 } else {
1100 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1101 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1102 trunc_page(physical_end));
1103 }
1104
1105 #ifdef DEBUG_DMA
1106 printf("dmamem_alloc: =%d\n", error);
1107 #endif
1108
1109 return(error);
1110 }
1111
1112 /*
1113 * Common function for freeing DMA-safe memory. May be called by
1114 * bus-specific DMA memory free functions.
1115 */
1116 void
1117 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1118 {
1119 struct vm_page *m;
1120 bus_addr_t addr;
1121 struct pglist mlist;
1122 int curseg;
1123
1124 #ifdef DEBUG_DMA
1125 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1126 #endif /* DEBUG_DMA */
1127
1128 /*
1129 * Build a list of pages to free back to the VM system.
1130 */
1131 TAILQ_INIT(&mlist);
1132 for (curseg = 0; curseg < nsegs; curseg++) {
1133 for (addr = segs[curseg].ds_addr;
1134 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1135 addr += PAGE_SIZE) {
1136 m = PHYS_TO_VM_PAGE(addr);
1137 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1138 }
1139 }
1140 uvm_pglistfree(&mlist);
1141 }
1142
1143 /*
1144 * Common function for mapping DMA-safe memory. May be called by
1145 * bus-specific DMA memory map functions.
1146 */
1147 int
1148 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1149 size_t size, void **kvap, int flags)
1150 {
1151 vaddr_t va;
1152 paddr_t pa;
1153 int curseg;
1154 pt_entry_t *ptep/*, pte*/;
1155 const uvm_flag_t kmflags =
1156 (flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0;
1157
1158 #ifdef DEBUG_DMA
1159 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1160 segs, nsegs, (unsigned long)size, flags);
1161 #endif /* DEBUG_DMA */
1162
1163 size = round_page(size);
1164 va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY | kmflags);
1165
1166 if (va == 0)
1167 return (ENOMEM);
1168
1169 *kvap = (void *)va;
1170
1171 for (curseg = 0; curseg < nsegs; curseg++) {
1172 for (pa = segs[curseg].ds_addr;
1173 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1174 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1175 #ifdef DEBUG_DMA
1176 printf("wiring p%lx to v%lx", pa, va);
1177 #endif /* DEBUG_DMA */
1178 if (size == 0)
1179 panic("_bus_dmamem_map: size botch");
1180 pmap_enter(pmap_kernel(), va, pa,
1181 VM_PROT_READ | VM_PROT_WRITE,
1182 VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
1183
1184 /*
1185 * If the memory must remain coherent with the
1186 * cache then we must make the memory uncacheable
1187 * in order to maintain virtual cache coherency.
1188 * We must also guarantee the cache does not already
1189 * contain the virtal addresses we are making
1190 * uncacheable.
1191 */
1192 if (flags & BUS_DMA_COHERENT) {
1193 cpu_dcache_wbinv_range(va, PAGE_SIZE);
1194 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
1195 cpu_drain_writebuf();
1196 ptep = vtopte(va);
1197 *ptep &= ~L2_S_CACHE_MASK;
1198 PTE_SYNC(ptep);
1199 tlb_flush();
1200 }
1201 #ifdef DEBUG_DMA
1202 ptep = vtopte(va);
1203 printf(" pte=v%p *pte=%x\n", ptep, *ptep);
1204 #endif /* DEBUG_DMA */
1205 }
1206 }
1207 pmap_update(pmap_kernel());
1208 #ifdef DEBUG_DMA
1209 printf("dmamem_map: =%p\n", *kvap);
1210 #endif /* DEBUG_DMA */
1211 return (0);
1212 }
1213
1214 /*
1215 * Common function for unmapping DMA-safe memory. May be called by
1216 * bus-specific DMA memory unmapping functions.
1217 */
1218 void
1219 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1220 {
1221
1222 #ifdef DEBUG_DMA
1223 printf("dmamem_unmap: t=%p kva=%p size=%lx\n", t, kva,
1224 (unsigned long)size);
1225 #endif /* DEBUG_DMA */
1226 #ifdef DIAGNOSTIC
1227 if ((u_long)kva & PGOFSET)
1228 panic("_bus_dmamem_unmap");
1229 #endif /* DIAGNOSTIC */
1230
1231 size = round_page(size);
1232 pmap_remove(pmap_kernel(), (vaddr_t)kva, (vaddr_t)kva + size);
1233 pmap_update(pmap_kernel());
1234 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1235 }
1236
1237 /*
1238 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1239 * bus-specific DMA mmap(2)'ing functions.
1240 */
1241 paddr_t
1242 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1243 off_t off, int prot, int flags)
1244 {
1245 int i;
1246
1247 for (i = 0; i < nsegs; i++) {
1248 #ifdef DIAGNOSTIC
1249 if (off & PGOFSET)
1250 panic("_bus_dmamem_mmap: offset unaligned");
1251 if (segs[i].ds_addr & PGOFSET)
1252 panic("_bus_dmamem_mmap: segment unaligned");
1253 if (segs[i].ds_len & PGOFSET)
1254 panic("_bus_dmamem_mmap: segment size not multiple"
1255 " of page size");
1256 #endif /* DIAGNOSTIC */
1257 if (off >= segs[i].ds_len) {
1258 off -= segs[i].ds_len;
1259 continue;
1260 }
1261
1262 return (arm_btop((u_long)segs[i].ds_addr + off));
1263 }
1264
1265 /* Page not found. */
1266 return (-1);
1267 }
1268
1269 /**********************************************************************
1270 * DMA utility functions
1271 **********************************************************************/
1272
1273 /*
1274 * Utility function to load a linear buffer. lastaddrp holds state
1275 * between invocations (for multiple-buffer loads). segp contains
1276 * the starting segment on entrace, and the ending segment on exit.
1277 * first indicates if this is the first invocation of this function.
1278 */
1279 int
1280 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1281 bus_size_t buflen, struct vmspace *vm, int flags)
1282 {
1283 bus_size_t sgsize;
1284 bus_addr_t curaddr;
1285 vaddr_t vaddr = (vaddr_t)buf;
1286 pd_entry_t *pde;
1287 pt_entry_t pte;
1288 int error;
1289 pmap_t pmap;
1290 pt_entry_t *ptep;
1291
1292 #ifdef DEBUG_DMA
1293 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1294 buf, buflen, flags);
1295 #endif /* DEBUG_DMA */
1296
1297 pmap = vm_map_pmap(&vm->vm_map);
1298
1299 while (buflen > 0) {
1300 /*
1301 * Get the physical address for this segment.
1302 *
1303 * XXX Doesn't support checking for coherent mappings
1304 * XXX in user address space.
1305 */
1306 if (__predict_true(pmap == pmap_kernel())) {
1307 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1308 if (__predict_false(pmap_pde_section(pde))) {
1309 paddr_t s_frame = L1_S_FRAME;
1310 paddr_t s_offset = L1_S_OFFSET;
1311 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1312 if (__predict_false(pmap_pde_supersection(pde))) {
1313 s_frame = L1_SS_FRAME;
1314 s_offset = L1_SS_OFFSET;
1315 }
1316 #endif
1317 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1318 if (*pde & L1_S_CACHE_MASK) {
1319 map->_dm_flags &= ~_BUS_DMAMAP_COHERENT;
1320 }
1321 } else {
1322 pte = *ptep;
1323 KDASSERT((pte & L2_TYPE_MASK) != L2_TYPE_INV);
1324 if (__predict_false((pte & L2_TYPE_MASK)
1325 == L2_TYPE_L)) {
1326 curaddr = (pte & L2_L_FRAME) |
1327 (vaddr & L2_L_OFFSET);
1328 if (pte & L2_L_CACHE_MASK) {
1329 map->_dm_flags &=
1330 ~_BUS_DMAMAP_COHERENT;
1331 }
1332 } else {
1333 curaddr = (pte & L2_S_FRAME) |
1334 (vaddr & L2_S_OFFSET);
1335 if (pte & L2_S_CACHE_MASK) {
1336 map->_dm_flags &=
1337 ~_BUS_DMAMAP_COHERENT;
1338 }
1339 }
1340 }
1341 } else {
1342 (void) pmap_extract(pmap, vaddr, &curaddr);
1343 map->_dm_flags &= ~_BUS_DMAMAP_COHERENT;
1344 }
1345
1346 /*
1347 * Compute the segment size, and adjust counts.
1348 */
1349 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1350 if (buflen < sgsize)
1351 sgsize = buflen;
1352
1353 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize);
1354 if (error)
1355 return (error);
1356
1357 vaddr += sgsize;
1358 buflen -= sgsize;
1359 }
1360
1361 return (0);
1362 }
1363
1364 /*
1365 * Allocate physical memory from the given physical address range.
1366 * Called by DMA-safe memory allocation methods.
1367 */
1368 int
1369 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1370 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1371 int flags, paddr_t low, paddr_t high)
1372 {
1373 paddr_t curaddr, lastaddr;
1374 struct vm_page *m;
1375 struct pglist mlist;
1376 int curseg, error;
1377
1378 #ifdef DEBUG_DMA
1379 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1380 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1381 #endif /* DEBUG_DMA */
1382
1383 /* Always round the size. */
1384 size = round_page(size);
1385
1386 /*
1387 * Allocate pages from the VM system.
1388 */
1389 error = uvm_pglistalloc(size, low, high, alignment, boundary,
1390 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1391 if (error)
1392 return (error);
1393
1394 /*
1395 * Compute the location, size, and number of segments actually
1396 * returned by the VM code.
1397 */
1398 m = TAILQ_FIRST(&mlist);
1399 curseg = 0;
1400 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1401 segs[curseg].ds_len = PAGE_SIZE;
1402 #ifdef DEBUG_DMA
1403 printf("alloc: page %lx\n", lastaddr);
1404 #endif /* DEBUG_DMA */
1405 m = TAILQ_NEXT(m, pageq.queue);
1406
1407 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1408 curaddr = VM_PAGE_TO_PHYS(m);
1409 #ifdef DIAGNOSTIC
1410 if (curaddr < low || curaddr >= high) {
1411 printf("uvm_pglistalloc returned non-sensical"
1412 " address 0x%lx\n", curaddr);
1413 panic("_bus_dmamem_alloc_range");
1414 }
1415 #endif /* DIAGNOSTIC */
1416 #ifdef DEBUG_DMA
1417 printf("alloc: page %lx\n", curaddr);
1418 #endif /* DEBUG_DMA */
1419 if (curaddr == (lastaddr + PAGE_SIZE))
1420 segs[curseg].ds_len += PAGE_SIZE;
1421 else {
1422 curseg++;
1423 segs[curseg].ds_addr = curaddr;
1424 segs[curseg].ds_len = PAGE_SIZE;
1425 }
1426 lastaddr = curaddr;
1427 }
1428
1429 *rsegs = curseg + 1;
1430
1431 return (0);
1432 }
1433
1434 /*
1435 * Check if a memory region intersects with a DMA range, and return the
1436 * page-rounded intersection if it does.
1437 */
1438 int
1439 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1440 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1441 {
1442 struct arm32_dma_range *dr;
1443 int i;
1444
1445 if (ranges == NULL)
1446 return (0);
1447
1448 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1449 if (dr->dr_sysbase <= pa &&
1450 pa < (dr->dr_sysbase + dr->dr_len)) {
1451 /*
1452 * Beginning of region intersects with this range.
1453 */
1454 *pap = trunc_page(pa);
1455 *sizep = round_page(min(pa + size,
1456 dr->dr_sysbase + dr->dr_len) - pa);
1457 return (1);
1458 }
1459 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1460 /*
1461 * End of region intersects with this range.
1462 */
1463 *pap = trunc_page(dr->dr_sysbase);
1464 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1465 dr->dr_len));
1466 return (1);
1467 }
1468 }
1469
1470 /* No intersection found. */
1471 return (0);
1472 }
1473
1474 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1475 static int
1476 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1477 bus_size_t size, int flags)
1478 {
1479 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1480 int error = 0;
1481
1482 #ifdef DIAGNOSTIC
1483 if (cookie == NULL)
1484 panic("_bus_dma_alloc_bouncebuf: no cookie");
1485 #endif
1486
1487 cookie->id_bouncebuflen = round_page(size);
1488 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1489 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1490 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1491 if (error)
1492 goto out;
1493 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1494 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1495 (void **)&cookie->id_bouncebuf, flags);
1496
1497 out:
1498 if (error) {
1499 _bus_dmamem_free(t, cookie->id_bouncesegs,
1500 cookie->id_nbouncesegs);
1501 cookie->id_bouncebuflen = 0;
1502 cookie->id_nbouncesegs = 0;
1503 } else {
1504 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1505 }
1506
1507 return (error);
1508 }
1509
1510 static void
1511 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1512 {
1513 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1514
1515 #ifdef DIAGNOSTIC
1516 if (cookie == NULL)
1517 panic("_bus_dma_alloc_bouncebuf: no cookie");
1518 #endif
1519
1520 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1521 _bus_dmamem_free(t, cookie->id_bouncesegs,
1522 cookie->id_nbouncesegs);
1523 cookie->id_bouncebuflen = 0;
1524 cookie->id_nbouncesegs = 0;
1525 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1526 }
1527
1528 /*
1529 * This function does the same as uiomove, but takes an explicit
1530 * direction, and does not update the uio structure.
1531 */
1532 static int
1533 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1534 {
1535 struct iovec *iov;
1536 int error;
1537 struct vmspace *vm;
1538 char *cp;
1539 size_t resid, cnt;
1540 int i;
1541
1542 iov = uio->uio_iov;
1543 vm = uio->uio_vmspace;
1544 cp = buf;
1545 resid = n;
1546
1547 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1548 iov = &uio->uio_iov[i];
1549 if (iov->iov_len == 0)
1550 continue;
1551 cnt = MIN(resid, iov->iov_len);
1552
1553 if (!VMSPACE_IS_KERNEL_P(vm) &&
1554 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1555 != 0) {
1556 preempt();
1557 }
1558 if (direction == UIO_READ) {
1559 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1560 } else {
1561 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1562 }
1563 if (error)
1564 return (error);
1565 cp += cnt;
1566 resid -= cnt;
1567 }
1568 return (0);
1569 }
1570 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1571
1572 int
1573 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1574 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1575 {
1576
1577 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1578 struct arm32_dma_range *dr;
1579 bool subset = false;
1580 size_t nranges = 0;
1581 size_t i;
1582 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1583 if (dr->dr_sysbase <= min_addr
1584 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1585 subset = true;
1586 }
1587 if (min_addr <= dr->dr_sysbase + dr->dr_len
1588 && max_addr >= dr->dr_sysbase) {
1589 nranges++;
1590 }
1591 }
1592 if (subset) {
1593 *newtag = tag;
1594 /* if the tag must be freed, add a reference */
1595 if (tag->_tag_needs_free)
1596 (tag->_tag_needs_free)++;
1597 return 0;
1598 }
1599 if (nranges == 0) {
1600 nranges = 1;
1601 }
1602
1603 size_t mallocsize = sizeof(*tag) + nranges * sizeof(*dr);
1604 if ((*newtag = malloc(mallocsize, M_DMAMAP,
1605 (flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
1606 return ENOMEM;
1607
1608 dr = (void *)(*newtag + 1);
1609 **newtag = *tag;
1610 (*newtag)->_tag_needs_free = 1;
1611 (*newtag)->_ranges = dr;
1612 (*newtag)->_nranges = nranges;
1613
1614 if (tag->_ranges == NULL) {
1615 dr->dr_sysbase = min_addr;
1616 dr->dr_busbase = min_addr;
1617 dr->dr_len = max_addr + 1 - min_addr;
1618 } else {
1619 for (i = 0; i < nranges; i++) {
1620 if (min_addr > dr->dr_sysbase + dr->dr_len
1621 || max_addr < dr->dr_sysbase)
1622 continue;
1623 dr[0] = tag->_ranges[i];
1624 if (dr->dr_sysbase < min_addr) {
1625 psize_t diff = min_addr - dr->dr_sysbase;
1626 dr->dr_busbase += diff;
1627 dr->dr_len -= diff;
1628 dr->dr_sysbase += diff;
1629 }
1630 if (max_addr != 0xffffffff
1631 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1632 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1633 }
1634 dr++;
1635 }
1636 }
1637
1638 return 0;
1639 #else
1640 return EOPNOTSUPP;
1641 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1642 }
1643
1644 void
1645 _bus_dmatag_destroy(bus_dma_tag_t tag)
1646 {
1647 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1648 switch (tag->_tag_needs_free) {
1649 case 0:
1650 break; /* not allocated with malloc */
1651 case 1:
1652 free(tag, M_DMAMAP); /* last reference to tag */
1653 break;
1654 default:
1655 (tag->_tag_needs_free)--; /* one less reference */
1656 }
1657 #endif
1658 }
1659