bus_dma.c revision 1.85 1 /* $NetBSD: bus_dma.c,v 1.85 2014/04/06 09:53:59 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.85 2014/04/06 09:53:59 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/reboot.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/kmem.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/device.h>
54
55 #include <uvm/uvm.h>
56
57 #include <arm/cpufunc.h>
58
59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
60 #include <dev/mm.h>
61 #endif
62
63 #ifdef BUSDMA_COUNTERS
64 static struct evcnt bus_dma_creates =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
66 static struct evcnt bus_dma_bounced_creates =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
68 static struct evcnt bus_dma_loads =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
70 static struct evcnt bus_dma_bounced_loads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
72 static struct evcnt bus_dma_coherent_loads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
74 static struct evcnt bus_dma_read_bounces =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
76 static struct evcnt bus_dma_write_bounces =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
78 static struct evcnt bus_dma_bounced_unloads =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
80 static struct evcnt bus_dma_unloads =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
82 static struct evcnt bus_dma_bounced_destroys =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
84 static struct evcnt bus_dma_destroys =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
86 static struct evcnt bus_dma_sync_prereadwrite =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
88 static struct evcnt bus_dma_sync_preread_begin =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
90 static struct evcnt bus_dma_sync_preread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
92 static struct evcnt bus_dma_sync_preread_tail =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
94 static struct evcnt bus_dma_sync_prewrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
96 static struct evcnt bus_dma_sync_postread =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
98 static struct evcnt bus_dma_sync_postreadwrite =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
100 static struct evcnt bus_dma_sync_postwrite =
101 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
102
103 EVCNT_ATTACH_STATIC(bus_dma_creates);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
105 EVCNT_ATTACH_STATIC(bus_dma_loads);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
122
123 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
124 #else
125 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
126 #endif
127
128 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct vmspace *, int);
130 static struct arm32_dma_range *
131 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
132
133 /*
134 * Check to see if the specified page is in an allowed DMA range.
135 */
136 inline struct arm32_dma_range *
137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
138 bus_addr_t curaddr)
139 {
140 struct arm32_dma_range *dr;
141 int i;
142
143 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
144 if (curaddr >= dr->dr_sysbase &&
145 curaddr < (dr->dr_sysbase + dr->dr_len))
146 return (dr);
147 }
148
149 return (NULL);
150 }
151
152 /*
153 * Check to see if the specified busaddr is in an allowed DMA range.
154 */
155 static inline paddr_t
156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 u_int i;
160
161 if (t->_nranges == 0)
162 return curaddr;
163
164 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
165 if (dr->dr_busbase <= curaddr
166 && curaddr < dr->dr_busbase + dr->dr_len)
167 return curaddr - dr->dr_busbase + dr->dr_sysbase;
168 }
169 panic("%s: curaddr %#lx not in range", __func__, curaddr);
170 }
171
172 /*
173 * Common function to load the specified physical address into the
174 * DMA map, coalescing segments and boundary checking as necessary.
175 */
176 static int
177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
178 bus_addr_t paddr, bus_size_t size, bool coherent)
179 {
180 bus_dma_segment_t * const segs = map->dm_segs;
181 int nseg = map->dm_nsegs;
182 bus_addr_t lastaddr;
183 bus_addr_t bmask = ~(map->_dm_boundary - 1);
184 bus_addr_t curaddr;
185 bus_size_t sgsize;
186 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
187
188 if (nseg > 0)
189 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
190 else
191 lastaddr = 0xdead;
192
193 again:
194 sgsize = size;
195
196 /* Make sure we're in an allowed DMA range. */
197 if (t->_ranges != NULL) {
198 /* XXX cache last result? */
199 const struct arm32_dma_range * const dr =
200 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
201 if (dr == NULL)
202 return (EINVAL);
203
204 /*
205 * If this region is coherent, mark the segment as coherent.
206 */
207 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
208
209 /*
210 * In a valid DMA range. Translate the physical
211 * memory address to an address in the DMA window.
212 */
213 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
214 #if 0
215 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
216 t, paddr, dr->dr_sysbase, dr->dr_busbase,
217 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
218 #endif
219 } else
220 curaddr = paddr;
221
222 /*
223 * Make sure we don't cross any boundaries.
224 */
225 if (map->_dm_boundary > 0) {
226 bus_addr_t baddr; /* next boundary address */
227
228 baddr = (curaddr + map->_dm_boundary) & bmask;
229 if (sgsize > (baddr - curaddr))
230 sgsize = (baddr - curaddr);
231 }
232
233 /*
234 * Insert chunk into a segment, coalescing with the
235 * previous segment if possible.
236 */
237 if (nseg > 0 && curaddr == lastaddr &&
238 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
239 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
240 (map->_dm_boundary == 0 ||
241 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
242 /* coalesce */
243 segs[nseg-1].ds_len += sgsize;
244 } else if (nseg >= map->_dm_segcnt) {
245 return (EFBIG);
246 } else {
247 /* new segment */
248 segs[nseg].ds_addr = curaddr;
249 segs[nseg].ds_len = sgsize;
250 segs[nseg]._ds_flags = _ds_flags;
251 nseg++;
252 }
253
254 lastaddr = curaddr + sgsize;
255
256 paddr += sgsize;
257 size -= sgsize;
258 if (size > 0)
259 goto again;
260
261 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
262 map->dm_nsegs = nseg;
263 return (0);
264 }
265
266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
268 bus_size_t size, int flags);
269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
271 int direction);
272
273 static int
274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
275 size_t buflen, int buftype, int flags)
276 {
277 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
278 struct vmspace * const vm = vmspace_kernel();
279 int error;
280
281 KASSERT(cookie != NULL);
282 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
283
284 /*
285 * Allocate bounce pages, if necessary.
286 */
287 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
288 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
289 if (error)
290 return (error);
291 }
292
293 /*
294 * Cache a pointer to the caller's buffer and load the DMA map
295 * with the bounce buffer.
296 */
297 cookie->id_origbuf = buf;
298 cookie->id_origbuflen = buflen;
299 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
300 buflen, vm, flags);
301 if (error)
302 return (error);
303
304 STAT_INCR(bounced_loads);
305 map->dm_mapsize = buflen;
306 map->_dm_vmspace = vm;
307 map->_dm_buftype = buftype;
308
309 /* ...so _bus_dmamap_sync() knows we're bouncing */
310 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
311 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
312 return 0;
313 }
314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
315
316 /*
317 * Common function for DMA map creation. May be called by bus-specific
318 * DMA map creation functions.
319 */
320 int
321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
322 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
323 {
324 struct arm32_bus_dmamap *map;
325 void *mapstore;
326
327 #ifdef DEBUG_DMA
328 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
329 t, size, nsegments, maxsegsz, boundary, flags);
330 #endif /* DEBUG_DMA */
331
332 /*
333 * Allocate and initialize the DMA map. The end of the map
334 * is a variable-sized array of segments, so we allocate enough
335 * room for them in one shot.
336 *
337 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
338 * of ALLOCNOW notifies others that we've reserved these resources,
339 * and they are not to be freed.
340 *
341 * The bus_dmamap_t includes one bus_dma_segment_t, hence
342 * the (nsegments - 1).
343 */
344 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
345 (sizeof(bus_dma_segment_t) * (nsegments - 1));
346 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
347 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
348 return (ENOMEM);
349
350 map = (struct arm32_bus_dmamap *)mapstore;
351 map->_dm_size = size;
352 map->_dm_segcnt = nsegments;
353 map->_dm_maxmaxsegsz = maxsegsz;
354 map->_dm_boundary = boundary;
355 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
356 map->_dm_origbuf = NULL;
357 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
358 map->_dm_vmspace = vmspace_kernel();
359 map->_dm_cookie = NULL;
360 map->dm_maxsegsz = maxsegsz;
361 map->dm_mapsize = 0; /* no valid mappings */
362 map->dm_nsegs = 0;
363
364 *dmamp = map;
365
366 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
367 struct arm32_bus_dma_cookie *cookie;
368 int cookieflags;
369 void *cookiestore;
370 int error;
371
372 cookieflags = 0;
373
374 if (t->_may_bounce != NULL) {
375 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
376 if (error != 0)
377 goto out;
378 }
379
380 if (t->_ranges != NULL)
381 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
382
383 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
384 STAT_INCR(creates);
385 return 0;
386 }
387
388 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
389 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
390
391 /*
392 * Allocate our cookie.
393 */
394 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
395 error = ENOMEM;
396 goto out;
397 }
398 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
399 cookie->id_flags = cookieflags;
400 map->_dm_cookie = cookie;
401 STAT_INCR(bounced_creates);
402
403 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
404 out:
405 if (error)
406 _bus_dmamap_destroy(t, map);
407 #else
408 STAT_INCR(creates);
409 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
410
411 #ifdef DEBUG_DMA
412 printf("dmamap_create:map=%p\n", map);
413 #endif /* DEBUG_DMA */
414 return (0);
415 }
416
417 /*
418 * Common function for DMA map destruction. May be called by bus-specific
419 * DMA map destruction functions.
420 */
421 void
422 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
423 {
424
425 #ifdef DEBUG_DMA
426 printf("dmamap_destroy: t=%p map=%p\n", t, map);
427 #endif /* DEBUG_DMA */
428 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
429 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
430
431 /*
432 * Free any bounce pages this map might hold.
433 */
434 if (cookie != NULL) {
435 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
436 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
437
438 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
439 STAT_INCR(bounced_unloads);
440 map->dm_nsegs = 0;
441 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
442 _bus_dma_free_bouncebuf(t, map);
443 STAT_INCR(bounced_destroys);
444 kmem_intr_free(cookie, cookiesize);
445 } else
446 #endif
447 STAT_INCR(destroys);
448
449 if (map->dm_nsegs > 0)
450 STAT_INCR(unloads);
451
452 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
453 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
454 kmem_intr_free(map, mapsize);
455 }
456
457 /*
458 * Common function for loading a DMA map with a linear buffer. May
459 * be called by bus-specific DMA map load functions.
460 */
461 int
462 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
463 bus_size_t buflen, struct proc *p, int flags)
464 {
465 struct vmspace *vm;
466 int error;
467
468 #ifdef DEBUG_DMA
469 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
470 t, map, buf, buflen, p, flags);
471 #endif /* DEBUG_DMA */
472
473 if (map->dm_nsegs > 0) {
474 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
475 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
476 if (cookie != NULL) {
477 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
478 STAT_INCR(bounced_unloads);
479 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
480 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
481 }
482 } else
483 #endif
484 STAT_INCR(unloads);
485 }
486
487 /*
488 * Make sure that on error condition we return "no valid mappings".
489 */
490 map->dm_mapsize = 0;
491 map->dm_nsegs = 0;
492 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
493 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
494 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
495 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
496
497 if (buflen > map->_dm_size)
498 return (EINVAL);
499
500 if (p != NULL) {
501 vm = p->p_vmspace;
502 } else {
503 vm = vmspace_kernel();
504 }
505
506 /* _bus_dmamap_load_buffer() clears this if we're not... */
507 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
508
509 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
510 if (error == 0) {
511 map->dm_mapsize = buflen;
512 map->_dm_vmspace = vm;
513 map->_dm_origbuf = buf;
514 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
515 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
516 STAT_INCR(coherent_loads);
517 } else {
518 STAT_INCR(loads);
519 }
520 return 0;
521 }
522 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
523 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
524 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
525 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
526 _BUS_DMA_BUFTYPE_LINEAR, flags);
527 }
528 #endif
529 return (error);
530 }
531
532 /*
533 * Like _bus_dmamap_load(), but for mbufs.
534 */
535 int
536 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
537 int flags)
538 {
539 int error;
540 struct mbuf *m;
541
542 #ifdef DEBUG_DMA
543 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
544 t, map, m0, flags);
545 #endif /* DEBUG_DMA */
546
547 if (map->dm_nsegs > 0) {
548 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
549 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
550 if (cookie != NULL) {
551 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
552 STAT_INCR(bounced_unloads);
553 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
554 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
555 }
556 } else
557 #endif
558 STAT_INCR(unloads);
559 }
560
561 /*
562 * Make sure that on error condition we return "no valid mappings."
563 */
564 map->dm_mapsize = 0;
565 map->dm_nsegs = 0;
566 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
567 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
568 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
569 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
570
571 KASSERT(m0->m_flags & M_PKTHDR);
572
573 if (m0->m_pkthdr.len > map->_dm_size)
574 return (EINVAL);
575
576 /* _bus_dmamap_load_paddr() clears this if we're not... */
577 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
578
579 error = 0;
580 for (m = m0; m != NULL && error == 0; m = m->m_next) {
581 int offset;
582 int remainbytes;
583 const struct vm_page * const *pgs;
584 paddr_t paddr;
585 int size;
586
587 if (m->m_len == 0)
588 continue;
589 /*
590 * Don't allow reads in read-only mbufs.
591 */
592 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
593 error = EFAULT;
594 break;
595 }
596 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
597 case M_EXT|M_CLUSTER:
598 /* XXX KDASSERT */
599 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
600 paddr = m->m_ext.ext_paddr +
601 (m->m_data - m->m_ext.ext_buf);
602 size = m->m_len;
603 error = _bus_dmamap_load_paddr(t, map, paddr, size,
604 false);
605 break;
606
607 case M_EXT|M_EXT_PAGES:
608 KASSERT(m->m_ext.ext_buf <= m->m_data);
609 KASSERT(m->m_data <=
610 m->m_ext.ext_buf + m->m_ext.ext_size);
611
612 offset = (vaddr_t)m->m_data -
613 trunc_page((vaddr_t)m->m_ext.ext_buf);
614 remainbytes = m->m_len;
615
616 /* skip uninteresting pages */
617 pgs = (const struct vm_page * const *)
618 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
619
620 offset &= PAGE_MASK; /* offset in the first page */
621
622 /* load each page */
623 while (remainbytes > 0) {
624 const struct vm_page *pg;
625
626 size = MIN(remainbytes, PAGE_SIZE - offset);
627
628 pg = *pgs++;
629 KASSERT(pg);
630 paddr = VM_PAGE_TO_PHYS(pg) + offset;
631
632 error = _bus_dmamap_load_paddr(t, map,
633 paddr, size, false);
634 if (error)
635 break;
636 offset = 0;
637 remainbytes -= size;
638 }
639 break;
640
641 case 0:
642 paddr = m->m_paddr + M_BUFOFFSET(m) +
643 (m->m_data - M_BUFADDR(m));
644 size = m->m_len;
645 error = _bus_dmamap_load_paddr(t, map, paddr, size,
646 false);
647 break;
648
649 default:
650 error = _bus_dmamap_load_buffer(t, map, m->m_data,
651 m->m_len, vmspace_kernel(), flags);
652 }
653 }
654 if (error == 0) {
655 map->dm_mapsize = m0->m_pkthdr.len;
656 map->_dm_origbuf = m0;
657 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
658 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
659 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
660 STAT_INCR(coherent_loads);
661 } else {
662 STAT_INCR(loads);
663 }
664 return 0;
665 }
666 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
667 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
668 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
669 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
670 _BUS_DMA_BUFTYPE_MBUF, flags);
671 }
672 #endif
673 return (error);
674 }
675
676 /*
677 * Like _bus_dmamap_load(), but for uios.
678 */
679 int
680 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
681 int flags)
682 {
683 int i, error;
684 bus_size_t minlen, resid;
685 struct iovec *iov;
686 void *addr;
687
688 /*
689 * Make sure that on error condition we return "no valid mappings."
690 */
691 map->dm_mapsize = 0;
692 map->dm_nsegs = 0;
693 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
694 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
695 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
696
697 resid = uio->uio_resid;
698 iov = uio->uio_iov;
699
700 /* _bus_dmamap_load_buffer() clears this if we're not... */
701 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
702
703 error = 0;
704 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
705 /*
706 * Now at the first iovec to load. Load each iovec
707 * until we have exhausted the residual count.
708 */
709 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
710 addr = (void *)iov[i].iov_base;
711
712 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
713 uio->uio_vmspace, flags);
714
715 resid -= minlen;
716 }
717 if (error == 0) {
718 map->dm_mapsize = uio->uio_resid;
719 map->_dm_origbuf = uio;
720 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
721 map->_dm_vmspace = uio->uio_vmspace;
722 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
723 STAT_INCR(coherent_loads);
724 } else {
725 STAT_INCR(loads);
726 }
727 }
728 return (error);
729 }
730
731 /*
732 * Like _bus_dmamap_load(), but for raw memory allocated with
733 * bus_dmamem_alloc().
734 */
735 int
736 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
737 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
738 {
739
740 panic("_bus_dmamap_load_raw: not implemented");
741 }
742
743 /*
744 * Common function for unloading a DMA map. May be called by
745 * bus-specific DMA map unload functions.
746 */
747 void
748 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
749 {
750
751 #ifdef DEBUG_DMA
752 printf("dmamap_unload: t=%p map=%p\n", t, map);
753 #endif /* DEBUG_DMA */
754
755 /*
756 * No resources to free; just mark the mappings as
757 * invalid.
758 */
759 map->dm_mapsize = 0;
760 map->dm_nsegs = 0;
761 map->_dm_origbuf = NULL;
762 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
763 map->_dm_vmspace = NULL;
764 }
765
766 static void
767 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
768 {
769 KASSERT((va & PAGE_MASK) == (pa & PAGE_MASK));
770 #if 0
771 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
772 va, pa, len, ops, readonly_p);
773 #endif
774
775 switch (ops) {
776 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
777 if (!readonly_p) {
778 STAT_INCR(sync_prereadwrite);
779 cpu_dcache_wbinv_range(va, len);
780 cpu_sdcache_wbinv_range(va, pa, len);
781 break;
782 }
783 /* FALLTHROUGH */
784
785 case BUS_DMASYNC_PREREAD: {
786 const size_t line_size = arm_dcache_align;
787 const size_t line_mask = arm_dcache_align_mask;
788 vsize_t misalignment = va & line_mask;
789 if (misalignment) {
790 va -= misalignment;
791 pa -= misalignment;
792 len += misalignment;
793 STAT_INCR(sync_preread_begin);
794 cpu_dcache_wbinv_range(va, line_size);
795 cpu_sdcache_wbinv_range(va, pa, line_size);
796 if (len <= line_size)
797 break;
798 va += line_size;
799 pa += line_size;
800 len -= line_size;
801 }
802 misalignment = len & line_mask;
803 len -= misalignment;
804 if (len > 0) {
805 STAT_INCR(sync_preread);
806 cpu_dcache_inv_range(va, len);
807 cpu_sdcache_inv_range(va, pa, len);
808 }
809 if (misalignment) {
810 va += len;
811 pa += len;
812 STAT_INCR(sync_preread_tail);
813 cpu_dcache_wbinv_range(va, line_size);
814 cpu_sdcache_wbinv_range(va, pa, line_size);
815 }
816 break;
817 }
818
819 case BUS_DMASYNC_PREWRITE:
820 STAT_INCR(sync_prewrite);
821 cpu_dcache_wb_range(va, len);
822 cpu_sdcache_wb_range(va, pa, len);
823 break;
824
825 #ifdef CPU_CORTEX
826 /*
827 * Cortex CPUs can do speculative loads so we need to clean the cache
828 * after a DMA read to deal with any speculatively loaded cache lines.
829 * Since these can't be dirty, we can just invalidate them and don't
830 * have to worry about having to write back their contents.
831 */
832 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
833 STAT_INCR(sync_postreadwrite);
834 cpu_dcache_inv_range(va, len);
835 cpu_sdcache_inv_range(va, pa, len);
836 break;
837 case BUS_DMASYNC_POSTREAD:
838 STAT_INCR(sync_postread);
839 cpu_dcache_inv_range(va, len);
840 cpu_sdcache_inv_range(va, pa, len);
841 break;
842 #endif
843 }
844 }
845
846 static inline void
847 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
848 bus_size_t len, int ops)
849 {
850 bus_dma_segment_t *ds = map->dm_segs;
851 vaddr_t va = (vaddr_t) map->_dm_origbuf;
852 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
853 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
854 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
855 va = (vaddr_t) cookie->id_bouncebuf;
856 }
857 #endif
858
859 while (len > 0) {
860 while (offset >= ds->ds_len) {
861 offset -= ds->ds_len;
862 va += ds->ds_len;
863 ds++;
864 }
865
866 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
867 size_t seglen = min(len, ds->ds_len - offset);
868
869 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
870 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
871 false);
872
873 offset += seglen;
874 len -= seglen;
875 }
876 }
877
878 static inline void
879 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
880 bus_size_t len, int ops)
881 {
882 bus_dma_segment_t *ds = map->dm_segs;
883 struct mbuf *m = map->_dm_origbuf;
884 bus_size_t voff = offset;
885 bus_size_t ds_off = offset;
886
887 while (len > 0) {
888 /* Find the current dma segment */
889 while (ds_off >= ds->ds_len) {
890 ds_off -= ds->ds_len;
891 ds++;
892 }
893 /* Find the current mbuf. */
894 while (voff >= m->m_len) {
895 voff -= m->m_len;
896 m = m->m_next;
897 }
898
899 /*
900 * Now at the first mbuf to sync; nail each one until
901 * we have exhausted the length.
902 */
903 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
904 vaddr_t va = mtod(m, vaddr_t) + voff;
905 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
906
907 /*
908 * We can save a lot of work here if we know the mapping
909 * is read-only at the MMU:
910 *
911 * If a mapping is read-only, no dirty cache blocks will
912 * exist for it. If a writable mapping was made read-only,
913 * we know any dirty cache lines for the range will have
914 * been cleaned for us already. Therefore, if the upper
915 * layer can tell us we have a read-only mapping, we can
916 * skip all cache cleaning.
917 *
918 * NOTE: This only works if we know the pmap cleans pages
919 * before making a read-write -> read-only transition. If
920 * this ever becomes non-true (e.g. Physically Indexed
921 * cache), this will have to be revisited.
922 */
923
924 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
925 _bus_dmamap_sync_segment(va, pa, seglen, ops,
926 M_ROMAP(m));
927 voff += seglen;
928 ds_off += seglen;
929 len -= seglen;
930 }
931 }
932
933 static inline void
934 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
935 bus_size_t len, int ops)
936 {
937 bus_dma_segment_t *ds = map->dm_segs;
938 struct uio *uio = map->_dm_origbuf;
939 struct iovec *iov = uio->uio_iov;
940 bus_size_t voff = offset;
941 bus_size_t ds_off = offset;
942
943 while (len > 0) {
944 /* Find the current dma segment */
945 while (ds_off >= ds->ds_len) {
946 ds_off -= ds->ds_len;
947 ds++;
948 }
949
950 /* Find the current iovec. */
951 while (voff >= iov->iov_len) {
952 voff -= iov->iov_len;
953 iov++;
954 }
955
956 /*
957 * Now at the first iovec to sync; nail each one until
958 * we have exhausted the length.
959 */
960 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
961 vaddr_t va = (vaddr_t) iov->iov_base + voff;
962 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
963
964 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
965 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
966
967 voff += seglen;
968 ds_off += seglen;
969 len -= seglen;
970 }
971 }
972
973 /*
974 * Common function for DMA map synchronization. May be called
975 * by bus-specific DMA map synchronization functions.
976 *
977 * This version works for the Virtually Indexed Virtually Tagged
978 * cache found on 32-bit ARM processors.
979 *
980 * XXX Should have separate versions for write-through vs.
981 * XXX write-back caches. We currently assume write-back
982 * XXX here, which is not as efficient as it could be for
983 * XXX the write-through case.
984 */
985 void
986 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
987 bus_size_t len, int ops)
988 {
989 #ifdef DEBUG_DMA
990 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
991 t, map, offset, len, ops);
992 #endif /* DEBUG_DMA */
993
994 /*
995 * Mixing of PRE and POST operations is not allowed.
996 */
997 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
998 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
999 panic("_bus_dmamap_sync: mix PRE and POST");
1000
1001 KASSERTMSG(offset < map->dm_mapsize,
1002 "offset %lu mapsize %lu",
1003 offset, map->dm_mapsize);
1004 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1005 "len %lu offset %lu mapsize %lu",
1006 len, offset, map->dm_mapsize);
1007
1008 /*
1009 * For a virtually-indexed write-back cache, we need
1010 * to do the following things:
1011 *
1012 * PREREAD -- Invalidate the D-cache. We do this
1013 * here in case a write-back is required by the back-end.
1014 *
1015 * PREWRITE -- Write-back the D-cache. Note that if
1016 * we are doing a PREREAD|PREWRITE, we can collapse
1017 * the whole thing into a single Wb-Inv.
1018 *
1019 * POSTREAD -- Re-invalidate the D-cache in case speculative
1020 * memory accesses caused cachelines to become valid with now
1021 * invalid data.
1022 *
1023 * POSTWRITE -- Nothing.
1024 */
1025 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1026 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1027 #else
1028 const bool bouncing = false;
1029 #endif
1030
1031 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1032 #ifdef CPU_CORTEX
1033 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1034 #else
1035 const int post_ops = 0;
1036 #endif
1037 if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1038 STAT_INCR(sync_postwrite);
1039 return;
1040 }
1041 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1042 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1043 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1044 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1045 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1046 STAT_INCR(write_bounces);
1047 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1048 /*
1049 * Copy the caller's buffer to the bounce buffer.
1050 */
1051 switch (map->_dm_buftype) {
1052 case _BUS_DMA_BUFTYPE_LINEAR:
1053 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1054 break;
1055 case _BUS_DMA_BUFTYPE_MBUF:
1056 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1057 break;
1058 case _BUS_DMA_BUFTYPE_UIO:
1059 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1060 break;
1061 #ifdef DIAGNOSTIC
1062 case _BUS_DMA_BUFTYPE_RAW:
1063 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1064 break;
1065
1066 case _BUS_DMA_BUFTYPE_INVALID:
1067 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1068 break;
1069
1070 default:
1071 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1072 map, map->_dm_buftype);
1073 break;
1074 #endif /* DIAGNOSTIC */
1075 }
1076 }
1077 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1078
1079 /* Skip cache frobbing if mapping was COHERENT. */
1080 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1081 /* Drain the write buffer. */
1082 if (pre_ops & BUS_DMASYNC_PREWRITE)
1083 cpu_drain_writebuf();
1084 return;
1085 }
1086
1087 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1088 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1089 goto bounce_it;
1090 }
1091 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1092
1093 #ifndef ARM_MMU_EXTENDED
1094 /*
1095 * If the mapping belongs to a non-kernel vmspace, and the
1096 * vmspace has not been active since the last time a full
1097 * cache flush was performed, we don't need to do anything.
1098 */
1099 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1100 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1101 return;
1102 #endif
1103
1104 int buftype = map->_dm_buftype;
1105 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1106 if (bouncing) {
1107 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1108 }
1109 #endif
1110
1111 switch (buftype) {
1112 case _BUS_DMA_BUFTYPE_LINEAR:
1113 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1114 break;
1115
1116 case _BUS_DMA_BUFTYPE_MBUF:
1117 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1118 break;
1119
1120 case _BUS_DMA_BUFTYPE_UIO:
1121 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1122 break;
1123
1124 case _BUS_DMA_BUFTYPE_RAW:
1125 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1126 break;
1127
1128 case _BUS_DMA_BUFTYPE_INVALID:
1129 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1130 break;
1131
1132 default:
1133 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1134 map, map->_dm_buftype);
1135 }
1136
1137 /* Drain the write buffer. */
1138 cpu_drain_writebuf();
1139
1140 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1141 bounce_it:
1142 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1143 return;
1144
1145 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1146 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1147 STAT_INCR(read_bounces);
1148 /*
1149 * Copy the bounce buffer to the caller's buffer.
1150 */
1151 switch (map->_dm_buftype) {
1152 case _BUS_DMA_BUFTYPE_LINEAR:
1153 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1154 break;
1155
1156 case _BUS_DMA_BUFTYPE_MBUF:
1157 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1158 break;
1159
1160 case _BUS_DMA_BUFTYPE_UIO:
1161 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1162 break;
1163 #ifdef DIAGNOSTIC
1164 case _BUS_DMA_BUFTYPE_RAW:
1165 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1166 break;
1167
1168 case _BUS_DMA_BUFTYPE_INVALID:
1169 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1170 break;
1171
1172 default:
1173 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1174 map, map->_dm_buftype);
1175 break;
1176 #endif
1177 }
1178 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1179 }
1180
1181 /*
1182 * Common function for DMA-safe memory allocation. May be called
1183 * by bus-specific DMA memory allocation functions.
1184 */
1185
1186 extern paddr_t physical_start;
1187 extern paddr_t physical_end;
1188
1189 int
1190 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1191 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1192 int flags)
1193 {
1194 struct arm32_dma_range *dr;
1195 int error, i;
1196
1197 #ifdef DEBUG_DMA
1198 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1199 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1200 boundary, segs, nsegs, rsegs, flags);
1201 #endif
1202
1203 if ((dr = t->_ranges) != NULL) {
1204 error = ENOMEM;
1205 for (i = 0; i < t->_nranges; i++, dr++) {
1206 if (dr->dr_len == 0
1207 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1208 continue;
1209 error = _bus_dmamem_alloc_range(t, size, alignment,
1210 boundary, segs, nsegs, rsegs, flags,
1211 trunc_page(dr->dr_sysbase),
1212 trunc_page(dr->dr_sysbase + dr->dr_len));
1213 if (error == 0)
1214 break;
1215 }
1216 } else {
1217 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1218 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1219 trunc_page(physical_end));
1220 }
1221
1222 #ifdef DEBUG_DMA
1223 printf("dmamem_alloc: =%d\n", error);
1224 #endif
1225
1226 return(error);
1227 }
1228
1229 /*
1230 * Common function for freeing DMA-safe memory. May be called by
1231 * bus-specific DMA memory free functions.
1232 */
1233 void
1234 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1235 {
1236 struct vm_page *m;
1237 bus_addr_t addr;
1238 struct pglist mlist;
1239 int curseg;
1240
1241 #ifdef DEBUG_DMA
1242 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1243 #endif /* DEBUG_DMA */
1244
1245 /*
1246 * Build a list of pages to free back to the VM system.
1247 */
1248 TAILQ_INIT(&mlist);
1249 for (curseg = 0; curseg < nsegs; curseg++) {
1250 for (addr = segs[curseg].ds_addr;
1251 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1252 addr += PAGE_SIZE) {
1253 m = PHYS_TO_VM_PAGE(addr);
1254 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1255 }
1256 }
1257 uvm_pglistfree(&mlist);
1258 }
1259
1260 /*
1261 * Common function for mapping DMA-safe memory. May be called by
1262 * bus-specific DMA memory map functions.
1263 */
1264 int
1265 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1266 size_t size, void **kvap, int flags)
1267 {
1268 vaddr_t va;
1269 paddr_t pa;
1270 int curseg;
1271 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1272 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1273 vsize_t align = 0;
1274
1275 #ifdef DEBUG_DMA
1276 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1277 segs, nsegs, (unsigned long)size, flags);
1278 #endif /* DEBUG_DMA */
1279
1280 #ifdef PMAP_MAP_POOLPAGE
1281 /*
1282 * If all of memory is mapped, and we are mapping a single physically
1283 * contiguous area then this area is already mapped. Let's see if we
1284 * avoid having a separate mapping for it.
1285 */
1286 if (nsegs == 1) {
1287 /*
1288 * If this is a non-COHERENT mapping, then the existing kernel
1289 * mapping is already compatible with it.
1290 */
1291 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1292 pa = segs[0].ds_addr;
1293
1294 /*
1295 * This is a COHERENT mapping which, unless this address is in
1296 * a COHERENT dma range, will not be compatible.
1297 */
1298 if (t->_ranges != NULL) {
1299 const struct arm32_dma_range * const dr =
1300 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1301 if (dr != NULL
1302 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1303 direct_mapable = true;
1304 }
1305 }
1306
1307 if (direct_mapable) {
1308 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1309 #ifdef DEBUG_DMA
1310 printf("dmamem_map: =%p\n", *kvap);
1311 #endif /* DEBUG_DMA */
1312 return 0;
1313 }
1314 }
1315 #endif
1316
1317 size = round_page(size);
1318 if (__predict_true(size > L2_L_SIZE)) {
1319 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1320 if (size >= L1_SS_SIZE)
1321 align = L1_SS_SIZE;
1322 else
1323 #endif
1324 if (size >= L1_S_SIZE)
1325 align = L1_S_SIZE;
1326 else
1327 align = L2_L_SIZE;
1328 }
1329
1330 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1331 if (__predict_false(va == 0 && align > 0)) {
1332 align = 0;
1333 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1334 }
1335
1336 if (va == 0)
1337 return (ENOMEM);
1338
1339 *kvap = (void *)va;
1340
1341 for (curseg = 0; curseg < nsegs; curseg++) {
1342 for (pa = segs[curseg].ds_addr;
1343 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1344 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1345 bool uncached = (flags & BUS_DMA_COHERENT);
1346 #ifdef DEBUG_DMA
1347 printf("wiring p%lx to v%lx", pa, va);
1348 #endif /* DEBUG_DMA */
1349 if (size == 0)
1350 panic("_bus_dmamem_map: size botch");
1351
1352 const struct arm32_dma_range * const dr =
1353 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1354 /*
1355 * If this dma region is coherent then there is
1356 * no need for an uncached mapping.
1357 */
1358 if (dr != NULL
1359 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1360 uncached = false;
1361 }
1362
1363 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1364 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1365 }
1366 }
1367 pmap_update(pmap_kernel());
1368 #ifdef DEBUG_DMA
1369 printf("dmamem_map: =%p\n", *kvap);
1370 #endif /* DEBUG_DMA */
1371 return (0);
1372 }
1373
1374 /*
1375 * Common function for unmapping DMA-safe memory. May be called by
1376 * bus-specific DMA memory unmapping functions.
1377 */
1378 void
1379 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1380 {
1381
1382 #ifdef DEBUG_DMA
1383 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1384 #endif /* DEBUG_DMA */
1385 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1386 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1387
1388 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1389 /*
1390 * Check to see if this used direct mapped memory. Get it's physical
1391 * address and try to map it. If the resultant matches the kva, then
1392 * it was and so we can just return since we have notice to free up.
1393 */
1394 paddr_t pa;
1395 vaddr_t va;
1396 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1397 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1398 return;
1399 #endif
1400
1401 size = round_page(size);
1402 pmap_kremove((vaddr_t)kva, size);
1403 pmap_update(pmap_kernel());
1404 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1405 }
1406
1407 /*
1408 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1409 * bus-specific DMA mmap(2)'ing functions.
1410 */
1411 paddr_t
1412 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1413 off_t off, int prot, int flags)
1414 {
1415 paddr_t map_flags;
1416 int i;
1417
1418 for (i = 0; i < nsegs; i++) {
1419 KASSERTMSG((off & PAGE_MASK) == 0,
1420 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1421 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1422 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1423 (int)segs[i].ds_addr & PAGE_MASK);
1424 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1425 "ds_len %#lx (%#x)", segs[i].ds_addr,
1426 (int)segs[i].ds_addr & PAGE_MASK);
1427 if (off >= segs[i].ds_len) {
1428 off -= segs[i].ds_len;
1429 continue;
1430 }
1431
1432 map_flags = 0;
1433 if (flags & BUS_DMA_PREFETCHABLE)
1434 map_flags |= ARM32_MMAP_WRITECOMBINE;
1435
1436 return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1437
1438 }
1439
1440 /* Page not found. */
1441 return (-1);
1442 }
1443
1444 /**********************************************************************
1445 * DMA utility functions
1446 **********************************************************************/
1447
1448 /*
1449 * Utility function to load a linear buffer. lastaddrp holds state
1450 * between invocations (for multiple-buffer loads). segp contains
1451 * the starting segment on entrace, and the ending segment on exit.
1452 * first indicates if this is the first invocation of this function.
1453 */
1454 int
1455 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1456 bus_size_t buflen, struct vmspace *vm, int flags)
1457 {
1458 bus_size_t sgsize;
1459 bus_addr_t curaddr;
1460 vaddr_t vaddr = (vaddr_t)buf;
1461 int error;
1462 pmap_t pmap;
1463
1464 #ifdef DEBUG_DMA
1465 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1466 buf, buflen, flags);
1467 #endif /* DEBUG_DMA */
1468
1469 pmap = vm_map_pmap(&vm->vm_map);
1470
1471 while (buflen > 0) {
1472 /*
1473 * Get the physical address for this segment.
1474 *
1475 * XXX Doesn't support checking for coherent mappings
1476 * XXX in user address space.
1477 */
1478 bool coherent;
1479 if (__predict_true(pmap == pmap_kernel())) {
1480 pd_entry_t *pde;
1481 pt_entry_t *ptep;
1482 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1483 if (__predict_false(pmap_pde_section(pde))) {
1484 paddr_t s_frame = L1_S_FRAME;
1485 paddr_t s_offset = L1_S_OFFSET;
1486 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1487 if (__predict_false(pmap_pde_supersection(pde))) {
1488 s_frame = L1_SS_FRAME;
1489 s_offset = L1_SS_OFFSET;
1490 }
1491 #endif
1492 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1493 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1494 } else {
1495 pt_entry_t pte = *ptep;
1496 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1497 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1498 vaddr, *pde, ptep, pte);
1499 if (__predict_false((pte & L2_TYPE_MASK)
1500 == L2_TYPE_L)) {
1501 curaddr = (pte & L2_L_FRAME) |
1502 (vaddr & L2_L_OFFSET);
1503 coherent = (pte & L2_L_CACHE_MASK) == 0;
1504 } else {
1505 curaddr = (pte & L2_S_FRAME) |
1506 (vaddr & L2_S_OFFSET);
1507 coherent = (pte & L2_S_CACHE_MASK) == 0;
1508 }
1509 }
1510 } else {
1511 (void) pmap_extract(pmap, vaddr, &curaddr);
1512 coherent = false;
1513 }
1514
1515 /*
1516 * Compute the segment size, and adjust counts.
1517 */
1518 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1519 if (buflen < sgsize)
1520 sgsize = buflen;
1521
1522 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1523 coherent);
1524 if (error)
1525 return (error);
1526
1527 vaddr += sgsize;
1528 buflen -= sgsize;
1529 }
1530
1531 return (0);
1532 }
1533
1534 /*
1535 * Allocate physical memory from the given physical address range.
1536 * Called by DMA-safe memory allocation methods.
1537 */
1538 int
1539 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1540 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1541 int flags, paddr_t low, paddr_t high)
1542 {
1543 paddr_t curaddr, lastaddr;
1544 struct vm_page *m;
1545 struct pglist mlist;
1546 int curseg, error;
1547
1548 KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
1549 "invalid boundary %#lx", boundary);
1550
1551 #ifdef DEBUG_DMA
1552 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1553 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1554 #endif /* DEBUG_DMA */
1555
1556 /* Always round the size. */
1557 size = round_page(size);
1558
1559 /*
1560 * We accept boundaries < size, splitting in multiple segments
1561 * if needed. uvm_pglistalloc does not, so compute an appropriate
1562 * boundary: next power of 2 >= size
1563 */
1564 bus_size_t uboundary = boundary;
1565 if (uboundary <= PAGE_SIZE) {
1566 uboundary = 0;
1567 } else {
1568 while (uboundary < size) {
1569 uboundary <<= 1;
1570 }
1571 }
1572
1573 /*
1574 * Allocate pages from the VM system.
1575 */
1576 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1577 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1578 if (error)
1579 return (error);
1580
1581 /*
1582 * Compute the location, size, and number of segments actually
1583 * returned by the VM code.
1584 */
1585 m = TAILQ_FIRST(&mlist);
1586 curseg = 0;
1587 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1588 segs[curseg].ds_len = PAGE_SIZE;
1589 #ifdef DEBUG_DMA
1590 printf("alloc: page %lx\n", lastaddr);
1591 #endif /* DEBUG_DMA */
1592 m = TAILQ_NEXT(m, pageq.queue);
1593
1594 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1595 curaddr = VM_PAGE_TO_PHYS(m);
1596 KASSERTMSG(low <= curaddr && curaddr < high,
1597 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1598 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1599 #ifdef DEBUG_DMA
1600 printf("alloc: page %lx\n", curaddr);
1601 #endif /* DEBUG_DMA */
1602 if (curaddr == lastaddr + PAGE_SIZE
1603 && (lastaddr & boundary) == (curaddr & boundary))
1604 segs[curseg].ds_len += PAGE_SIZE;
1605 else {
1606 curseg++;
1607 if (curseg >= nsegs) {
1608 uvm_pglistfree(&mlist);
1609 return EFBIG;
1610 }
1611 segs[curseg].ds_addr = curaddr;
1612 segs[curseg].ds_len = PAGE_SIZE;
1613 }
1614 lastaddr = curaddr;
1615 }
1616
1617 *rsegs = curseg + 1;
1618
1619 return (0);
1620 }
1621
1622 /*
1623 * Check if a memory region intersects with a DMA range, and return the
1624 * page-rounded intersection if it does.
1625 */
1626 int
1627 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1628 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1629 {
1630 struct arm32_dma_range *dr;
1631 int i;
1632
1633 if (ranges == NULL)
1634 return (0);
1635
1636 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1637 if (dr->dr_sysbase <= pa &&
1638 pa < (dr->dr_sysbase + dr->dr_len)) {
1639 /*
1640 * Beginning of region intersects with this range.
1641 */
1642 *pap = trunc_page(pa);
1643 *sizep = round_page(min(pa + size,
1644 dr->dr_sysbase + dr->dr_len) - pa);
1645 return (1);
1646 }
1647 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1648 /*
1649 * End of region intersects with this range.
1650 */
1651 *pap = trunc_page(dr->dr_sysbase);
1652 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1653 dr->dr_len));
1654 return (1);
1655 }
1656 }
1657
1658 /* No intersection found. */
1659 return (0);
1660 }
1661
1662 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1663 static int
1664 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1665 bus_size_t size, int flags)
1666 {
1667 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1668 int error = 0;
1669
1670 KASSERT(cookie != NULL);
1671
1672 cookie->id_bouncebuflen = round_page(size);
1673 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1674 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1675 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1676 if (error == 0) {
1677 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1678 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1679 (void **)&cookie->id_bouncebuf, flags);
1680 if (error) {
1681 _bus_dmamem_free(t, cookie->id_bouncesegs,
1682 cookie->id_nbouncesegs);
1683 cookie->id_bouncebuflen = 0;
1684 cookie->id_nbouncesegs = 0;
1685 } else {
1686 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1687 }
1688 } else {
1689 cookie->id_bouncebuflen = 0;
1690 cookie->id_nbouncesegs = 0;
1691 }
1692
1693 return (error);
1694 }
1695
1696 static void
1697 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1698 {
1699 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1700
1701 KASSERT(cookie != NULL);
1702
1703 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1704 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1705 cookie->id_bouncebuflen = 0;
1706 cookie->id_nbouncesegs = 0;
1707 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1708 }
1709
1710 /*
1711 * This function does the same as uiomove, but takes an explicit
1712 * direction, and does not update the uio structure.
1713 */
1714 static int
1715 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1716 {
1717 struct iovec *iov;
1718 int error;
1719 struct vmspace *vm;
1720 char *cp;
1721 size_t resid, cnt;
1722 int i;
1723
1724 iov = uio->uio_iov;
1725 vm = uio->uio_vmspace;
1726 cp = buf;
1727 resid = n;
1728
1729 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1730 iov = &uio->uio_iov[i];
1731 if (iov->iov_len == 0)
1732 continue;
1733 cnt = MIN(resid, iov->iov_len);
1734
1735 if (!VMSPACE_IS_KERNEL_P(vm) &&
1736 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1737 != 0) {
1738 preempt();
1739 }
1740 if (direction == UIO_READ) {
1741 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1742 } else {
1743 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1744 }
1745 if (error)
1746 return (error);
1747 cp += cnt;
1748 resid -= cnt;
1749 }
1750 return (0);
1751 }
1752 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1753
1754 int
1755 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1756 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1757 {
1758
1759 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1760 struct arm32_dma_range *dr;
1761 bool subset = false;
1762 size_t nranges = 0;
1763 size_t i;
1764 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1765 if (dr->dr_sysbase <= min_addr
1766 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1767 subset = true;
1768 }
1769 if (min_addr <= dr->dr_sysbase + dr->dr_len
1770 && max_addr >= dr->dr_sysbase) {
1771 nranges++;
1772 }
1773 }
1774 if (subset) {
1775 *newtag = tag;
1776 /* if the tag must be freed, add a reference */
1777 if (tag->_tag_needs_free)
1778 (tag->_tag_needs_free)++;
1779 return 0;
1780 }
1781 if (nranges == 0) {
1782 nranges = 1;
1783 }
1784
1785 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1786 if ((*newtag = kmem_intr_zalloc(tagsize,
1787 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1788 return ENOMEM;
1789
1790 dr = (void *)(*newtag + 1);
1791 **newtag = *tag;
1792 (*newtag)->_tag_needs_free = 1;
1793 (*newtag)->_ranges = dr;
1794 (*newtag)->_nranges = nranges;
1795
1796 if (tag->_ranges == NULL) {
1797 dr->dr_sysbase = min_addr;
1798 dr->dr_busbase = min_addr;
1799 dr->dr_len = max_addr + 1 - min_addr;
1800 } else {
1801 for (i = 0; i < nranges; i++) {
1802 if (min_addr > dr->dr_sysbase + dr->dr_len
1803 || max_addr < dr->dr_sysbase)
1804 continue;
1805 dr[0] = tag->_ranges[i];
1806 if (dr->dr_sysbase < min_addr) {
1807 psize_t diff = min_addr - dr->dr_sysbase;
1808 dr->dr_busbase += diff;
1809 dr->dr_len -= diff;
1810 dr->dr_sysbase += diff;
1811 }
1812 if (max_addr != 0xffffffff
1813 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1814 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1815 }
1816 dr++;
1817 }
1818 }
1819
1820 return 0;
1821 #else
1822 return EOPNOTSUPP;
1823 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1824 }
1825
1826 void
1827 _bus_dmatag_destroy(bus_dma_tag_t tag)
1828 {
1829 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1830 switch (tag->_tag_needs_free) {
1831 case 0:
1832 break; /* not allocated with kmem */
1833 case 1: {
1834 const size_t tagsize = sizeof(*tag)
1835 + tag->_nranges * sizeof(*tag->_ranges);
1836 kmem_intr_free(tag, tagsize); /* last reference to tag */
1837 break;
1838 }
1839 default:
1840 (tag->_tag_needs_free)--; /* one less reference */
1841 }
1842 #endif
1843 }
1844