bus_dma.c revision 1.73 1 /* $NetBSD: bus_dma.c,v 1.73 2013/02/04 13:26:19 macallan Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.73 2013/02/04 13:26:19 macallan Exp $");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/reboot.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/vnode.h>
49 #include <sys/device.h>
50
51 #include <uvm/uvm.h>
52
53 #include <sys/bus.h>
54 #include <machine/cpu.h>
55
56 #include <arm/cpufunc.h>
57
58 static struct evcnt bus_dma_creates =
59 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
60 static struct evcnt bus_dma_bounced_creates =
61 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
62 static struct evcnt bus_dma_loads =
63 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
64 static struct evcnt bus_dma_bounced_loads =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
66 static struct evcnt bus_dma_read_bounces =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
68 static struct evcnt bus_dma_write_bounces =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
70 static struct evcnt bus_dma_bounced_unloads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
72 static struct evcnt bus_dma_unloads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
74 static struct evcnt bus_dma_bounced_destroys =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
76 static struct evcnt bus_dma_destroys =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
78
79 EVCNT_ATTACH_STATIC(bus_dma_creates);
80 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
81 EVCNT_ATTACH_STATIC(bus_dma_loads);
82 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
83 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
84 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
85 EVCNT_ATTACH_STATIC(bus_dma_unloads);
86 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
87 EVCNT_ATTACH_STATIC(bus_dma_destroys);
88 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
89
90 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
91
92 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
93 bus_size_t, struct vmspace *, int);
94 static struct arm32_dma_range *
95 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
96
97 /*
98 * Check to see if the specified page is in an allowed DMA range.
99 */
100 inline struct arm32_dma_range *
101 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
102 bus_addr_t curaddr)
103 {
104 struct arm32_dma_range *dr;
105 int i;
106
107 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
108 if (curaddr >= dr->dr_sysbase &&
109 round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
110 return (dr);
111 }
112
113 return (NULL);
114 }
115
116 /*
117 * Check to see if the specified busaddr is in an allowed DMA range.
118 */
119 static inline paddr_t
120 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
121 {
122 struct arm32_dma_range *dr;
123 u_int i;
124
125 if (t->_nranges == 0)
126 return curaddr;
127
128 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
129 if (dr->dr_busbase <= curaddr
130 && round_page(curaddr) <= dr->dr_busbase + dr->dr_len)
131 return curaddr - dr->dr_busbase + dr->dr_sysbase;
132 }
133 panic("%s: curaddr %#lx not in range", __func__, curaddr);
134 }
135
136 /*
137 * Common function to load the specified physical address into the
138 * DMA map, coalescing segments and boundary checking as necessary.
139 */
140 static int
141 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
142 bus_addr_t paddr, bus_size_t size, bool coherent)
143 {
144 bus_dma_segment_t * const segs = map->dm_segs;
145 int nseg = map->dm_nsegs;
146 bus_addr_t lastaddr;
147 bus_addr_t bmask = ~(map->_dm_boundary - 1);
148 bus_addr_t curaddr;
149 bus_size_t sgsize;
150 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
151
152 if (nseg > 0)
153 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
154 else
155 lastaddr = 0xdead;
156
157 again:
158 sgsize = size;
159
160 /* Make sure we're in an allowed DMA range. */
161 if (t->_ranges != NULL) {
162 /* XXX cache last result? */
163 const struct arm32_dma_range * const dr =
164 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
165 if (dr == NULL)
166 return (EINVAL);
167
168 /*
169 * If this region is coherent, mark the segment as coherent.
170 */
171 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
172
173 /*
174 * In a valid DMA range. Translate the physical
175 * memory address to an address in the DMA window.
176 */
177 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
178 #if 0
179 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
180 t, paddr, dr->dr_sysbase, dr->dr_busbase,
181 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
182 #endif
183 } else
184 curaddr = paddr;
185
186 /*
187 * Make sure we don't cross any boundaries.
188 */
189 if (map->_dm_boundary > 0) {
190 bus_addr_t baddr; /* next boundary address */
191
192 baddr = (curaddr + map->_dm_boundary) & bmask;
193 if (sgsize > (baddr - curaddr))
194 sgsize = (baddr - curaddr);
195 }
196
197 /*
198 * Insert chunk into a segment, coalescing with the
199 * previous segment if possible.
200 */
201 if (nseg > 0 && curaddr == lastaddr &&
202 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
203 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
204 (map->_dm_boundary == 0 ||
205 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
206 /* coalesce */
207 segs[nseg-1].ds_len += sgsize;
208 } else if (nseg >= map->_dm_segcnt) {
209 return (EFBIG);
210 } else {
211 /* new segment */
212 segs[nseg].ds_addr = curaddr;
213 segs[nseg].ds_len = sgsize;
214 segs[nseg]._ds_flags = _ds_flags;
215 nseg++;
216 }
217
218 lastaddr = curaddr + sgsize;
219
220 paddr += sgsize;
221 size -= sgsize;
222 if (size > 0)
223 goto again;
224
225 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
226 map->dm_nsegs = nseg;
227 return (0);
228 }
229
230 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
231 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
232 bus_size_t size, int flags);
233 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
234 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
235 int direction);
236
237 static int
238 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
239 size_t buflen, int buftype, int flags)
240 {
241 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
242 struct vmspace * const vm = vmspace_kernel();
243 int error;
244
245 KASSERT(cookie != NULL);
246 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
247
248 /*
249 * Allocate bounce pages, if necessary.
250 */
251 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
252 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
253 if (error)
254 return (error);
255 }
256
257 /*
258 * Cache a pointer to the caller's buffer and load the DMA map
259 * with the bounce buffer.
260 */
261 cookie->id_origbuf = buf;
262 cookie->id_origbuflen = buflen;
263 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
264 buflen, vm, flags);
265 if (error)
266 return (error);
267
268 STAT_INCR(bounced_loads);
269 map->dm_mapsize = buflen;
270 map->_dm_vmspace = vm;
271 map->_dm_buftype = buftype;
272
273 /* ...so _bus_dmamap_sync() knows we're bouncing */
274 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
275 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
276 return 0;
277 }
278 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
279
280 /*
281 * Common function for DMA map creation. May be called by bus-specific
282 * DMA map creation functions.
283 */
284 int
285 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
286 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
287 {
288 struct arm32_bus_dmamap *map;
289 void *mapstore;
290 size_t mapsize;
291
292 #ifdef DEBUG_DMA
293 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
294 t, size, nsegments, maxsegsz, boundary, flags);
295 #endif /* DEBUG_DMA */
296
297 /*
298 * Allocate and initialize the DMA map. The end of the map
299 * is a variable-sized array of segments, so we allocate enough
300 * room for them in one shot.
301 *
302 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
303 * of ALLOCNOW notifies others that we've reserved these resources,
304 * and they are not to be freed.
305 *
306 * The bus_dmamap_t includes one bus_dma_segment_t, hence
307 * the (nsegments - 1).
308 */
309 mapsize = sizeof(struct arm32_bus_dmamap) +
310 (sizeof(bus_dma_segment_t) * (nsegments - 1));
311 const int mallocflags = M_ZERO|(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK;
312 if ((mapstore = malloc(mapsize, M_DMAMAP, mallocflags)) == NULL)
313 return (ENOMEM);
314
315 map = (struct arm32_bus_dmamap *)mapstore;
316 map->_dm_size = size;
317 map->_dm_segcnt = nsegments;
318 map->_dm_maxmaxsegsz = maxsegsz;
319 map->_dm_boundary = boundary;
320 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
321 map->_dm_origbuf = NULL;
322 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
323 map->_dm_vmspace = vmspace_kernel();
324 map->_dm_cookie = NULL;
325 map->dm_maxsegsz = maxsegsz;
326 map->dm_mapsize = 0; /* no valid mappings */
327 map->dm_nsegs = 0;
328
329 *dmamp = map;
330
331 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
332 struct arm32_bus_dma_cookie *cookie;
333 int cookieflags;
334 void *cookiestore;
335 size_t cookiesize;
336 int error;
337
338 cookieflags = 0;
339
340 if (t->_may_bounce != NULL) {
341 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
342 if (error != 0)
343 goto out;
344 }
345
346 if (t->_ranges != NULL)
347 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
348
349 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
350 STAT_INCR(creates);
351 return 0;
352 }
353
354 cookiesize = sizeof(struct arm32_bus_dma_cookie) +
355 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
356
357 /*
358 * Allocate our cookie.
359 */
360 if ((cookiestore = malloc(cookiesize, M_DMAMAP, mallocflags)) == NULL) {
361 error = ENOMEM;
362 goto out;
363 }
364 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
365 cookie->id_flags = cookieflags;
366 map->_dm_cookie = cookie;
367 STAT_INCR(bounced_creates);
368
369 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
370 out:
371 if (error)
372 _bus_dmamap_destroy(t, map);
373 #else
374 STAT_INCR(creates);
375 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
376
377 #ifdef DEBUG_DMA
378 printf("dmamap_create:map=%p\n", map);
379 #endif /* DEBUG_DMA */
380 return (0);
381 }
382
383 /*
384 * Common function for DMA map destruction. May be called by bus-specific
385 * DMA map destruction functions.
386 */
387 void
388 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
389 {
390
391 #ifdef DEBUG_DMA
392 printf("dmamap_destroy: t=%p map=%p\n", t, map);
393 #endif /* DEBUG_DMA */
394 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
395 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
396
397 /*
398 * Free any bounce pages this map might hold.
399 */
400 if (cookie != NULL) {
401 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
402 STAT_INCR(bounced_unloads);
403 map->dm_nsegs = 0;
404 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
405 _bus_dma_free_bouncebuf(t, map);
406 STAT_INCR(bounced_destroys);
407 free(cookie, M_DMAMAP);
408 } else
409 #endif
410 STAT_INCR(destroys);
411
412 if (map->dm_nsegs > 0)
413 STAT_INCR(unloads);
414
415 free(map, M_DMAMAP);
416 }
417
418 /*
419 * Common function for loading a DMA map with a linear buffer. May
420 * be called by bus-specific DMA map load functions.
421 */
422 int
423 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
424 bus_size_t buflen, struct proc *p, int flags)
425 {
426 struct vmspace *vm;
427 int error;
428
429 #ifdef DEBUG_DMA
430 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
431 t, map, buf, buflen, p, flags);
432 #endif /* DEBUG_DMA */
433
434 if (map->dm_nsegs > 0) {
435 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
436 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
437 if (cookie != NULL) {
438 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
439 STAT_INCR(bounced_unloads);
440 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
441 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
442 }
443 } else
444 #endif
445 STAT_INCR(unloads);
446 }
447
448 /*
449 * Make sure that on error condition we return "no valid mappings".
450 */
451 map->dm_mapsize = 0;
452 map->dm_nsegs = 0;
453 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
454 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
455
456 if (buflen > map->_dm_size)
457 return (EINVAL);
458
459 if (p != NULL) {
460 vm = p->p_vmspace;
461 } else {
462 vm = vmspace_kernel();
463 }
464
465 /* _bus_dmamap_load_buffer() clears this if we're not... */
466 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
467
468 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
469 if (error == 0) {
470 map->dm_mapsize = buflen;
471 map->_dm_vmspace = vm;
472 map->_dm_origbuf = buf;
473 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
474 return 0;
475 }
476 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
477 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
478 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
479 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
480 _BUS_DMA_BUFTYPE_LINEAR, flags);
481 }
482 #endif
483 return (error);
484 }
485
486 /*
487 * Like _bus_dmamap_load(), but for mbufs.
488 */
489 int
490 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
491 int flags)
492 {
493 int error;
494 struct mbuf *m;
495
496 #ifdef DEBUG_DMA
497 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
498 t, map, m0, flags);
499 #endif /* DEBUG_DMA */
500
501 if (map->dm_nsegs > 0) {
502 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
503 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
504 if (cookie != NULL) {
505 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
506 STAT_INCR(bounced_unloads);
507 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
508 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
509 }
510 } else
511 #endif
512 STAT_INCR(unloads);
513 }
514
515 /*
516 * Make sure that on error condition we return "no valid mappings."
517 */
518 map->dm_mapsize = 0;
519 map->dm_nsegs = 0;
520 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
521 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
522
523 #ifdef DIAGNOSTIC
524 if ((m0->m_flags & M_PKTHDR) == 0)
525 panic("_bus_dmamap_load_mbuf: no packet header");
526 #endif /* DIAGNOSTIC */
527
528 if (m0->m_pkthdr.len > map->_dm_size)
529 return (EINVAL);
530
531 /* _bus_dmamap_load_paddr() clears this if we're not... */
532 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
533
534 error = 0;
535 for (m = m0; m != NULL && error == 0; m = m->m_next) {
536 int offset;
537 int remainbytes;
538 const struct vm_page * const *pgs;
539 paddr_t paddr;
540 int size;
541
542 if (m->m_len == 0)
543 continue;
544 /*
545 * Don't allow reads in read-only mbufs.
546 */
547 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
548 error = EFAULT;
549 break;
550 }
551 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
552 case M_EXT|M_CLUSTER:
553 /* XXX KDASSERT */
554 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
555 paddr = m->m_ext.ext_paddr +
556 (m->m_data - m->m_ext.ext_buf);
557 size = m->m_len;
558 error = _bus_dmamap_load_paddr(t, map, paddr, size,
559 false);
560 break;
561
562 case M_EXT|M_EXT_PAGES:
563 KASSERT(m->m_ext.ext_buf <= m->m_data);
564 KASSERT(m->m_data <=
565 m->m_ext.ext_buf + m->m_ext.ext_size);
566
567 offset = (vaddr_t)m->m_data -
568 trunc_page((vaddr_t)m->m_ext.ext_buf);
569 remainbytes = m->m_len;
570
571 /* skip uninteresting pages */
572 pgs = (const struct vm_page * const *)
573 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
574
575 offset &= PAGE_MASK; /* offset in the first page */
576
577 /* load each page */
578 while (remainbytes > 0) {
579 const struct vm_page *pg;
580
581 size = MIN(remainbytes, PAGE_SIZE - offset);
582
583 pg = *pgs++;
584 KASSERT(pg);
585 paddr = VM_PAGE_TO_PHYS(pg) + offset;
586
587 error = _bus_dmamap_load_paddr(t, map,
588 paddr, size, false);
589 if (error)
590 break;
591 offset = 0;
592 remainbytes -= size;
593 }
594 break;
595
596 case 0:
597 paddr = m->m_paddr + M_BUFOFFSET(m) +
598 (m->m_data - M_BUFADDR(m));
599 size = m->m_len;
600 error = _bus_dmamap_load_paddr(t, map, paddr, size,
601 false);
602 break;
603
604 default:
605 error = _bus_dmamap_load_buffer(t, map, m->m_data,
606 m->m_len, vmspace_kernel(), flags);
607 }
608 }
609 if (error == 0) {
610 map->dm_mapsize = m0->m_pkthdr.len;
611 map->_dm_origbuf = m0;
612 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
613 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
614 return 0;
615 }
616 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
617 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
618 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
619 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
620 _BUS_DMA_BUFTYPE_MBUF, flags);
621 }
622 #endif
623 return (error);
624 }
625
626 /*
627 * Like _bus_dmamap_load(), but for uios.
628 */
629 int
630 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
631 int flags)
632 {
633 int i, error;
634 bus_size_t minlen, resid;
635 struct iovec *iov;
636 void *addr;
637
638 /*
639 * Make sure that on error condition we return "no valid mappings."
640 */
641 map->dm_mapsize = 0;
642 map->dm_nsegs = 0;
643 KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
644
645 resid = uio->uio_resid;
646 iov = uio->uio_iov;
647
648 /* _bus_dmamap_load_buffer() clears this if we're not... */
649 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
650
651 error = 0;
652 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
653 /*
654 * Now at the first iovec to load. Load each iovec
655 * until we have exhausted the residual count.
656 */
657 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
658 addr = (void *)iov[i].iov_base;
659
660 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
661 uio->uio_vmspace, flags);
662
663 resid -= minlen;
664 }
665 if (error == 0) {
666 map->dm_mapsize = uio->uio_resid;
667 map->_dm_origbuf = uio;
668 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
669 map->_dm_vmspace = uio->uio_vmspace;
670 }
671 return (error);
672 }
673
674 /*
675 * Like _bus_dmamap_load(), but for raw memory allocated with
676 * bus_dmamem_alloc().
677 */
678 int
679 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
680 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
681 {
682
683 panic("_bus_dmamap_load_raw: not implemented");
684 }
685
686 /*
687 * Common function for unloading a DMA map. May be called by
688 * bus-specific DMA map unload functions.
689 */
690 void
691 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
692 {
693
694 #ifdef DEBUG_DMA
695 printf("dmamap_unload: t=%p map=%p\n", t, map);
696 #endif /* DEBUG_DMA */
697
698 /*
699 * No resources to free; just mark the mappings as
700 * invalid.
701 */
702 map->dm_mapsize = 0;
703 map->dm_nsegs = 0;
704 map->_dm_origbuf = NULL;
705 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
706 map->_dm_vmspace = NULL;
707 }
708
709 static void
710 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
711 {
712 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
713 #if 0
714 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
715 va, pa, len, ops, readonly_p);
716 #endif
717
718 switch (ops) {
719 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
720 if (!readonly_p) {
721 cpu_dcache_wbinv_range(va, len);
722 cpu_sdcache_wbinv_range(va, pa, len);
723 break;
724 }
725 /* FALLTHROUGH */
726
727 case BUS_DMASYNC_PREREAD: {
728 const size_t line_size = arm_dcache_align;
729 const size_t line_mask = arm_dcache_align_mask;
730 vsize_t misalignment = va & line_mask;
731 if (misalignment) {
732 va -= misalignment;
733 pa -= misalignment;
734 len += misalignment;
735 cpu_dcache_wbinv_range(va, line_size);
736 cpu_sdcache_wbinv_range(va, pa, line_size);
737 if (len <= line_size)
738 break;
739 va += line_size;
740 pa += line_size;
741 len -= line_size;
742 }
743 misalignment = len & line_mask;
744 len -= misalignment;
745 if (len > 0) {
746 cpu_dcache_inv_range(va, len);
747 cpu_sdcache_inv_range(va, pa, len);
748 }
749 if (misalignment) {
750 va += len;
751 pa += len;
752 cpu_dcache_wbinv_range(va, line_size);
753 cpu_sdcache_wbinv_range(va, pa, line_size);
754 }
755 break;
756 }
757
758 case BUS_DMASYNC_PREWRITE:
759 cpu_dcache_wb_range(va, len);
760 cpu_sdcache_wb_range(va, pa, len);
761 break;
762
763 #ifdef CPU_CORTEX
764 /*
765 * Cortex CPUs can do speculative loads so we need to clean the cache
766 * after a DMA read to deal with any speculatively loaded cache lines.
767 * Since these can't be dirty, we can just invalidate them and don't
768 * have to worry about having to write back their contents.
769 */
770 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
771 case BUS_DMASYNC_POSTREAD:
772 cpu_dcache_inv_range(va, len);
773 cpu_sdcache_inv_range(va, pa, len);
774 break;
775 #endif
776 }
777 }
778
779 static inline void
780 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
781 bus_size_t len, int ops)
782 {
783 bus_dma_segment_t *ds = map->dm_segs;
784 vaddr_t va = (vaddr_t) map->_dm_origbuf;
785 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
786 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
787 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
788 va = (vaddr_t) cookie->id_bouncebuf;
789 }
790 #endif
791
792 while (len > 0) {
793 while (offset >= ds->ds_len) {
794 offset -= ds->ds_len;
795 va += ds->ds_len;
796 ds++;
797 }
798
799 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
800 size_t seglen = min(len, ds->ds_len - offset);
801
802 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
803 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
804 false);
805
806 offset += seglen;
807 len -= seglen;
808 }
809 }
810
811 static inline void
812 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
813 bus_size_t len, int ops)
814 {
815 bus_dma_segment_t *ds = map->dm_segs;
816 struct mbuf *m = map->_dm_origbuf;
817 bus_size_t voff = offset;
818 bus_size_t ds_off = offset;
819
820 while (len > 0) {
821 /* Find the current dma segment */
822 while (ds_off >= ds->ds_len) {
823 ds_off -= ds->ds_len;
824 ds++;
825 }
826 /* Find the current mbuf. */
827 while (voff >= m->m_len) {
828 voff -= m->m_len;
829 m = m->m_next;
830 }
831
832 /*
833 * Now at the first mbuf to sync; nail each one until
834 * we have exhausted the length.
835 */
836 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
837 vaddr_t va = mtod(m, vaddr_t) + voff;
838 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
839
840 /*
841 * We can save a lot of work here if we know the mapping
842 * is read-only at the MMU:
843 *
844 * If a mapping is read-only, no dirty cache blocks will
845 * exist for it. If a writable mapping was made read-only,
846 * we know any dirty cache lines for the range will have
847 * been cleaned for us already. Therefore, if the upper
848 * layer can tell us we have a read-only mapping, we can
849 * skip all cache cleaning.
850 *
851 * NOTE: This only works if we know the pmap cleans pages
852 * before making a read-write -> read-only transition. If
853 * this ever becomes non-true (e.g. Physically Indexed
854 * cache), this will have to be revisited.
855 */
856
857 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
858 _bus_dmamap_sync_segment(va, pa, seglen, ops,
859 M_ROMAP(m));
860 voff += seglen;
861 ds_off += seglen;
862 len -= seglen;
863 }
864 }
865
866 static inline void
867 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
868 bus_size_t len, int ops)
869 {
870 bus_dma_segment_t *ds = map->dm_segs;
871 struct uio *uio = map->_dm_origbuf;
872 struct iovec *iov = uio->uio_iov;
873 bus_size_t voff = offset;
874 bus_size_t ds_off = offset;
875
876 while (len > 0) {
877 /* Find the current dma segment */
878 while (ds_off >= ds->ds_len) {
879 ds_off -= ds->ds_len;
880 ds++;
881 }
882
883 /* Find the current iovec. */
884 while (voff >= iov->iov_len) {
885 voff -= iov->iov_len;
886 iov++;
887 }
888
889 /*
890 * Now at the first iovec to sync; nail each one until
891 * we have exhausted the length.
892 */
893 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
894 vaddr_t va = (vaddr_t) iov->iov_base + voff;
895 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
896
897 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
898 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
899
900 voff += seglen;
901 ds_off += seglen;
902 len -= seglen;
903 }
904 }
905
906 /*
907 * Common function for DMA map synchronization. May be called
908 * by bus-specific DMA map synchronization functions.
909 *
910 * This version works for the Virtually Indexed Virtually Tagged
911 * cache found on 32-bit ARM processors.
912 *
913 * XXX Should have separate versions for write-through vs.
914 * XXX write-back caches. We currently assume write-back
915 * XXX here, which is not as efficient as it could be for
916 * XXX the write-through case.
917 */
918 void
919 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
920 bus_size_t len, int ops)
921 {
922 #ifdef DEBUG_DMA
923 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
924 t, map, offset, len, ops);
925 #endif /* DEBUG_DMA */
926
927 /*
928 * Mixing of PRE and POST operations is not allowed.
929 */
930 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
931 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
932 panic("_bus_dmamap_sync: mix PRE and POST");
933
934 #ifdef DIAGNOSTIC
935 if (offset >= map->dm_mapsize)
936 panic("_bus_dmamap_sync: bad offset %lu (map size is %lu)",
937 offset, map->dm_mapsize);
938 if (len == 0 || (offset + len) > map->dm_mapsize)
939 panic("_bus_dmamap_sync: bad length");
940 #endif
941
942 /*
943 * For a virtually-indexed write-back cache, we need
944 * to do the following things:
945 *
946 * PREREAD -- Invalidate the D-cache. We do this
947 * here in case a write-back is required by the back-end.
948 *
949 * PREWRITE -- Write-back the D-cache. Note that if
950 * we are doing a PREREAD|PREWRITE, we can collapse
951 * the whole thing into a single Wb-Inv.
952 *
953 * POSTREAD -- Re-invalidate the D-cache in case speculative
954 * memory accesses caused cachelines to become valid with now
955 * invalid data.
956 *
957 * POSTWRITE -- Nothing.
958 */
959 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
960 const bool bouncing = (map->_dm_flags & _BUS_DMA_IS_BOUNCING);
961 #else
962 const bool bouncing = false;
963 #endif
964
965 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
966 #ifdef CPU_CORTEX
967 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
968 #else
969 const int post_ops = 0;
970 #endif
971 if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
972 return;
973 }
974 KASSERT(pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD));
975 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
976 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
977 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
978 STAT_INCR(write_bounces);
979 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
980 /*
981 * Copy the caller's buffer to the bounce buffer.
982 */
983 switch (map->_dm_buftype) {
984 case _BUS_DMA_BUFTYPE_LINEAR:
985 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
986 break;
987 case _BUS_DMA_BUFTYPE_MBUF:
988 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
989 break;
990 case _BUS_DMA_BUFTYPE_UIO:
991 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
992 break;
993 #ifdef DIAGNOSTIC
994 case _BUS_DMA_BUFTYPE_RAW:
995 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
996 break;
997
998 case _BUS_DMA_BUFTYPE_INVALID:
999 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1000 break;
1001
1002 default:
1003 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1004 map, map->_dm_buftype);
1005 break;
1006 #endif /* DIAGNOSTIC */
1007 }
1008 }
1009 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1010
1011 /* Skip cache frobbing if mapping was COHERENT. */
1012 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1013 /* Drain the write buffer. */
1014 cpu_drain_writebuf();
1015 return;
1016 }
1017
1018 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1019 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1020 goto bounce_it;
1021 }
1022 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1023
1024 /*
1025 * If the mapping belongs to a non-kernel vmspace, and the
1026 * vmspace has not been active since the last time a full
1027 * cache flush was performed, we don't need to do anything.
1028 */
1029 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1030 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1031 return;
1032
1033 int buftype = map->_dm_buftype;
1034 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1035 if (bouncing) {
1036 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1037 }
1038 #endif
1039
1040 switch (buftype) {
1041 case _BUS_DMA_BUFTYPE_LINEAR:
1042 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1043 break;
1044
1045 case _BUS_DMA_BUFTYPE_MBUF:
1046 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1047 break;
1048
1049 case _BUS_DMA_BUFTYPE_UIO:
1050 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1051 break;
1052
1053 case _BUS_DMA_BUFTYPE_RAW:
1054 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1055 break;
1056
1057 case _BUS_DMA_BUFTYPE_INVALID:
1058 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1059 break;
1060
1061 default:
1062 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1063 map, map->_dm_buftype);
1064 }
1065
1066 /* Drain the write buffer. */
1067 cpu_drain_writebuf();
1068
1069 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1070 bounce_it:
1071 if ((ops & BUS_DMASYNC_POSTREAD) == 0
1072 || (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) == 0)
1073 return;
1074
1075 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1076 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1077 STAT_INCR(read_bounces);
1078 /*
1079 * Copy the bounce buffer to the caller's buffer.
1080 */
1081 switch (map->_dm_buftype) {
1082 case _BUS_DMA_BUFTYPE_LINEAR:
1083 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1084 break;
1085
1086 case _BUS_DMA_BUFTYPE_MBUF:
1087 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1088 break;
1089
1090 case _BUS_DMA_BUFTYPE_UIO:
1091 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1092 break;
1093 #ifdef DIAGNOSTIC
1094 case _BUS_DMA_BUFTYPE_RAW:
1095 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1096 break;
1097
1098 case _BUS_DMA_BUFTYPE_INVALID:
1099 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1100 break;
1101
1102 default:
1103 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1104 map, map->_dm_buftype);
1105 break;
1106 #endif
1107 }
1108 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1109 }
1110
1111 /*
1112 * Common function for DMA-safe memory allocation. May be called
1113 * by bus-specific DMA memory allocation functions.
1114 */
1115
1116 extern paddr_t physical_start;
1117 extern paddr_t physical_end;
1118
1119 int
1120 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1121 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1122 int flags)
1123 {
1124 struct arm32_dma_range *dr;
1125 int error, i;
1126
1127 #ifdef DEBUG_DMA
1128 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1129 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1130 boundary, segs, nsegs, rsegs, flags);
1131 #endif
1132
1133 if ((dr = t->_ranges) != NULL) {
1134 error = ENOMEM;
1135 for (i = 0; i < t->_nranges; i++, dr++) {
1136 if (dr->dr_len == 0
1137 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1138 continue;
1139 error = _bus_dmamem_alloc_range(t, size, alignment,
1140 boundary, segs, nsegs, rsegs, flags,
1141 trunc_page(dr->dr_sysbase),
1142 trunc_page(dr->dr_sysbase + dr->dr_len));
1143 if (error == 0)
1144 break;
1145 }
1146 } else {
1147 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1148 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1149 trunc_page(physical_end));
1150 }
1151
1152 #ifdef DEBUG_DMA
1153 printf("dmamem_alloc: =%d\n", error);
1154 #endif
1155
1156 return(error);
1157 }
1158
1159 /*
1160 * Common function for freeing DMA-safe memory. May be called by
1161 * bus-specific DMA memory free functions.
1162 */
1163 void
1164 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1165 {
1166 struct vm_page *m;
1167 bus_addr_t addr;
1168 struct pglist mlist;
1169 int curseg;
1170
1171 #ifdef DEBUG_DMA
1172 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1173 #endif /* DEBUG_DMA */
1174
1175 /*
1176 * Build a list of pages to free back to the VM system.
1177 */
1178 TAILQ_INIT(&mlist);
1179 for (curseg = 0; curseg < nsegs; curseg++) {
1180 for (addr = segs[curseg].ds_addr;
1181 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1182 addr += PAGE_SIZE) {
1183 m = PHYS_TO_VM_PAGE(addr);
1184 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1185 }
1186 }
1187 uvm_pglistfree(&mlist);
1188 }
1189
1190 /*
1191 * Common function for mapping DMA-safe memory. May be called by
1192 * bus-specific DMA memory map functions.
1193 */
1194 int
1195 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1196 size_t size, void **kvap, int flags)
1197 {
1198 vaddr_t va;
1199 paddr_t pa;
1200 int curseg;
1201 pt_entry_t *ptep;
1202 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1203 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1204 vsize_t align = 0;
1205
1206 #ifdef DEBUG_DMA
1207 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1208 segs, nsegs, (unsigned long)size, flags);
1209 #endif /* DEBUG_DMA */
1210
1211 #ifdef PMAP_MAP_POOLPAGE
1212 /*
1213 * If all of memory is mapped, and we are mapping a single physically
1214 * contiguous area then this area is already mapped. Let's see if we
1215 * avoid having a separate mapping for it.
1216 */
1217 if (nsegs == 1) {
1218 /*
1219 * If this is a non-COHERENT mapping, then the existing kernel
1220 * mapping is already compatible with it.
1221 */
1222 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1223 pa = segs[0].ds_addr;
1224
1225 /*
1226 * This is a COHERENT mapping which, unless this address is in
1227 * a COHERENT dma range, will not be compatible.
1228 */
1229 if (t->_ranges != NULL) {
1230 const struct arm32_dma_range * const dr =
1231 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1232 if (dr != NULL
1233 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1234 direct_mapable = true;
1235 }
1236 }
1237
1238 if (direct_mapable) {
1239 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1240 #ifdef DEBUG_DMA
1241 printf("dmamem_map: =%p\n", *kvap);
1242 #endif /* DEBUG_DMA */
1243 return 0;
1244 }
1245 }
1246 #endif
1247
1248 size = round_page(size);
1249 if (__predict_true(size > L2_L_SIZE)) {
1250 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1251 if (size >= L1_SS_SIZE)
1252 align = L1_SS_SIZE;
1253 else
1254 #endif
1255 if (size >= L1_S_SIZE)
1256 align = L1_S_SIZE;
1257 else
1258 align = L2_S_SIZE;
1259 }
1260
1261 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1262 if (__predict_false(va == 0 && align > 0)) {
1263 align = 0;
1264 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1265 }
1266
1267 if (va == 0)
1268 return (ENOMEM);
1269
1270 *kvap = (void *)va;
1271
1272 for (curseg = 0; curseg < nsegs; curseg++) {
1273 for (pa = segs[curseg].ds_addr;
1274 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1275 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1276 bool uncached = (flags & BUS_DMA_COHERENT);
1277 #ifdef DEBUG_DMA
1278 printf("wiring p%lx to v%lx", pa, va);
1279 #endif /* DEBUG_DMA */
1280 if (size == 0)
1281 panic("_bus_dmamem_map: size botch");
1282
1283 const struct arm32_dma_range * const dr =
1284 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1285 /*
1286 * If this dma region is coherent then there is
1287 * no need for an uncached mapping.
1288 */
1289 if (dr != NULL
1290 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1291 uncached = false;
1292 }
1293
1294 pmap_kenter_pa(va, pa,
1295 VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1296
1297 /*
1298 * If the memory must remain coherent with the
1299 * cache then we must make the memory uncacheable
1300 * in order to maintain virtual cache coherency.
1301 * We must also guarantee the cache does not already
1302 * contain the virtal addresses we are making
1303 * uncacheable.
1304 */
1305 if (uncached) {
1306 cpu_dcache_wbinv_range(va, PAGE_SIZE);
1307 cpu_sdcache_wbinv_range(va, pa, PAGE_SIZE);
1308 cpu_drain_writebuf();
1309 ptep = vtopte(va);
1310 *ptep &= ~L2_S_CACHE_MASK;
1311 PTE_SYNC(ptep);
1312 tlb_flush();
1313 }
1314 #ifdef DEBUG_DMA
1315 ptep = vtopte(va);
1316 printf(" pte=v%p *pte=%x\n", ptep, *ptep);
1317 #endif /* DEBUG_DMA */
1318 }
1319 }
1320 pmap_update(pmap_kernel());
1321 #ifdef DEBUG_DMA
1322 printf("dmamem_map: =%p\n", *kvap);
1323 #endif /* DEBUG_DMA */
1324 return (0);
1325 }
1326
1327 /*
1328 * Common function for unmapping DMA-safe memory. May be called by
1329 * bus-specific DMA memory unmapping functions.
1330 */
1331 void
1332 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1333 {
1334
1335 #ifdef DEBUG_DMA
1336 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1337 #endif /* DEBUG_DMA */
1338 #ifdef DIAGNOSTIC
1339 if ((u_long)kva & PGOFSET)
1340 panic("_bus_dmamem_unmap");
1341 #endif /* DIAGNOSTIC */
1342
1343 size = round_page(size);
1344 pmap_kremove((vaddr_t)kva, size);
1345 pmap_update(pmap_kernel());
1346 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1347 }
1348
1349 /*
1350 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1351 * bus-specific DMA mmap(2)'ing functions.
1352 */
1353 paddr_t
1354 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1355 off_t off, int prot, int flags)
1356 {
1357 paddr_t map_flags;
1358 int i;
1359
1360 for (i = 0; i < nsegs; i++) {
1361 #ifdef DIAGNOSTIC
1362 if (off & PGOFSET)
1363 panic("_bus_dmamem_mmap: offset unaligned");
1364 if (segs[i].ds_addr & PGOFSET)
1365 panic("_bus_dmamem_mmap: segment unaligned");
1366 if (segs[i].ds_len & PGOFSET)
1367 panic("_bus_dmamem_mmap: segment size not multiple"
1368 " of page size");
1369 #endif /* DIAGNOSTIC */
1370 if (off >= segs[i].ds_len) {
1371 off -= segs[i].ds_len;
1372 continue;
1373 }
1374
1375 map_flags = 0;
1376 if (flags & BUS_DMA_PREFETCHABLE)
1377 map_flags |= ARM32_MMAP_WRITECOMBINE;
1378
1379 return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1380
1381 }
1382
1383 /* Page not found. */
1384 return (-1);
1385 }
1386
1387 /**********************************************************************
1388 * DMA utility functions
1389 **********************************************************************/
1390
1391 /*
1392 * Utility function to load a linear buffer. lastaddrp holds state
1393 * between invocations (for multiple-buffer loads). segp contains
1394 * the starting segment on entrace, and the ending segment on exit.
1395 * first indicates if this is the first invocation of this function.
1396 */
1397 int
1398 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1399 bus_size_t buflen, struct vmspace *vm, int flags)
1400 {
1401 bus_size_t sgsize;
1402 bus_addr_t curaddr;
1403 vaddr_t vaddr = (vaddr_t)buf;
1404 int error;
1405 pmap_t pmap;
1406
1407 #ifdef DEBUG_DMA
1408 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1409 buf, buflen, flags);
1410 #endif /* DEBUG_DMA */
1411
1412 pmap = vm_map_pmap(&vm->vm_map);
1413
1414 while (buflen > 0) {
1415 /*
1416 * Get the physical address for this segment.
1417 *
1418 * XXX Doesn't support checking for coherent mappings
1419 * XXX in user address space.
1420 */
1421 bool coherent;
1422 if (__predict_true(pmap == pmap_kernel())) {
1423 pd_entry_t *pde;
1424 pt_entry_t *ptep;
1425 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1426 if (__predict_false(pmap_pde_section(pde))) {
1427 paddr_t s_frame = L1_S_FRAME;
1428 paddr_t s_offset = L1_S_OFFSET;
1429 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1430 if (__predict_false(pmap_pde_supersection(pde))) {
1431 s_frame = L1_SS_FRAME;
1432 s_offset = L1_SS_OFFSET;
1433 }
1434 #endif
1435 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1436 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1437 } else {
1438 pt_entry_t pte = *ptep;
1439 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1440 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1441 vaddr, *pde, ptep, pte);
1442 if (__predict_false((pte & L2_TYPE_MASK)
1443 == L2_TYPE_L)) {
1444 curaddr = (pte & L2_L_FRAME) |
1445 (vaddr & L2_L_OFFSET);
1446 coherent = (pte & L2_L_CACHE_MASK) == 0;
1447 } else {
1448 curaddr = (pte & L2_S_FRAME) |
1449 (vaddr & L2_S_OFFSET);
1450 coherent = (pte & L2_S_CACHE_MASK) == 0;
1451 }
1452 }
1453 } else {
1454 (void) pmap_extract(pmap, vaddr, &curaddr);
1455 coherent = false;
1456 }
1457
1458 /*
1459 * Compute the segment size, and adjust counts.
1460 */
1461 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1462 if (buflen < sgsize)
1463 sgsize = buflen;
1464
1465 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1466 coherent);
1467 if (error)
1468 return (error);
1469
1470 vaddr += sgsize;
1471 buflen -= sgsize;
1472 }
1473
1474 return (0);
1475 }
1476
1477 /*
1478 * Allocate physical memory from the given physical address range.
1479 * Called by DMA-safe memory allocation methods.
1480 */
1481 int
1482 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1483 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1484 int flags, paddr_t low, paddr_t high)
1485 {
1486 paddr_t curaddr, lastaddr;
1487 struct vm_page *m;
1488 struct pglist mlist;
1489 int curseg, error;
1490
1491 #ifdef DEBUG_DMA
1492 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1493 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1494 #endif /* DEBUG_DMA */
1495
1496 /* Always round the size. */
1497 size = round_page(size);
1498
1499 /*
1500 * Allocate pages from the VM system.
1501 */
1502 error = uvm_pglistalloc(size, low, high, alignment, boundary,
1503 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1504 if (error)
1505 return (error);
1506
1507 /*
1508 * Compute the location, size, and number of segments actually
1509 * returned by the VM code.
1510 */
1511 m = TAILQ_FIRST(&mlist);
1512 curseg = 0;
1513 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1514 segs[curseg].ds_len = PAGE_SIZE;
1515 #ifdef DEBUG_DMA
1516 printf("alloc: page %lx\n", lastaddr);
1517 #endif /* DEBUG_DMA */
1518 m = TAILQ_NEXT(m, pageq.queue);
1519
1520 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1521 curaddr = VM_PAGE_TO_PHYS(m);
1522 #ifdef DIAGNOSTIC
1523 if (curaddr < low || curaddr >= high) {
1524 printf("uvm_pglistalloc returned non-sensical"
1525 " address 0x%lx\n", curaddr);
1526 panic("_bus_dmamem_alloc_range");
1527 }
1528 #endif /* DIAGNOSTIC */
1529 #ifdef DEBUG_DMA
1530 printf("alloc: page %lx\n", curaddr);
1531 #endif /* DEBUG_DMA */
1532 if (curaddr == (lastaddr + PAGE_SIZE))
1533 segs[curseg].ds_len += PAGE_SIZE;
1534 else {
1535 curseg++;
1536 segs[curseg].ds_addr = curaddr;
1537 segs[curseg].ds_len = PAGE_SIZE;
1538 }
1539 lastaddr = curaddr;
1540 }
1541
1542 *rsegs = curseg + 1;
1543
1544 return (0);
1545 }
1546
1547 /*
1548 * Check if a memory region intersects with a DMA range, and return the
1549 * page-rounded intersection if it does.
1550 */
1551 int
1552 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1553 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1554 {
1555 struct arm32_dma_range *dr;
1556 int i;
1557
1558 if (ranges == NULL)
1559 return (0);
1560
1561 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1562 if (dr->dr_sysbase <= pa &&
1563 pa < (dr->dr_sysbase + dr->dr_len)) {
1564 /*
1565 * Beginning of region intersects with this range.
1566 */
1567 *pap = trunc_page(pa);
1568 *sizep = round_page(min(pa + size,
1569 dr->dr_sysbase + dr->dr_len) - pa);
1570 return (1);
1571 }
1572 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1573 /*
1574 * End of region intersects with this range.
1575 */
1576 *pap = trunc_page(dr->dr_sysbase);
1577 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1578 dr->dr_len));
1579 return (1);
1580 }
1581 }
1582
1583 /* No intersection found. */
1584 return (0);
1585 }
1586
1587 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1588 static int
1589 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1590 bus_size_t size, int flags)
1591 {
1592 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1593 int error = 0;
1594
1595 #ifdef DIAGNOSTIC
1596 if (cookie == NULL)
1597 panic("_bus_dma_alloc_bouncebuf: no cookie");
1598 #endif
1599
1600 cookie->id_bouncebuflen = round_page(size);
1601 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1602 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1603 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1604 if (error)
1605 goto out;
1606 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1607 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1608 (void **)&cookie->id_bouncebuf, flags);
1609
1610 out:
1611 if (error) {
1612 _bus_dmamem_free(t, cookie->id_bouncesegs,
1613 cookie->id_nbouncesegs);
1614 cookie->id_bouncebuflen = 0;
1615 cookie->id_nbouncesegs = 0;
1616 } else {
1617 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1618 }
1619
1620 return (error);
1621 }
1622
1623 static void
1624 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1625 {
1626 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1627
1628 #ifdef DIAGNOSTIC
1629 if (cookie == NULL)
1630 panic("_bus_dma_alloc_bouncebuf: no cookie");
1631 #endif
1632
1633 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1634 _bus_dmamem_free(t, cookie->id_bouncesegs,
1635 cookie->id_nbouncesegs);
1636 cookie->id_bouncebuflen = 0;
1637 cookie->id_nbouncesegs = 0;
1638 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1639 }
1640
1641 /*
1642 * This function does the same as uiomove, but takes an explicit
1643 * direction, and does not update the uio structure.
1644 */
1645 static int
1646 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1647 {
1648 struct iovec *iov;
1649 int error;
1650 struct vmspace *vm;
1651 char *cp;
1652 size_t resid, cnt;
1653 int i;
1654
1655 iov = uio->uio_iov;
1656 vm = uio->uio_vmspace;
1657 cp = buf;
1658 resid = n;
1659
1660 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1661 iov = &uio->uio_iov[i];
1662 if (iov->iov_len == 0)
1663 continue;
1664 cnt = MIN(resid, iov->iov_len);
1665
1666 if (!VMSPACE_IS_KERNEL_P(vm) &&
1667 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1668 != 0) {
1669 preempt();
1670 }
1671 if (direction == UIO_READ) {
1672 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1673 } else {
1674 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1675 }
1676 if (error)
1677 return (error);
1678 cp += cnt;
1679 resid -= cnt;
1680 }
1681 return (0);
1682 }
1683 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1684
1685 int
1686 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1687 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1688 {
1689
1690 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1691 struct arm32_dma_range *dr;
1692 bool subset = false;
1693 size_t nranges = 0;
1694 size_t i;
1695 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1696 if (dr->dr_sysbase <= min_addr
1697 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1698 subset = true;
1699 }
1700 if (min_addr <= dr->dr_sysbase + dr->dr_len
1701 && max_addr >= dr->dr_sysbase) {
1702 nranges++;
1703 }
1704 }
1705 if (subset) {
1706 *newtag = tag;
1707 /* if the tag must be freed, add a reference */
1708 if (tag->_tag_needs_free)
1709 (tag->_tag_needs_free)++;
1710 return 0;
1711 }
1712 if (nranges == 0) {
1713 nranges = 1;
1714 }
1715
1716 size_t mallocsize = sizeof(*tag) + nranges * sizeof(*dr);
1717 if ((*newtag = malloc(mallocsize, M_DMAMAP,
1718 (flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
1719 return ENOMEM;
1720
1721 dr = (void *)(*newtag + 1);
1722 **newtag = *tag;
1723 (*newtag)->_tag_needs_free = 1;
1724 (*newtag)->_ranges = dr;
1725 (*newtag)->_nranges = nranges;
1726
1727 if (tag->_ranges == NULL) {
1728 dr->dr_sysbase = min_addr;
1729 dr->dr_busbase = min_addr;
1730 dr->dr_len = max_addr + 1 - min_addr;
1731 } else {
1732 for (i = 0; i < nranges; i++) {
1733 if (min_addr > dr->dr_sysbase + dr->dr_len
1734 || max_addr < dr->dr_sysbase)
1735 continue;
1736 dr[0] = tag->_ranges[i];
1737 if (dr->dr_sysbase < min_addr) {
1738 psize_t diff = min_addr - dr->dr_sysbase;
1739 dr->dr_busbase += diff;
1740 dr->dr_len -= diff;
1741 dr->dr_sysbase += diff;
1742 }
1743 if (max_addr != 0xffffffff
1744 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1745 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1746 }
1747 dr++;
1748 }
1749 }
1750
1751 return 0;
1752 #else
1753 return EOPNOTSUPP;
1754 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1755 }
1756
1757 void
1758 _bus_dmatag_destroy(bus_dma_tag_t tag)
1759 {
1760 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1761 switch (tag->_tag_needs_free) {
1762 case 0:
1763 break; /* not allocated with malloc */
1764 case 1:
1765 free(tag, M_DMAMAP); /* last reference to tag */
1766 break;
1767 default:
1768 (tag->_tag_needs_free)--; /* one less reference */
1769 }
1770 #endif
1771 }
1772