bus_dma.c revision 1.81 1 /* $NetBSD: bus_dma.c,v 1.81 2014/02/26 01:05:52 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.81 2014/02/26 01:05:52 matt Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/reboot.h>
46 #include <sys/conf.h>
47 #include <sys/file.h>
48 #include <sys/kmem.h>
49 #include <sys/mbuf.h>
50 #include <sys/vnode.h>
51 #include <sys/device.h>
52
53 #include <uvm/uvm.h>
54
55 #include <sys/bus.h>
56 #include <machine/cpu.h>
57
58 #include <arm/cpufunc.h>
59
60 #ifdef BUSDMA_COUNTERS
61 static struct evcnt bus_dma_creates =
62 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
63 static struct evcnt bus_dma_bounced_creates =
64 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
65 static struct evcnt bus_dma_loads =
66 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
67 static struct evcnt bus_dma_bounced_loads =
68 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
69 static struct evcnt bus_dma_coherent_loads =
70 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
71 static struct evcnt bus_dma_read_bounces =
72 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
73 static struct evcnt bus_dma_write_bounces =
74 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
75 static struct evcnt bus_dma_bounced_unloads =
76 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
77 static struct evcnt bus_dma_unloads =
78 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
79 static struct evcnt bus_dma_bounced_destroys =
80 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
81 static struct evcnt bus_dma_destroys =
82 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
83 static struct evcnt bus_dma_sync_prereadwrite =
84 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
85 static struct evcnt bus_dma_sync_preread_begin =
86 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
87 static struct evcnt bus_dma_sync_preread =
88 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
89 static struct evcnt bus_dma_sync_preread_tail =
90 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
91 static struct evcnt bus_dma_sync_prewrite =
92 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
93 static struct evcnt bus_dma_sync_postread =
94 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
95 static struct evcnt bus_dma_sync_postreadwrite =
96 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
97 static struct evcnt bus_dma_sync_postwrite =
98 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
99
100 EVCNT_ATTACH_STATIC(bus_dma_creates);
101 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
102 EVCNT_ATTACH_STATIC(bus_dma_loads);
103 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
104 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
105 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
106 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
107 EVCNT_ATTACH_STATIC(bus_dma_unloads);
108 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
109 EVCNT_ATTACH_STATIC(bus_dma_destroys);
110 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
111 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
112 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
113 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
119
120 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
121 #else
122 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
123 #endif
124
125 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
126 bus_size_t, struct vmspace *, int);
127 static struct arm32_dma_range *
128 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
129
130 /*
131 * Check to see if the specified page is in an allowed DMA range.
132 */
133 inline struct arm32_dma_range *
134 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
135 bus_addr_t curaddr)
136 {
137 struct arm32_dma_range *dr;
138 int i;
139
140 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
141 if (curaddr >= dr->dr_sysbase &&
142 round_page(curaddr) <= (dr->dr_sysbase + dr->dr_len))
143 return (dr);
144 }
145
146 return (NULL);
147 }
148
149 /*
150 * Check to see if the specified busaddr is in an allowed DMA range.
151 */
152 static inline paddr_t
153 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
154 {
155 struct arm32_dma_range *dr;
156 u_int i;
157
158 if (t->_nranges == 0)
159 return curaddr;
160
161 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
162 if (dr->dr_busbase <= curaddr
163 && round_page(curaddr) <= dr->dr_busbase + dr->dr_len)
164 return curaddr - dr->dr_busbase + dr->dr_sysbase;
165 }
166 panic("%s: curaddr %#lx not in range", __func__, curaddr);
167 }
168
169 /*
170 * Common function to load the specified physical address into the
171 * DMA map, coalescing segments and boundary checking as necessary.
172 */
173 static int
174 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
175 bus_addr_t paddr, bus_size_t size, bool coherent)
176 {
177 bus_dma_segment_t * const segs = map->dm_segs;
178 int nseg = map->dm_nsegs;
179 bus_addr_t lastaddr;
180 bus_addr_t bmask = ~(map->_dm_boundary - 1);
181 bus_addr_t curaddr;
182 bus_size_t sgsize;
183 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
184
185 if (nseg > 0)
186 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
187 else
188 lastaddr = 0xdead;
189
190 again:
191 sgsize = size;
192
193 /* Make sure we're in an allowed DMA range. */
194 if (t->_ranges != NULL) {
195 /* XXX cache last result? */
196 const struct arm32_dma_range * const dr =
197 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
198 if (dr == NULL)
199 return (EINVAL);
200
201 /*
202 * If this region is coherent, mark the segment as coherent.
203 */
204 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
205
206 /*
207 * In a valid DMA range. Translate the physical
208 * memory address to an address in the DMA window.
209 */
210 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
211 #if 0
212 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
213 t, paddr, dr->dr_sysbase, dr->dr_busbase,
214 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
215 #endif
216 } else
217 curaddr = paddr;
218
219 /*
220 * Make sure we don't cross any boundaries.
221 */
222 if (map->_dm_boundary > 0) {
223 bus_addr_t baddr; /* next boundary address */
224
225 baddr = (curaddr + map->_dm_boundary) & bmask;
226 if (sgsize > (baddr - curaddr))
227 sgsize = (baddr - curaddr);
228 }
229
230 /*
231 * Insert chunk into a segment, coalescing with the
232 * previous segment if possible.
233 */
234 if (nseg > 0 && curaddr == lastaddr &&
235 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
236 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
237 (map->_dm_boundary == 0 ||
238 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
239 /* coalesce */
240 segs[nseg-1].ds_len += sgsize;
241 } else if (nseg >= map->_dm_segcnt) {
242 return (EFBIG);
243 } else {
244 /* new segment */
245 segs[nseg].ds_addr = curaddr;
246 segs[nseg].ds_len = sgsize;
247 segs[nseg]._ds_flags = _ds_flags;
248 nseg++;
249 }
250
251 lastaddr = curaddr + sgsize;
252
253 paddr += sgsize;
254 size -= sgsize;
255 if (size > 0)
256 goto again;
257
258 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
259 map->dm_nsegs = nseg;
260 return (0);
261 }
262
263 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
264 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
265 bus_size_t size, int flags);
266 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
267 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
268 int direction);
269
270 static int
271 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
272 size_t buflen, int buftype, int flags)
273 {
274 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
275 struct vmspace * const vm = vmspace_kernel();
276 int error;
277
278 KASSERT(cookie != NULL);
279 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
280
281 /*
282 * Allocate bounce pages, if necessary.
283 */
284 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
285 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
286 if (error)
287 return (error);
288 }
289
290 /*
291 * Cache a pointer to the caller's buffer and load the DMA map
292 * with the bounce buffer.
293 */
294 cookie->id_origbuf = buf;
295 cookie->id_origbuflen = buflen;
296 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
297 buflen, vm, flags);
298 if (error)
299 return (error);
300
301 STAT_INCR(bounced_loads);
302 map->dm_mapsize = buflen;
303 map->_dm_vmspace = vm;
304 map->_dm_buftype = buftype;
305
306 /* ...so _bus_dmamap_sync() knows we're bouncing */
307 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
308 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
309 return 0;
310 }
311 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
312
313 /*
314 * Common function for DMA map creation. May be called by bus-specific
315 * DMA map creation functions.
316 */
317 int
318 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
319 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
320 {
321 struct arm32_bus_dmamap *map;
322 void *mapstore;
323
324 #ifdef DEBUG_DMA
325 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
326 t, size, nsegments, maxsegsz, boundary, flags);
327 #endif /* DEBUG_DMA */
328
329 /*
330 * Allocate and initialize the DMA map. The end of the map
331 * is a variable-sized array of segments, so we allocate enough
332 * room for them in one shot.
333 *
334 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
335 * of ALLOCNOW notifies others that we've reserved these resources,
336 * and they are not to be freed.
337 *
338 * The bus_dmamap_t includes one bus_dma_segment_t, hence
339 * the (nsegments - 1).
340 */
341 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
342 (sizeof(bus_dma_segment_t) * (nsegments - 1));
343 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
344 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
345 return (ENOMEM);
346
347 map = (struct arm32_bus_dmamap *)mapstore;
348 map->_dm_size = size;
349 map->_dm_segcnt = nsegments;
350 map->_dm_maxmaxsegsz = maxsegsz;
351 map->_dm_boundary = boundary;
352 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
353 map->_dm_origbuf = NULL;
354 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
355 map->_dm_vmspace = vmspace_kernel();
356 map->_dm_cookie = NULL;
357 map->dm_maxsegsz = maxsegsz;
358 map->dm_mapsize = 0; /* no valid mappings */
359 map->dm_nsegs = 0;
360
361 *dmamp = map;
362
363 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
364 struct arm32_bus_dma_cookie *cookie;
365 int cookieflags;
366 void *cookiestore;
367 int error;
368
369 cookieflags = 0;
370
371 if (t->_may_bounce != NULL) {
372 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
373 if (error != 0)
374 goto out;
375 }
376
377 if (t->_ranges != NULL)
378 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
379
380 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
381 STAT_INCR(creates);
382 return 0;
383 }
384
385 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
386 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
387
388 /*
389 * Allocate our cookie.
390 */
391 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
392 error = ENOMEM;
393 goto out;
394 }
395 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
396 cookie->id_flags = cookieflags;
397 map->_dm_cookie = cookie;
398 STAT_INCR(bounced_creates);
399
400 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
401 out:
402 if (error)
403 _bus_dmamap_destroy(t, map);
404 #else
405 STAT_INCR(creates);
406 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
407
408 #ifdef DEBUG_DMA
409 printf("dmamap_create:map=%p\n", map);
410 #endif /* DEBUG_DMA */
411 return (0);
412 }
413
414 /*
415 * Common function for DMA map destruction. May be called by bus-specific
416 * DMA map destruction functions.
417 */
418 void
419 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
420 {
421
422 #ifdef DEBUG_DMA
423 printf("dmamap_destroy: t=%p map=%p\n", t, map);
424 #endif /* DEBUG_DMA */
425 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
426 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
427
428 /*
429 * Free any bounce pages this map might hold.
430 */
431 if (cookie != NULL) {
432 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
433 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
434
435 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
436 STAT_INCR(bounced_unloads);
437 map->dm_nsegs = 0;
438 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
439 _bus_dma_free_bouncebuf(t, map);
440 STAT_INCR(bounced_destroys);
441 kmem_intr_free(cookie, cookiesize);
442 } else
443 #endif
444 STAT_INCR(destroys);
445
446 if (map->dm_nsegs > 0)
447 STAT_INCR(unloads);
448
449 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
450 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
451 kmem_intr_free(map, mapsize);
452 }
453
454 /*
455 * Common function for loading a DMA map with a linear buffer. May
456 * be called by bus-specific DMA map load functions.
457 */
458 int
459 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
460 bus_size_t buflen, struct proc *p, int flags)
461 {
462 struct vmspace *vm;
463 int error;
464
465 #ifdef DEBUG_DMA
466 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
467 t, map, buf, buflen, p, flags);
468 #endif /* DEBUG_DMA */
469
470 if (map->dm_nsegs > 0) {
471 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
472 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
473 if (cookie != NULL) {
474 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
475 STAT_INCR(bounced_unloads);
476 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
477 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
478 }
479 } else
480 #endif
481 STAT_INCR(unloads);
482 }
483
484 /*
485 * Make sure that on error condition we return "no valid mappings".
486 */
487 map->dm_mapsize = 0;
488 map->dm_nsegs = 0;
489 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
490 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
491 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
492 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
493
494 if (buflen > map->_dm_size)
495 return (EINVAL);
496
497 if (p != NULL) {
498 vm = p->p_vmspace;
499 } else {
500 vm = vmspace_kernel();
501 }
502
503 /* _bus_dmamap_load_buffer() clears this if we're not... */
504 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
505
506 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
507 if (error == 0) {
508 map->dm_mapsize = buflen;
509 map->_dm_vmspace = vm;
510 map->_dm_origbuf = buf;
511 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
512 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
513 STAT_INCR(coherent_loads);
514 } else {
515 STAT_INCR(loads);
516 }
517 return 0;
518 }
519 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
520 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
521 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
522 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
523 _BUS_DMA_BUFTYPE_LINEAR, flags);
524 }
525 #endif
526 return (error);
527 }
528
529 /*
530 * Like _bus_dmamap_load(), but for mbufs.
531 */
532 int
533 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
534 int flags)
535 {
536 int error;
537 struct mbuf *m;
538
539 #ifdef DEBUG_DMA
540 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
541 t, map, m0, flags);
542 #endif /* DEBUG_DMA */
543
544 if (map->dm_nsegs > 0) {
545 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
546 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
547 if (cookie != NULL) {
548 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
549 STAT_INCR(bounced_unloads);
550 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
551 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
552 }
553 } else
554 #endif
555 STAT_INCR(unloads);
556 }
557
558 /*
559 * Make sure that on error condition we return "no valid mappings."
560 */
561 map->dm_mapsize = 0;
562 map->dm_nsegs = 0;
563 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
564 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
565 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
566 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
567
568 KASSERT(m0->m_flags & M_PKTHDR);
569
570 if (m0->m_pkthdr.len > map->_dm_size)
571 return (EINVAL);
572
573 /* _bus_dmamap_load_paddr() clears this if we're not... */
574 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
575
576 error = 0;
577 for (m = m0; m != NULL && error == 0; m = m->m_next) {
578 int offset;
579 int remainbytes;
580 const struct vm_page * const *pgs;
581 paddr_t paddr;
582 int size;
583
584 if (m->m_len == 0)
585 continue;
586 /*
587 * Don't allow reads in read-only mbufs.
588 */
589 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
590 error = EFAULT;
591 break;
592 }
593 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
594 case M_EXT|M_CLUSTER:
595 /* XXX KDASSERT */
596 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
597 paddr = m->m_ext.ext_paddr +
598 (m->m_data - m->m_ext.ext_buf);
599 size = m->m_len;
600 error = _bus_dmamap_load_paddr(t, map, paddr, size,
601 false);
602 break;
603
604 case M_EXT|M_EXT_PAGES:
605 KASSERT(m->m_ext.ext_buf <= m->m_data);
606 KASSERT(m->m_data <=
607 m->m_ext.ext_buf + m->m_ext.ext_size);
608
609 offset = (vaddr_t)m->m_data -
610 trunc_page((vaddr_t)m->m_ext.ext_buf);
611 remainbytes = m->m_len;
612
613 /* skip uninteresting pages */
614 pgs = (const struct vm_page * const *)
615 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
616
617 offset &= PAGE_MASK; /* offset in the first page */
618
619 /* load each page */
620 while (remainbytes > 0) {
621 const struct vm_page *pg;
622
623 size = MIN(remainbytes, PAGE_SIZE - offset);
624
625 pg = *pgs++;
626 KASSERT(pg);
627 paddr = VM_PAGE_TO_PHYS(pg) + offset;
628
629 error = _bus_dmamap_load_paddr(t, map,
630 paddr, size, false);
631 if (error)
632 break;
633 offset = 0;
634 remainbytes -= size;
635 }
636 break;
637
638 case 0:
639 paddr = m->m_paddr + M_BUFOFFSET(m) +
640 (m->m_data - M_BUFADDR(m));
641 size = m->m_len;
642 error = _bus_dmamap_load_paddr(t, map, paddr, size,
643 false);
644 break;
645
646 default:
647 error = _bus_dmamap_load_buffer(t, map, m->m_data,
648 m->m_len, vmspace_kernel(), flags);
649 }
650 }
651 if (error == 0) {
652 map->dm_mapsize = m0->m_pkthdr.len;
653 map->_dm_origbuf = m0;
654 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
655 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
656 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
657 STAT_INCR(coherent_loads);
658 } else {
659 STAT_INCR(loads);
660 }
661 return 0;
662 }
663 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
664 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
665 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
666 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
667 _BUS_DMA_BUFTYPE_MBUF, flags);
668 }
669 #endif
670 return (error);
671 }
672
673 /*
674 * Like _bus_dmamap_load(), but for uios.
675 */
676 int
677 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
678 int flags)
679 {
680 int i, error;
681 bus_size_t minlen, resid;
682 struct iovec *iov;
683 void *addr;
684
685 /*
686 * Make sure that on error condition we return "no valid mappings."
687 */
688 map->dm_mapsize = 0;
689 map->dm_nsegs = 0;
690 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
691 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
692 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
693
694 resid = uio->uio_resid;
695 iov = uio->uio_iov;
696
697 /* _bus_dmamap_load_buffer() clears this if we're not... */
698 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
699
700 error = 0;
701 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
702 /*
703 * Now at the first iovec to load. Load each iovec
704 * until we have exhausted the residual count.
705 */
706 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
707 addr = (void *)iov[i].iov_base;
708
709 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
710 uio->uio_vmspace, flags);
711
712 resid -= minlen;
713 }
714 if (error == 0) {
715 map->dm_mapsize = uio->uio_resid;
716 map->_dm_origbuf = uio;
717 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
718 map->_dm_vmspace = uio->uio_vmspace;
719 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
720 STAT_INCR(coherent_loads);
721 } else {
722 STAT_INCR(loads);
723 }
724 }
725 return (error);
726 }
727
728 /*
729 * Like _bus_dmamap_load(), but for raw memory allocated with
730 * bus_dmamem_alloc().
731 */
732 int
733 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
734 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
735 {
736
737 panic("_bus_dmamap_load_raw: not implemented");
738 }
739
740 /*
741 * Common function for unloading a DMA map. May be called by
742 * bus-specific DMA map unload functions.
743 */
744 void
745 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
746 {
747
748 #ifdef DEBUG_DMA
749 printf("dmamap_unload: t=%p map=%p\n", t, map);
750 #endif /* DEBUG_DMA */
751
752 /*
753 * No resources to free; just mark the mappings as
754 * invalid.
755 */
756 map->dm_mapsize = 0;
757 map->dm_nsegs = 0;
758 map->_dm_origbuf = NULL;
759 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
760 map->_dm_vmspace = NULL;
761 }
762
763 static void
764 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
765 {
766 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
767 #if 0
768 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
769 va, pa, len, ops, readonly_p);
770 #endif
771
772 switch (ops) {
773 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
774 if (!readonly_p) {
775 STAT_INCR(sync_prereadwrite);
776 cpu_dcache_wbinv_range(va, len);
777 cpu_sdcache_wbinv_range(va, pa, len);
778 break;
779 }
780 /* FALLTHROUGH */
781
782 case BUS_DMASYNC_PREREAD: {
783 const size_t line_size = arm_dcache_align;
784 const size_t line_mask = arm_dcache_align_mask;
785 vsize_t misalignment = va & line_mask;
786 if (misalignment) {
787 va -= misalignment;
788 pa -= misalignment;
789 len += misalignment;
790 STAT_INCR(sync_preread_begin);
791 cpu_dcache_wbinv_range(va, line_size);
792 cpu_sdcache_wbinv_range(va, pa, line_size);
793 if (len <= line_size)
794 break;
795 va += line_size;
796 pa += line_size;
797 len -= line_size;
798 }
799 misalignment = len & line_mask;
800 len -= misalignment;
801 if (len > 0) {
802 STAT_INCR(sync_preread);
803 cpu_dcache_inv_range(va, len);
804 cpu_sdcache_inv_range(va, pa, len);
805 }
806 if (misalignment) {
807 va += len;
808 pa += len;
809 STAT_INCR(sync_preread_tail);
810 cpu_dcache_wbinv_range(va, line_size);
811 cpu_sdcache_wbinv_range(va, pa, line_size);
812 }
813 break;
814 }
815
816 case BUS_DMASYNC_PREWRITE:
817 STAT_INCR(sync_prewrite);
818 cpu_dcache_wb_range(va, len);
819 cpu_sdcache_wb_range(va, pa, len);
820 break;
821
822 #ifdef CPU_CORTEX
823 /*
824 * Cortex CPUs can do speculative loads so we need to clean the cache
825 * after a DMA read to deal with any speculatively loaded cache lines.
826 * Since these can't be dirty, we can just invalidate them and don't
827 * have to worry about having to write back their contents.
828 */
829 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
830 STAT_INCR(sync_postreadwrite);
831 cpu_dcache_inv_range(va, len);
832 cpu_sdcache_inv_range(va, pa, len);
833 break;
834 case BUS_DMASYNC_POSTREAD:
835 STAT_INCR(sync_postread);
836 cpu_dcache_inv_range(va, len);
837 cpu_sdcache_inv_range(va, pa, len);
838 break;
839 #endif
840 }
841 }
842
843 static inline void
844 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
845 bus_size_t len, int ops)
846 {
847 bus_dma_segment_t *ds = map->dm_segs;
848 vaddr_t va = (vaddr_t) map->_dm_origbuf;
849 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
850 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
851 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
852 va = (vaddr_t) cookie->id_bouncebuf;
853 }
854 #endif
855
856 while (len > 0) {
857 while (offset >= ds->ds_len) {
858 offset -= ds->ds_len;
859 va += ds->ds_len;
860 ds++;
861 }
862
863 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
864 size_t seglen = min(len, ds->ds_len - offset);
865
866 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
867 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
868 false);
869
870 offset += seglen;
871 len -= seglen;
872 }
873 }
874
875 static inline void
876 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
877 bus_size_t len, int ops)
878 {
879 bus_dma_segment_t *ds = map->dm_segs;
880 struct mbuf *m = map->_dm_origbuf;
881 bus_size_t voff = offset;
882 bus_size_t ds_off = offset;
883
884 while (len > 0) {
885 /* Find the current dma segment */
886 while (ds_off >= ds->ds_len) {
887 ds_off -= ds->ds_len;
888 ds++;
889 }
890 /* Find the current mbuf. */
891 while (voff >= m->m_len) {
892 voff -= m->m_len;
893 m = m->m_next;
894 }
895
896 /*
897 * Now at the first mbuf to sync; nail each one until
898 * we have exhausted the length.
899 */
900 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
901 vaddr_t va = mtod(m, vaddr_t) + voff;
902 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
903
904 /*
905 * We can save a lot of work here if we know the mapping
906 * is read-only at the MMU:
907 *
908 * If a mapping is read-only, no dirty cache blocks will
909 * exist for it. If a writable mapping was made read-only,
910 * we know any dirty cache lines for the range will have
911 * been cleaned for us already. Therefore, if the upper
912 * layer can tell us we have a read-only mapping, we can
913 * skip all cache cleaning.
914 *
915 * NOTE: This only works if we know the pmap cleans pages
916 * before making a read-write -> read-only transition. If
917 * this ever becomes non-true (e.g. Physically Indexed
918 * cache), this will have to be revisited.
919 */
920
921 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
922 _bus_dmamap_sync_segment(va, pa, seglen, ops,
923 M_ROMAP(m));
924 voff += seglen;
925 ds_off += seglen;
926 len -= seglen;
927 }
928 }
929
930 static inline void
931 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
932 bus_size_t len, int ops)
933 {
934 bus_dma_segment_t *ds = map->dm_segs;
935 struct uio *uio = map->_dm_origbuf;
936 struct iovec *iov = uio->uio_iov;
937 bus_size_t voff = offset;
938 bus_size_t ds_off = offset;
939
940 while (len > 0) {
941 /* Find the current dma segment */
942 while (ds_off >= ds->ds_len) {
943 ds_off -= ds->ds_len;
944 ds++;
945 }
946
947 /* Find the current iovec. */
948 while (voff >= iov->iov_len) {
949 voff -= iov->iov_len;
950 iov++;
951 }
952
953 /*
954 * Now at the first iovec to sync; nail each one until
955 * we have exhausted the length.
956 */
957 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
958 vaddr_t va = (vaddr_t) iov->iov_base + voff;
959 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
960
961 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
962 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
963
964 voff += seglen;
965 ds_off += seglen;
966 len -= seglen;
967 }
968 }
969
970 /*
971 * Common function for DMA map synchronization. May be called
972 * by bus-specific DMA map synchronization functions.
973 *
974 * This version works for the Virtually Indexed Virtually Tagged
975 * cache found on 32-bit ARM processors.
976 *
977 * XXX Should have separate versions for write-through vs.
978 * XXX write-back caches. We currently assume write-back
979 * XXX here, which is not as efficient as it could be for
980 * XXX the write-through case.
981 */
982 void
983 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
984 bus_size_t len, int ops)
985 {
986 #ifdef DEBUG_DMA
987 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
988 t, map, offset, len, ops);
989 #endif /* DEBUG_DMA */
990
991 /*
992 * Mixing of PRE and POST operations is not allowed.
993 */
994 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
995 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
996 panic("_bus_dmamap_sync: mix PRE and POST");
997
998 KASSERTMSG(offset < map->dm_mapsize,
999 "offset %lu mapsize %lu",
1000 offset, map->dm_mapsize);
1001 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1002 "len %lu offset %lu mapsize %lu",
1003 len, offset, map->dm_mapsize);
1004
1005 /*
1006 * For a virtually-indexed write-back cache, we need
1007 * to do the following things:
1008 *
1009 * PREREAD -- Invalidate the D-cache. We do this
1010 * here in case a write-back is required by the back-end.
1011 *
1012 * PREWRITE -- Write-back the D-cache. Note that if
1013 * we are doing a PREREAD|PREWRITE, we can collapse
1014 * the whole thing into a single Wb-Inv.
1015 *
1016 * POSTREAD -- Re-invalidate the D-cache in case speculative
1017 * memory accesses caused cachelines to become valid with now
1018 * invalid data.
1019 *
1020 * POSTWRITE -- Nothing.
1021 */
1022 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1023 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1024 #else
1025 const bool bouncing = false;
1026 #endif
1027
1028 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1029 #ifdef CPU_CORTEX
1030 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1031 #else
1032 const int post_ops = 0;
1033 #endif
1034 if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1035 STAT_INCR(sync_postwrite);
1036 return;
1037 }
1038 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1039 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1040 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1041 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1042 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1043 STAT_INCR(write_bounces);
1044 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1045 /*
1046 * Copy the caller's buffer to the bounce buffer.
1047 */
1048 switch (map->_dm_buftype) {
1049 case _BUS_DMA_BUFTYPE_LINEAR:
1050 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1051 break;
1052 case _BUS_DMA_BUFTYPE_MBUF:
1053 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1054 break;
1055 case _BUS_DMA_BUFTYPE_UIO:
1056 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1057 break;
1058 #ifdef DIAGNOSTIC
1059 case _BUS_DMA_BUFTYPE_RAW:
1060 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1061 break;
1062
1063 case _BUS_DMA_BUFTYPE_INVALID:
1064 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1065 break;
1066
1067 default:
1068 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1069 map, map->_dm_buftype);
1070 break;
1071 #endif /* DIAGNOSTIC */
1072 }
1073 }
1074 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1075
1076 /* Skip cache frobbing if mapping was COHERENT. */
1077 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1078 /* Drain the write buffer. */
1079 if (pre_ops & BUS_DMASYNC_PREWRITE)
1080 cpu_drain_writebuf();
1081 return;
1082 }
1083
1084 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1085 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1086 goto bounce_it;
1087 }
1088 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1089
1090 #ifndef ARM_MMU_EXTENDED
1091 /*
1092 * If the mapping belongs to a non-kernel vmspace, and the
1093 * vmspace has not been active since the last time a full
1094 * cache flush was performed, we don't need to do anything.
1095 */
1096 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1097 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1098 return;
1099 #endif
1100
1101 int buftype = map->_dm_buftype;
1102 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1103 if (bouncing) {
1104 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1105 }
1106 #endif
1107
1108 switch (buftype) {
1109 case _BUS_DMA_BUFTYPE_LINEAR:
1110 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1111 break;
1112
1113 case _BUS_DMA_BUFTYPE_MBUF:
1114 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1115 break;
1116
1117 case _BUS_DMA_BUFTYPE_UIO:
1118 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1119 break;
1120
1121 case _BUS_DMA_BUFTYPE_RAW:
1122 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1123 break;
1124
1125 case _BUS_DMA_BUFTYPE_INVALID:
1126 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1127 break;
1128
1129 default:
1130 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1131 map, map->_dm_buftype);
1132 }
1133
1134 /* Drain the write buffer. */
1135 cpu_drain_writebuf();
1136
1137 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1138 bounce_it:
1139 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1140 return;
1141
1142 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1143 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1144 STAT_INCR(read_bounces);
1145 /*
1146 * Copy the bounce buffer to the caller's buffer.
1147 */
1148 switch (map->_dm_buftype) {
1149 case _BUS_DMA_BUFTYPE_LINEAR:
1150 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1151 break;
1152
1153 case _BUS_DMA_BUFTYPE_MBUF:
1154 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1155 break;
1156
1157 case _BUS_DMA_BUFTYPE_UIO:
1158 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1159 break;
1160 #ifdef DIAGNOSTIC
1161 case _BUS_DMA_BUFTYPE_RAW:
1162 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1163 break;
1164
1165 case _BUS_DMA_BUFTYPE_INVALID:
1166 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1167 break;
1168
1169 default:
1170 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1171 map, map->_dm_buftype);
1172 break;
1173 #endif
1174 }
1175 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1176 }
1177
1178 /*
1179 * Common function for DMA-safe memory allocation. May be called
1180 * by bus-specific DMA memory allocation functions.
1181 */
1182
1183 extern paddr_t physical_start;
1184 extern paddr_t physical_end;
1185
1186 int
1187 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1188 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1189 int flags)
1190 {
1191 struct arm32_dma_range *dr;
1192 int error, i;
1193
1194 #ifdef DEBUG_DMA
1195 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1196 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1197 boundary, segs, nsegs, rsegs, flags);
1198 #endif
1199
1200 if ((dr = t->_ranges) != NULL) {
1201 error = ENOMEM;
1202 for (i = 0; i < t->_nranges; i++, dr++) {
1203 if (dr->dr_len == 0
1204 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1205 continue;
1206 error = _bus_dmamem_alloc_range(t, size, alignment,
1207 boundary, segs, nsegs, rsegs, flags,
1208 trunc_page(dr->dr_sysbase),
1209 trunc_page(dr->dr_sysbase + dr->dr_len));
1210 if (error == 0)
1211 break;
1212 }
1213 } else {
1214 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1215 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1216 trunc_page(physical_end));
1217 }
1218
1219 #ifdef DEBUG_DMA
1220 printf("dmamem_alloc: =%d\n", error);
1221 #endif
1222
1223 return(error);
1224 }
1225
1226 /*
1227 * Common function for freeing DMA-safe memory. May be called by
1228 * bus-specific DMA memory free functions.
1229 */
1230 void
1231 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1232 {
1233 struct vm_page *m;
1234 bus_addr_t addr;
1235 struct pglist mlist;
1236 int curseg;
1237
1238 #ifdef DEBUG_DMA
1239 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1240 #endif /* DEBUG_DMA */
1241
1242 /*
1243 * Build a list of pages to free back to the VM system.
1244 */
1245 TAILQ_INIT(&mlist);
1246 for (curseg = 0; curseg < nsegs; curseg++) {
1247 for (addr = segs[curseg].ds_addr;
1248 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1249 addr += PAGE_SIZE) {
1250 m = PHYS_TO_VM_PAGE(addr);
1251 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1252 }
1253 }
1254 uvm_pglistfree(&mlist);
1255 }
1256
1257 /*
1258 * Common function for mapping DMA-safe memory. May be called by
1259 * bus-specific DMA memory map functions.
1260 */
1261 int
1262 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1263 size_t size, void **kvap, int flags)
1264 {
1265 vaddr_t va;
1266 paddr_t pa;
1267 int curseg;
1268 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1269 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1270 vsize_t align = 0;
1271
1272 #ifdef DEBUG_DMA
1273 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1274 segs, nsegs, (unsigned long)size, flags);
1275 #endif /* DEBUG_DMA */
1276
1277 #ifdef PMAP_MAP_POOLPAGE
1278 /*
1279 * If all of memory is mapped, and we are mapping a single physically
1280 * contiguous area then this area is already mapped. Let's see if we
1281 * avoid having a separate mapping for it.
1282 */
1283 if (nsegs == 1) {
1284 /*
1285 * If this is a non-COHERENT mapping, then the existing kernel
1286 * mapping is already compatible with it.
1287 */
1288 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1289 pa = segs[0].ds_addr;
1290
1291 /*
1292 * This is a COHERENT mapping which, unless this address is in
1293 * a COHERENT dma range, will not be compatible.
1294 */
1295 if (t->_ranges != NULL) {
1296 const struct arm32_dma_range * const dr =
1297 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1298 if (dr != NULL
1299 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1300 direct_mapable = true;
1301 }
1302 }
1303
1304 if (direct_mapable) {
1305 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1306 #ifdef DEBUG_DMA
1307 printf("dmamem_map: =%p\n", *kvap);
1308 #endif /* DEBUG_DMA */
1309 return 0;
1310 }
1311 }
1312 #endif
1313
1314 size = round_page(size);
1315 if (__predict_true(size > L2_L_SIZE)) {
1316 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1317 if (size >= L1_SS_SIZE)
1318 align = L1_SS_SIZE;
1319 else
1320 #endif
1321 if (size >= L1_S_SIZE)
1322 align = L1_S_SIZE;
1323 else
1324 align = L2_L_SIZE;
1325 }
1326
1327 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1328 if (__predict_false(va == 0 && align > 0)) {
1329 align = 0;
1330 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1331 }
1332
1333 if (va == 0)
1334 return (ENOMEM);
1335
1336 *kvap = (void *)va;
1337
1338 for (curseg = 0; curseg < nsegs; curseg++) {
1339 for (pa = segs[curseg].ds_addr;
1340 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1341 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1342 bool uncached = (flags & BUS_DMA_COHERENT);
1343 #ifdef DEBUG_DMA
1344 printf("wiring p%lx to v%lx", pa, va);
1345 #endif /* DEBUG_DMA */
1346 if (size == 0)
1347 panic("_bus_dmamem_map: size botch");
1348
1349 const struct arm32_dma_range * const dr =
1350 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1351 /*
1352 * If this dma region is coherent then there is
1353 * no need for an uncached mapping.
1354 */
1355 if (dr != NULL
1356 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1357 uncached = false;
1358 }
1359
1360 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1361 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1362
1363 /*
1364 * If the memory must remain coherent with the
1365 * cache then we must make the memory uncacheable
1366 * in order to maintain virtual cache coherency.
1367 * We must also guarantee the cache does not already
1368 * contain the virtal addresses we are making
1369 * uncacheable.
1370 */
1371 }
1372 }
1373 pmap_update(pmap_kernel());
1374 #ifdef DEBUG_DMA
1375 printf("dmamem_map: =%p\n", *kvap);
1376 #endif /* DEBUG_DMA */
1377 return (0);
1378 }
1379
1380 /*
1381 * Common function for unmapping DMA-safe memory. May be called by
1382 * bus-specific DMA memory unmapping functions.
1383 */
1384 void
1385 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1386 {
1387
1388 #ifdef DEBUG_DMA
1389 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1390 #endif /* DEBUG_DMA */
1391 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1392 "kva %p (%#"PRIxPTR")", kva, (uintptr_t)kva & PAGE_MASK);
1393
1394 size = round_page(size);
1395 pmap_kremove((vaddr_t)kva, size);
1396 pmap_update(pmap_kernel());
1397 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1398 }
1399
1400 /*
1401 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1402 * bus-specific DMA mmap(2)'ing functions.
1403 */
1404 paddr_t
1405 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1406 off_t off, int prot, int flags)
1407 {
1408 paddr_t map_flags;
1409 int i;
1410
1411 for (i = 0; i < nsegs; i++) {
1412 KASSERTMSG((off & PAGE_MASK) == 0,
1413 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1414 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1415 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1416 (int)segs[i].ds_addr & PAGE_MASK);
1417 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1418 "ds_len %#lx (%#x)", segs[i].ds_addr,
1419 (int)segs[i].ds_addr & PAGE_MASK);
1420 if (off >= segs[i].ds_len) {
1421 off -= segs[i].ds_len;
1422 continue;
1423 }
1424
1425 map_flags = 0;
1426 if (flags & BUS_DMA_PREFETCHABLE)
1427 map_flags |= ARM32_MMAP_WRITECOMBINE;
1428
1429 return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1430
1431 }
1432
1433 /* Page not found. */
1434 return (-1);
1435 }
1436
1437 /**********************************************************************
1438 * DMA utility functions
1439 **********************************************************************/
1440
1441 /*
1442 * Utility function to load a linear buffer. lastaddrp holds state
1443 * between invocations (for multiple-buffer loads). segp contains
1444 * the starting segment on entrace, and the ending segment on exit.
1445 * first indicates if this is the first invocation of this function.
1446 */
1447 int
1448 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1449 bus_size_t buflen, struct vmspace *vm, int flags)
1450 {
1451 bus_size_t sgsize;
1452 bus_addr_t curaddr;
1453 vaddr_t vaddr = (vaddr_t)buf;
1454 int error;
1455 pmap_t pmap;
1456
1457 #ifdef DEBUG_DMA
1458 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1459 buf, buflen, flags);
1460 #endif /* DEBUG_DMA */
1461
1462 pmap = vm_map_pmap(&vm->vm_map);
1463
1464 while (buflen > 0) {
1465 /*
1466 * Get the physical address for this segment.
1467 *
1468 * XXX Doesn't support checking for coherent mappings
1469 * XXX in user address space.
1470 */
1471 bool coherent;
1472 if (__predict_true(pmap == pmap_kernel())) {
1473 pd_entry_t *pde;
1474 pt_entry_t *ptep;
1475 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1476 if (__predict_false(pmap_pde_section(pde))) {
1477 paddr_t s_frame = L1_S_FRAME;
1478 paddr_t s_offset = L1_S_OFFSET;
1479 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1480 if (__predict_false(pmap_pde_supersection(pde))) {
1481 s_frame = L1_SS_FRAME;
1482 s_offset = L1_SS_OFFSET;
1483 }
1484 #endif
1485 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1486 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1487 } else {
1488 pt_entry_t pte = *ptep;
1489 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1490 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1491 vaddr, *pde, ptep, pte);
1492 if (__predict_false((pte & L2_TYPE_MASK)
1493 == L2_TYPE_L)) {
1494 curaddr = (pte & L2_L_FRAME) |
1495 (vaddr & L2_L_OFFSET);
1496 coherent = (pte & L2_L_CACHE_MASK) == 0;
1497 } else {
1498 curaddr = (pte & L2_S_FRAME) |
1499 (vaddr & L2_S_OFFSET);
1500 coherent = (pte & L2_S_CACHE_MASK) == 0;
1501 }
1502 }
1503 } else {
1504 (void) pmap_extract(pmap, vaddr, &curaddr);
1505 coherent = false;
1506 }
1507
1508 /*
1509 * Compute the segment size, and adjust counts.
1510 */
1511 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1512 if (buflen < sgsize)
1513 sgsize = buflen;
1514
1515 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1516 coherent);
1517 if (error)
1518 return (error);
1519
1520 vaddr += sgsize;
1521 buflen -= sgsize;
1522 }
1523
1524 return (0);
1525 }
1526
1527 /*
1528 * Allocate physical memory from the given physical address range.
1529 * Called by DMA-safe memory allocation methods.
1530 */
1531 int
1532 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1533 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1534 int flags, paddr_t low, paddr_t high)
1535 {
1536 paddr_t curaddr, lastaddr;
1537 struct vm_page *m;
1538 struct pglist mlist;
1539 int curseg, error;
1540
1541 KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
1542 "invalid boundary %#lx", boundary);
1543
1544 #ifdef DEBUG_DMA
1545 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1546 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1547 #endif /* DEBUG_DMA */
1548
1549 /* Always round the size. */
1550 size = round_page(size);
1551
1552 /*
1553 * We accept boundaries < size, splitting in multiple segments
1554 * if needed. uvm_pglistalloc does not, so compute an appropriate
1555 * boundary: next power of 2 >= size
1556 */
1557 bus_size_t uboundary = boundary;
1558 if (uboundary <= PAGE_SIZE) {
1559 uboundary = 0;
1560 } else {
1561 while (uboundary < size) {
1562 uboundary <<= 1;
1563 }
1564 }
1565
1566 /*
1567 * Allocate pages from the VM system.
1568 */
1569 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1570 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1571 if (error)
1572 return (error);
1573
1574 /*
1575 * Compute the location, size, and number of segments actually
1576 * returned by the VM code.
1577 */
1578 m = TAILQ_FIRST(&mlist);
1579 curseg = 0;
1580 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1581 segs[curseg].ds_len = PAGE_SIZE;
1582 #ifdef DEBUG_DMA
1583 printf("alloc: page %lx\n", lastaddr);
1584 #endif /* DEBUG_DMA */
1585 m = TAILQ_NEXT(m, pageq.queue);
1586
1587 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1588 curaddr = VM_PAGE_TO_PHYS(m);
1589 KASSERTMSG(low <= curaddr && curaddr < high,
1590 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1591 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1592 #ifdef DEBUG_DMA
1593 printf("alloc: page %lx\n", curaddr);
1594 #endif /* DEBUG_DMA */
1595 if (curaddr == lastaddr + PAGE_SIZE
1596 && (lastaddr & boundary) == (curaddr & boundary))
1597 segs[curseg].ds_len += PAGE_SIZE;
1598 else {
1599 curseg++;
1600 if (curseg >= nsegs) {
1601 uvm_pglistfree(&mlist);
1602 return EFBIG;
1603 }
1604 segs[curseg].ds_addr = curaddr;
1605 segs[curseg].ds_len = PAGE_SIZE;
1606 }
1607 lastaddr = curaddr;
1608 }
1609
1610 *rsegs = curseg + 1;
1611
1612 return (0);
1613 }
1614
1615 /*
1616 * Check if a memory region intersects with a DMA range, and return the
1617 * page-rounded intersection if it does.
1618 */
1619 int
1620 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1621 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1622 {
1623 struct arm32_dma_range *dr;
1624 int i;
1625
1626 if (ranges == NULL)
1627 return (0);
1628
1629 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1630 if (dr->dr_sysbase <= pa &&
1631 pa < (dr->dr_sysbase + dr->dr_len)) {
1632 /*
1633 * Beginning of region intersects with this range.
1634 */
1635 *pap = trunc_page(pa);
1636 *sizep = round_page(min(pa + size,
1637 dr->dr_sysbase + dr->dr_len) - pa);
1638 return (1);
1639 }
1640 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1641 /*
1642 * End of region intersects with this range.
1643 */
1644 *pap = trunc_page(dr->dr_sysbase);
1645 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1646 dr->dr_len));
1647 return (1);
1648 }
1649 }
1650
1651 /* No intersection found. */
1652 return (0);
1653 }
1654
1655 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1656 static int
1657 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1658 bus_size_t size, int flags)
1659 {
1660 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1661 int error = 0;
1662
1663 KASSERT(cookie != NULL);
1664
1665 cookie->id_bouncebuflen = round_page(size);
1666 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1667 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1668 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1669 if (error == 0) {
1670 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1671 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1672 (void **)&cookie->id_bouncebuf, flags);
1673 if (error) {
1674 _bus_dmamem_free(t, cookie->id_bouncesegs,
1675 cookie->id_nbouncesegs);
1676 cookie->id_bouncebuflen = 0;
1677 cookie->id_nbouncesegs = 0;
1678 } else {
1679 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1680 }
1681 } else {
1682 cookie->id_bouncebuflen = 0;
1683 cookie->id_nbouncesegs = 0;
1684 }
1685
1686 return (error);
1687 }
1688
1689 static void
1690 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1691 {
1692 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1693
1694 KASSERT(cookie != NULL);
1695
1696 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1697 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1698 cookie->id_bouncebuflen = 0;
1699 cookie->id_nbouncesegs = 0;
1700 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1701 }
1702
1703 /*
1704 * This function does the same as uiomove, but takes an explicit
1705 * direction, and does not update the uio structure.
1706 */
1707 static int
1708 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1709 {
1710 struct iovec *iov;
1711 int error;
1712 struct vmspace *vm;
1713 char *cp;
1714 size_t resid, cnt;
1715 int i;
1716
1717 iov = uio->uio_iov;
1718 vm = uio->uio_vmspace;
1719 cp = buf;
1720 resid = n;
1721
1722 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1723 iov = &uio->uio_iov[i];
1724 if (iov->iov_len == 0)
1725 continue;
1726 cnt = MIN(resid, iov->iov_len);
1727
1728 if (!VMSPACE_IS_KERNEL_P(vm) &&
1729 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1730 != 0) {
1731 preempt();
1732 }
1733 if (direction == UIO_READ) {
1734 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1735 } else {
1736 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1737 }
1738 if (error)
1739 return (error);
1740 cp += cnt;
1741 resid -= cnt;
1742 }
1743 return (0);
1744 }
1745 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1746
1747 int
1748 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1749 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1750 {
1751
1752 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1753 struct arm32_dma_range *dr;
1754 bool subset = false;
1755 size_t nranges = 0;
1756 size_t i;
1757 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1758 if (dr->dr_sysbase <= min_addr
1759 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1760 subset = true;
1761 }
1762 if (min_addr <= dr->dr_sysbase + dr->dr_len
1763 && max_addr >= dr->dr_sysbase) {
1764 nranges++;
1765 }
1766 }
1767 if (subset) {
1768 *newtag = tag;
1769 /* if the tag must be freed, add a reference */
1770 if (tag->_tag_needs_free)
1771 (tag->_tag_needs_free)++;
1772 return 0;
1773 }
1774 if (nranges == 0) {
1775 nranges = 1;
1776 }
1777
1778 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1779 if ((*newtag = kmem_intr_zalloc(tagsize,
1780 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1781 return ENOMEM;
1782
1783 dr = (void *)(*newtag + 1);
1784 **newtag = *tag;
1785 (*newtag)->_tag_needs_free = 1;
1786 (*newtag)->_ranges = dr;
1787 (*newtag)->_nranges = nranges;
1788
1789 if (tag->_ranges == NULL) {
1790 dr->dr_sysbase = min_addr;
1791 dr->dr_busbase = min_addr;
1792 dr->dr_len = max_addr + 1 - min_addr;
1793 } else {
1794 for (i = 0; i < nranges; i++) {
1795 if (min_addr > dr->dr_sysbase + dr->dr_len
1796 || max_addr < dr->dr_sysbase)
1797 continue;
1798 dr[0] = tag->_ranges[i];
1799 if (dr->dr_sysbase < min_addr) {
1800 psize_t diff = min_addr - dr->dr_sysbase;
1801 dr->dr_busbase += diff;
1802 dr->dr_len -= diff;
1803 dr->dr_sysbase += diff;
1804 }
1805 if (max_addr != 0xffffffff
1806 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1807 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1808 }
1809 dr++;
1810 }
1811 }
1812
1813 return 0;
1814 #else
1815 return EOPNOTSUPP;
1816 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1817 }
1818
1819 void
1820 _bus_dmatag_destroy(bus_dma_tag_t tag)
1821 {
1822 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1823 switch (tag->_tag_needs_free) {
1824 case 0:
1825 break; /* not allocated with kmem */
1826 case 1: {
1827 const size_t tagsize = sizeof(*tag)
1828 + tag->_nranges * sizeof(*tag->_ranges);
1829 kmem_intr_free(tag, tagsize); /* last reference to tag */
1830 break;
1831 }
1832 default:
1833 (tag->_tag_needs_free)--; /* one less reference */
1834 }
1835 #endif
1836 }
1837