bus_dma.c revision 1.87 1 /* $NetBSD: bus_dma.c,v 1.87 2014/09/08 22:12:12 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.87 2014/09/08 22:12:12 matt Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/reboot.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/kmem.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/device.h>
54
55 #include <uvm/uvm.h>
56
57 #include <arm/cpufunc.h>
58
59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
60 #include <dev/mm.h>
61 #endif
62
63 #ifdef BUSDMA_COUNTERS
64 static struct evcnt bus_dma_creates =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
66 static struct evcnt bus_dma_bounced_creates =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
68 static struct evcnt bus_dma_loads =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
70 static struct evcnt bus_dma_bounced_loads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
72 static struct evcnt bus_dma_coherent_loads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
74 static struct evcnt bus_dma_read_bounces =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
76 static struct evcnt bus_dma_write_bounces =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
78 static struct evcnt bus_dma_bounced_unloads =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
80 static struct evcnt bus_dma_unloads =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
82 static struct evcnt bus_dma_bounced_destroys =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
84 static struct evcnt bus_dma_destroys =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
86 static struct evcnt bus_dma_sync_prereadwrite =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
88 static struct evcnt bus_dma_sync_preread_begin =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
90 static struct evcnt bus_dma_sync_preread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
92 static struct evcnt bus_dma_sync_preread_tail =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
94 static struct evcnt bus_dma_sync_prewrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
96 static struct evcnt bus_dma_sync_postread =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
98 static struct evcnt bus_dma_sync_postreadwrite =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
100 static struct evcnt bus_dma_sync_postwrite =
101 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
102
103 EVCNT_ATTACH_STATIC(bus_dma_creates);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
105 EVCNT_ATTACH_STATIC(bus_dma_loads);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
122
123 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
124 #else
125 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
126 #endif
127
128 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct vmspace *, int);
130 static struct arm32_dma_range *
131 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
132
133 /*
134 * Check to see if the specified page is in an allowed DMA range.
135 */
136 inline struct arm32_dma_range *
137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
138 bus_addr_t curaddr)
139 {
140 struct arm32_dma_range *dr;
141 int i;
142
143 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
144 if (curaddr >= dr->dr_sysbase &&
145 curaddr < (dr->dr_sysbase + dr->dr_len))
146 return (dr);
147 }
148
149 return (NULL);
150 }
151
152 /*
153 * Check to see if the specified busaddr is in an allowed DMA range.
154 */
155 static inline paddr_t
156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 u_int i;
160
161 if (t->_nranges == 0)
162 return curaddr;
163
164 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
165 if (dr->dr_busbase <= curaddr
166 && curaddr < dr->dr_busbase + dr->dr_len)
167 return curaddr - dr->dr_busbase + dr->dr_sysbase;
168 }
169 panic("%s: curaddr %#lx not in range", __func__, curaddr);
170 }
171
172 /*
173 * Common function to load the specified physical address into the
174 * DMA map, coalescing segments and boundary checking as necessary.
175 */
176 static int
177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
178 bus_addr_t paddr, bus_size_t size, bool coherent)
179 {
180 bus_dma_segment_t * const segs = map->dm_segs;
181 int nseg = map->dm_nsegs;
182 bus_addr_t lastaddr;
183 bus_addr_t bmask = ~(map->_dm_boundary - 1);
184 bus_addr_t curaddr;
185 bus_size_t sgsize;
186 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
187
188 if (nseg > 0)
189 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
190 else
191 lastaddr = 0xdead;
192
193 again:
194 sgsize = size;
195
196 /* Make sure we're in an allowed DMA range. */
197 if (t->_ranges != NULL) {
198 /* XXX cache last result? */
199 const struct arm32_dma_range * const dr =
200 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
201 if (dr == NULL)
202 return (EINVAL);
203
204 /*
205 * If this region is coherent, mark the segment as coherent.
206 */
207 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
208
209 /*
210 * In a valid DMA range. Translate the physical
211 * memory address to an address in the DMA window.
212 */
213 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
214 #if 0
215 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
216 t, paddr, dr->dr_sysbase, dr->dr_busbase,
217 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
218 #endif
219 } else
220 curaddr = paddr;
221
222 /*
223 * Make sure we don't cross any boundaries.
224 */
225 if (map->_dm_boundary > 0) {
226 bus_addr_t baddr; /* next boundary address */
227
228 baddr = (curaddr + map->_dm_boundary) & bmask;
229 if (sgsize > (baddr - curaddr))
230 sgsize = (baddr - curaddr);
231 }
232
233 /*
234 * Insert chunk into a segment, coalescing with the
235 * previous segment if possible.
236 */
237 if (nseg > 0 && curaddr == lastaddr &&
238 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
239 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
240 (map->_dm_boundary == 0 ||
241 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
242 /* coalesce */
243 segs[nseg-1].ds_len += sgsize;
244 } else if (nseg >= map->_dm_segcnt) {
245 return (EFBIG);
246 } else {
247 /* new segment */
248 segs[nseg].ds_addr = curaddr;
249 segs[nseg].ds_len = sgsize;
250 segs[nseg]._ds_flags = _ds_flags;
251 nseg++;
252 }
253
254 lastaddr = curaddr + sgsize;
255
256 paddr += sgsize;
257 size -= sgsize;
258 if (size > 0)
259 goto again;
260
261 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
262 map->dm_nsegs = nseg;
263 return (0);
264 }
265
266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
268 bus_size_t size, int flags);
269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
271 int direction);
272
273 static int
274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
275 size_t buflen, int buftype, int flags)
276 {
277 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
278 struct vmspace * const vm = vmspace_kernel();
279 int error;
280
281 KASSERT(cookie != NULL);
282 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
283
284 /*
285 * Allocate bounce pages, if necessary.
286 */
287 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
288 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
289 if (error)
290 return (error);
291 }
292
293 /*
294 * Cache a pointer to the caller's buffer and load the DMA map
295 * with the bounce buffer.
296 */
297 cookie->id_origbuf = buf;
298 cookie->id_origbuflen = buflen;
299 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
300 buflen, vm, flags);
301 if (error)
302 return (error);
303
304 STAT_INCR(bounced_loads);
305 map->dm_mapsize = buflen;
306 map->_dm_vmspace = vm;
307 map->_dm_buftype = buftype;
308
309 /* ...so _bus_dmamap_sync() knows we're bouncing */
310 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
311 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
312 return 0;
313 }
314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
315
316 /*
317 * Common function for DMA map creation. May be called by bus-specific
318 * DMA map creation functions.
319 */
320 int
321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
322 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
323 {
324 struct arm32_bus_dmamap *map;
325 void *mapstore;
326
327 #ifdef DEBUG_DMA
328 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
329 t, size, nsegments, maxsegsz, boundary, flags);
330 #endif /* DEBUG_DMA */
331
332 /*
333 * Allocate and initialize the DMA map. The end of the map
334 * is a variable-sized array of segments, so we allocate enough
335 * room for them in one shot.
336 *
337 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
338 * of ALLOCNOW notifies others that we've reserved these resources,
339 * and they are not to be freed.
340 *
341 * The bus_dmamap_t includes one bus_dma_segment_t, hence
342 * the (nsegments - 1).
343 */
344 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
345 (sizeof(bus_dma_segment_t) * (nsegments - 1));
346 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
347 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
348 return (ENOMEM);
349
350 map = (struct arm32_bus_dmamap *)mapstore;
351 map->_dm_size = size;
352 map->_dm_segcnt = nsegments;
353 map->_dm_maxmaxsegsz = maxsegsz;
354 map->_dm_boundary = boundary;
355 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
356 map->_dm_origbuf = NULL;
357 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
358 map->_dm_vmspace = vmspace_kernel();
359 map->_dm_cookie = NULL;
360 map->dm_maxsegsz = maxsegsz;
361 map->dm_mapsize = 0; /* no valid mappings */
362 map->dm_nsegs = 0;
363
364 *dmamp = map;
365
366 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
367 struct arm32_bus_dma_cookie *cookie;
368 int cookieflags;
369 void *cookiestore;
370 int error;
371
372 cookieflags = 0;
373
374 if (t->_may_bounce != NULL) {
375 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
376 if (error != 0)
377 goto out;
378 }
379
380 if (t->_ranges != NULL)
381 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
382
383 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
384 STAT_INCR(creates);
385 return 0;
386 }
387
388 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
389 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
390
391 /*
392 * Allocate our cookie.
393 */
394 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
395 error = ENOMEM;
396 goto out;
397 }
398 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
399 cookie->id_flags = cookieflags;
400 map->_dm_cookie = cookie;
401 STAT_INCR(bounced_creates);
402
403 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
404 out:
405 if (error)
406 _bus_dmamap_destroy(t, map);
407 #else
408 STAT_INCR(creates);
409 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
410
411 #ifdef DEBUG_DMA
412 printf("dmamap_create:map=%p\n", map);
413 #endif /* DEBUG_DMA */
414 return (0);
415 }
416
417 /*
418 * Common function for DMA map destruction. May be called by bus-specific
419 * DMA map destruction functions.
420 */
421 void
422 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
423 {
424
425 #ifdef DEBUG_DMA
426 printf("dmamap_destroy: t=%p map=%p\n", t, map);
427 #endif /* DEBUG_DMA */
428 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
429 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
430
431 /*
432 * Free any bounce pages this map might hold.
433 */
434 if (cookie != NULL) {
435 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
436 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
437
438 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
439 STAT_INCR(bounced_unloads);
440 map->dm_nsegs = 0;
441 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
442 _bus_dma_free_bouncebuf(t, map);
443 STAT_INCR(bounced_destroys);
444 kmem_intr_free(cookie, cookiesize);
445 } else
446 #endif
447 STAT_INCR(destroys);
448
449 if (map->dm_nsegs > 0)
450 STAT_INCR(unloads);
451
452 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
453 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
454 kmem_intr_free(map, mapsize);
455 }
456
457 /*
458 * Common function for loading a DMA map with a linear buffer. May
459 * be called by bus-specific DMA map load functions.
460 */
461 int
462 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
463 bus_size_t buflen, struct proc *p, int flags)
464 {
465 struct vmspace *vm;
466 int error;
467
468 #ifdef DEBUG_DMA
469 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
470 t, map, buf, buflen, p, flags);
471 #endif /* DEBUG_DMA */
472
473 if (map->dm_nsegs > 0) {
474 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
475 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
476 if (cookie != NULL) {
477 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
478 STAT_INCR(bounced_unloads);
479 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
480 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
481 }
482 } else
483 #endif
484 STAT_INCR(unloads);
485 }
486
487 /*
488 * Make sure that on error condition we return "no valid mappings".
489 */
490 map->dm_mapsize = 0;
491 map->dm_nsegs = 0;
492 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
493 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
494 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
495 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
496
497 if (buflen > map->_dm_size)
498 return (EINVAL);
499
500 if (p != NULL) {
501 vm = p->p_vmspace;
502 } else {
503 vm = vmspace_kernel();
504 }
505
506 /* _bus_dmamap_load_buffer() clears this if we're not... */
507 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
508
509 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
510 if (error == 0) {
511 map->dm_mapsize = buflen;
512 map->_dm_vmspace = vm;
513 map->_dm_origbuf = buf;
514 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
515 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
516 STAT_INCR(coherent_loads);
517 } else {
518 STAT_INCR(loads);
519 }
520 return 0;
521 }
522 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
523 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
524 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
525 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
526 _BUS_DMA_BUFTYPE_LINEAR, flags);
527 }
528 #endif
529 return (error);
530 }
531
532 /*
533 * Like _bus_dmamap_load(), but for mbufs.
534 */
535 int
536 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
537 int flags)
538 {
539 int error;
540 struct mbuf *m;
541
542 #ifdef DEBUG_DMA
543 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
544 t, map, m0, flags);
545 #endif /* DEBUG_DMA */
546
547 if (map->dm_nsegs > 0) {
548 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
549 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
550 if (cookie != NULL) {
551 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
552 STAT_INCR(bounced_unloads);
553 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
554 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
555 }
556 } else
557 #endif
558 STAT_INCR(unloads);
559 }
560
561 /*
562 * Make sure that on error condition we return "no valid mappings."
563 */
564 map->dm_mapsize = 0;
565 map->dm_nsegs = 0;
566 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
567 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
568 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
569 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
570
571 KASSERT(m0->m_flags & M_PKTHDR);
572
573 if (m0->m_pkthdr.len > map->_dm_size)
574 return (EINVAL);
575
576 /* _bus_dmamap_load_paddr() clears this if we're not... */
577 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
578
579 error = 0;
580 for (m = m0; m != NULL && error == 0; m = m->m_next) {
581 int offset;
582 int remainbytes;
583 const struct vm_page * const *pgs;
584 paddr_t paddr;
585 int size;
586
587 if (m->m_len == 0)
588 continue;
589 /*
590 * Don't allow reads in read-only mbufs.
591 */
592 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
593 error = EFAULT;
594 break;
595 }
596 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
597 case M_EXT|M_CLUSTER:
598 /* XXX KDASSERT */
599 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
600 paddr = m->m_ext.ext_paddr +
601 (m->m_data - m->m_ext.ext_buf);
602 size = m->m_len;
603 error = _bus_dmamap_load_paddr(t, map, paddr, size,
604 false);
605 break;
606
607 case M_EXT|M_EXT_PAGES:
608 KASSERT(m->m_ext.ext_buf <= m->m_data);
609 KASSERT(m->m_data <=
610 m->m_ext.ext_buf + m->m_ext.ext_size);
611
612 offset = (vaddr_t)m->m_data -
613 trunc_page((vaddr_t)m->m_ext.ext_buf);
614 remainbytes = m->m_len;
615
616 /* skip uninteresting pages */
617 pgs = (const struct vm_page * const *)
618 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
619
620 offset &= PAGE_MASK; /* offset in the first page */
621
622 /* load each page */
623 while (remainbytes > 0) {
624 const struct vm_page *pg;
625
626 size = MIN(remainbytes, PAGE_SIZE - offset);
627
628 pg = *pgs++;
629 KASSERT(pg);
630 paddr = VM_PAGE_TO_PHYS(pg) + offset;
631
632 error = _bus_dmamap_load_paddr(t, map,
633 paddr, size, false);
634 if (error)
635 break;
636 offset = 0;
637 remainbytes -= size;
638 }
639 break;
640
641 case 0:
642 paddr = m->m_paddr + M_BUFOFFSET(m) +
643 (m->m_data - M_BUFADDR(m));
644 size = m->m_len;
645 error = _bus_dmamap_load_paddr(t, map, paddr, size,
646 false);
647 break;
648
649 default:
650 error = _bus_dmamap_load_buffer(t, map, m->m_data,
651 m->m_len, vmspace_kernel(), flags);
652 }
653 }
654 if (error == 0) {
655 map->dm_mapsize = m0->m_pkthdr.len;
656 map->_dm_origbuf = m0;
657 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
658 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
659 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
660 STAT_INCR(coherent_loads);
661 } else {
662 STAT_INCR(loads);
663 }
664 return 0;
665 }
666 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
667 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
668 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
669 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
670 _BUS_DMA_BUFTYPE_MBUF, flags);
671 }
672 #endif
673 return (error);
674 }
675
676 /*
677 * Like _bus_dmamap_load(), but for uios.
678 */
679 int
680 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
681 int flags)
682 {
683 int i, error;
684 bus_size_t minlen, resid;
685 struct iovec *iov;
686 void *addr;
687
688 /*
689 * Make sure that on error condition we return "no valid mappings."
690 */
691 map->dm_mapsize = 0;
692 map->dm_nsegs = 0;
693 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
694 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
695 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
696
697 resid = uio->uio_resid;
698 iov = uio->uio_iov;
699
700 /* _bus_dmamap_load_buffer() clears this if we're not... */
701 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
702
703 error = 0;
704 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
705 /*
706 * Now at the first iovec to load. Load each iovec
707 * until we have exhausted the residual count.
708 */
709 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
710 addr = (void *)iov[i].iov_base;
711
712 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
713 uio->uio_vmspace, flags);
714
715 resid -= minlen;
716 }
717 if (error == 0) {
718 map->dm_mapsize = uio->uio_resid;
719 map->_dm_origbuf = uio;
720 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
721 map->_dm_vmspace = uio->uio_vmspace;
722 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
723 STAT_INCR(coherent_loads);
724 } else {
725 STAT_INCR(loads);
726 }
727 }
728 return (error);
729 }
730
731 /*
732 * Like _bus_dmamap_load(), but for raw memory allocated with
733 * bus_dmamem_alloc().
734 */
735 int
736 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
737 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
738 {
739
740 panic("_bus_dmamap_load_raw: not implemented");
741 }
742
743 /*
744 * Common function for unloading a DMA map. May be called by
745 * bus-specific DMA map unload functions.
746 */
747 void
748 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
749 {
750
751 #ifdef DEBUG_DMA
752 printf("dmamap_unload: t=%p map=%p\n", t, map);
753 #endif /* DEBUG_DMA */
754
755 /*
756 * No resources to free; just mark the mappings as
757 * invalid.
758 */
759 map->dm_mapsize = 0;
760 map->dm_nsegs = 0;
761 map->_dm_origbuf = NULL;
762 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
763 map->_dm_vmspace = NULL;
764 }
765
766 static void
767 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
768 {
769 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
770 "va %#lx pa %#lx", va, pa);
771 #if 0
772 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
773 va, pa, len, ops, readonly_p);
774 #endif
775
776 switch (ops) {
777 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
778 if (!readonly_p) {
779 STAT_INCR(sync_prereadwrite);
780 cpu_dcache_wbinv_range(va, len);
781 cpu_sdcache_wbinv_range(va, pa, len);
782 break;
783 }
784 /* FALLTHROUGH */
785
786 case BUS_DMASYNC_PREREAD: {
787 const size_t line_size = arm_dcache_align;
788 const size_t line_mask = arm_dcache_align_mask;
789 vsize_t misalignment = va & line_mask;
790 if (misalignment) {
791 va -= misalignment;
792 pa -= misalignment;
793 len += misalignment;
794 STAT_INCR(sync_preread_begin);
795 cpu_dcache_wbinv_range(va, line_size);
796 cpu_sdcache_wbinv_range(va, pa, line_size);
797 if (len <= line_size)
798 break;
799 va += line_size;
800 pa += line_size;
801 len -= line_size;
802 }
803 misalignment = len & line_mask;
804 len -= misalignment;
805 if (len > 0) {
806 STAT_INCR(sync_preread);
807 cpu_dcache_inv_range(va, len);
808 cpu_sdcache_inv_range(va, pa, len);
809 }
810 if (misalignment) {
811 va += len;
812 pa += len;
813 STAT_INCR(sync_preread_tail);
814 cpu_dcache_wbinv_range(va, line_size);
815 cpu_sdcache_wbinv_range(va, pa, line_size);
816 }
817 break;
818 }
819
820 case BUS_DMASYNC_PREWRITE:
821 STAT_INCR(sync_prewrite);
822 cpu_dcache_wb_range(va, len);
823 cpu_sdcache_wb_range(va, pa, len);
824 break;
825
826 #ifdef CPU_CORTEX
827 /*
828 * Cortex CPUs can do speculative loads so we need to clean the cache
829 * after a DMA read to deal with any speculatively loaded cache lines.
830 * Since these can't be dirty, we can just invalidate them and don't
831 * have to worry about having to write back their contents.
832 */
833 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
834 STAT_INCR(sync_postreadwrite);
835 cpu_dcache_inv_range(va, len);
836 cpu_sdcache_inv_range(va, pa, len);
837 break;
838 case BUS_DMASYNC_POSTREAD:
839 STAT_INCR(sync_postread);
840 cpu_dcache_inv_range(va, len);
841 cpu_sdcache_inv_range(va, pa, len);
842 break;
843 #endif
844 }
845 }
846
847 static inline void
848 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
849 bus_size_t len, int ops)
850 {
851 bus_dma_segment_t *ds = map->dm_segs;
852 vaddr_t va = (vaddr_t) map->_dm_origbuf;
853 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
854 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
855 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
856 va = (vaddr_t) cookie->id_bouncebuf;
857 }
858 #endif
859
860 while (len > 0) {
861 while (offset >= ds->ds_len) {
862 offset -= ds->ds_len;
863 va += ds->ds_len;
864 ds++;
865 }
866
867 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
868 size_t seglen = min(len, ds->ds_len - offset);
869
870 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
871 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
872 false);
873
874 offset += seglen;
875 len -= seglen;
876 }
877 }
878
879 static inline void
880 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
881 bus_size_t len, int ops)
882 {
883 bus_dma_segment_t *ds = map->dm_segs;
884 struct mbuf *m = map->_dm_origbuf;
885 bus_size_t voff = offset;
886 bus_size_t ds_off = offset;
887
888 while (len > 0) {
889 /* Find the current dma segment */
890 while (ds_off >= ds->ds_len) {
891 ds_off -= ds->ds_len;
892 ds++;
893 }
894 /* Find the current mbuf. */
895 while (voff >= m->m_len) {
896 voff -= m->m_len;
897 m = m->m_next;
898 }
899
900 /*
901 * Now at the first mbuf to sync; nail each one until
902 * we have exhausted the length.
903 */
904 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
905 vaddr_t va = mtod(m, vaddr_t) + voff;
906 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
907
908 /*
909 * We can save a lot of work here if we know the mapping
910 * is read-only at the MMU:
911 *
912 * If a mapping is read-only, no dirty cache blocks will
913 * exist for it. If a writable mapping was made read-only,
914 * we know any dirty cache lines for the range will have
915 * been cleaned for us already. Therefore, if the upper
916 * layer can tell us we have a read-only mapping, we can
917 * skip all cache cleaning.
918 *
919 * NOTE: This only works if we know the pmap cleans pages
920 * before making a read-write -> read-only transition. If
921 * this ever becomes non-true (e.g. Physically Indexed
922 * cache), this will have to be revisited.
923 */
924
925 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
926 _bus_dmamap_sync_segment(va, pa, seglen, ops,
927 M_ROMAP(m));
928 voff += seglen;
929 ds_off += seglen;
930 len -= seglen;
931 }
932 }
933
934 static inline void
935 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
936 bus_size_t len, int ops)
937 {
938 bus_dma_segment_t *ds = map->dm_segs;
939 struct uio *uio = map->_dm_origbuf;
940 struct iovec *iov = uio->uio_iov;
941 bus_size_t voff = offset;
942 bus_size_t ds_off = offset;
943
944 while (len > 0) {
945 /* Find the current dma segment */
946 while (ds_off >= ds->ds_len) {
947 ds_off -= ds->ds_len;
948 ds++;
949 }
950
951 /* Find the current iovec. */
952 while (voff >= iov->iov_len) {
953 voff -= iov->iov_len;
954 iov++;
955 }
956
957 /*
958 * Now at the first iovec to sync; nail each one until
959 * we have exhausted the length.
960 */
961 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
962 vaddr_t va = (vaddr_t) iov->iov_base + voff;
963 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
964
965 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
966 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
967
968 voff += seglen;
969 ds_off += seglen;
970 len -= seglen;
971 }
972 }
973
974 /*
975 * Common function for DMA map synchronization. May be called
976 * by bus-specific DMA map synchronization functions.
977 *
978 * This version works for the Virtually Indexed Virtually Tagged
979 * cache found on 32-bit ARM processors.
980 *
981 * XXX Should have separate versions for write-through vs.
982 * XXX write-back caches. We currently assume write-back
983 * XXX here, which is not as efficient as it could be for
984 * XXX the write-through case.
985 */
986 void
987 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
988 bus_size_t len, int ops)
989 {
990 #ifdef DEBUG_DMA
991 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
992 t, map, offset, len, ops);
993 #endif /* DEBUG_DMA */
994
995 /*
996 * Mixing of PRE and POST operations is not allowed.
997 */
998 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
999 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1000 panic("_bus_dmamap_sync: mix PRE and POST");
1001
1002 KASSERTMSG(offset < map->dm_mapsize,
1003 "offset %lu mapsize %lu",
1004 offset, map->dm_mapsize);
1005 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1006 "len %lu offset %lu mapsize %lu",
1007 len, offset, map->dm_mapsize);
1008
1009 /*
1010 * For a virtually-indexed write-back cache, we need
1011 * to do the following things:
1012 *
1013 * PREREAD -- Invalidate the D-cache. We do this
1014 * here in case a write-back is required by the back-end.
1015 *
1016 * PREWRITE -- Write-back the D-cache. Note that if
1017 * we are doing a PREREAD|PREWRITE, we can collapse
1018 * the whole thing into a single Wb-Inv.
1019 *
1020 * POSTREAD -- Re-invalidate the D-cache in case speculative
1021 * memory accesses caused cachelines to become valid with now
1022 * invalid data.
1023 *
1024 * POSTWRITE -- Nothing.
1025 */
1026 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1027 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1028 #else
1029 const bool bouncing = false;
1030 #endif
1031
1032 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1033 #ifdef CPU_CORTEX
1034 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1035 #else
1036 const int post_ops = 0;
1037 #endif
1038 if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1039 STAT_INCR(sync_postwrite);
1040 return;
1041 }
1042 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1043 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1044 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1045 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1046 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1047 STAT_INCR(write_bounces);
1048 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1049 /*
1050 * Copy the caller's buffer to the bounce buffer.
1051 */
1052 switch (map->_dm_buftype) {
1053 case _BUS_DMA_BUFTYPE_LINEAR:
1054 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1055 break;
1056 case _BUS_DMA_BUFTYPE_MBUF:
1057 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1058 break;
1059 case _BUS_DMA_BUFTYPE_UIO:
1060 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1061 break;
1062 #ifdef DIAGNOSTIC
1063 case _BUS_DMA_BUFTYPE_RAW:
1064 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1065 break;
1066
1067 case _BUS_DMA_BUFTYPE_INVALID:
1068 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1069 break;
1070
1071 default:
1072 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1073 map, map->_dm_buftype);
1074 break;
1075 #endif /* DIAGNOSTIC */
1076 }
1077 }
1078 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1079
1080 /* Skip cache frobbing if mapping was COHERENT. */
1081 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1082 /* Drain the write buffer. */
1083 if (pre_ops & BUS_DMASYNC_PREWRITE)
1084 cpu_drain_writebuf();
1085 return;
1086 }
1087
1088 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1089 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1090 goto bounce_it;
1091 }
1092 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1093
1094 #ifndef ARM_MMU_EXTENDED
1095 /*
1096 * If the mapping belongs to a non-kernel vmspace, and the
1097 * vmspace has not been active since the last time a full
1098 * cache flush was performed, we don't need to do anything.
1099 */
1100 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1101 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1102 return;
1103 #endif
1104
1105 int buftype = map->_dm_buftype;
1106 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1107 if (bouncing) {
1108 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1109 }
1110 #endif
1111
1112 switch (buftype) {
1113 case _BUS_DMA_BUFTYPE_LINEAR:
1114 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1115 break;
1116
1117 case _BUS_DMA_BUFTYPE_MBUF:
1118 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1119 break;
1120
1121 case _BUS_DMA_BUFTYPE_UIO:
1122 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1123 break;
1124
1125 case _BUS_DMA_BUFTYPE_RAW:
1126 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1127 break;
1128
1129 case _BUS_DMA_BUFTYPE_INVALID:
1130 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1131 break;
1132
1133 default:
1134 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1135 map, map->_dm_buftype);
1136 }
1137
1138 /* Drain the write buffer. */
1139 cpu_drain_writebuf();
1140
1141 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1142 bounce_it:
1143 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1144 return;
1145
1146 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1147 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1148 STAT_INCR(read_bounces);
1149 /*
1150 * Copy the bounce buffer to the caller's buffer.
1151 */
1152 switch (map->_dm_buftype) {
1153 case _BUS_DMA_BUFTYPE_LINEAR:
1154 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1155 break;
1156
1157 case _BUS_DMA_BUFTYPE_MBUF:
1158 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1159 break;
1160
1161 case _BUS_DMA_BUFTYPE_UIO:
1162 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1163 break;
1164 #ifdef DIAGNOSTIC
1165 case _BUS_DMA_BUFTYPE_RAW:
1166 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1167 break;
1168
1169 case _BUS_DMA_BUFTYPE_INVALID:
1170 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1171 break;
1172
1173 default:
1174 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1175 map, map->_dm_buftype);
1176 break;
1177 #endif
1178 }
1179 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1180 }
1181
1182 /*
1183 * Common function for DMA-safe memory allocation. May be called
1184 * by bus-specific DMA memory allocation functions.
1185 */
1186
1187 extern paddr_t physical_start;
1188 extern paddr_t physical_end;
1189
1190 int
1191 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1192 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1193 int flags)
1194 {
1195 struct arm32_dma_range *dr;
1196 int error, i;
1197
1198 #ifdef DEBUG_DMA
1199 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1200 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1201 boundary, segs, nsegs, rsegs, flags);
1202 #endif
1203
1204 if ((dr = t->_ranges) != NULL) {
1205 error = ENOMEM;
1206 for (i = 0; i < t->_nranges; i++, dr++) {
1207 if (dr->dr_len == 0
1208 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1209 continue;
1210 error = _bus_dmamem_alloc_range(t, size, alignment,
1211 boundary, segs, nsegs, rsegs, flags,
1212 trunc_page(dr->dr_sysbase),
1213 trunc_page(dr->dr_sysbase + dr->dr_len));
1214 if (error == 0)
1215 break;
1216 }
1217 } else {
1218 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1219 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1220 trunc_page(physical_end));
1221 }
1222
1223 #ifdef DEBUG_DMA
1224 printf("dmamem_alloc: =%d\n", error);
1225 #endif
1226
1227 return(error);
1228 }
1229
1230 /*
1231 * Common function for freeing DMA-safe memory. May be called by
1232 * bus-specific DMA memory free functions.
1233 */
1234 void
1235 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1236 {
1237 struct vm_page *m;
1238 bus_addr_t addr;
1239 struct pglist mlist;
1240 int curseg;
1241
1242 #ifdef DEBUG_DMA
1243 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1244 #endif /* DEBUG_DMA */
1245
1246 /*
1247 * Build a list of pages to free back to the VM system.
1248 */
1249 TAILQ_INIT(&mlist);
1250 for (curseg = 0; curseg < nsegs; curseg++) {
1251 for (addr = segs[curseg].ds_addr;
1252 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1253 addr += PAGE_SIZE) {
1254 m = PHYS_TO_VM_PAGE(addr);
1255 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1256 }
1257 }
1258 uvm_pglistfree(&mlist);
1259 }
1260
1261 /*
1262 * Common function for mapping DMA-safe memory. May be called by
1263 * bus-specific DMA memory map functions.
1264 */
1265 int
1266 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1267 size_t size, void **kvap, int flags)
1268 {
1269 vaddr_t va;
1270 paddr_t pa;
1271 int curseg;
1272 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1273 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1274 vsize_t align = 0;
1275
1276 #ifdef DEBUG_DMA
1277 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1278 segs, nsegs, (unsigned long)size, flags);
1279 #endif /* DEBUG_DMA */
1280
1281 #ifdef PMAP_MAP_POOLPAGE
1282 /*
1283 * If all of memory is mapped, and we are mapping a single physically
1284 * contiguous area then this area is already mapped. Let's see if we
1285 * avoid having a separate mapping for it.
1286 */
1287 if (nsegs == 1) {
1288 /*
1289 * If this is a non-COHERENT mapping, then the existing kernel
1290 * mapping is already compatible with it.
1291 */
1292 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1293 pa = segs[0].ds_addr;
1294
1295 /*
1296 * This is a COHERENT mapping which, unless this address is in
1297 * a COHERENT dma range, will not be compatible.
1298 */
1299 if (t->_ranges != NULL) {
1300 const struct arm32_dma_range * const dr =
1301 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1302 if (dr != NULL
1303 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1304 direct_mapable = true;
1305 }
1306 }
1307
1308 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1309 /*
1310 * The page can only be direct mapped if was allocated out
1311 * of the arm poolpage vm freelist.
1312 */
1313 int lcv = vm_physseg_find(atop(pa), NULL);
1314 KASSERT(lcv != -1);
1315 if (direct_mapable) {
1316 direct_mapable =
1317 (arm_poolpage_vmfreelist == VM_PHYSMEM_PTR(lcv)->free_list);
1318 }
1319 #endif
1320
1321 if (direct_mapable) {
1322 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1323 #ifdef DEBUG_DMA
1324 printf("dmamem_map: =%p\n", *kvap);
1325 #endif /* DEBUG_DMA */
1326 return 0;
1327 }
1328 }
1329 #endif
1330
1331 size = round_page(size);
1332 if (__predict_true(size > L2_L_SIZE)) {
1333 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1334 if (size >= L1_SS_SIZE)
1335 align = L1_SS_SIZE;
1336 else
1337 #endif
1338 if (size >= L1_S_SIZE)
1339 align = L1_S_SIZE;
1340 else
1341 align = L2_L_SIZE;
1342 }
1343
1344 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1345 if (__predict_false(va == 0 && align > 0)) {
1346 align = 0;
1347 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1348 }
1349
1350 if (va == 0)
1351 return (ENOMEM);
1352
1353 *kvap = (void *)va;
1354
1355 for (curseg = 0; curseg < nsegs; curseg++) {
1356 for (pa = segs[curseg].ds_addr;
1357 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1358 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1359 bool uncached = (flags & BUS_DMA_COHERENT);
1360 #ifdef DEBUG_DMA
1361 printf("wiring p%lx to v%lx", pa, va);
1362 #endif /* DEBUG_DMA */
1363 if (size == 0)
1364 panic("_bus_dmamem_map: size botch");
1365
1366 const struct arm32_dma_range * const dr =
1367 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1368 /*
1369 * If this dma region is coherent then there is
1370 * no need for an uncached mapping.
1371 */
1372 if (dr != NULL
1373 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1374 uncached = false;
1375 }
1376
1377 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1378 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1379 }
1380 }
1381 pmap_update(pmap_kernel());
1382 #ifdef DEBUG_DMA
1383 printf("dmamem_map: =%p\n", *kvap);
1384 #endif /* DEBUG_DMA */
1385 return (0);
1386 }
1387
1388 /*
1389 * Common function for unmapping DMA-safe memory. May be called by
1390 * bus-specific DMA memory unmapping functions.
1391 */
1392 void
1393 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1394 {
1395
1396 #ifdef DEBUG_DMA
1397 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1398 #endif /* DEBUG_DMA */
1399 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1400 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1401
1402 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1403 /*
1404 * Check to see if this used direct mapped memory. Get it's physical
1405 * address and try to map it. If the resultant matches the kva, then
1406 * it was and so we can just return since we have notice to free up.
1407 */
1408 paddr_t pa;
1409 vaddr_t va;
1410 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1411 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1412 return;
1413 #endif
1414
1415 size = round_page(size);
1416 pmap_kremove((vaddr_t)kva, size);
1417 pmap_update(pmap_kernel());
1418 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1419 }
1420
1421 /*
1422 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1423 * bus-specific DMA mmap(2)'ing functions.
1424 */
1425 paddr_t
1426 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1427 off_t off, int prot, int flags)
1428 {
1429 paddr_t map_flags;
1430 int i;
1431
1432 for (i = 0; i < nsegs; i++) {
1433 KASSERTMSG((off & PAGE_MASK) == 0,
1434 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1435 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1436 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1437 (int)segs[i].ds_addr & PAGE_MASK);
1438 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1439 "ds_len %#lx (%#x)", segs[i].ds_addr,
1440 (int)segs[i].ds_addr & PAGE_MASK);
1441 if (off >= segs[i].ds_len) {
1442 off -= segs[i].ds_len;
1443 continue;
1444 }
1445
1446 map_flags = 0;
1447 if (flags & BUS_DMA_PREFETCHABLE)
1448 map_flags |= ARM32_MMAP_WRITECOMBINE;
1449
1450 return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1451
1452 }
1453
1454 /* Page not found. */
1455 return (-1);
1456 }
1457
1458 /**********************************************************************
1459 * DMA utility functions
1460 **********************************************************************/
1461
1462 /*
1463 * Utility function to load a linear buffer. lastaddrp holds state
1464 * between invocations (for multiple-buffer loads). segp contains
1465 * the starting segment on entrace, and the ending segment on exit.
1466 * first indicates if this is the first invocation of this function.
1467 */
1468 int
1469 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1470 bus_size_t buflen, struct vmspace *vm, int flags)
1471 {
1472 bus_size_t sgsize;
1473 bus_addr_t curaddr;
1474 vaddr_t vaddr = (vaddr_t)buf;
1475 int error;
1476 pmap_t pmap;
1477
1478 #ifdef DEBUG_DMA
1479 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1480 buf, buflen, flags);
1481 #endif /* DEBUG_DMA */
1482
1483 pmap = vm_map_pmap(&vm->vm_map);
1484
1485 while (buflen > 0) {
1486 /*
1487 * Get the physical address for this segment.
1488 *
1489 * XXX Doesn't support checking for coherent mappings
1490 * XXX in user address space.
1491 */
1492 bool coherent;
1493 if (__predict_true(pmap == pmap_kernel())) {
1494 pd_entry_t *pde;
1495 pt_entry_t *ptep;
1496 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1497 if (__predict_false(pmap_pde_section(pde))) {
1498 paddr_t s_frame = L1_S_FRAME;
1499 paddr_t s_offset = L1_S_OFFSET;
1500 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1501 if (__predict_false(pmap_pde_supersection(pde))) {
1502 s_frame = L1_SS_FRAME;
1503 s_offset = L1_SS_OFFSET;
1504 }
1505 #endif
1506 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1507 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1508 } else {
1509 pt_entry_t pte = *ptep;
1510 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1511 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1512 vaddr, *pde, ptep, pte);
1513 if (__predict_false((pte & L2_TYPE_MASK)
1514 == L2_TYPE_L)) {
1515 curaddr = (pte & L2_L_FRAME) |
1516 (vaddr & L2_L_OFFSET);
1517 coherent = (pte & L2_L_CACHE_MASK) == 0;
1518 } else {
1519 curaddr = (pte & ~PAGE_MASK) |
1520 (vaddr & PAGE_MASK);
1521 coherent = (pte & L2_S_CACHE_MASK) == 0;
1522 }
1523 }
1524 } else {
1525 (void) pmap_extract(pmap, vaddr, &curaddr);
1526 coherent = false;
1527 }
1528 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1529 "va %#lx curaddr %#lx", vaddr, curaddr);
1530
1531 /*
1532 * Compute the segment size, and adjust counts.
1533 */
1534 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1535 if (buflen < sgsize)
1536 sgsize = buflen;
1537
1538 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1539 coherent);
1540 if (error)
1541 return (error);
1542
1543 vaddr += sgsize;
1544 buflen -= sgsize;
1545 }
1546
1547 return (0);
1548 }
1549
1550 /*
1551 * Allocate physical memory from the given physical address range.
1552 * Called by DMA-safe memory allocation methods.
1553 */
1554 int
1555 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1556 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1557 int flags, paddr_t low, paddr_t high)
1558 {
1559 paddr_t curaddr, lastaddr;
1560 struct vm_page *m;
1561 struct pglist mlist;
1562 int curseg, error;
1563
1564 KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
1565 "invalid boundary %#lx", boundary);
1566
1567 #ifdef DEBUG_DMA
1568 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1569 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1570 #endif /* DEBUG_DMA */
1571
1572 /* Always round the size. */
1573 size = round_page(size);
1574
1575 /*
1576 * We accept boundaries < size, splitting in multiple segments
1577 * if needed. uvm_pglistalloc does not, so compute an appropriate
1578 * boundary: next power of 2 >= size
1579 */
1580 bus_size_t uboundary = boundary;
1581 if (uboundary <= PAGE_SIZE) {
1582 uboundary = 0;
1583 } else {
1584 while (uboundary < size) {
1585 uboundary <<= 1;
1586 }
1587 }
1588
1589 /*
1590 * Allocate pages from the VM system.
1591 */
1592 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1593 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1594 if (error)
1595 return (error);
1596
1597 /*
1598 * Compute the location, size, and number of segments actually
1599 * returned by the VM code.
1600 */
1601 m = TAILQ_FIRST(&mlist);
1602 curseg = 0;
1603 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1604 segs[curseg].ds_len = PAGE_SIZE;
1605 #ifdef DEBUG_DMA
1606 printf("alloc: page %lx\n", lastaddr);
1607 #endif /* DEBUG_DMA */
1608 m = TAILQ_NEXT(m, pageq.queue);
1609
1610 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1611 curaddr = VM_PAGE_TO_PHYS(m);
1612 KASSERTMSG(low <= curaddr && curaddr < high,
1613 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1614 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1615 #ifdef DEBUG_DMA
1616 printf("alloc: page %lx\n", curaddr);
1617 #endif /* DEBUG_DMA */
1618 if (curaddr == lastaddr + PAGE_SIZE
1619 && (lastaddr & boundary) == (curaddr & boundary))
1620 segs[curseg].ds_len += PAGE_SIZE;
1621 else {
1622 curseg++;
1623 if (curseg >= nsegs) {
1624 uvm_pglistfree(&mlist);
1625 return EFBIG;
1626 }
1627 segs[curseg].ds_addr = curaddr;
1628 segs[curseg].ds_len = PAGE_SIZE;
1629 }
1630 lastaddr = curaddr;
1631 }
1632
1633 *rsegs = curseg + 1;
1634
1635 return (0);
1636 }
1637
1638 /*
1639 * Check if a memory region intersects with a DMA range, and return the
1640 * page-rounded intersection if it does.
1641 */
1642 int
1643 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1644 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1645 {
1646 struct arm32_dma_range *dr;
1647 int i;
1648
1649 if (ranges == NULL)
1650 return (0);
1651
1652 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1653 if (dr->dr_sysbase <= pa &&
1654 pa < (dr->dr_sysbase + dr->dr_len)) {
1655 /*
1656 * Beginning of region intersects with this range.
1657 */
1658 *pap = trunc_page(pa);
1659 *sizep = round_page(min(pa + size,
1660 dr->dr_sysbase + dr->dr_len) - pa);
1661 return (1);
1662 }
1663 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1664 /*
1665 * End of region intersects with this range.
1666 */
1667 *pap = trunc_page(dr->dr_sysbase);
1668 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1669 dr->dr_len));
1670 return (1);
1671 }
1672 }
1673
1674 /* No intersection found. */
1675 return (0);
1676 }
1677
1678 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1679 static int
1680 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1681 bus_size_t size, int flags)
1682 {
1683 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1684 int error = 0;
1685
1686 KASSERT(cookie != NULL);
1687
1688 cookie->id_bouncebuflen = round_page(size);
1689 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1690 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1691 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1692 if (error == 0) {
1693 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1694 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1695 (void **)&cookie->id_bouncebuf, flags);
1696 if (error) {
1697 _bus_dmamem_free(t, cookie->id_bouncesegs,
1698 cookie->id_nbouncesegs);
1699 cookie->id_bouncebuflen = 0;
1700 cookie->id_nbouncesegs = 0;
1701 } else {
1702 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1703 }
1704 } else {
1705 cookie->id_bouncebuflen = 0;
1706 cookie->id_nbouncesegs = 0;
1707 }
1708
1709 return (error);
1710 }
1711
1712 static void
1713 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1714 {
1715 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1716
1717 KASSERT(cookie != NULL);
1718
1719 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1720 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1721 cookie->id_bouncebuflen = 0;
1722 cookie->id_nbouncesegs = 0;
1723 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1724 }
1725
1726 /*
1727 * This function does the same as uiomove, but takes an explicit
1728 * direction, and does not update the uio structure.
1729 */
1730 static int
1731 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1732 {
1733 struct iovec *iov;
1734 int error;
1735 struct vmspace *vm;
1736 char *cp;
1737 size_t resid, cnt;
1738 int i;
1739
1740 iov = uio->uio_iov;
1741 vm = uio->uio_vmspace;
1742 cp = buf;
1743 resid = n;
1744
1745 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1746 iov = &uio->uio_iov[i];
1747 if (iov->iov_len == 0)
1748 continue;
1749 cnt = MIN(resid, iov->iov_len);
1750
1751 if (!VMSPACE_IS_KERNEL_P(vm) &&
1752 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1753 != 0) {
1754 preempt();
1755 }
1756 if (direction == UIO_READ) {
1757 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1758 } else {
1759 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1760 }
1761 if (error)
1762 return (error);
1763 cp += cnt;
1764 resid -= cnt;
1765 }
1766 return (0);
1767 }
1768 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1769
1770 int
1771 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1772 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1773 {
1774
1775 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1776 struct arm32_dma_range *dr;
1777 bool subset = false;
1778 size_t nranges = 0;
1779 size_t i;
1780 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1781 if (dr->dr_sysbase <= min_addr
1782 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1783 subset = true;
1784 }
1785 if (min_addr <= dr->dr_sysbase + dr->dr_len
1786 && max_addr >= dr->dr_sysbase) {
1787 nranges++;
1788 }
1789 }
1790 if (subset) {
1791 *newtag = tag;
1792 /* if the tag must be freed, add a reference */
1793 if (tag->_tag_needs_free)
1794 (tag->_tag_needs_free)++;
1795 return 0;
1796 }
1797 if (nranges == 0) {
1798 nranges = 1;
1799 }
1800
1801 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1802 if ((*newtag = kmem_intr_zalloc(tagsize,
1803 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1804 return ENOMEM;
1805
1806 dr = (void *)(*newtag + 1);
1807 **newtag = *tag;
1808 (*newtag)->_tag_needs_free = 1;
1809 (*newtag)->_ranges = dr;
1810 (*newtag)->_nranges = nranges;
1811
1812 if (tag->_ranges == NULL) {
1813 dr->dr_sysbase = min_addr;
1814 dr->dr_busbase = min_addr;
1815 dr->dr_len = max_addr + 1 - min_addr;
1816 } else {
1817 for (i = 0; i < nranges; i++) {
1818 if (min_addr > dr->dr_sysbase + dr->dr_len
1819 || max_addr < dr->dr_sysbase)
1820 continue;
1821 dr[0] = tag->_ranges[i];
1822 if (dr->dr_sysbase < min_addr) {
1823 psize_t diff = min_addr - dr->dr_sysbase;
1824 dr->dr_busbase += diff;
1825 dr->dr_len -= diff;
1826 dr->dr_sysbase += diff;
1827 }
1828 if (max_addr != 0xffffffff
1829 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1830 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1831 }
1832 dr++;
1833 }
1834 }
1835
1836 return 0;
1837 #else
1838 return EOPNOTSUPP;
1839 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1840 }
1841
1842 void
1843 _bus_dmatag_destroy(bus_dma_tag_t tag)
1844 {
1845 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1846 switch (tag->_tag_needs_free) {
1847 case 0:
1848 break; /* not allocated with kmem */
1849 case 1: {
1850 const size_t tagsize = sizeof(*tag)
1851 + tag->_nranges * sizeof(*tag->_ranges);
1852 kmem_intr_free(tag, tagsize); /* last reference to tag */
1853 break;
1854 }
1855 default:
1856 (tag->_tag_needs_free)--; /* one less reference */
1857 }
1858 #endif
1859 }
1860