bus_dma.c revision 1.64 1 /* $NetBSD: bus_dma.c,v 1.64 2012/10/21 10:22:40 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.64 2012/10/21 10:22:40 matt Exp $");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/reboot.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/vnode.h>
49 #include <sys/device.h>
50
51 #include <uvm/uvm.h>
52
53 #include <sys/bus.h>
54 #include <machine/cpu.h>
55
56 #include <arm/cpufunc.h>
57
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_read_bounces =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
68 static struct evcnt bus_dma_write_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
70 static struct evcnt bus_dma_bounced_unloads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
72 static struct evcnt bus_dma_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
74 static struct evcnt bus_dma_bounced_destroys =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
76 static struct evcnt bus_dma_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
78
79 EVCNT_ATTACH_STATIC(bus_dma_creates);
80 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
81 EVCNT_ATTACH_STATIC(bus_dma_loads);
82 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
83 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
84 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
85 EVCNT_ATTACH_STATIC(bus_dma_unloads);
86 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
87 EVCNT_ATTACH_STATIC(bus_dma_destroys);
88 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
89
90 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
91
92 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
93 bus_size_t, struct vmspace *, int);
94 static struct arm32_dma_range *
95 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
96
97 /*
98 * Check to see if the specified page is in an allowed DMA range.
99 */
100 inline struct arm32_dma_range *
101 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
102 bus_addr_t curaddr)
103 {
104 struct arm32_dma_range *dr;
105 int i;
106
107 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
108 if (curaddr >= dr->dr_sysbase &&
109 round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
110 return (dr);
111 }
112
113 return (NULL);
114 }
115
116 /*
117 * Check to see if the specified busaddr is in an allowed DMA range.
118 */
119 static inline paddr_t
120 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
121 {
122 struct arm32_dma_range *dr;
123 u_int i;
124
125 if (t->_nranges == 0)
126 return curaddr;
127
128 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
129 if (dr->dr_busbase <= curaddr
130 && round_page(curaddr) <= dr->dr_busbase + dr->dr_len)
131 return curaddr - dr->dr_busbase + dr->dr_sysbase;
132 }
133 panic("%s: curaddr %#lx not in range", __func__, curaddr);
134 }
135
136 /*
137 * Common function to load the specified physical address into the
138 * DMA map, coalescing segments and boundary checking as necessary.
139 */
140 static int
141 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
142 bus_addr_t paddr, bus_size_t size, bool coherent)
143 {
144 bus_dma_segment_t * const segs = map->dm_segs;
145 int nseg = map->dm_nsegs;
146 bus_addr_t lastaddr;
147 bus_addr_t bmask = ~(map->_dm_boundary - 1);
148 bus_addr_t curaddr;
149 bus_size_t sgsize;
150 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
151
152 if (nseg > 0)
153 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
154 else
155 lastaddr = 0xdead;
156
157 again:
158 sgsize = size;
159
160 /* Make sure we're in an allowed DMA range. */
161 if (t->_ranges != NULL) {
162 /* XXX cache last result? */
163 const struct arm32_dma_range * const dr =
164 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
165 if (dr == NULL)
166 return (EINVAL);
167
168 /*
169 * If this region is coherent, mark the segment as coherent.
170 */
171 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
172 #if 0
173 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x\n",
174 t, paddr, dr->dr_sysbase, dr->dr_busbase,
175 dr->dr_len, dr->dr_flags, _ds_flags);
176 #endif
177 /*
178 * In a valid DMA range. Translate the physical
179 * memory address to an address in the DMA window.
180 */
181 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
182 } else
183 curaddr = paddr;
184
185 /*
186 * Make sure we don't cross any boundaries.
187 */
188 if (map->_dm_boundary > 0) {
189 bus_addr_t baddr; /* next boundary address */
190
191 baddr = (curaddr + map->_dm_boundary) & bmask;
192 if (sgsize > (baddr - curaddr))
193 sgsize = (baddr - curaddr);
194 }
195
196 /*
197 * Insert chunk into a segment, coalescing with the
198 * previous segment if possible.
199 */
200 if (nseg > 0 && curaddr == lastaddr &&
201 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
202 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
203 (map->_dm_boundary == 0 ||
204 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
205 /* coalesce */
206 segs[nseg-1].ds_len += sgsize;
207 } else if (nseg >= map->_dm_segcnt) {
208 return (EFBIG);
209 } else {
210 /* new segment */
211 segs[nseg].ds_addr = curaddr;
212 segs[nseg].ds_len = sgsize;
213 segs[nseg]._ds_flags = _ds_flags;
214 nseg++;
215 }
216
217 lastaddr = curaddr + sgsize;
218
219 paddr += sgsize;
220 size -= sgsize;
221 if (size > 0)
222 goto again;
223
224 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
225 map->dm_nsegs = nseg;
226 return (0);
227 }
228
229 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
230 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
231 bus_size_t size, int flags);
232 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
233 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
234 int direction);
235
236 static int
237 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
238 size_t buflen, int buftype, int flags)
239 {
240 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
241 struct vmspace * const vm = vmspace_kernel();
242 int error;
243
244 KASSERT(cookie != NULL);
245 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
246
247 /*
248 * Allocate bounce pages, if necessary.
249 */
250 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
251 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
252 if (error)
253 return (error);
254 }
255
256 /*
257 * Cache a pointer to the caller's buffer and load the DMA map
258 * with the bounce buffer.
259 */
260 cookie->id_origbuf = buf;
261 cookie->id_origbuflen = buflen;
262 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
263 buflen, vm, flags);
264 if (error)
265 return (error);
266
267 STAT_INCR(bounced_loads);
268 map->dm_mapsize = buflen;
269 map->_dm_vmspace = vm;
270 map->_dm_buftype = buftype;
271
272 /* ...so _bus_dmamap_sync() knows we're bouncing */
273 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
274 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
275 return 0;
276 }
277 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
278
279 /*
280 * Common function for DMA map creation. May be called by bus-specific
281 * DMA map creation functions.
282 */
283 int
284 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
285 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
286 {
287 struct arm32_bus_dmamap *map;
288 void *mapstore;
289 size_t mapsize;
290
291 #ifdef DEBUG_DMA
292 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
293 t, size, nsegments, maxsegsz, boundary, flags);
294 #endif /* DEBUG_DMA */
295
296 /*
297 * Allocate and initialize the DMA map. The end of the map
298 * is a variable-sized array of segments, so we allocate enough
299 * room for them in one shot.
300 *
301 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
302 * of ALLOCNOW notifies others that we've reserved these resources,
303 * and they are not to be freed.
304 *
305 * The bus_dmamap_t includes one bus_dma_segment_t, hence
306 * the (nsegments - 1).
307 */
308 mapsize = sizeof(struct arm32_bus_dmamap) +
309 (sizeof(bus_dma_segment_t) * (nsegments - 1));
310 const int mallocflags = M_ZERO|(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK;
311 if ((mapstore = malloc(mapsize, M_DMAMAP, mallocflags)) == NULL)
312 return (ENOMEM);
313
314 map = (struct arm32_bus_dmamap *)mapstore;
315 map->_dm_size = size;
316 map->_dm_segcnt = nsegments;
317 map->_dm_maxmaxsegsz = maxsegsz;
318 map->_dm_boundary = boundary;
319 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
320 map->_dm_origbuf = NULL;
321 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
322 map->_dm_vmspace = vmspace_kernel();
323 map->_dm_cookie = NULL;
324 map->dm_maxsegsz = maxsegsz;
325 map->dm_mapsize = 0; /* no valid mappings */
326 map->dm_nsegs = 0;
327
328 *dmamp = map;
329
330 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
331 struct arm32_bus_dma_cookie *cookie;
332 int cookieflags;
333 void *cookiestore;
334 size_t cookiesize;
335 int error;
336
337 cookieflags = 0;
338
339 if (t->_may_bounce != NULL) {
340 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
341 if (error != 0)
342 goto out;
343 }
344
345 if (t->_ranges != NULL)
346 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
347
348 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
349 STAT_INCR(creates);
350 return 0;
351 }
352
353 cookiesize = sizeof(struct arm32_bus_dma_cookie) +
354 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
355
356 /*
357 * Allocate our cookie.
358 */
359 if ((cookiestore = malloc(cookiesize, M_DMAMAP, mallocflags)) == NULL) {
360 error = ENOMEM;
361 goto out;
362 }
363 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
364 cookie->id_flags = cookieflags;
365 map->_dm_cookie = cookie;
366 STAT_INCR(bounced_creates);
367
368 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
369 out:
370 if (error)
371 _bus_dmamap_destroy(t, map);
372 #else
373 STAT_INCR(creates);
374 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
375
376 #ifdef DEBUG_DMA
377 printf("dmamap_create:map=%p\n", map);
378 #endif /* DEBUG_DMA */
379 return (0);
380 }
381
382 /*
383 * Common function for DMA map destruction. May be called by bus-specific
384 * DMA map destruction functions.
385 */
386 void
387 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
388 {
389
390 #ifdef DEBUG_DMA
391 printf("dmamap_destroy: t=%p map=%p\n", t, map);
392 #endif /* DEBUG_DMA */
393 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
394 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
395
396 /*
397 * Free any bounce pages this map might hold.
398 */
399 if (cookie != NULL) {
400 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
401 STAT_INCR(bounced_unloads);
402 map->dm_nsegs = 0;
403 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
404 _bus_dma_free_bouncebuf(t, map);
405 STAT_INCR(bounced_destroys);
406 free(cookie, M_DMAMAP);
407 } else
408 #endif
409 STAT_INCR(destroys);
410
411 if (map->dm_nsegs > 0)
412 STAT_INCR(unloads);
413
414 free(map, M_DMAMAP);
415 }
416
417 /*
418 * Common function for loading a DMA map with a linear buffer. May
419 * be called by bus-specific DMA map load functions.
420 */
421 int
422 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
423 bus_size_t buflen, struct proc *p, int flags)
424 {
425 struct vmspace *vm;
426 int error;
427
428 #ifdef DEBUG_DMA
429 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
430 t, map, buf, buflen, p, flags);
431 #endif /* DEBUG_DMA */
432
433 if (map->dm_nsegs > 0) {
434 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
435 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
436 if (cookie != NULL) {
437 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
438 STAT_INCR(bounced_unloads);
439 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
440 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
441 }
442 } else
443 #endif
444 STAT_INCR(unloads);
445 }
446
447 /*
448 * Make sure that on error condition we return "no valid mappings".
449 */
450 map->dm_mapsize = 0;
451 map->dm_nsegs = 0;
452 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
453 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
454
455 if (buflen > map->_dm_size)
456 return (EINVAL);
457
458 if (p != NULL) {
459 vm = p->p_vmspace;
460 } else {
461 vm = vmspace_kernel();
462 }
463
464 /* _bus_dmamap_load_buffer() clears this if we're not... */
465 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
466
467 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
468 if (error == 0) {
469 map->dm_mapsize = buflen;
470 map->_dm_vmspace = vm;
471 map->_dm_origbuf = buf;
472 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
473 return 0;
474 }
475 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
476 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
477 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
478 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
479 _BUS_DMA_BUFTYPE_LINEAR, flags);
480 }
481 #endif
482 return (error);
483 }
484
485 /*
486 * Like _bus_dmamap_load(), but for mbufs.
487 */
488 int
489 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
490 int flags)
491 {
492 int error;
493 struct mbuf *m;
494
495 #ifdef DEBUG_DMA
496 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
497 t, map, m0, flags);
498 #endif /* DEBUG_DMA */
499
500 if (map->dm_nsegs > 0) {
501 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
502 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
503 if (cookie != NULL) {
504 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
505 STAT_INCR(bounced_unloads);
506 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
507 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
508 }
509 } else
510 #endif
511 STAT_INCR(unloads);
512 }
513
514 /*
515 * Make sure that on error condition we return "no valid mappings."
516 */
517 map->dm_mapsize = 0;
518 map->dm_nsegs = 0;
519 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
520 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
521
522 #ifdef DIAGNOSTIC
523 if ((m0->m_flags & M_PKTHDR) == 0)
524 panic("_bus_dmamap_load_mbuf: no packet header");
525 #endif /* DIAGNOSTIC */
526
527 if (m0->m_pkthdr.len > map->_dm_size)
528 return (EINVAL);
529
530 /* _bus_dmamap_load_paddr() clears this if we're not... */
531 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
532
533 error = 0;
534 for (m = m0; m != NULL && error == 0; m = m->m_next) {
535 int offset;
536 int remainbytes;
537 const struct vm_page * const *pgs;
538 paddr_t paddr;
539 int size;
540
541 if (m->m_len == 0)
542 continue;
543 /*
544 * Don't allow reads in read-only mbufs.
545 */
546 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
547 error = EFAULT;
548 break;
549 }
550 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
551 case M_EXT|M_CLUSTER:
552 /* XXX KDASSERT */
553 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
554 paddr = m->m_ext.ext_paddr +
555 (m->m_data - m->m_ext.ext_buf);
556 size = m->m_len;
557 error = _bus_dmamap_load_paddr(t, map, paddr, size,
558 false);
559 break;
560
561 case M_EXT|M_EXT_PAGES:
562 KASSERT(m->m_ext.ext_buf <= m->m_data);
563 KASSERT(m->m_data <=
564 m->m_ext.ext_buf + m->m_ext.ext_size);
565
566 offset = (vaddr_t)m->m_data -
567 trunc_page((vaddr_t)m->m_ext.ext_buf);
568 remainbytes = m->m_len;
569
570 /* skip uninteresting pages */
571 pgs = (const struct vm_page * const *)
572 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
573
574 offset &= PAGE_MASK; /* offset in the first page */
575
576 /* load each page */
577 while (remainbytes > 0) {
578 const struct vm_page *pg;
579
580 size = MIN(remainbytes, PAGE_SIZE - offset);
581
582 pg = *pgs++;
583 KASSERT(pg);
584 paddr = VM_PAGE_TO_PHYS(pg) + offset;
585
586 error = _bus_dmamap_load_paddr(t, map,
587 paddr, size, false);
588 if (error)
589 break;
590 offset = 0;
591 remainbytes -= size;
592 }
593 break;
594
595 case 0:
596 paddr = m->m_paddr + M_BUFOFFSET(m) +
597 (m->m_data - M_BUFADDR(m));
598 size = m->m_len;
599 error = _bus_dmamap_load_paddr(t, map, paddr, size,
600 false);
601 break;
602
603 default:
604 error = _bus_dmamap_load_buffer(t, map, m->m_data,
605 m->m_len, vmspace_kernel(), flags);
606 }
607 }
608 if (error == 0) {
609 map->dm_mapsize = m0->m_pkthdr.len;
610 map->_dm_origbuf = m0;
611 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
612 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
613 return 0;
614 }
615 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
616 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
617 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
618 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
619 _BUS_DMA_BUFTYPE_MBUF, flags);
620 }
621 #endif
622 return (error);
623 }
624
625 /*
626 * Like _bus_dmamap_load(), but for uios.
627 */
628 int
629 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
630 int flags)
631 {
632 int i, error;
633 bus_size_t minlen, resid;
634 struct iovec *iov;
635 void *addr;
636
637 /*
638 * Make sure that on error condition we return "no valid mappings."
639 */
640 map->dm_mapsize = 0;
641 map->dm_nsegs = 0;
642 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
643
644 resid = uio->uio_resid;
645 iov = uio->uio_iov;
646
647 /* _bus_dmamap_load_buffer() clears this if we're not... */
648 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
649
650 error = 0;
651 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
652 /*
653 * Now at the first iovec to load. Load each iovec
654 * until we have exhausted the residual count.
655 */
656 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
657 addr = (void *)iov[i].iov_base;
658
659 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
660 uio->uio_vmspace, flags);
661
662 resid -= minlen;
663 }
664 if (error == 0) {
665 map->dm_mapsize = uio->uio_resid;
666 map->_dm_origbuf = uio;
667 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
668 map->_dm_vmspace = uio->uio_vmspace;
669 }
670 return (error);
671 }
672
673 /*
674 * Like _bus_dmamap_load(), but for raw memory allocated with
675 * bus_dmamem_alloc().
676 */
677 int
678 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
679 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
680 {
681
682 panic("_bus_dmamap_load_raw: not implemented");
683 }
684
685 /*
686 * Common function for unloading a DMA map. May be called by
687 * bus-specific DMA map unload functions.
688 */
689 void
690 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
691 {
692
693 #ifdef DEBUG_DMA
694 printf("dmamap_unload: t=%p map=%p\n", t, map);
695 #endif /* DEBUG_DMA */
696
697 /*
698 * No resources to free; just mark the mappings as
699 * invalid.
700 */
701 map->dm_mapsize = 0;
702 map->dm_nsegs = 0;
703 map->_dm_origbuf = NULL;
704 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
705 map->_dm_vmspace = NULL;
706 }
707
708 static void
709 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
710 {
711 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
712 #if 0
713 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
714 va, pa, len, ops, readonly_p);
715 #endif
716
717 switch (ops) {
718 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
719 if (!readonly_p) {
720 cpu_dcache_wbinv_range(va, len);
721 cpu_sdcache_wbinv_range(va, pa, len);
722 break;
723 }
724 /* FALLTHROUGH */
725
726 case BUS_DMASYNC_PREREAD: {
727 const size_t line_size = arm_dcache_align;
728 const size_t line_mask = arm_dcache_align_mask;
729 vsize_t misalignment = va & line_mask;
730 if (misalignment) {
731 va -= misalignment;
732 pa -= misalignment;
733 len += misalignment;
734 cpu_dcache_wbinv_range(va, line_size);
735 cpu_sdcache_wbinv_range(va, pa, line_size);
736 if (len <= line_size)
737 break;
738 va += line_size;
739 pa += line_size;
740 len -= line_size;
741 }
742 misalignment = len & line_mask;
743 len -= misalignment;
744 cpu_dcache_inv_range(va, len);
745 cpu_sdcache_inv_range(va, pa, len);
746 if (misalignment) {
747 va += len;
748 pa += len;
749 cpu_dcache_wbinv_range(va, line_size);
750 cpu_sdcache_wbinv_range(va, pa, line_size);
751 }
752 break;
753 }
754
755 case BUS_DMASYNC_PREWRITE:
756 cpu_dcache_wb_range(va, len);
757 cpu_sdcache_wb_range(va, pa, len);
758 break;
759 }
760 }
761
762 static inline void
763 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
764 bus_size_t len, int ops)
765 {
766 bus_dma_segment_t *ds = map->dm_segs;
767 vaddr_t va = (vaddr_t) map->_dm_origbuf;
768 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
769 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
770 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
771 va = (vaddr_t) cookie->id_bouncebuf;
772 }
773 #endif
774
775 while (len > 0) {
776 while (offset >= ds->ds_len) {
777 offset -= ds->ds_len;
778 va += ds->ds_len;
779 ds++;
780 }
781
782 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
783 size_t seglen = min(len, ds->ds_len - offset);
784
785 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
786 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
787 false);
788
789 offset += seglen;
790 len -= seglen;
791 }
792 }
793
794 static inline void
795 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
796 bus_size_t len, int ops)
797 {
798 bus_dma_segment_t *ds = map->dm_segs;
799 struct mbuf *m = map->_dm_origbuf;
800 bus_size_t voff = offset;
801 bus_size_t ds_off = offset;
802
803 while (len > 0) {
804 /* Find the current dma segment */
805 while (ds_off >= ds->ds_len) {
806 ds_off -= ds->ds_len;
807 ds++;
808 }
809 /* Find the current mbuf. */
810 while (voff >= m->m_len) {
811 voff -= m->m_len;
812 m = m->m_next;
813 }
814
815 /*
816 * Now at the first mbuf to sync; nail each one until
817 * we have exhausted the length.
818 */
819 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
820 vaddr_t va = mtod(m, vaddr_t) + voff;
821 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
822
823 /*
824 * We can save a lot of work here if we know the mapping
825 * is read-only at the MMU:
826 *
827 * If a mapping is read-only, no dirty cache blocks will
828 * exist for it. If a writable mapping was made read-only,
829 * we know any dirty cache lines for the range will have
830 * been cleaned for us already. Therefore, if the upper
831 * layer can tell us we have a read-only mapping, we can
832 * skip all cache cleaning.
833 *
834 * NOTE: This only works if we know the pmap cleans pages
835 * before making a read-write -> read-only transition. If
836 * this ever becomes non-true (e.g. Physically Indexed
837 * cache), this will have to be revisited.
838 */
839
840 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
841 _bus_dmamap_sync_segment(va, pa, seglen, ops,
842 M_ROMAP(m));
843 voff += seglen;
844 ds_off += seglen;
845 len -= seglen;
846 }
847 }
848
849 static inline void
850 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
851 bus_size_t len, int ops)
852 {
853 bus_dma_segment_t *ds = map->dm_segs;
854 struct uio *uio = map->_dm_origbuf;
855 struct iovec *iov = uio->uio_iov;
856 bus_size_t voff = offset;
857 bus_size_t ds_off = offset;
858
859 while (len > 0) {
860 /* Find the current dma segment */
861 while (ds_off >= ds->ds_len) {
862 ds_off -= ds->ds_len;
863 ds++;
864 }
865
866 /* Find the current iovec. */
867 while (voff >= iov->iov_len) {
868 voff -= iov->iov_len;
869 iov++;
870 }
871
872 /*
873 * Now at the first iovec to sync; nail each one until
874 * we have exhausted the length.
875 */
876 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
877 vaddr_t va = (vaddr_t) iov->iov_base + voff;
878 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
879
880 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
881 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
882
883 voff += seglen;
884 ds_off += seglen;
885 len -= seglen;
886 }
887 }
888
889 /*
890 * Common function for DMA map synchronization. May be called
891 * by bus-specific DMA map synchronization functions.
892 *
893 * This version works for the Virtually Indexed Virtually Tagged
894 * cache found on 32-bit ARM processors.
895 *
896 * XXX Should have separate versions for write-through vs.
897 * XXX write-back caches. We currently assume write-back
898 * XXX here, which is not as efficient as it could be for
899 * XXX the write-through case.
900 */
901 void
902 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
903 bus_size_t len, int ops)
904 {
905 #ifdef DEBUG_DMA
906 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
907 t, map, offset, len, ops);
908 #endif /* DEBUG_DMA */
909
910 /*
911 * Mixing of PRE and POST operations is not allowed.
912 */
913 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
914 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
915 panic("_bus_dmamap_sync: mix PRE and POST");
916
917 #ifdef DIAGNOSTIC
918 if (offset >= map->dm_mapsize)
919 panic("_bus_dmamap_sync: bad offset %lu (map size is %lu)",
920 offset, map->dm_mapsize);
921 if (len == 0 || (offset + len) > map->dm_mapsize)
922 panic("_bus_dmamap_sync: bad length");
923 #endif
924
925 /*
926 * For a virtually-indexed write-back cache, we need
927 * to do the following things:
928 *
929 * PREREAD -- Invalidate the D-cache. We do this
930 * here in case a write-back is required by the back-end.
931 *
932 * PREWRITE -- Write-back the D-cache. Note that if
933 * we are doing a PREREAD|PREWRITE, we can collapse
934 * the whole thing into a single Wb-Inv.
935 *
936 * POSTREAD -- Nothing.
937 *
938 * POSTWRITE -- Nothing.
939 */
940 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
941 const bool bouncing = (map->_dm_flags & _BUS_DMA_IS_BOUNCING);
942 #else
943 const bool bouncing = false;
944 #endif
945
946 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
947 if (!bouncing && pre_ops == 0) {
948 return;
949 }
950
951 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
952 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
953 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
954 STAT_INCR(write_bounces);
955 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
956 /*
957 * Copy the caller's buffer to the bounce buffer.
958 */
959 switch (map->_dm_buftype) {
960 case _BUS_DMA_BUFTYPE_LINEAR:
961 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
962 break;
963 case _BUS_DMA_BUFTYPE_MBUF:
964 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
965 break;
966 case _BUS_DMA_BUFTYPE_UIO:
967 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
968 break;
969 #ifdef DIAGNOSTIC
970 case _BUS_DMA_BUFTYPE_RAW:
971 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
972 break;
973
974 case _BUS_DMA_BUFTYPE_INVALID:
975 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
976 break;
977
978 default:
979 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
980 map, map->_dm_buftype);
981 break;
982 #endif /* DIAGNOSTIC */
983 }
984 }
985 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
986
987 /* Skip cache frobbing if mapping was COHERENT. */
988 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
989 /* Drain the write buffer. */
990 cpu_drain_writebuf();
991 return;
992 }
993
994 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
995 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
996 goto bounce_it;
997 }
998 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
999
1000 /*
1001 * If the mapping belongs to a non-kernel vmspace, and the
1002 * vmspace has not been active since the last time a full
1003 * cache flush was performed, we don't need to do anything.
1004 */
1005 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1006 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1007 return;
1008
1009 int buftype = map->_dm_buftype;
1010 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1011 if (bouncing) {
1012 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1013 }
1014 #endif
1015
1016 switch (buftype) {
1017 case _BUS_DMA_BUFTYPE_LINEAR:
1018 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1019 break;
1020
1021 case _BUS_DMA_BUFTYPE_MBUF:
1022 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1023 break;
1024
1025 case _BUS_DMA_BUFTYPE_UIO:
1026 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1027 break;
1028
1029 case _BUS_DMA_BUFTYPE_RAW:
1030 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1031 break;
1032
1033 case _BUS_DMA_BUFTYPE_INVALID:
1034 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1035 break;
1036
1037 default:
1038 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1039 map, map->_dm_buftype);
1040 }
1041
1042 /* Drain the write buffer. */
1043 cpu_drain_writebuf();
1044
1045 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1046 bounce_it:
1047 if ((ops & BUS_DMASYNC_POSTREAD) == 0
1048 || (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) == 0)
1049 return;
1050
1051 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1052 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1053 STAT_INCR(read_bounces);
1054 /*
1055 * Copy the bounce buffer to the caller's buffer.
1056 */
1057 switch (map->_dm_buftype) {
1058 case _BUS_DMA_BUFTYPE_LINEAR:
1059 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1060 break;
1061
1062 case _BUS_DMA_BUFTYPE_MBUF:
1063 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1064 break;
1065
1066 case _BUS_DMA_BUFTYPE_UIO:
1067 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1068 break;
1069 #ifdef DIAGNOSTIC
1070 case _BUS_DMA_BUFTYPE_RAW:
1071 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1072 break;
1073
1074 case _BUS_DMA_BUFTYPE_INVALID:
1075 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1076 break;
1077
1078 default:
1079 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1080 map, map->_dm_buftype);
1081 break;
1082 #endif
1083 }
1084 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1085 }
1086
1087 /*
1088 * Common function for DMA-safe memory allocation. May be called
1089 * by bus-specific DMA memory allocation functions.
1090 */
1091
1092 extern paddr_t physical_start;
1093 extern paddr_t physical_end;
1094
1095 int
1096 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1097 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1098 int flags)
1099 {
1100 struct arm32_dma_range *dr;
1101 int error, i;
1102
1103 #ifdef DEBUG_DMA
1104 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1105 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1106 boundary, segs, nsegs, rsegs, flags);
1107 #endif
1108
1109 if ((dr = t->_ranges) != NULL) {
1110 error = ENOMEM;
1111 for (i = 0; i < t->_nranges; i++, dr++) {
1112 if (dr->dr_len == 0)
1113 continue;
1114 error = _bus_dmamem_alloc_range(t, size, alignment,
1115 boundary, segs, nsegs, rsegs, flags,
1116 trunc_page(dr->dr_sysbase),
1117 trunc_page(dr->dr_sysbase + dr->dr_len));
1118 if (error == 0)
1119 break;
1120 }
1121 } else {
1122 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1123 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1124 trunc_page(physical_end));
1125 }
1126
1127 #ifdef DEBUG_DMA
1128 printf("dmamem_alloc: =%d\n", error);
1129 #endif
1130
1131 return(error);
1132 }
1133
1134 /*
1135 * Common function for freeing DMA-safe memory. May be called by
1136 * bus-specific DMA memory free functions.
1137 */
1138 void
1139 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1140 {
1141 struct vm_page *m;
1142 bus_addr_t addr;
1143 struct pglist mlist;
1144 int curseg;
1145
1146 #ifdef DEBUG_DMA
1147 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1148 #endif /* DEBUG_DMA */
1149
1150 /*
1151 * Build a list of pages to free back to the VM system.
1152 */
1153 TAILQ_INIT(&mlist);
1154 for (curseg = 0; curseg < nsegs; curseg++) {
1155 for (addr = segs[curseg].ds_addr;
1156 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1157 addr += PAGE_SIZE) {
1158 m = PHYS_TO_VM_PAGE(addr);
1159 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1160 }
1161 }
1162 uvm_pglistfree(&mlist);
1163 }
1164
1165 /*
1166 * Common function for mapping DMA-safe memory. May be called by
1167 * bus-specific DMA memory map functions.
1168 */
1169 int
1170 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1171 size_t size, void **kvap, int flags)
1172 {
1173 vaddr_t va;
1174 paddr_t pa;
1175 int curseg;
1176 pt_entry_t *ptep/*, pte*/;
1177 const uvm_flag_t kmflags =
1178 (flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0;
1179
1180 #ifdef DEBUG_DMA
1181 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1182 segs, nsegs, (unsigned long)size, flags);
1183 #endif /* DEBUG_DMA */
1184
1185 #ifdef PMAP_MAP_POOLPAGE
1186 /*
1187 * If all of memory is mapped, and we are mapping a single physically
1188 * contiguous area then this area is already mapped. Let's see if we
1189 * avoid having a separate mapping for it.
1190 */
1191 if (nsegs == 1) {
1192 paddr_t paddr = segs[0].ds_addr;
1193 /*
1194 * If this is a non-COHERENT mapping, then the existing kernel
1195 * mapping is already compatible with it.
1196 */
1197 if ((flags & BUS_DMA_COHERENT) == 0) {
1198 #ifdef DEBUG_DMA
1199 printf("dmamem_map: =%p\n", *kvap);
1200 #endif /* DEBUG_DMA */
1201 *kvap = (void *)PMAP_MAP_POOLPAGE(paddr);
1202 return 0;
1203 }
1204 /*
1205 * This is a COHERENT mapping, which unless this address is in
1206 * a COHERENT dma range, will not be compatible.
1207 */
1208 if (t->_ranges != NULL) {
1209 const struct arm32_dma_range * const dr =
1210 _bus_dma_paddr_inrange(t->_ranges, t->_nranges,
1211 paddr);
1212 if (dr != NULL
1213 && (dr->dr_flags & _BUS_DMAMAP_COHERENT) != 0) {
1214 *kvap = (void *)PMAP_MAP_POOLPAGE(paddr);
1215 #ifdef DEBUG_DMA
1216 printf("dmamem_map: =%p\n", *kvap);
1217 #endif /* DEBUG_DMA */
1218 return 0;
1219 }
1220 }
1221 }
1222 #endif
1223
1224 size = round_page(size);
1225 va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY | kmflags);
1226
1227 if (va == 0)
1228 return (ENOMEM);
1229
1230 *kvap = (void *)va;
1231
1232 for (curseg = 0; curseg < nsegs; curseg++) {
1233 for (pa = segs[curseg].ds_addr;
1234 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1235 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1236 #ifdef DEBUG_DMA
1237 printf("wiring p%lx to v%lx", pa, va);
1238 #endif /* DEBUG_DMA */
1239 if (size == 0)
1240 panic("_bus_dmamem_map: size botch");
1241 pmap_enter(pmap_kernel(), va, pa,
1242 VM_PROT_READ | VM_PROT_WRITE,
1243 VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
1244
1245 /*
1246 * If the memory must remain coherent with the
1247 * cache then we must make the memory uncacheable
1248 * in order to maintain virtual cache coherency.
1249 * We must also guarantee the cache does not already
1250 * contain the virtal addresses we are making
1251 * uncacheable.
1252 */
1253
1254 bool uncached = (flags & BUS_DMA_COHERENT);
1255 if (uncached) {
1256 const struct arm32_dma_range * const dr =
1257 _bus_dma_paddr_inrange(t->_ranges,
1258 t->_nranges, pa);
1259 /*
1260 * If this dma region is coherent then there is
1261 * no need for an uncached mapping.
1262 */
1263 if (dr != NULL
1264 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1265 uncached = false;
1266 }
1267 }
1268 if (uncached) {
1269 cpu_dcache_wbinv_range(va, PAGE_SIZE);
1270 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
1271 cpu_drain_writebuf();
1272 ptep = vtopte(va);
1273 *ptep &= ~L2_S_CACHE_MASK;
1274 PTE_SYNC(ptep);
1275 tlb_flush();
1276 }
1277 #ifdef DEBUG_DMA
1278 ptep = vtopte(va);
1279 printf(" pte=v%p *pte=%x\n", ptep, *ptep);
1280 #endif /* DEBUG_DMA */
1281 }
1282 }
1283 pmap_update(pmap_kernel());
1284 #ifdef DEBUG_DMA
1285 printf("dmamem_map: =%p\n", *kvap);
1286 #endif /* DEBUG_DMA */
1287 return (0);
1288 }
1289
1290 /*
1291 * Common function for unmapping DMA-safe memory. May be called by
1292 * bus-specific DMA memory unmapping functions.
1293 */
1294 void
1295 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1296 {
1297
1298 #ifdef DEBUG_DMA
1299 printf("dmamem_unmap: t=%p kva=%p size=%lx\n", t, kva,
1300 (unsigned long)size);
1301 #endif /* DEBUG_DMA */
1302 #ifdef DIAGNOSTIC
1303 if ((u_long)kva & PGOFSET)
1304 panic("_bus_dmamem_unmap");
1305 #endif /* DIAGNOSTIC */
1306
1307 size = round_page(size);
1308 pmap_remove(pmap_kernel(), (vaddr_t)kva, (vaddr_t)kva + size);
1309 pmap_update(pmap_kernel());
1310 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1311 }
1312
1313 /*
1314 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1315 * bus-specific DMA mmap(2)'ing functions.
1316 */
1317 paddr_t
1318 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1319 off_t off, int prot, int flags)
1320 {
1321 int i;
1322
1323 for (i = 0; i < nsegs; i++) {
1324 #ifdef DIAGNOSTIC
1325 if (off & PGOFSET)
1326 panic("_bus_dmamem_mmap: offset unaligned");
1327 if (segs[i].ds_addr & PGOFSET)
1328 panic("_bus_dmamem_mmap: segment unaligned");
1329 if (segs[i].ds_len & PGOFSET)
1330 panic("_bus_dmamem_mmap: segment size not multiple"
1331 " of page size");
1332 #endif /* DIAGNOSTIC */
1333 if (off >= segs[i].ds_len) {
1334 off -= segs[i].ds_len;
1335 continue;
1336 }
1337
1338 return (arm_btop((u_long)segs[i].ds_addr + off));
1339 }
1340
1341 /* Page not found. */
1342 return (-1);
1343 }
1344
1345 /**********************************************************************
1346 * DMA utility functions
1347 **********************************************************************/
1348
1349 /*
1350 * Utility function to load a linear buffer. lastaddrp holds state
1351 * between invocations (for multiple-buffer loads). segp contains
1352 * the starting segment on entrace, and the ending segment on exit.
1353 * first indicates if this is the first invocation of this function.
1354 */
1355 int
1356 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1357 bus_size_t buflen, struct vmspace *vm, int flags)
1358 {
1359 bus_size_t sgsize;
1360 bus_addr_t curaddr;
1361 vaddr_t vaddr = (vaddr_t)buf;
1362 int error;
1363 pmap_t pmap;
1364
1365 #ifdef DEBUG_DMA
1366 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1367 buf, buflen, flags);
1368 #endif /* DEBUG_DMA */
1369
1370 pmap = vm_map_pmap(&vm->vm_map);
1371
1372 while (buflen > 0) {
1373 /*
1374 * Get the physical address for this segment.
1375 *
1376 * XXX Doesn't support checking for coherent mappings
1377 * XXX in user address space.
1378 */
1379 bool coherent;
1380 if (__predict_true(pmap == pmap_kernel())) {
1381 pd_entry_t *pde;
1382 pt_entry_t *ptep;
1383 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1384 if (__predict_false(pmap_pde_section(pde))) {
1385 paddr_t s_frame = L1_S_FRAME;
1386 paddr_t s_offset = L1_S_OFFSET;
1387 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1388 if (__predict_false(pmap_pde_supersection(pde))) {
1389 s_frame = L1_SS_FRAME;
1390 s_offset = L1_SS_OFFSET;
1391 }
1392 #endif
1393 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1394 coherent = (*pde & L1_S_CACHE_MASK) != 0;
1395 } else {
1396 pt_entry_t pte = *ptep;
1397 KDASSERT((pte & L2_TYPE_MASK) != L2_TYPE_INV);
1398 if (__predict_false((pte & L2_TYPE_MASK)
1399 == L2_TYPE_L)) {
1400 curaddr = (pte & L2_L_FRAME) |
1401 (vaddr & L2_L_OFFSET);
1402 coherent = (pte & L2_L_CACHE_MASK) != 0;
1403 } else {
1404 curaddr = (pte & L2_S_FRAME) |
1405 (vaddr & L2_S_OFFSET);
1406 coherent = (pte & L2_S_CACHE_MASK) != 0;
1407 }
1408 }
1409 } else {
1410 (void) pmap_extract(pmap, vaddr, &curaddr);
1411 coherent = false;
1412 }
1413
1414 /*
1415 * Compute the segment size, and adjust counts.
1416 */
1417 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1418 if (buflen < sgsize)
1419 sgsize = buflen;
1420
1421 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1422 coherent);
1423 if (error)
1424 return (error);
1425
1426 vaddr += sgsize;
1427 buflen -= sgsize;
1428 }
1429
1430 return (0);
1431 }
1432
1433 /*
1434 * Allocate physical memory from the given physical address range.
1435 * Called by DMA-safe memory allocation methods.
1436 */
1437 int
1438 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1439 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1440 int flags, paddr_t low, paddr_t high)
1441 {
1442 paddr_t curaddr, lastaddr;
1443 struct vm_page *m;
1444 struct pglist mlist;
1445 int curseg, error;
1446
1447 #ifdef DEBUG_DMA
1448 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1449 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1450 #endif /* DEBUG_DMA */
1451
1452 /* Always round the size. */
1453 size = round_page(size);
1454
1455 /*
1456 * Allocate pages from the VM system.
1457 */
1458 error = uvm_pglistalloc(size, low, high, alignment, boundary,
1459 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1460 if (error)
1461 return (error);
1462
1463 /*
1464 * Compute the location, size, and number of segments actually
1465 * returned by the VM code.
1466 */
1467 m = TAILQ_FIRST(&mlist);
1468 curseg = 0;
1469 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1470 segs[curseg].ds_len = PAGE_SIZE;
1471 #ifdef DEBUG_DMA
1472 printf("alloc: page %lx\n", lastaddr);
1473 #endif /* DEBUG_DMA */
1474 m = TAILQ_NEXT(m, pageq.queue);
1475
1476 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1477 curaddr = VM_PAGE_TO_PHYS(m);
1478 #ifdef DIAGNOSTIC
1479 if (curaddr < low || curaddr >= high) {
1480 printf("uvm_pglistalloc returned non-sensical"
1481 " address 0x%lx\n", curaddr);
1482 panic("_bus_dmamem_alloc_range");
1483 }
1484 #endif /* DIAGNOSTIC */
1485 #ifdef DEBUG_DMA
1486 printf("alloc: page %lx\n", curaddr);
1487 #endif /* DEBUG_DMA */
1488 if (curaddr == (lastaddr + PAGE_SIZE))
1489 segs[curseg].ds_len += PAGE_SIZE;
1490 else {
1491 curseg++;
1492 segs[curseg].ds_addr = curaddr;
1493 segs[curseg].ds_len = PAGE_SIZE;
1494 }
1495 lastaddr = curaddr;
1496 }
1497
1498 *rsegs = curseg + 1;
1499
1500 return (0);
1501 }
1502
1503 /*
1504 * Check if a memory region intersects with a DMA range, and return the
1505 * page-rounded intersection if it does.
1506 */
1507 int
1508 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1509 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1510 {
1511 struct arm32_dma_range *dr;
1512 int i;
1513
1514 if (ranges == NULL)
1515 return (0);
1516
1517 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1518 if (dr->dr_sysbase <= pa &&
1519 pa < (dr->dr_sysbase + dr->dr_len)) {
1520 /*
1521 * Beginning of region intersects with this range.
1522 */
1523 *pap = trunc_page(pa);
1524 *sizep = round_page(min(pa + size,
1525 dr->dr_sysbase + dr->dr_len) - pa);
1526 return (1);
1527 }
1528 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1529 /*
1530 * End of region intersects with this range.
1531 */
1532 *pap = trunc_page(dr->dr_sysbase);
1533 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1534 dr->dr_len));
1535 return (1);
1536 }
1537 }
1538
1539 /* No intersection found. */
1540 return (0);
1541 }
1542
1543 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1544 static int
1545 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1546 bus_size_t size, int flags)
1547 {
1548 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1549 int error = 0;
1550
1551 #ifdef DIAGNOSTIC
1552 if (cookie == NULL)
1553 panic("_bus_dma_alloc_bouncebuf: no cookie");
1554 #endif
1555
1556 cookie->id_bouncebuflen = round_page(size);
1557 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1558 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1559 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1560 if (error)
1561 goto out;
1562 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1563 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1564 (void **)&cookie->id_bouncebuf, flags);
1565
1566 out:
1567 if (error) {
1568 _bus_dmamem_free(t, cookie->id_bouncesegs,
1569 cookie->id_nbouncesegs);
1570 cookie->id_bouncebuflen = 0;
1571 cookie->id_nbouncesegs = 0;
1572 } else {
1573 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1574 }
1575
1576 return (error);
1577 }
1578
1579 static void
1580 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1581 {
1582 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1583
1584 #ifdef DIAGNOSTIC
1585 if (cookie == NULL)
1586 panic("_bus_dma_alloc_bouncebuf: no cookie");
1587 #endif
1588
1589 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1590 _bus_dmamem_free(t, cookie->id_bouncesegs,
1591 cookie->id_nbouncesegs);
1592 cookie->id_bouncebuflen = 0;
1593 cookie->id_nbouncesegs = 0;
1594 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1595 }
1596
1597 /*
1598 * This function does the same as uiomove, but takes an explicit
1599 * direction, and does not update the uio structure.
1600 */
1601 static int
1602 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1603 {
1604 struct iovec *iov;
1605 int error;
1606 struct vmspace *vm;
1607 char *cp;
1608 size_t resid, cnt;
1609 int i;
1610
1611 iov = uio->uio_iov;
1612 vm = uio->uio_vmspace;
1613 cp = buf;
1614 resid = n;
1615
1616 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1617 iov = &uio->uio_iov[i];
1618 if (iov->iov_len == 0)
1619 continue;
1620 cnt = MIN(resid, iov->iov_len);
1621
1622 if (!VMSPACE_IS_KERNEL_P(vm) &&
1623 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1624 != 0) {
1625 preempt();
1626 }
1627 if (direction == UIO_READ) {
1628 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1629 } else {
1630 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1631 }
1632 if (error)
1633 return (error);
1634 cp += cnt;
1635 resid -= cnt;
1636 }
1637 return (0);
1638 }
1639 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1640
1641 int
1642 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1643 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1644 {
1645
1646 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1647 struct arm32_dma_range *dr;
1648 bool subset = false;
1649 size_t nranges = 0;
1650 size_t i;
1651 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1652 if (dr->dr_sysbase <= min_addr
1653 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1654 subset = true;
1655 }
1656 if (min_addr <= dr->dr_sysbase + dr->dr_len
1657 && max_addr >= dr->dr_sysbase) {
1658 nranges++;
1659 }
1660 }
1661 if (subset) {
1662 *newtag = tag;
1663 /* if the tag must be freed, add a reference */
1664 if (tag->_tag_needs_free)
1665 (tag->_tag_needs_free)++;
1666 return 0;
1667 }
1668 if (nranges == 0) {
1669 nranges = 1;
1670 }
1671
1672 size_t mallocsize = sizeof(*tag) + nranges * sizeof(*dr);
1673 if ((*newtag = malloc(mallocsize, M_DMAMAP,
1674 (flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
1675 return ENOMEM;
1676
1677 dr = (void *)(*newtag + 1);
1678 **newtag = *tag;
1679 (*newtag)->_tag_needs_free = 1;
1680 (*newtag)->_ranges = dr;
1681 (*newtag)->_nranges = nranges;
1682
1683 if (tag->_ranges == NULL) {
1684 dr->dr_sysbase = min_addr;
1685 dr->dr_busbase = min_addr;
1686 dr->dr_len = max_addr + 1 - min_addr;
1687 } else {
1688 for (i = 0; i < nranges; i++) {
1689 if (min_addr > dr->dr_sysbase + dr->dr_len
1690 || max_addr < dr->dr_sysbase)
1691 continue;
1692 dr[0] = tag->_ranges[i];
1693 if (dr->dr_sysbase < min_addr) {
1694 psize_t diff = min_addr - dr->dr_sysbase;
1695 dr->dr_busbase += diff;
1696 dr->dr_len -= diff;
1697 dr->dr_sysbase += diff;
1698 }
1699 if (max_addr != 0xffffffff
1700 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1701 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1702 }
1703 dr++;
1704 }
1705 }
1706
1707 return 0;
1708 #else
1709 return EOPNOTSUPP;
1710 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1711 }
1712
1713 void
1714 _bus_dmatag_destroy(bus_dma_tag_t tag)
1715 {
1716 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1717 switch (tag->_tag_needs_free) {
1718 case 0:
1719 break; /* not allocated with malloc */
1720 case 1:
1721 free(tag, M_DMAMAP); /* last reference to tag */
1722 break;
1723 default:
1724 (tag->_tag_needs_free)--; /* one less reference */
1725 }
1726 #endif
1727 }
1728