bus_dma.c revision 1.65 1 /* $NetBSD: bus_dma.c,v 1.65 2012/10/22 15:01:18 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.65 2012/10/22 15:01:18 matt Exp $");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/reboot.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/vnode.h>
49 #include <sys/device.h>
50
51 #include <uvm/uvm.h>
52
53 #include <sys/bus.h>
54 #include <machine/cpu.h>
55
56 #include <arm/cpufunc.h>
57
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_read_bounces =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
68 static struct evcnt bus_dma_write_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
70 static struct evcnt bus_dma_bounced_unloads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
72 static struct evcnt bus_dma_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
74 static struct evcnt bus_dma_bounced_destroys =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
76 static struct evcnt bus_dma_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
78
79 EVCNT_ATTACH_STATIC(bus_dma_creates);
80 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
81 EVCNT_ATTACH_STATIC(bus_dma_loads);
82 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
83 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
84 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
85 EVCNT_ATTACH_STATIC(bus_dma_unloads);
86 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
87 EVCNT_ATTACH_STATIC(bus_dma_destroys);
88 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
89
90 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
91
92 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
93 bus_size_t, struct vmspace *, int);
94 static struct arm32_dma_range *
95 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
96
97 /*
98 * Check to see if the specified page is in an allowed DMA range.
99 */
100 inline struct arm32_dma_range *
101 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
102 bus_addr_t curaddr)
103 {
104 struct arm32_dma_range *dr;
105 int i;
106
107 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
108 if (curaddr >= dr->dr_sysbase &&
109 round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
110 return (dr);
111 }
112
113 return (NULL);
114 }
115
116 /*
117 * Check to see if the specified busaddr is in an allowed DMA range.
118 */
119 static inline paddr_t
120 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
121 {
122 struct arm32_dma_range *dr;
123 u_int i;
124
125 if (t->_nranges == 0)
126 return curaddr;
127
128 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
129 if (dr->dr_busbase <= curaddr
130 && round_page(curaddr) <= dr->dr_busbase + dr->dr_len)
131 return curaddr - dr->dr_busbase + dr->dr_sysbase;
132 }
133 panic("%s: curaddr %#lx not in range", __func__, curaddr);
134 }
135
136 /*
137 * Common function to load the specified physical address into the
138 * DMA map, coalescing segments and boundary checking as necessary.
139 */
140 static int
141 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
142 bus_addr_t paddr, bus_size_t size, bool coherent)
143 {
144 bus_dma_segment_t * const segs = map->dm_segs;
145 int nseg = map->dm_nsegs;
146 bus_addr_t lastaddr;
147 bus_addr_t bmask = ~(map->_dm_boundary - 1);
148 bus_addr_t curaddr;
149 bus_size_t sgsize;
150 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
151
152 if (nseg > 0)
153 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
154 else
155 lastaddr = 0xdead;
156
157 again:
158 sgsize = size;
159
160 /* Make sure we're in an allowed DMA range. */
161 if (t->_ranges != NULL) {
162 /* XXX cache last result? */
163 const struct arm32_dma_range * const dr =
164 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
165 if (dr == NULL)
166 return (EINVAL);
167
168 /*
169 * If this region is coherent, mark the segment as coherent.
170 */
171 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
172 #if 0
173 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x\n",
174 t, paddr, dr->dr_sysbase, dr->dr_busbase,
175 dr->dr_len, dr->dr_flags, _ds_flags);
176 #endif
177 /*
178 * In a valid DMA range. Translate the physical
179 * memory address to an address in the DMA window.
180 */
181 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
182 } else
183 curaddr = paddr;
184
185 /*
186 * Make sure we don't cross any boundaries.
187 */
188 if (map->_dm_boundary > 0) {
189 bus_addr_t baddr; /* next boundary address */
190
191 baddr = (curaddr + map->_dm_boundary) & bmask;
192 if (sgsize > (baddr - curaddr))
193 sgsize = (baddr - curaddr);
194 }
195
196 /*
197 * Insert chunk into a segment, coalescing with the
198 * previous segment if possible.
199 */
200 if (nseg > 0 && curaddr == lastaddr &&
201 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
202 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
203 (map->_dm_boundary == 0 ||
204 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
205 /* coalesce */
206 segs[nseg-1].ds_len += sgsize;
207 } else if (nseg >= map->_dm_segcnt) {
208 return (EFBIG);
209 } else {
210 /* new segment */
211 segs[nseg].ds_addr = curaddr;
212 segs[nseg].ds_len = sgsize;
213 segs[nseg]._ds_flags = _ds_flags;
214 nseg++;
215 }
216
217 lastaddr = curaddr + sgsize;
218
219 paddr += sgsize;
220 size -= sgsize;
221 if (size > 0)
222 goto again;
223
224 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
225 map->dm_nsegs = nseg;
226 return (0);
227 }
228
229 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
230 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
231 bus_size_t size, int flags);
232 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
233 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
234 int direction);
235
236 static int
237 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
238 size_t buflen, int buftype, int flags)
239 {
240 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
241 struct vmspace * const vm = vmspace_kernel();
242 int error;
243
244 KASSERT(cookie != NULL);
245 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
246
247 /*
248 * Allocate bounce pages, if necessary.
249 */
250 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
251 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
252 if (error)
253 return (error);
254 }
255
256 /*
257 * Cache a pointer to the caller's buffer and load the DMA map
258 * with the bounce buffer.
259 */
260 cookie->id_origbuf = buf;
261 cookie->id_origbuflen = buflen;
262 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
263 buflen, vm, flags);
264 if (error)
265 return (error);
266
267 STAT_INCR(bounced_loads);
268 map->dm_mapsize = buflen;
269 map->_dm_vmspace = vm;
270 map->_dm_buftype = buftype;
271
272 /* ...so _bus_dmamap_sync() knows we're bouncing */
273 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
274 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
275 return 0;
276 }
277 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
278
279 /*
280 * Common function for DMA map creation. May be called by bus-specific
281 * DMA map creation functions.
282 */
283 int
284 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
285 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
286 {
287 struct arm32_bus_dmamap *map;
288 void *mapstore;
289 size_t mapsize;
290
291 #ifdef DEBUG_DMA
292 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
293 t, size, nsegments, maxsegsz, boundary, flags);
294 #endif /* DEBUG_DMA */
295
296 /*
297 * Allocate and initialize the DMA map. The end of the map
298 * is a variable-sized array of segments, so we allocate enough
299 * room for them in one shot.
300 *
301 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
302 * of ALLOCNOW notifies others that we've reserved these resources,
303 * and they are not to be freed.
304 *
305 * The bus_dmamap_t includes one bus_dma_segment_t, hence
306 * the (nsegments - 1).
307 */
308 mapsize = sizeof(struct arm32_bus_dmamap) +
309 (sizeof(bus_dma_segment_t) * (nsegments - 1));
310 const int mallocflags = M_ZERO|(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK;
311 if ((mapstore = malloc(mapsize, M_DMAMAP, mallocflags)) == NULL)
312 return (ENOMEM);
313
314 map = (struct arm32_bus_dmamap *)mapstore;
315 map->_dm_size = size;
316 map->_dm_segcnt = nsegments;
317 map->_dm_maxmaxsegsz = maxsegsz;
318 map->_dm_boundary = boundary;
319 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
320 map->_dm_origbuf = NULL;
321 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
322 map->_dm_vmspace = vmspace_kernel();
323 map->_dm_cookie = NULL;
324 map->dm_maxsegsz = maxsegsz;
325 map->dm_mapsize = 0; /* no valid mappings */
326 map->dm_nsegs = 0;
327
328 *dmamp = map;
329
330 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
331 struct arm32_bus_dma_cookie *cookie;
332 int cookieflags;
333 void *cookiestore;
334 size_t cookiesize;
335 int error;
336
337 cookieflags = 0;
338
339 if (t->_may_bounce != NULL) {
340 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
341 if (error != 0)
342 goto out;
343 }
344
345 if (t->_ranges != NULL)
346 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
347
348 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
349 STAT_INCR(creates);
350 return 0;
351 }
352
353 cookiesize = sizeof(struct arm32_bus_dma_cookie) +
354 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
355
356 /*
357 * Allocate our cookie.
358 */
359 if ((cookiestore = malloc(cookiesize, M_DMAMAP, mallocflags)) == NULL) {
360 error = ENOMEM;
361 goto out;
362 }
363 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
364 cookie->id_flags = cookieflags;
365 map->_dm_cookie = cookie;
366 STAT_INCR(bounced_creates);
367
368 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
369 out:
370 if (error)
371 _bus_dmamap_destroy(t, map);
372 #else
373 STAT_INCR(creates);
374 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
375
376 #ifdef DEBUG_DMA
377 printf("dmamap_create:map=%p\n", map);
378 #endif /* DEBUG_DMA */
379 return (0);
380 }
381
382 /*
383 * Common function for DMA map destruction. May be called by bus-specific
384 * DMA map destruction functions.
385 */
386 void
387 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
388 {
389
390 #ifdef DEBUG_DMA
391 printf("dmamap_destroy: t=%p map=%p\n", t, map);
392 #endif /* DEBUG_DMA */
393 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
394 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
395
396 /*
397 * Free any bounce pages this map might hold.
398 */
399 if (cookie != NULL) {
400 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
401 STAT_INCR(bounced_unloads);
402 map->dm_nsegs = 0;
403 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
404 _bus_dma_free_bouncebuf(t, map);
405 STAT_INCR(bounced_destroys);
406 free(cookie, M_DMAMAP);
407 } else
408 #endif
409 STAT_INCR(destroys);
410
411 if (map->dm_nsegs > 0)
412 STAT_INCR(unloads);
413
414 free(map, M_DMAMAP);
415 }
416
417 /*
418 * Common function for loading a DMA map with a linear buffer. May
419 * be called by bus-specific DMA map load functions.
420 */
421 int
422 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
423 bus_size_t buflen, struct proc *p, int flags)
424 {
425 struct vmspace *vm;
426 int error;
427
428 #ifdef DEBUG_DMA
429 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
430 t, map, buf, buflen, p, flags);
431 #endif /* DEBUG_DMA */
432
433 if (map->dm_nsegs > 0) {
434 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
435 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
436 if (cookie != NULL) {
437 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
438 STAT_INCR(bounced_unloads);
439 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
440 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
441 }
442 } else
443 #endif
444 STAT_INCR(unloads);
445 }
446
447 /*
448 * Make sure that on error condition we return "no valid mappings".
449 */
450 map->dm_mapsize = 0;
451 map->dm_nsegs = 0;
452 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
453 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
454
455 if (buflen > map->_dm_size)
456 return (EINVAL);
457
458 if (p != NULL) {
459 vm = p->p_vmspace;
460 } else {
461 vm = vmspace_kernel();
462 }
463
464 /* _bus_dmamap_load_buffer() clears this if we're not... */
465 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
466
467 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
468 if (error == 0) {
469 map->dm_mapsize = buflen;
470 map->_dm_vmspace = vm;
471 map->_dm_origbuf = buf;
472 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
473 return 0;
474 }
475 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
476 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
477 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
478 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
479 _BUS_DMA_BUFTYPE_LINEAR, flags);
480 }
481 #endif
482 return (error);
483 }
484
485 /*
486 * Like _bus_dmamap_load(), but for mbufs.
487 */
488 int
489 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
490 int flags)
491 {
492 int error;
493 struct mbuf *m;
494
495 #ifdef DEBUG_DMA
496 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
497 t, map, m0, flags);
498 #endif /* DEBUG_DMA */
499
500 if (map->dm_nsegs > 0) {
501 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
502 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
503 if (cookie != NULL) {
504 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
505 STAT_INCR(bounced_unloads);
506 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
507 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
508 }
509 } else
510 #endif
511 STAT_INCR(unloads);
512 }
513
514 /*
515 * Make sure that on error condition we return "no valid mappings."
516 */
517 map->dm_mapsize = 0;
518 map->dm_nsegs = 0;
519 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
520 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
521
522 #ifdef DIAGNOSTIC
523 if ((m0->m_flags & M_PKTHDR) == 0)
524 panic("_bus_dmamap_load_mbuf: no packet header");
525 #endif /* DIAGNOSTIC */
526
527 if (m0->m_pkthdr.len > map->_dm_size)
528 return (EINVAL);
529
530 /* _bus_dmamap_load_paddr() clears this if we're not... */
531 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
532
533 error = 0;
534 for (m = m0; m != NULL && error == 0; m = m->m_next) {
535 int offset;
536 int remainbytes;
537 const struct vm_page * const *pgs;
538 paddr_t paddr;
539 int size;
540
541 if (m->m_len == 0)
542 continue;
543 /*
544 * Don't allow reads in read-only mbufs.
545 */
546 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
547 error = EFAULT;
548 break;
549 }
550 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
551 case M_EXT|M_CLUSTER:
552 /* XXX KDASSERT */
553 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
554 paddr = m->m_ext.ext_paddr +
555 (m->m_data - m->m_ext.ext_buf);
556 size = m->m_len;
557 error = _bus_dmamap_load_paddr(t, map, paddr, size,
558 false);
559 break;
560
561 case M_EXT|M_EXT_PAGES:
562 KASSERT(m->m_ext.ext_buf <= m->m_data);
563 KASSERT(m->m_data <=
564 m->m_ext.ext_buf + m->m_ext.ext_size);
565
566 offset = (vaddr_t)m->m_data -
567 trunc_page((vaddr_t)m->m_ext.ext_buf);
568 remainbytes = m->m_len;
569
570 /* skip uninteresting pages */
571 pgs = (const struct vm_page * const *)
572 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
573
574 offset &= PAGE_MASK; /* offset in the first page */
575
576 /* load each page */
577 while (remainbytes > 0) {
578 const struct vm_page *pg;
579
580 size = MIN(remainbytes, PAGE_SIZE - offset);
581
582 pg = *pgs++;
583 KASSERT(pg);
584 paddr = VM_PAGE_TO_PHYS(pg) + offset;
585
586 error = _bus_dmamap_load_paddr(t, map,
587 paddr, size, false);
588 if (error)
589 break;
590 offset = 0;
591 remainbytes -= size;
592 }
593 break;
594
595 case 0:
596 paddr = m->m_paddr + M_BUFOFFSET(m) +
597 (m->m_data - M_BUFADDR(m));
598 size = m->m_len;
599 error = _bus_dmamap_load_paddr(t, map, paddr, size,
600 false);
601 break;
602
603 default:
604 error = _bus_dmamap_load_buffer(t, map, m->m_data,
605 m->m_len, vmspace_kernel(), flags);
606 }
607 }
608 if (error == 0) {
609 map->dm_mapsize = m0->m_pkthdr.len;
610 map->_dm_origbuf = m0;
611 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
612 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
613 return 0;
614 }
615 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
616 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
617 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
618 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
619 _BUS_DMA_BUFTYPE_MBUF, flags);
620 }
621 #endif
622 return (error);
623 }
624
625 /*
626 * Like _bus_dmamap_load(), but for uios.
627 */
628 int
629 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
630 int flags)
631 {
632 int i, error;
633 bus_size_t minlen, resid;
634 struct iovec *iov;
635 void *addr;
636
637 /*
638 * Make sure that on error condition we return "no valid mappings."
639 */
640 map->dm_mapsize = 0;
641 map->dm_nsegs = 0;
642 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
643
644 resid = uio->uio_resid;
645 iov = uio->uio_iov;
646
647 /* _bus_dmamap_load_buffer() clears this if we're not... */
648 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
649
650 error = 0;
651 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
652 /*
653 * Now at the first iovec to load. Load each iovec
654 * until we have exhausted the residual count.
655 */
656 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
657 addr = (void *)iov[i].iov_base;
658
659 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
660 uio->uio_vmspace, flags);
661
662 resid -= minlen;
663 }
664 if (error == 0) {
665 map->dm_mapsize = uio->uio_resid;
666 map->_dm_origbuf = uio;
667 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
668 map->_dm_vmspace = uio->uio_vmspace;
669 }
670 return (error);
671 }
672
673 /*
674 * Like _bus_dmamap_load(), but for raw memory allocated with
675 * bus_dmamem_alloc().
676 */
677 int
678 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
679 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
680 {
681
682 panic("_bus_dmamap_load_raw: not implemented");
683 }
684
685 /*
686 * Common function for unloading a DMA map. May be called by
687 * bus-specific DMA map unload functions.
688 */
689 void
690 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
691 {
692
693 #ifdef DEBUG_DMA
694 printf("dmamap_unload: t=%p map=%p\n", t, map);
695 #endif /* DEBUG_DMA */
696
697 /*
698 * No resources to free; just mark the mappings as
699 * invalid.
700 */
701 map->dm_mapsize = 0;
702 map->dm_nsegs = 0;
703 map->_dm_origbuf = NULL;
704 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
705 map->_dm_vmspace = NULL;
706 }
707
708 static void
709 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
710 {
711 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
712 #if 0
713 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
714 va, pa, len, ops, readonly_p);
715 #endif
716
717 switch (ops) {
718 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
719 if (!readonly_p) {
720 cpu_dcache_wbinv_range(va, len);
721 cpu_sdcache_wbinv_range(va, pa, len);
722 break;
723 }
724 /* FALLTHROUGH */
725
726 case BUS_DMASYNC_PREREAD: {
727 const size_t line_size = arm_dcache_align;
728 const size_t line_mask = arm_dcache_align_mask;
729 vsize_t misalignment = va & line_mask;
730 if (misalignment) {
731 va -= misalignment;
732 pa -= misalignment;
733 len += misalignment;
734 cpu_dcache_wbinv_range(va, line_size);
735 cpu_sdcache_wbinv_range(va, pa, line_size);
736 if (len <= line_size)
737 break;
738 va += line_size;
739 pa += line_size;
740 len -= line_size;
741 }
742 misalignment = len & line_mask;
743 len -= misalignment;
744 if (len > 0) {
745 cpu_dcache_inv_range(va, len);
746 cpu_sdcache_inv_range(va, pa, len);
747 }
748 if (misalignment) {
749 va += len;
750 pa += len;
751 cpu_dcache_wbinv_range(va, line_size);
752 cpu_sdcache_wbinv_range(va, pa, line_size);
753 }
754 break;
755 }
756
757 case BUS_DMASYNC_PREWRITE:
758 cpu_dcache_wb_range(va, len);
759 cpu_sdcache_wb_range(va, pa, len);
760 break;
761 }
762 }
763
764 static inline void
765 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
766 bus_size_t len, int ops)
767 {
768 bus_dma_segment_t *ds = map->dm_segs;
769 vaddr_t va = (vaddr_t) map->_dm_origbuf;
770 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
771 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
772 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
773 va = (vaddr_t) cookie->id_bouncebuf;
774 }
775 #endif
776
777 while (len > 0) {
778 while (offset >= ds->ds_len) {
779 offset -= ds->ds_len;
780 va += ds->ds_len;
781 ds++;
782 }
783
784 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
785 size_t seglen = min(len, ds->ds_len - offset);
786
787 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
788 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
789 false);
790
791 offset += seglen;
792 len -= seglen;
793 }
794 }
795
796 static inline void
797 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
798 bus_size_t len, int ops)
799 {
800 bus_dma_segment_t *ds = map->dm_segs;
801 struct mbuf *m = map->_dm_origbuf;
802 bus_size_t voff = offset;
803 bus_size_t ds_off = offset;
804
805 while (len > 0) {
806 /* Find the current dma segment */
807 while (ds_off >= ds->ds_len) {
808 ds_off -= ds->ds_len;
809 ds++;
810 }
811 /* Find the current mbuf. */
812 while (voff >= m->m_len) {
813 voff -= m->m_len;
814 m = m->m_next;
815 }
816
817 /*
818 * Now at the first mbuf to sync; nail each one until
819 * we have exhausted the length.
820 */
821 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
822 vaddr_t va = mtod(m, vaddr_t) + voff;
823 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
824
825 /*
826 * We can save a lot of work here if we know the mapping
827 * is read-only at the MMU:
828 *
829 * If a mapping is read-only, no dirty cache blocks will
830 * exist for it. If a writable mapping was made read-only,
831 * we know any dirty cache lines for the range will have
832 * been cleaned for us already. Therefore, if the upper
833 * layer can tell us we have a read-only mapping, we can
834 * skip all cache cleaning.
835 *
836 * NOTE: This only works if we know the pmap cleans pages
837 * before making a read-write -> read-only transition. If
838 * this ever becomes non-true (e.g. Physically Indexed
839 * cache), this will have to be revisited.
840 */
841
842 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
843 _bus_dmamap_sync_segment(va, pa, seglen, ops,
844 M_ROMAP(m));
845 voff += seglen;
846 ds_off += seglen;
847 len -= seglen;
848 }
849 }
850
851 static inline void
852 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
853 bus_size_t len, int ops)
854 {
855 bus_dma_segment_t *ds = map->dm_segs;
856 struct uio *uio = map->_dm_origbuf;
857 struct iovec *iov = uio->uio_iov;
858 bus_size_t voff = offset;
859 bus_size_t ds_off = offset;
860
861 while (len > 0) {
862 /* Find the current dma segment */
863 while (ds_off >= ds->ds_len) {
864 ds_off -= ds->ds_len;
865 ds++;
866 }
867
868 /* Find the current iovec. */
869 while (voff >= iov->iov_len) {
870 voff -= iov->iov_len;
871 iov++;
872 }
873
874 /*
875 * Now at the first iovec to sync; nail each one until
876 * we have exhausted the length.
877 */
878 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
879 vaddr_t va = (vaddr_t) iov->iov_base + voff;
880 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
881
882 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
883 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
884
885 voff += seglen;
886 ds_off += seglen;
887 len -= seglen;
888 }
889 }
890
891 /*
892 * Common function for DMA map synchronization. May be called
893 * by bus-specific DMA map synchronization functions.
894 *
895 * This version works for the Virtually Indexed Virtually Tagged
896 * cache found on 32-bit ARM processors.
897 *
898 * XXX Should have separate versions for write-through vs.
899 * XXX write-back caches. We currently assume write-back
900 * XXX here, which is not as efficient as it could be for
901 * XXX the write-through case.
902 */
903 void
904 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
905 bus_size_t len, int ops)
906 {
907 #ifdef DEBUG_DMA
908 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
909 t, map, offset, len, ops);
910 #endif /* DEBUG_DMA */
911
912 /*
913 * Mixing of PRE and POST operations is not allowed.
914 */
915 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
916 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
917 panic("_bus_dmamap_sync: mix PRE and POST");
918
919 #ifdef DIAGNOSTIC
920 if (offset >= map->dm_mapsize)
921 panic("_bus_dmamap_sync: bad offset %lu (map size is %lu)",
922 offset, map->dm_mapsize);
923 if (len == 0 || (offset + len) > map->dm_mapsize)
924 panic("_bus_dmamap_sync: bad length");
925 #endif
926
927 /*
928 * For a virtually-indexed write-back cache, we need
929 * to do the following things:
930 *
931 * PREREAD -- Invalidate the D-cache. We do this
932 * here in case a write-back is required by the back-end.
933 *
934 * PREWRITE -- Write-back the D-cache. Note that if
935 * we are doing a PREREAD|PREWRITE, we can collapse
936 * the whole thing into a single Wb-Inv.
937 *
938 * POSTREAD -- Nothing.
939 *
940 * POSTWRITE -- Nothing.
941 */
942 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
943 const bool bouncing = (map->_dm_flags & _BUS_DMA_IS_BOUNCING);
944 #else
945 const bool bouncing = false;
946 #endif
947
948 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
949 if (!bouncing && pre_ops == 0) {
950 return;
951 }
952
953 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
954 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
955 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
956 STAT_INCR(write_bounces);
957 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
958 /*
959 * Copy the caller's buffer to the bounce buffer.
960 */
961 switch (map->_dm_buftype) {
962 case _BUS_DMA_BUFTYPE_LINEAR:
963 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
964 break;
965 case _BUS_DMA_BUFTYPE_MBUF:
966 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
967 break;
968 case _BUS_DMA_BUFTYPE_UIO:
969 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
970 break;
971 #ifdef DIAGNOSTIC
972 case _BUS_DMA_BUFTYPE_RAW:
973 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
974 break;
975
976 case _BUS_DMA_BUFTYPE_INVALID:
977 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
978 break;
979
980 default:
981 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
982 map, map->_dm_buftype);
983 break;
984 #endif /* DIAGNOSTIC */
985 }
986 }
987 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
988
989 /* Skip cache frobbing if mapping was COHERENT. */
990 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
991 /* Drain the write buffer. */
992 cpu_drain_writebuf();
993 return;
994 }
995
996 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
997 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
998 goto bounce_it;
999 }
1000 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1001
1002 /*
1003 * If the mapping belongs to a non-kernel vmspace, and the
1004 * vmspace has not been active since the last time a full
1005 * cache flush was performed, we don't need to do anything.
1006 */
1007 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1008 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1009 return;
1010
1011 int buftype = map->_dm_buftype;
1012 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1013 if (bouncing) {
1014 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1015 }
1016 #endif
1017
1018 switch (buftype) {
1019 case _BUS_DMA_BUFTYPE_LINEAR:
1020 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1021 break;
1022
1023 case _BUS_DMA_BUFTYPE_MBUF:
1024 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1025 break;
1026
1027 case _BUS_DMA_BUFTYPE_UIO:
1028 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1029 break;
1030
1031 case _BUS_DMA_BUFTYPE_RAW:
1032 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1033 break;
1034
1035 case _BUS_DMA_BUFTYPE_INVALID:
1036 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1037 break;
1038
1039 default:
1040 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1041 map, map->_dm_buftype);
1042 }
1043
1044 /* Drain the write buffer. */
1045 cpu_drain_writebuf();
1046
1047 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1048 bounce_it:
1049 if ((ops & BUS_DMASYNC_POSTREAD) == 0
1050 || (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) == 0)
1051 return;
1052
1053 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1054 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1055 STAT_INCR(read_bounces);
1056 /*
1057 * Copy the bounce buffer to the caller's buffer.
1058 */
1059 switch (map->_dm_buftype) {
1060 case _BUS_DMA_BUFTYPE_LINEAR:
1061 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1062 break;
1063
1064 case _BUS_DMA_BUFTYPE_MBUF:
1065 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1066 break;
1067
1068 case _BUS_DMA_BUFTYPE_UIO:
1069 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1070 break;
1071 #ifdef DIAGNOSTIC
1072 case _BUS_DMA_BUFTYPE_RAW:
1073 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1074 break;
1075
1076 case _BUS_DMA_BUFTYPE_INVALID:
1077 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1078 break;
1079
1080 default:
1081 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1082 map, map->_dm_buftype);
1083 break;
1084 #endif
1085 }
1086 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1087 }
1088
1089 /*
1090 * Common function for DMA-safe memory allocation. May be called
1091 * by bus-specific DMA memory allocation functions.
1092 */
1093
1094 extern paddr_t physical_start;
1095 extern paddr_t physical_end;
1096
1097 int
1098 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1099 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1100 int flags)
1101 {
1102 struct arm32_dma_range *dr;
1103 int error, i;
1104
1105 #ifdef DEBUG_DMA
1106 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1107 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1108 boundary, segs, nsegs, rsegs, flags);
1109 #endif
1110
1111 if ((dr = t->_ranges) != NULL) {
1112 error = ENOMEM;
1113 for (i = 0; i < t->_nranges; i++, dr++) {
1114 if (dr->dr_len == 0)
1115 continue;
1116 error = _bus_dmamem_alloc_range(t, size, alignment,
1117 boundary, segs, nsegs, rsegs, flags,
1118 trunc_page(dr->dr_sysbase),
1119 trunc_page(dr->dr_sysbase + dr->dr_len));
1120 if (error == 0)
1121 break;
1122 }
1123 } else {
1124 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1125 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1126 trunc_page(physical_end));
1127 }
1128
1129 #ifdef DEBUG_DMA
1130 printf("dmamem_alloc: =%d\n", error);
1131 #endif
1132
1133 return(error);
1134 }
1135
1136 /*
1137 * Common function for freeing DMA-safe memory. May be called by
1138 * bus-specific DMA memory free functions.
1139 */
1140 void
1141 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1142 {
1143 struct vm_page *m;
1144 bus_addr_t addr;
1145 struct pglist mlist;
1146 int curseg;
1147
1148 #ifdef DEBUG_DMA
1149 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1150 #endif /* DEBUG_DMA */
1151
1152 /*
1153 * Build a list of pages to free back to the VM system.
1154 */
1155 TAILQ_INIT(&mlist);
1156 for (curseg = 0; curseg < nsegs; curseg++) {
1157 for (addr = segs[curseg].ds_addr;
1158 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1159 addr += PAGE_SIZE) {
1160 m = PHYS_TO_VM_PAGE(addr);
1161 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1162 }
1163 }
1164 uvm_pglistfree(&mlist);
1165 }
1166
1167 /*
1168 * Common function for mapping DMA-safe memory. May be called by
1169 * bus-specific DMA memory map functions.
1170 */
1171 int
1172 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1173 size_t size, void **kvap, int flags)
1174 {
1175 vaddr_t va;
1176 paddr_t pa;
1177 int curseg;
1178 pt_entry_t *ptep;
1179 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1180 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1181 vsize_t align = 0;
1182
1183 #ifdef DEBUG_DMA
1184 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1185 segs, nsegs, (unsigned long)size, flags);
1186 #endif /* DEBUG_DMA */
1187
1188 #ifdef PMAP_MAP_POOLPAGE
1189 /*
1190 * If all of memory is mapped, and we are mapping a single physically
1191 * contiguous area then this area is already mapped. Let's see if we
1192 * avoid having a separate mapping for it.
1193 */
1194 if (nsegs == 1) {
1195 paddr_t paddr = segs[0].ds_addr;
1196 /*
1197 * If this is a non-COHERENT mapping, then the existing kernel
1198 * mapping is already compatible with it.
1199 */
1200 if ((flags & BUS_DMA_COHERENT) == 0) {
1201 #ifdef DEBUG_DMA
1202 printf("dmamem_map: =%p\n", *kvap);
1203 #endif /* DEBUG_DMA */
1204 *kvap = (void *)PMAP_MAP_POOLPAGE(paddr);
1205 return 0;
1206 }
1207 /*
1208 * This is a COHERENT mapping, which unless this address is in
1209 * a COHERENT dma range, will not be compatible.
1210 */
1211 if (t->_ranges != NULL) {
1212 const struct arm32_dma_range * const dr =
1213 _bus_dma_paddr_inrange(t->_ranges, t->_nranges,
1214 paddr);
1215 if (dr != NULL
1216 && (dr->dr_flags & _BUS_DMAMAP_COHERENT) != 0) {
1217 *kvap = (void *)PMAP_MAP_POOLPAGE(paddr);
1218 #ifdef DEBUG_DMA
1219 printf("dmamem_map: =%p\n", *kvap);
1220 #endif /* DEBUG_DMA */
1221 return 0;
1222 }
1223 }
1224 }
1225 #endif
1226
1227 size = round_page(size);
1228 if (__predict_true(size > L2_L_SIZE)) {
1229 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1230 if (size >= L1_SS_SIZE)
1231 align = L1_SS_SIZE;
1232 else
1233 #endif
1234 if (size >= L1_S_SIZE)
1235 align = L1_S_SIZE;
1236 else
1237 align = L2_S_SIZE;
1238 }
1239
1240 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1241 if (__predict_false(va == 0 && align > 0)) {
1242 align = 0;
1243 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1244 }
1245
1246 if (va == 0)
1247 return (ENOMEM);
1248
1249 *kvap = (void *)va;
1250
1251 for (curseg = 0; curseg < nsegs; curseg++) {
1252 for (pa = segs[curseg].ds_addr;
1253 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1254 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1255 #ifdef DEBUG_DMA
1256 printf("wiring p%lx to v%lx", pa, va);
1257 #endif /* DEBUG_DMA */
1258 if (size == 0)
1259 panic("_bus_dmamem_map: size botch");
1260 pmap_kenter_pa(va, pa,
1261 VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1262
1263 /*
1264 * If the memory must remain coherent with the
1265 * cache then we must make the memory uncacheable
1266 * in order to maintain virtual cache coherency.
1267 * We must also guarantee the cache does not already
1268 * contain the virtal addresses we are making
1269 * uncacheable.
1270 */
1271
1272 bool uncached = (flags & BUS_DMA_COHERENT);
1273 if (uncached) {
1274 const struct arm32_dma_range * const dr =
1275 _bus_dma_paddr_inrange(t->_ranges,
1276 t->_nranges, pa);
1277 /*
1278 * If this dma region is coherent then there is
1279 * no need for an uncached mapping.
1280 */
1281 if (dr != NULL
1282 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1283 uncached = false;
1284 }
1285 }
1286 if (uncached) {
1287 cpu_dcache_wbinv_range(va, PAGE_SIZE);
1288 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
1289 cpu_drain_writebuf();
1290 ptep = vtopte(va);
1291 *ptep &= ~L2_S_CACHE_MASK;
1292 PTE_SYNC(ptep);
1293 tlb_flush();
1294 }
1295 #ifdef DEBUG_DMA
1296 ptep = vtopte(va);
1297 printf(" pte=v%p *pte=%x\n", ptep, *ptep);
1298 #endif /* DEBUG_DMA */
1299 }
1300 }
1301 pmap_update(pmap_kernel());
1302 #ifdef DEBUG_DMA
1303 printf("dmamem_map: =%p\n", *kvap);
1304 #endif /* DEBUG_DMA */
1305 return (0);
1306 }
1307
1308 /*
1309 * Common function for unmapping DMA-safe memory. May be called by
1310 * bus-specific DMA memory unmapping functions.
1311 */
1312 void
1313 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1314 {
1315
1316 #ifdef DEBUG_DMA
1317 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1318 #endif /* DEBUG_DMA */
1319 #ifdef DIAGNOSTIC
1320 if ((u_long)kva & PGOFSET)
1321 panic("_bus_dmamem_unmap");
1322 #endif /* DIAGNOSTIC */
1323
1324 size = round_page(size);
1325 pmap_kremove((vaddr_t)kva, size);
1326 pmap_update(pmap_kernel());
1327 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1328 }
1329
1330 /*
1331 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1332 * bus-specific DMA mmap(2)'ing functions.
1333 */
1334 paddr_t
1335 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1336 off_t off, int prot, int flags)
1337 {
1338 int i;
1339
1340 for (i = 0; i < nsegs; i++) {
1341 #ifdef DIAGNOSTIC
1342 if (off & PGOFSET)
1343 panic("_bus_dmamem_mmap: offset unaligned");
1344 if (segs[i].ds_addr & PGOFSET)
1345 panic("_bus_dmamem_mmap: segment unaligned");
1346 if (segs[i].ds_len & PGOFSET)
1347 panic("_bus_dmamem_mmap: segment size not multiple"
1348 " of page size");
1349 #endif /* DIAGNOSTIC */
1350 if (off >= segs[i].ds_len) {
1351 off -= segs[i].ds_len;
1352 continue;
1353 }
1354
1355 return (arm_btop((u_long)segs[i].ds_addr + off));
1356 }
1357
1358 /* Page not found. */
1359 return (-1);
1360 }
1361
1362 /**********************************************************************
1363 * DMA utility functions
1364 **********************************************************************/
1365
1366 /*
1367 * Utility function to load a linear buffer. lastaddrp holds state
1368 * between invocations (for multiple-buffer loads). segp contains
1369 * the starting segment on entrace, and the ending segment on exit.
1370 * first indicates if this is the first invocation of this function.
1371 */
1372 int
1373 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1374 bus_size_t buflen, struct vmspace *vm, int flags)
1375 {
1376 bus_size_t sgsize;
1377 bus_addr_t curaddr;
1378 vaddr_t vaddr = (vaddr_t)buf;
1379 int error;
1380 pmap_t pmap;
1381
1382 #ifdef DEBUG_DMA
1383 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1384 buf, buflen, flags);
1385 #endif /* DEBUG_DMA */
1386
1387 pmap = vm_map_pmap(&vm->vm_map);
1388
1389 while (buflen > 0) {
1390 /*
1391 * Get the physical address for this segment.
1392 *
1393 * XXX Doesn't support checking for coherent mappings
1394 * XXX in user address space.
1395 */
1396 bool coherent;
1397 if (__predict_true(pmap == pmap_kernel())) {
1398 pd_entry_t *pde;
1399 pt_entry_t *ptep;
1400 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1401 if (__predict_false(pmap_pde_section(pde))) {
1402 paddr_t s_frame = L1_S_FRAME;
1403 paddr_t s_offset = L1_S_OFFSET;
1404 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1405 if (__predict_false(pmap_pde_supersection(pde))) {
1406 s_frame = L1_SS_FRAME;
1407 s_offset = L1_SS_OFFSET;
1408 }
1409 #endif
1410 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1411 coherent = (*pde & L1_S_CACHE_MASK) != 0;
1412 } else {
1413 pt_entry_t pte = *ptep;
1414 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1415 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1416 vaddr, *pde, ptep, pte);
1417 if (__predict_false((pte & L2_TYPE_MASK)
1418 == L2_TYPE_L)) {
1419 curaddr = (pte & L2_L_FRAME) |
1420 (vaddr & L2_L_OFFSET);
1421 coherent = (pte & L2_L_CACHE_MASK) != 0;
1422 } else {
1423 curaddr = (pte & L2_S_FRAME) |
1424 (vaddr & L2_S_OFFSET);
1425 coherent = (pte & L2_S_CACHE_MASK) != 0;
1426 }
1427 }
1428 } else {
1429 (void) pmap_extract(pmap, vaddr, &curaddr);
1430 coherent = false;
1431 }
1432
1433 /*
1434 * Compute the segment size, and adjust counts.
1435 */
1436 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1437 if (buflen < sgsize)
1438 sgsize = buflen;
1439
1440 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1441 coherent);
1442 if (error)
1443 return (error);
1444
1445 vaddr += sgsize;
1446 buflen -= sgsize;
1447 }
1448
1449 return (0);
1450 }
1451
1452 /*
1453 * Allocate physical memory from the given physical address range.
1454 * Called by DMA-safe memory allocation methods.
1455 */
1456 int
1457 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1458 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1459 int flags, paddr_t low, paddr_t high)
1460 {
1461 paddr_t curaddr, lastaddr;
1462 struct vm_page *m;
1463 struct pglist mlist;
1464 int curseg, error;
1465
1466 #ifdef DEBUG_DMA
1467 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1468 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1469 #endif /* DEBUG_DMA */
1470
1471 /* Always round the size. */
1472 size = round_page(size);
1473
1474 /*
1475 * Allocate pages from the VM system.
1476 */
1477 error = uvm_pglistalloc(size, low, high, alignment, boundary,
1478 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1479 if (error)
1480 return (error);
1481
1482 /*
1483 * Compute the location, size, and number of segments actually
1484 * returned by the VM code.
1485 */
1486 m = TAILQ_FIRST(&mlist);
1487 curseg = 0;
1488 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1489 segs[curseg].ds_len = PAGE_SIZE;
1490 #ifdef DEBUG_DMA
1491 printf("alloc: page %lx\n", lastaddr);
1492 #endif /* DEBUG_DMA */
1493 m = TAILQ_NEXT(m, pageq.queue);
1494
1495 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1496 curaddr = VM_PAGE_TO_PHYS(m);
1497 #ifdef DIAGNOSTIC
1498 if (curaddr < low || curaddr >= high) {
1499 printf("uvm_pglistalloc returned non-sensical"
1500 " address 0x%lx\n", curaddr);
1501 panic("_bus_dmamem_alloc_range");
1502 }
1503 #endif /* DIAGNOSTIC */
1504 #ifdef DEBUG_DMA
1505 printf("alloc: page %lx\n", curaddr);
1506 #endif /* DEBUG_DMA */
1507 if (curaddr == (lastaddr + PAGE_SIZE))
1508 segs[curseg].ds_len += PAGE_SIZE;
1509 else {
1510 curseg++;
1511 segs[curseg].ds_addr = curaddr;
1512 segs[curseg].ds_len = PAGE_SIZE;
1513 }
1514 lastaddr = curaddr;
1515 }
1516
1517 *rsegs = curseg + 1;
1518
1519 return (0);
1520 }
1521
1522 /*
1523 * Check if a memory region intersects with a DMA range, and return the
1524 * page-rounded intersection if it does.
1525 */
1526 int
1527 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1528 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1529 {
1530 struct arm32_dma_range *dr;
1531 int i;
1532
1533 if (ranges == NULL)
1534 return (0);
1535
1536 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1537 if (dr->dr_sysbase <= pa &&
1538 pa < (dr->dr_sysbase + dr->dr_len)) {
1539 /*
1540 * Beginning of region intersects with this range.
1541 */
1542 *pap = trunc_page(pa);
1543 *sizep = round_page(min(pa + size,
1544 dr->dr_sysbase + dr->dr_len) - pa);
1545 return (1);
1546 }
1547 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1548 /*
1549 * End of region intersects with this range.
1550 */
1551 *pap = trunc_page(dr->dr_sysbase);
1552 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1553 dr->dr_len));
1554 return (1);
1555 }
1556 }
1557
1558 /* No intersection found. */
1559 return (0);
1560 }
1561
1562 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1563 static int
1564 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1565 bus_size_t size, int flags)
1566 {
1567 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1568 int error = 0;
1569
1570 #ifdef DIAGNOSTIC
1571 if (cookie == NULL)
1572 panic("_bus_dma_alloc_bouncebuf: no cookie");
1573 #endif
1574
1575 cookie->id_bouncebuflen = round_page(size);
1576 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1577 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1578 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1579 if (error)
1580 goto out;
1581 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1582 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1583 (void **)&cookie->id_bouncebuf, flags);
1584
1585 out:
1586 if (error) {
1587 _bus_dmamem_free(t, cookie->id_bouncesegs,
1588 cookie->id_nbouncesegs);
1589 cookie->id_bouncebuflen = 0;
1590 cookie->id_nbouncesegs = 0;
1591 } else {
1592 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1593 }
1594
1595 return (error);
1596 }
1597
1598 static void
1599 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1600 {
1601 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1602
1603 #ifdef DIAGNOSTIC
1604 if (cookie == NULL)
1605 panic("_bus_dma_alloc_bouncebuf: no cookie");
1606 #endif
1607
1608 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1609 _bus_dmamem_free(t, cookie->id_bouncesegs,
1610 cookie->id_nbouncesegs);
1611 cookie->id_bouncebuflen = 0;
1612 cookie->id_nbouncesegs = 0;
1613 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1614 }
1615
1616 /*
1617 * This function does the same as uiomove, but takes an explicit
1618 * direction, and does not update the uio structure.
1619 */
1620 static int
1621 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1622 {
1623 struct iovec *iov;
1624 int error;
1625 struct vmspace *vm;
1626 char *cp;
1627 size_t resid, cnt;
1628 int i;
1629
1630 iov = uio->uio_iov;
1631 vm = uio->uio_vmspace;
1632 cp = buf;
1633 resid = n;
1634
1635 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1636 iov = &uio->uio_iov[i];
1637 if (iov->iov_len == 0)
1638 continue;
1639 cnt = MIN(resid, iov->iov_len);
1640
1641 if (!VMSPACE_IS_KERNEL_P(vm) &&
1642 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1643 != 0) {
1644 preempt();
1645 }
1646 if (direction == UIO_READ) {
1647 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1648 } else {
1649 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1650 }
1651 if (error)
1652 return (error);
1653 cp += cnt;
1654 resid -= cnt;
1655 }
1656 return (0);
1657 }
1658 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1659
1660 int
1661 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1662 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1663 {
1664
1665 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1666 struct arm32_dma_range *dr;
1667 bool subset = false;
1668 size_t nranges = 0;
1669 size_t i;
1670 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1671 if (dr->dr_sysbase <= min_addr
1672 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1673 subset = true;
1674 }
1675 if (min_addr <= dr->dr_sysbase + dr->dr_len
1676 && max_addr >= dr->dr_sysbase) {
1677 nranges++;
1678 }
1679 }
1680 if (subset) {
1681 *newtag = tag;
1682 /* if the tag must be freed, add a reference */
1683 if (tag->_tag_needs_free)
1684 (tag->_tag_needs_free)++;
1685 return 0;
1686 }
1687 if (nranges == 0) {
1688 nranges = 1;
1689 }
1690
1691 size_t mallocsize = sizeof(*tag) + nranges * sizeof(*dr);
1692 if ((*newtag = malloc(mallocsize, M_DMAMAP,
1693 (flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
1694 return ENOMEM;
1695
1696 dr = (void *)(*newtag + 1);
1697 **newtag = *tag;
1698 (*newtag)->_tag_needs_free = 1;
1699 (*newtag)->_ranges = dr;
1700 (*newtag)->_nranges = nranges;
1701
1702 if (tag->_ranges == NULL) {
1703 dr->dr_sysbase = min_addr;
1704 dr->dr_busbase = min_addr;
1705 dr->dr_len = max_addr + 1 - min_addr;
1706 } else {
1707 for (i = 0; i < nranges; i++) {
1708 if (min_addr > dr->dr_sysbase + dr->dr_len
1709 || max_addr < dr->dr_sysbase)
1710 continue;
1711 dr[0] = tag->_ranges[i];
1712 if (dr->dr_sysbase < min_addr) {
1713 psize_t diff = min_addr - dr->dr_sysbase;
1714 dr->dr_busbase += diff;
1715 dr->dr_len -= diff;
1716 dr->dr_sysbase += diff;
1717 }
1718 if (max_addr != 0xffffffff
1719 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1720 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1721 }
1722 dr++;
1723 }
1724 }
1725
1726 return 0;
1727 #else
1728 return EOPNOTSUPP;
1729 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1730 }
1731
1732 void
1733 _bus_dmatag_destroy(bus_dma_tag_t tag)
1734 {
1735 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1736 switch (tag->_tag_needs_free) {
1737 case 0:
1738 break; /* not allocated with malloc */
1739 case 1:
1740 free(tag, M_DMAMAP); /* last reference to tag */
1741 break;
1742 default:
1743 (tag->_tag_needs_free)--; /* one less reference */
1744 }
1745 #endif
1746 }
1747