bus_dma.c revision 1.92 1 /* $NetBSD: bus_dma.c,v 1.92 2015/08/21 20:52:47 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include "opt_arm_bus_space.h"
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.92 2015/08/21 20:52:47 matt Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/reboot.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/kmem.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/device.h>
54
55 #include <uvm/uvm.h>
56
57 #include <arm/cpufunc.h>
58
59 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
60 #include <dev/mm.h>
61 #endif
62
63 #ifdef BUSDMA_COUNTERS
64 static struct evcnt bus_dma_creates =
65 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
66 static struct evcnt bus_dma_bounced_creates =
67 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
68 static struct evcnt bus_dma_loads =
69 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
70 static struct evcnt bus_dma_bounced_loads =
71 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
72 static struct evcnt bus_dma_coherent_loads =
73 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
74 static struct evcnt bus_dma_read_bounces =
75 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
76 static struct evcnt bus_dma_write_bounces =
77 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
78 static struct evcnt bus_dma_bounced_unloads =
79 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
80 static struct evcnt bus_dma_unloads =
81 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
82 static struct evcnt bus_dma_bounced_destroys =
83 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
84 static struct evcnt bus_dma_destroys =
85 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
86 static struct evcnt bus_dma_sync_prereadwrite =
87 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
88 static struct evcnt bus_dma_sync_preread_begin =
89 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
90 static struct evcnt bus_dma_sync_preread =
91 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
92 static struct evcnt bus_dma_sync_preread_tail =
93 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
94 static struct evcnt bus_dma_sync_prewrite =
95 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
96 static struct evcnt bus_dma_sync_postread =
97 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
98 static struct evcnt bus_dma_sync_postreadwrite =
99 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
100 static struct evcnt bus_dma_sync_postwrite =
101 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
102
103 EVCNT_ATTACH_STATIC(bus_dma_creates);
104 EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
105 EVCNT_ATTACH_STATIC(bus_dma_loads);
106 EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
107 EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
108 EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
109 EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
110 EVCNT_ATTACH_STATIC(bus_dma_unloads);
111 EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
112 EVCNT_ATTACH_STATIC(bus_dma_destroys);
113 EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
114 EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
115 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
116 EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
117 EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
118 EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
119 EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
120 EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
121 EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
122
123 #define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
124 #else
125 #define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
126 #endif
127
128 int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct vmspace *, int);
130 static struct arm32_dma_range *
131 _bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
132
133 /*
134 * Check to see if the specified page is in an allowed DMA range.
135 */
136 inline struct arm32_dma_range *
137 _bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
138 bus_addr_t curaddr)
139 {
140 struct arm32_dma_range *dr;
141 int i;
142
143 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
144 if (curaddr >= dr->dr_sysbase &&
145 curaddr < (dr->dr_sysbase + dr->dr_len))
146 return (dr);
147 }
148
149 return (NULL);
150 }
151
152 /*
153 * Check to see if the specified busaddr is in an allowed DMA range.
154 */
155 static inline paddr_t
156 _bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
157 {
158 struct arm32_dma_range *dr;
159 u_int i;
160
161 if (t->_nranges == 0)
162 return curaddr;
163
164 for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
165 if (dr->dr_busbase <= curaddr
166 && curaddr < dr->dr_busbase + dr->dr_len)
167 return curaddr - dr->dr_busbase + dr->dr_sysbase;
168 }
169 panic("%s: curaddr %#lx not in range", __func__, curaddr);
170 }
171
172 /*
173 * Common function to load the specified physical address into the
174 * DMA map, coalescing segments and boundary checking as necessary.
175 */
176 static int
177 _bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
178 bus_addr_t paddr, bus_size_t size, bool coherent)
179 {
180 bus_dma_segment_t * const segs = map->dm_segs;
181 int nseg = map->dm_nsegs;
182 bus_addr_t lastaddr;
183 bus_addr_t bmask = ~(map->_dm_boundary - 1);
184 bus_addr_t curaddr;
185 bus_size_t sgsize;
186 uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
187
188 if (nseg > 0)
189 lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
190 else
191 lastaddr = 0xdead;
192
193 again:
194 sgsize = size;
195
196 /* Make sure we're in an allowed DMA range. */
197 if (t->_ranges != NULL) {
198 /* XXX cache last result? */
199 const struct arm32_dma_range * const dr =
200 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
201 if (dr == NULL)
202 return (EINVAL);
203
204 /*
205 * If this region is coherent, mark the segment as coherent.
206 */
207 _ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
208
209 /*
210 * In a valid DMA range. Translate the physical
211 * memory address to an address in the DMA window.
212 */
213 curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
214 #if 0
215 printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
216 t, paddr, dr->dr_sysbase, dr->dr_busbase,
217 dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
218 #endif
219 } else
220 curaddr = paddr;
221
222 /*
223 * Make sure we don't cross any boundaries.
224 */
225 if (map->_dm_boundary > 0) {
226 bus_addr_t baddr; /* next boundary address */
227
228 baddr = (curaddr + map->_dm_boundary) & bmask;
229 if (sgsize > (baddr - curaddr))
230 sgsize = (baddr - curaddr);
231 }
232
233 /*
234 * Insert chunk into a segment, coalescing with the
235 * previous segment if possible.
236 */
237 if (nseg > 0 && curaddr == lastaddr &&
238 segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
239 ((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
240 (map->_dm_boundary == 0 ||
241 (segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
242 /* coalesce */
243 segs[nseg-1].ds_len += sgsize;
244 } else if (nseg >= map->_dm_segcnt) {
245 return (EFBIG);
246 } else {
247 /* new segment */
248 segs[nseg].ds_addr = curaddr;
249 segs[nseg].ds_len = sgsize;
250 segs[nseg]._ds_flags = _ds_flags;
251 nseg++;
252 }
253
254 lastaddr = curaddr + sgsize;
255
256 paddr += sgsize;
257 size -= sgsize;
258 if (size > 0)
259 goto again;
260
261 map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
262 map->dm_nsegs = nseg;
263 return (0);
264 }
265
266 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
267 static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
268 bus_size_t size, int flags);
269 static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
270 static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
271 int direction);
272
273 static int
274 _bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
275 size_t buflen, int buftype, int flags)
276 {
277 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
278 struct vmspace * const vm = vmspace_kernel();
279 int error;
280
281 KASSERT(cookie != NULL);
282 KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
283
284 /*
285 * Allocate bounce pages, if necessary.
286 */
287 if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
288 error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
289 if (error)
290 return (error);
291 }
292
293 /*
294 * Cache a pointer to the caller's buffer and load the DMA map
295 * with the bounce buffer.
296 */
297 cookie->id_origbuf = buf;
298 cookie->id_origbuflen = buflen;
299 error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
300 buflen, vm, flags);
301 if (error)
302 return (error);
303
304 STAT_INCR(bounced_loads);
305 map->dm_mapsize = buflen;
306 map->_dm_vmspace = vm;
307 map->_dm_buftype = buftype;
308
309 /* ...so _bus_dmamap_sync() knows we're bouncing */
310 map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
311 cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
312 return 0;
313 }
314 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
315
316 /*
317 * Common function for DMA map creation. May be called by bus-specific
318 * DMA map creation functions.
319 */
320 int
321 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
322 bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
323 {
324 struct arm32_bus_dmamap *map;
325 void *mapstore;
326
327 #ifdef DEBUG_DMA
328 printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
329 t, size, nsegments, maxsegsz, boundary, flags);
330 #endif /* DEBUG_DMA */
331
332 /*
333 * Allocate and initialize the DMA map. The end of the map
334 * is a variable-sized array of segments, so we allocate enough
335 * room for them in one shot.
336 *
337 * Note we don't preserve the WAITOK or NOWAIT flags. Preservation
338 * of ALLOCNOW notifies others that we've reserved these resources,
339 * and they are not to be freed.
340 *
341 * The bus_dmamap_t includes one bus_dma_segment_t, hence
342 * the (nsegments - 1).
343 */
344 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
345 (sizeof(bus_dma_segment_t) * (nsegments - 1));
346 const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
347 if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
348 return (ENOMEM);
349
350 map = (struct arm32_bus_dmamap *)mapstore;
351 map->_dm_size = size;
352 map->_dm_segcnt = nsegments;
353 map->_dm_maxmaxsegsz = maxsegsz;
354 map->_dm_boundary = boundary;
355 map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
356 map->_dm_origbuf = NULL;
357 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
358 map->_dm_vmspace = vmspace_kernel();
359 map->_dm_cookie = NULL;
360 map->dm_maxsegsz = maxsegsz;
361 map->dm_mapsize = 0; /* no valid mappings */
362 map->dm_nsegs = 0;
363
364 *dmamp = map;
365
366 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
367 struct arm32_bus_dma_cookie *cookie;
368 int cookieflags;
369 void *cookiestore;
370 int error;
371
372 cookieflags = 0;
373
374 if (t->_may_bounce != NULL) {
375 error = (*t->_may_bounce)(t, map, flags, &cookieflags);
376 if (error != 0)
377 goto out;
378 }
379
380 if (t->_ranges != NULL)
381 cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
382
383 if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
384 STAT_INCR(creates);
385 return 0;
386 }
387
388 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
389 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
390
391 /*
392 * Allocate our cookie.
393 */
394 if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
395 error = ENOMEM;
396 goto out;
397 }
398 cookie = (struct arm32_bus_dma_cookie *)cookiestore;
399 cookie->id_flags = cookieflags;
400 map->_dm_cookie = cookie;
401 STAT_INCR(bounced_creates);
402
403 error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
404 out:
405 if (error)
406 _bus_dmamap_destroy(t, map);
407 #else
408 STAT_INCR(creates);
409 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
410
411 #ifdef DEBUG_DMA
412 printf("dmamap_create:map=%p\n", map);
413 #endif /* DEBUG_DMA */
414 return (0);
415 }
416
417 /*
418 * Common function for DMA map destruction. May be called by bus-specific
419 * DMA map destruction functions.
420 */
421 void
422 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
423 {
424
425 #ifdef DEBUG_DMA
426 printf("dmamap_destroy: t=%p map=%p\n", t, map);
427 #endif /* DEBUG_DMA */
428 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
429 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
430
431 /*
432 * Free any bounce pages this map might hold.
433 */
434 if (cookie != NULL) {
435 const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
436 (sizeof(bus_dma_segment_t) * map->_dm_segcnt);
437
438 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
439 STAT_INCR(bounced_unloads);
440 map->dm_nsegs = 0;
441 if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
442 _bus_dma_free_bouncebuf(t, map);
443 STAT_INCR(bounced_destroys);
444 kmem_intr_free(cookie, cookiesize);
445 } else
446 #endif
447 STAT_INCR(destroys);
448
449 if (map->dm_nsegs > 0)
450 STAT_INCR(unloads);
451
452 const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
453 (sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
454 kmem_intr_free(map, mapsize);
455 }
456
457 /*
458 * Common function for loading a DMA map with a linear buffer. May
459 * be called by bus-specific DMA map load functions.
460 */
461 int
462 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
463 bus_size_t buflen, struct proc *p, int flags)
464 {
465 struct vmspace *vm;
466 int error;
467
468 #ifdef DEBUG_DMA
469 printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
470 t, map, buf, buflen, p, flags);
471 #endif /* DEBUG_DMA */
472
473 if (map->dm_nsegs > 0) {
474 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
475 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
476 if (cookie != NULL) {
477 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
478 STAT_INCR(bounced_unloads);
479 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
480 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
481 }
482 } else
483 #endif
484 STAT_INCR(unloads);
485 }
486
487 /*
488 * Make sure that on error condition we return "no valid mappings".
489 */
490 map->dm_mapsize = 0;
491 map->dm_nsegs = 0;
492 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
493 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
494 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
495 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
496
497 if (buflen > map->_dm_size)
498 return (EINVAL);
499
500 if (p != NULL) {
501 vm = p->p_vmspace;
502 } else {
503 vm = vmspace_kernel();
504 }
505
506 /* _bus_dmamap_load_buffer() clears this if we're not... */
507 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
508
509 error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
510 if (error == 0) {
511 map->dm_mapsize = buflen;
512 map->_dm_vmspace = vm;
513 map->_dm_origbuf = buf;
514 map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
515 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
516 STAT_INCR(coherent_loads);
517 } else {
518 STAT_INCR(loads);
519 }
520 return 0;
521 }
522 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
523 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
524 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
525 error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
526 _BUS_DMA_BUFTYPE_LINEAR, flags);
527 }
528 #endif
529 return (error);
530 }
531
532 /*
533 * Like _bus_dmamap_load(), but for mbufs.
534 */
535 int
536 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
537 int flags)
538 {
539 int error;
540 struct mbuf *m;
541
542 #ifdef DEBUG_DMA
543 printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
544 t, map, m0, flags);
545 #endif /* DEBUG_DMA */
546
547 if (map->dm_nsegs > 0) {
548 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
549 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
550 if (cookie != NULL) {
551 if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
552 STAT_INCR(bounced_unloads);
553 cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
554 map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
555 }
556 } else
557 #endif
558 STAT_INCR(unloads);
559 }
560
561 /*
562 * Make sure that on error condition we return "no valid mappings."
563 */
564 map->dm_mapsize = 0;
565 map->dm_nsegs = 0;
566 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
567 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
568 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
569 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
570
571 KASSERT(m0->m_flags & M_PKTHDR);
572
573 if (m0->m_pkthdr.len > map->_dm_size)
574 return (EINVAL);
575
576 /* _bus_dmamap_load_paddr() clears this if we're not... */
577 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
578
579 error = 0;
580 for (m = m0; m != NULL && error == 0; m = m->m_next) {
581 int offset;
582 int remainbytes;
583 const struct vm_page * const *pgs;
584 paddr_t paddr;
585 int size;
586
587 if (m->m_len == 0)
588 continue;
589 /*
590 * Don't allow reads in read-only mbufs.
591 */
592 if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
593 error = EFAULT;
594 break;
595 }
596 switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
597 case M_EXT|M_CLUSTER:
598 /* XXX KDASSERT */
599 KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
600 paddr = m->m_ext.ext_paddr +
601 (m->m_data - m->m_ext.ext_buf);
602 size = m->m_len;
603 error = _bus_dmamap_load_paddr(t, map, paddr, size,
604 false);
605 break;
606
607 case M_EXT|M_EXT_PAGES:
608 KASSERT(m->m_ext.ext_buf <= m->m_data);
609 KASSERT(m->m_data <=
610 m->m_ext.ext_buf + m->m_ext.ext_size);
611
612 offset = (vaddr_t)m->m_data -
613 trunc_page((vaddr_t)m->m_ext.ext_buf);
614 remainbytes = m->m_len;
615
616 /* skip uninteresting pages */
617 pgs = (const struct vm_page * const *)
618 m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
619
620 offset &= PAGE_MASK; /* offset in the first page */
621
622 /* load each page */
623 while (remainbytes > 0) {
624 const struct vm_page *pg;
625
626 size = MIN(remainbytes, PAGE_SIZE - offset);
627
628 pg = *pgs++;
629 KASSERT(pg);
630 paddr = VM_PAGE_TO_PHYS(pg) + offset;
631
632 error = _bus_dmamap_load_paddr(t, map,
633 paddr, size, false);
634 if (error)
635 break;
636 offset = 0;
637 remainbytes -= size;
638 }
639 break;
640
641 case 0:
642 paddr = m->m_paddr + M_BUFOFFSET(m) +
643 (m->m_data - M_BUFADDR(m));
644 size = m->m_len;
645 error = _bus_dmamap_load_paddr(t, map, paddr, size,
646 false);
647 break;
648
649 default:
650 error = _bus_dmamap_load_buffer(t, map, m->m_data,
651 m->m_len, vmspace_kernel(), flags);
652 }
653 }
654 if (error == 0) {
655 map->dm_mapsize = m0->m_pkthdr.len;
656 map->_dm_origbuf = m0;
657 map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
658 map->_dm_vmspace = vmspace_kernel(); /* always kernel */
659 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
660 STAT_INCR(coherent_loads);
661 } else {
662 STAT_INCR(loads);
663 }
664 return 0;
665 }
666 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
667 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
668 if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
669 error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
670 _BUS_DMA_BUFTYPE_MBUF, flags);
671 }
672 #endif
673 return (error);
674 }
675
676 /*
677 * Like _bus_dmamap_load(), but for uios.
678 */
679 int
680 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
681 int flags)
682 {
683 int i, error;
684 bus_size_t minlen, resid;
685 struct iovec *iov;
686 void *addr;
687
688 /*
689 * Make sure that on error condition we return "no valid mappings."
690 */
691 map->dm_mapsize = 0;
692 map->dm_nsegs = 0;
693 KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
694 "dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
695 map->dm_maxsegsz, map->_dm_maxmaxsegsz);
696
697 resid = uio->uio_resid;
698 iov = uio->uio_iov;
699
700 /* _bus_dmamap_load_buffer() clears this if we're not... */
701 map->_dm_flags |= _BUS_DMAMAP_COHERENT;
702
703 error = 0;
704 for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
705 /*
706 * Now at the first iovec to load. Load each iovec
707 * until we have exhausted the residual count.
708 */
709 minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
710 addr = (void *)iov[i].iov_base;
711
712 error = _bus_dmamap_load_buffer(t, map, addr, minlen,
713 uio->uio_vmspace, flags);
714
715 resid -= minlen;
716 }
717 if (error == 0) {
718 map->dm_mapsize = uio->uio_resid;
719 map->_dm_origbuf = uio;
720 map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
721 map->_dm_vmspace = uio->uio_vmspace;
722 if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
723 STAT_INCR(coherent_loads);
724 } else {
725 STAT_INCR(loads);
726 }
727 }
728 return (error);
729 }
730
731 /*
732 * Like _bus_dmamap_load(), but for raw memory allocated with
733 * bus_dmamem_alloc().
734 */
735 int
736 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
737 bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
738 {
739
740 panic("_bus_dmamap_load_raw: not implemented");
741 }
742
743 /*
744 * Common function for unloading a DMA map. May be called by
745 * bus-specific DMA map unload functions.
746 */
747 void
748 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
749 {
750
751 #ifdef DEBUG_DMA
752 printf("dmamap_unload: t=%p map=%p\n", t, map);
753 #endif /* DEBUG_DMA */
754
755 /*
756 * No resources to free; just mark the mappings as
757 * invalid.
758 */
759 map->dm_mapsize = 0;
760 map->dm_nsegs = 0;
761 map->_dm_origbuf = NULL;
762 map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
763 map->_dm_vmspace = NULL;
764 }
765
766 static void
767 _bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
768 {
769 KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
770 "va %#lx pa %#lx", va, pa);
771 #if 0
772 printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
773 va, pa, len, ops, readonly_p);
774 #endif
775
776 switch (ops) {
777 case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
778 if (!readonly_p) {
779 STAT_INCR(sync_prereadwrite);
780 cpu_dcache_wbinv_range(va, len);
781 cpu_sdcache_wbinv_range(va, pa, len);
782 break;
783 }
784 /* FALLTHROUGH */
785
786 case BUS_DMASYNC_PREREAD: {
787 const size_t line_size = arm_dcache_align;
788 const size_t line_mask = arm_dcache_align_mask;
789 vsize_t misalignment = va & line_mask;
790 if (misalignment) {
791 va -= misalignment;
792 pa -= misalignment;
793 len += misalignment;
794 STAT_INCR(sync_preread_begin);
795 cpu_dcache_wbinv_range(va, line_size);
796 cpu_sdcache_wbinv_range(va, pa, line_size);
797 if (len <= line_size)
798 break;
799 va += line_size;
800 pa += line_size;
801 len -= line_size;
802 }
803 misalignment = len & line_mask;
804 len -= misalignment;
805 if (len > 0) {
806 STAT_INCR(sync_preread);
807 cpu_dcache_inv_range(va, len);
808 cpu_sdcache_inv_range(va, pa, len);
809 }
810 if (misalignment) {
811 va += len;
812 pa += len;
813 STAT_INCR(sync_preread_tail);
814 cpu_dcache_wbinv_range(va, line_size);
815 cpu_sdcache_wbinv_range(va, pa, line_size);
816 }
817 break;
818 }
819
820 case BUS_DMASYNC_PREWRITE:
821 STAT_INCR(sync_prewrite);
822 cpu_dcache_wb_range(va, len);
823 cpu_sdcache_wb_range(va, pa, len);
824 break;
825
826 #ifdef CPU_CORTEX
827 /*
828 * Cortex CPUs can do speculative loads so we need to clean the cache
829 * after a DMA read to deal with any speculatively loaded cache lines.
830 * Since these can't be dirty, we can just invalidate them and don't
831 * have to worry about having to write back their contents.
832 */
833 case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
834 STAT_INCR(sync_postreadwrite);
835 arm_dmb();
836 cpu_dcache_inv_range(va, len);
837 cpu_sdcache_inv_range(va, pa, len);
838 break;
839 case BUS_DMASYNC_POSTREAD:
840 STAT_INCR(sync_postread);
841 arm_dmb();
842 cpu_dcache_inv_range(va, len);
843 cpu_sdcache_inv_range(va, pa, len);
844 break;
845 #endif
846 }
847 }
848
849 static inline void
850 _bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
851 bus_size_t len, int ops)
852 {
853 bus_dma_segment_t *ds = map->dm_segs;
854 vaddr_t va = (vaddr_t) map->_dm_origbuf;
855 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
856 if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
857 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
858 va = (vaddr_t) cookie->id_bouncebuf;
859 }
860 #endif
861
862 while (len > 0) {
863 while (offset >= ds->ds_len) {
864 offset -= ds->ds_len;
865 va += ds->ds_len;
866 ds++;
867 }
868
869 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
870 size_t seglen = min(len, ds->ds_len - offset);
871
872 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
873 _bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
874 false);
875
876 offset += seglen;
877 len -= seglen;
878 }
879 }
880
881 static inline void
882 _bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
883 bus_size_t len, int ops)
884 {
885 bus_dma_segment_t *ds = map->dm_segs;
886 struct mbuf *m = map->_dm_origbuf;
887 bus_size_t voff = offset;
888 bus_size_t ds_off = offset;
889
890 while (len > 0) {
891 /* Find the current dma segment */
892 while (ds_off >= ds->ds_len) {
893 ds_off -= ds->ds_len;
894 ds++;
895 }
896 /* Find the current mbuf. */
897 while (voff >= m->m_len) {
898 voff -= m->m_len;
899 m = m->m_next;
900 }
901
902 /*
903 * Now at the first mbuf to sync; nail each one until
904 * we have exhausted the length.
905 */
906 vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
907 vaddr_t va = mtod(m, vaddr_t) + voff;
908 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
909
910 /*
911 * We can save a lot of work here if we know the mapping
912 * is read-only at the MMU:
913 *
914 * If a mapping is read-only, no dirty cache blocks will
915 * exist for it. If a writable mapping was made read-only,
916 * we know any dirty cache lines for the range will have
917 * been cleaned for us already. Therefore, if the upper
918 * layer can tell us we have a read-only mapping, we can
919 * skip all cache cleaning.
920 *
921 * NOTE: This only works if we know the pmap cleans pages
922 * before making a read-write -> read-only transition. If
923 * this ever becomes non-true (e.g. Physically Indexed
924 * cache), this will have to be revisited.
925 */
926
927 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
928 /*
929 * If we are doing preread (DMAing into the mbuf),
930 * this mbuf better not be readonly,
931 */
932 KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
933 _bus_dmamap_sync_segment(va, pa, seglen, ops,
934 M_ROMAP(m));
935 }
936 voff += seglen;
937 ds_off += seglen;
938 len -= seglen;
939 }
940 }
941
942 static inline void
943 _bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
944 bus_size_t len, int ops)
945 {
946 bus_dma_segment_t *ds = map->dm_segs;
947 struct uio *uio = map->_dm_origbuf;
948 struct iovec *iov = uio->uio_iov;
949 bus_size_t voff = offset;
950 bus_size_t ds_off = offset;
951
952 while (len > 0) {
953 /* Find the current dma segment */
954 while (ds_off >= ds->ds_len) {
955 ds_off -= ds->ds_len;
956 ds++;
957 }
958
959 /* Find the current iovec. */
960 while (voff >= iov->iov_len) {
961 voff -= iov->iov_len;
962 iov++;
963 }
964
965 /*
966 * Now at the first iovec to sync; nail each one until
967 * we have exhausted the length.
968 */
969 vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
970 vaddr_t va = (vaddr_t) iov->iov_base + voff;
971 paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
972
973 if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
974 _bus_dmamap_sync_segment(va, pa, seglen, ops, false);
975
976 voff += seglen;
977 ds_off += seglen;
978 len -= seglen;
979 }
980 }
981
982 /*
983 * Common function for DMA map synchronization. May be called
984 * by bus-specific DMA map synchronization functions.
985 *
986 * This version works for the Virtually Indexed Virtually Tagged
987 * cache found on 32-bit ARM processors.
988 *
989 * XXX Should have separate versions for write-through vs.
990 * XXX write-back caches. We currently assume write-back
991 * XXX here, which is not as efficient as it could be for
992 * XXX the write-through case.
993 */
994 void
995 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
996 bus_size_t len, int ops)
997 {
998 #ifdef DEBUG_DMA
999 printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
1000 t, map, offset, len, ops);
1001 #endif /* DEBUG_DMA */
1002
1003 /*
1004 * Mixing of PRE and POST operations is not allowed.
1005 */
1006 if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
1007 (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
1008 panic("_bus_dmamap_sync: mix PRE and POST");
1009
1010 KASSERTMSG(offset < map->dm_mapsize,
1011 "offset %lu mapsize %lu",
1012 offset, map->dm_mapsize);
1013 KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
1014 "len %lu offset %lu mapsize %lu",
1015 len, offset, map->dm_mapsize);
1016
1017 /*
1018 * For a virtually-indexed write-back cache, we need
1019 * to do the following things:
1020 *
1021 * PREREAD -- Invalidate the D-cache. We do this
1022 * here in case a write-back is required by the back-end.
1023 *
1024 * PREWRITE -- Write-back the D-cache. Note that if
1025 * we are doing a PREREAD|PREWRITE, we can collapse
1026 * the whole thing into a single Wb-Inv.
1027 *
1028 * POSTREAD -- Re-invalidate the D-cache in case speculative
1029 * memory accesses caused cachelines to become valid with now
1030 * invalid data.
1031 *
1032 * POSTWRITE -- Nothing.
1033 */
1034 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1035 const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
1036 #else
1037 const bool bouncing = false;
1038 #endif
1039
1040 const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1041 #ifdef CPU_CORTEX
1042 const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1043 #else
1044 const int post_ops = 0;
1045 #endif
1046 if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
1047 STAT_INCR(sync_postwrite);
1048 return;
1049 }
1050 KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
1051 "pre_ops %#x post_ops %#x", pre_ops, post_ops);
1052 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1053 if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
1054 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1055 STAT_INCR(write_bounces);
1056 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1057 /*
1058 * Copy the caller's buffer to the bounce buffer.
1059 */
1060 switch (map->_dm_buftype) {
1061 case _BUS_DMA_BUFTYPE_LINEAR:
1062 memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
1063 break;
1064 case _BUS_DMA_BUFTYPE_MBUF:
1065 m_copydata(cookie->id_origmbuf, offset, len, dataptr);
1066 break;
1067 case _BUS_DMA_BUFTYPE_UIO:
1068 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
1069 break;
1070 #ifdef DIAGNOSTIC
1071 case _BUS_DMA_BUFTYPE_RAW:
1072 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
1073 break;
1074
1075 case _BUS_DMA_BUFTYPE_INVALID:
1076 panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
1077 break;
1078
1079 default:
1080 panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
1081 map, map->_dm_buftype);
1082 break;
1083 #endif /* DIAGNOSTIC */
1084 }
1085 }
1086 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1087
1088 /* Skip cache frobbing if mapping was COHERENT. */
1089 if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
1090 /* Drain the write buffer. */
1091 if (pre_ops & BUS_DMASYNC_PREWRITE)
1092 cpu_drain_writebuf();
1093 return;
1094 }
1095
1096 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1097 if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
1098 goto bounce_it;
1099 }
1100 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1101
1102 #ifndef ARM_MMU_EXTENDED
1103 /*
1104 * If the mapping belongs to a non-kernel vmspace, and the
1105 * vmspace has not been active since the last time a full
1106 * cache flush was performed, we don't need to do anything.
1107 */
1108 if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
1109 vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
1110 return;
1111 #endif
1112
1113 int buftype = map->_dm_buftype;
1114 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1115 if (bouncing) {
1116 buftype = _BUS_DMA_BUFTYPE_LINEAR;
1117 }
1118 #endif
1119
1120 switch (buftype) {
1121 case _BUS_DMA_BUFTYPE_LINEAR:
1122 _bus_dmamap_sync_linear(t, map, offset, len, ops);
1123 break;
1124
1125 case _BUS_DMA_BUFTYPE_MBUF:
1126 _bus_dmamap_sync_mbuf(t, map, offset, len, ops);
1127 break;
1128
1129 case _BUS_DMA_BUFTYPE_UIO:
1130 _bus_dmamap_sync_uio(t, map, offset, len, ops);
1131 break;
1132
1133 case _BUS_DMA_BUFTYPE_RAW:
1134 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
1135 break;
1136
1137 case _BUS_DMA_BUFTYPE_INVALID:
1138 panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
1139 break;
1140
1141 default:
1142 panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
1143 map, map->_dm_buftype);
1144 }
1145
1146 /* Drain the write buffer. */
1147 cpu_drain_writebuf();
1148
1149 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1150 bounce_it:
1151 if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
1152 return;
1153
1154 struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
1155 char * const dataptr = (char *)cookie->id_bouncebuf + offset;
1156 STAT_INCR(read_bounces);
1157 /*
1158 * Copy the bounce buffer to the caller's buffer.
1159 */
1160 switch (map->_dm_buftype) {
1161 case _BUS_DMA_BUFTYPE_LINEAR:
1162 memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
1163 break;
1164
1165 case _BUS_DMA_BUFTYPE_MBUF:
1166 m_copyback(cookie->id_origmbuf, offset, len, dataptr);
1167 break;
1168
1169 case _BUS_DMA_BUFTYPE_UIO:
1170 _bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
1171 break;
1172 #ifdef DIAGNOSTIC
1173 case _BUS_DMA_BUFTYPE_RAW:
1174 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
1175 break;
1176
1177 case _BUS_DMA_BUFTYPE_INVALID:
1178 panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
1179 break;
1180
1181 default:
1182 panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
1183 map, map->_dm_buftype);
1184 break;
1185 #endif
1186 }
1187 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1188 }
1189
1190 /*
1191 * Common function for DMA-safe memory allocation. May be called
1192 * by bus-specific DMA memory allocation functions.
1193 */
1194
1195 extern paddr_t physical_start;
1196 extern paddr_t physical_end;
1197
1198 int
1199 _bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1200 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1201 int flags)
1202 {
1203 struct arm32_dma_range *dr;
1204 int error, i;
1205
1206 #ifdef DEBUG_DMA
1207 printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
1208 "segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
1209 boundary, segs, nsegs, rsegs, flags);
1210 #endif
1211
1212 if ((dr = t->_ranges) != NULL) {
1213 error = ENOMEM;
1214 for (i = 0; i < t->_nranges; i++, dr++) {
1215 if (dr->dr_len == 0
1216 || (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
1217 continue;
1218 error = _bus_dmamem_alloc_range(t, size, alignment,
1219 boundary, segs, nsegs, rsegs, flags,
1220 trunc_page(dr->dr_sysbase),
1221 trunc_page(dr->dr_sysbase + dr->dr_len));
1222 if (error == 0)
1223 break;
1224 }
1225 } else {
1226 error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
1227 segs, nsegs, rsegs, flags, trunc_page(physical_start),
1228 trunc_page(physical_end));
1229 }
1230
1231 #ifdef DEBUG_DMA
1232 printf("dmamem_alloc: =%d\n", error);
1233 #endif
1234
1235 return(error);
1236 }
1237
1238 /*
1239 * Common function for freeing DMA-safe memory. May be called by
1240 * bus-specific DMA memory free functions.
1241 */
1242 void
1243 _bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
1244 {
1245 struct vm_page *m;
1246 bus_addr_t addr;
1247 struct pglist mlist;
1248 int curseg;
1249
1250 #ifdef DEBUG_DMA
1251 printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
1252 #endif /* DEBUG_DMA */
1253
1254 /*
1255 * Build a list of pages to free back to the VM system.
1256 */
1257 TAILQ_INIT(&mlist);
1258 for (curseg = 0; curseg < nsegs; curseg++) {
1259 for (addr = segs[curseg].ds_addr;
1260 addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
1261 addr += PAGE_SIZE) {
1262 m = PHYS_TO_VM_PAGE(addr);
1263 TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
1264 }
1265 }
1266 uvm_pglistfree(&mlist);
1267 }
1268
1269 /*
1270 * Common function for mapping DMA-safe memory. May be called by
1271 * bus-specific DMA memory map functions.
1272 */
1273 int
1274 _bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1275 size_t size, void **kvap, int flags)
1276 {
1277 vaddr_t va;
1278 paddr_t pa;
1279 int curseg;
1280 const uvm_flag_t kmflags = UVM_KMF_VAONLY
1281 | ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
1282 vsize_t align = 0;
1283
1284 #ifdef DEBUG_DMA
1285 printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
1286 segs, nsegs, (unsigned long)size, flags);
1287 #endif /* DEBUG_DMA */
1288
1289 #ifdef PMAP_MAP_POOLPAGE
1290 /*
1291 * If all of memory is mapped, and we are mapping a single physically
1292 * contiguous area then this area is already mapped. Let's see if we
1293 * avoid having a separate mapping for it.
1294 */
1295 if (nsegs == 1) {
1296 /*
1297 * If this is a non-COHERENT mapping, then the existing kernel
1298 * mapping is already compatible with it.
1299 */
1300 bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
1301 pa = segs[0].ds_addr;
1302
1303 /*
1304 * This is a COHERENT mapping which, unless this address is in
1305 * a COHERENT dma range, will not be compatible.
1306 */
1307 if (t->_ranges != NULL) {
1308 const struct arm32_dma_range * const dr =
1309 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1310 if (dr != NULL
1311 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1312 direct_mapable = true;
1313 }
1314 }
1315
1316 #ifdef PMAP_NEED_ALLOC_POOLPAGE
1317 /*
1318 * The page can only be direct mapped if was allocated out
1319 * of the arm poolpage vm freelist.
1320 */
1321 int lcv = vm_physseg_find(atop(pa), NULL);
1322 KASSERT(lcv != -1);
1323 if (direct_mapable) {
1324 direct_mapable =
1325 (arm_poolpage_vmfreelist == VM_PHYSMEM_PTR(lcv)->free_list);
1326 }
1327 #endif
1328
1329 if (direct_mapable) {
1330 *kvap = (void *)PMAP_MAP_POOLPAGE(pa);
1331 #ifdef DEBUG_DMA
1332 printf("dmamem_map: =%p\n", *kvap);
1333 #endif /* DEBUG_DMA */
1334 return 0;
1335 }
1336 }
1337 #endif
1338
1339 size = round_page(size);
1340 if (__predict_true(size > L2_L_SIZE)) {
1341 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1342 if (size >= L1_SS_SIZE)
1343 align = L1_SS_SIZE;
1344 else
1345 #endif
1346 if (size >= L1_S_SIZE)
1347 align = L1_S_SIZE;
1348 else
1349 align = L2_L_SIZE;
1350 }
1351
1352 va = uvm_km_alloc(kernel_map, size, align, kmflags);
1353 if (__predict_false(va == 0 && align > 0)) {
1354 align = 0;
1355 va = uvm_km_alloc(kernel_map, size, 0, kmflags);
1356 }
1357
1358 if (va == 0)
1359 return (ENOMEM);
1360
1361 *kvap = (void *)va;
1362
1363 for (curseg = 0; curseg < nsegs; curseg++) {
1364 for (pa = segs[curseg].ds_addr;
1365 pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
1366 pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
1367 bool uncached = (flags & BUS_DMA_COHERENT);
1368 #ifdef DEBUG_DMA
1369 printf("wiring p%lx to v%lx", pa, va);
1370 #endif /* DEBUG_DMA */
1371 if (size == 0)
1372 panic("_bus_dmamem_map: size botch");
1373
1374 const struct arm32_dma_range * const dr =
1375 _bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
1376 /*
1377 * If this dma region is coherent then there is
1378 * no need for an uncached mapping.
1379 */
1380 if (dr != NULL
1381 && (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
1382 uncached = false;
1383 }
1384
1385 pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
1386 PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
1387 }
1388 }
1389 pmap_update(pmap_kernel());
1390 #ifdef DEBUG_DMA
1391 printf("dmamem_map: =%p\n", *kvap);
1392 #endif /* DEBUG_DMA */
1393 return (0);
1394 }
1395
1396 /*
1397 * Common function for unmapping DMA-safe memory. May be called by
1398 * bus-specific DMA memory unmapping functions.
1399 */
1400 void
1401 _bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
1402 {
1403
1404 #ifdef DEBUG_DMA
1405 printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
1406 #endif /* DEBUG_DMA */
1407 KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
1408 "kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
1409
1410 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
1411 /*
1412 * Check to see if this used direct mapped memory. Get its physical
1413 * address and try to map it. If the resultant matches the kva, then
1414 * it was and so we can just return since we have notice to free up.
1415 */
1416 paddr_t pa;
1417 vaddr_t va;
1418 (void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
1419 if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
1420 return;
1421 #endif
1422
1423 size = round_page(size);
1424 pmap_kremove((vaddr_t)kva, size);
1425 pmap_update(pmap_kernel());
1426 uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
1427 }
1428
1429 /*
1430 * Common functin for mmap(2)'ing DMA-safe memory. May be called by
1431 * bus-specific DMA mmap(2)'ing functions.
1432 */
1433 paddr_t
1434 _bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
1435 off_t off, int prot, int flags)
1436 {
1437 paddr_t map_flags;
1438 int i;
1439
1440 for (i = 0; i < nsegs; i++) {
1441 KASSERTMSG((off & PAGE_MASK) == 0,
1442 "off %#qx (%#x)", off, (int)off & PAGE_MASK);
1443 KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
1444 "ds_addr %#lx (%#x)", segs[i].ds_addr,
1445 (int)segs[i].ds_addr & PAGE_MASK);
1446 KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
1447 "ds_len %#lx (%#x)", segs[i].ds_addr,
1448 (int)segs[i].ds_addr & PAGE_MASK);
1449 if (off >= segs[i].ds_len) {
1450 off -= segs[i].ds_len;
1451 continue;
1452 }
1453
1454 map_flags = 0;
1455 if (flags & BUS_DMA_PREFETCHABLE)
1456 map_flags |= ARM32_MMAP_WRITECOMBINE;
1457
1458 return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
1459
1460 }
1461
1462 /* Page not found. */
1463 return (-1);
1464 }
1465
1466 /**********************************************************************
1467 * DMA utility functions
1468 **********************************************************************/
1469
1470 /*
1471 * Utility function to load a linear buffer. lastaddrp holds state
1472 * between invocations (for multiple-buffer loads). segp contains
1473 * the starting segment on entrace, and the ending segment on exit.
1474 * first indicates if this is the first invocation of this function.
1475 */
1476 int
1477 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
1478 bus_size_t buflen, struct vmspace *vm, int flags)
1479 {
1480 bus_size_t sgsize;
1481 bus_addr_t curaddr;
1482 vaddr_t vaddr = (vaddr_t)buf;
1483 int error;
1484 pmap_t pmap;
1485
1486 #ifdef DEBUG_DMA
1487 printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
1488 buf, buflen, flags);
1489 #endif /* DEBUG_DMA */
1490
1491 pmap = vm_map_pmap(&vm->vm_map);
1492
1493 while (buflen > 0) {
1494 /*
1495 * Get the physical address for this segment.
1496 *
1497 * XXX Doesn't support checking for coherent mappings
1498 * XXX in user address space.
1499 */
1500 bool coherent;
1501 if (__predict_true(pmap == pmap_kernel())) {
1502 pd_entry_t *pde;
1503 pt_entry_t *ptep;
1504 (void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
1505 if (__predict_false(pmap_pde_section(pde))) {
1506 paddr_t s_frame = L1_S_FRAME;
1507 paddr_t s_offset = L1_S_OFFSET;
1508 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
1509 if (__predict_false(pmap_pde_supersection(pde))) {
1510 s_frame = L1_SS_FRAME;
1511 s_offset = L1_SS_OFFSET;
1512 }
1513 #endif
1514 curaddr = (*pde & s_frame) | (vaddr & s_offset);
1515 coherent = (*pde & L1_S_CACHE_MASK) == 0;
1516 } else {
1517 pt_entry_t pte = *ptep;
1518 KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
1519 "va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
1520 vaddr, *pde, ptep, pte);
1521 if (__predict_false((pte & L2_TYPE_MASK)
1522 == L2_TYPE_L)) {
1523 curaddr = (pte & L2_L_FRAME) |
1524 (vaddr & L2_L_OFFSET);
1525 coherent = (pte & L2_L_CACHE_MASK) == 0;
1526 } else {
1527 curaddr = (pte & ~PAGE_MASK) |
1528 (vaddr & PAGE_MASK);
1529 coherent = (pte & L2_S_CACHE_MASK) == 0;
1530 }
1531 }
1532 } else {
1533 (void) pmap_extract(pmap, vaddr, &curaddr);
1534 coherent = false;
1535 }
1536 KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
1537 "va %#lx curaddr %#lx", vaddr, curaddr);
1538
1539 /*
1540 * Compute the segment size, and adjust counts.
1541 */
1542 sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
1543 if (buflen < sgsize)
1544 sgsize = buflen;
1545
1546 error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
1547 coherent);
1548 if (error)
1549 return (error);
1550
1551 vaddr += sgsize;
1552 buflen -= sgsize;
1553 }
1554
1555 return (0);
1556 }
1557
1558 /*
1559 * Allocate physical memory from the given physical address range.
1560 * Called by DMA-safe memory allocation methods.
1561 */
1562 int
1563 _bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1564 bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1565 int flags, paddr_t low, paddr_t high)
1566 {
1567 paddr_t curaddr, lastaddr;
1568 struct vm_page *m;
1569 struct pglist mlist;
1570 int curseg, error;
1571
1572 KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
1573 "invalid boundary %#lx", boundary);
1574
1575 #ifdef DEBUG_DMA
1576 printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
1577 t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
1578 #endif /* DEBUG_DMA */
1579
1580 /* Always round the size. */
1581 size = round_page(size);
1582
1583 /*
1584 * We accept boundaries < size, splitting in multiple segments
1585 * if needed. uvm_pglistalloc does not, so compute an appropriate
1586 * boundary: next power of 2 >= size
1587 */
1588 bus_size_t uboundary = boundary;
1589 if (uboundary <= PAGE_SIZE) {
1590 uboundary = 0;
1591 } else {
1592 while (uboundary < size) {
1593 uboundary <<= 1;
1594 }
1595 }
1596
1597 /*
1598 * Allocate pages from the VM system.
1599 */
1600 error = uvm_pglistalloc(size, low, high, alignment, uboundary,
1601 &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1602 if (error)
1603 return (error);
1604
1605 /*
1606 * Compute the location, size, and number of segments actually
1607 * returned by the VM code.
1608 */
1609 m = TAILQ_FIRST(&mlist);
1610 curseg = 0;
1611 lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
1612 segs[curseg].ds_len = PAGE_SIZE;
1613 #ifdef DEBUG_DMA
1614 printf("alloc: page %lx\n", lastaddr);
1615 #endif /* DEBUG_DMA */
1616 m = TAILQ_NEXT(m, pageq.queue);
1617
1618 for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1619 curaddr = VM_PAGE_TO_PHYS(m);
1620 KASSERTMSG(low <= curaddr && curaddr < high,
1621 "uvm_pglistalloc returned non-sensicaladdress %#lx "
1622 "(low=%#lx, high=%#lx\n", curaddr, low, high);
1623 #ifdef DEBUG_DMA
1624 printf("alloc: page %lx\n", curaddr);
1625 #endif /* DEBUG_DMA */
1626 if (curaddr == lastaddr + PAGE_SIZE
1627 && (lastaddr & boundary) == (curaddr & boundary))
1628 segs[curseg].ds_len += PAGE_SIZE;
1629 else {
1630 curseg++;
1631 if (curseg >= nsegs) {
1632 uvm_pglistfree(&mlist);
1633 return EFBIG;
1634 }
1635 segs[curseg].ds_addr = curaddr;
1636 segs[curseg].ds_len = PAGE_SIZE;
1637 }
1638 lastaddr = curaddr;
1639 }
1640
1641 *rsegs = curseg + 1;
1642
1643 return (0);
1644 }
1645
1646 /*
1647 * Check if a memory region intersects with a DMA range, and return the
1648 * page-rounded intersection if it does.
1649 */
1650 int
1651 arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
1652 paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
1653 {
1654 struct arm32_dma_range *dr;
1655 int i;
1656
1657 if (ranges == NULL)
1658 return (0);
1659
1660 for (i = 0, dr = ranges; i < nranges; i++, dr++) {
1661 if (dr->dr_sysbase <= pa &&
1662 pa < (dr->dr_sysbase + dr->dr_len)) {
1663 /*
1664 * Beginning of region intersects with this range.
1665 */
1666 *pap = trunc_page(pa);
1667 *sizep = round_page(min(pa + size,
1668 dr->dr_sysbase + dr->dr_len) - pa);
1669 return (1);
1670 }
1671 if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
1672 /*
1673 * End of region intersects with this range.
1674 */
1675 *pap = trunc_page(dr->dr_sysbase);
1676 *sizep = round_page(min((pa + size) - dr->dr_sysbase,
1677 dr->dr_len));
1678 return (1);
1679 }
1680 }
1681
1682 /* No intersection found. */
1683 return (0);
1684 }
1685
1686 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1687 static int
1688 _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
1689 bus_size_t size, int flags)
1690 {
1691 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1692 int error = 0;
1693
1694 KASSERT(cookie != NULL);
1695
1696 cookie->id_bouncebuflen = round_page(size);
1697 error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
1698 PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
1699 map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
1700 if (error == 0) {
1701 error = _bus_dmamem_map(t, cookie->id_bouncesegs,
1702 cookie->id_nbouncesegs, cookie->id_bouncebuflen,
1703 (void **)&cookie->id_bouncebuf, flags);
1704 if (error) {
1705 _bus_dmamem_free(t, cookie->id_bouncesegs,
1706 cookie->id_nbouncesegs);
1707 cookie->id_bouncebuflen = 0;
1708 cookie->id_nbouncesegs = 0;
1709 } else {
1710 cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
1711 }
1712 } else {
1713 cookie->id_bouncebuflen = 0;
1714 cookie->id_nbouncesegs = 0;
1715 }
1716
1717 return (error);
1718 }
1719
1720 static void
1721 _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
1722 {
1723 struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
1724
1725 KASSERT(cookie != NULL);
1726
1727 _bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
1728 _bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
1729 cookie->id_bouncebuflen = 0;
1730 cookie->id_nbouncesegs = 0;
1731 cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
1732 }
1733
1734 /*
1735 * This function does the same as uiomove, but takes an explicit
1736 * direction, and does not update the uio structure.
1737 */
1738 static int
1739 _bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
1740 {
1741 struct iovec *iov;
1742 int error;
1743 struct vmspace *vm;
1744 char *cp;
1745 size_t resid, cnt;
1746 int i;
1747
1748 iov = uio->uio_iov;
1749 vm = uio->uio_vmspace;
1750 cp = buf;
1751 resid = n;
1752
1753 for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
1754 iov = &uio->uio_iov[i];
1755 if (iov->iov_len == 0)
1756 continue;
1757 cnt = MIN(resid, iov->iov_len);
1758
1759 if (!VMSPACE_IS_KERNEL_P(vm) &&
1760 (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1761 != 0) {
1762 preempt();
1763 }
1764 if (direction == UIO_READ) {
1765 error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
1766 } else {
1767 error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
1768 }
1769 if (error)
1770 return (error);
1771 cp += cnt;
1772 resid -= cnt;
1773 }
1774 return (0);
1775 }
1776 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1777
1778 int
1779 _bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
1780 bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
1781 {
1782
1783 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1784 struct arm32_dma_range *dr;
1785 bool subset = false;
1786 size_t nranges = 0;
1787 size_t i;
1788 for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
1789 if (dr->dr_sysbase <= min_addr
1790 && max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
1791 subset = true;
1792 }
1793 if (min_addr <= dr->dr_sysbase + dr->dr_len
1794 && max_addr >= dr->dr_sysbase) {
1795 nranges++;
1796 }
1797 }
1798 if (subset) {
1799 *newtag = tag;
1800 /* if the tag must be freed, add a reference */
1801 if (tag->_tag_needs_free)
1802 (tag->_tag_needs_free)++;
1803 return 0;
1804 }
1805 if (nranges == 0) {
1806 nranges = 1;
1807 }
1808
1809 const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
1810 if ((*newtag = kmem_intr_zalloc(tagsize,
1811 (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
1812 return ENOMEM;
1813
1814 dr = (void *)(*newtag + 1);
1815 **newtag = *tag;
1816 (*newtag)->_tag_needs_free = 1;
1817 (*newtag)->_ranges = dr;
1818 (*newtag)->_nranges = nranges;
1819
1820 if (tag->_ranges == NULL) {
1821 dr->dr_sysbase = min_addr;
1822 dr->dr_busbase = min_addr;
1823 dr->dr_len = max_addr + 1 - min_addr;
1824 } else {
1825 for (i = 0; i < nranges; i++) {
1826 if (min_addr > dr->dr_sysbase + dr->dr_len
1827 || max_addr < dr->dr_sysbase)
1828 continue;
1829 dr[0] = tag->_ranges[i];
1830 if (dr->dr_sysbase < min_addr) {
1831 psize_t diff = min_addr - dr->dr_sysbase;
1832 dr->dr_busbase += diff;
1833 dr->dr_len -= diff;
1834 dr->dr_sysbase += diff;
1835 }
1836 if (max_addr != 0xffffffff
1837 && max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
1838 dr->dr_len = max_addr + 1 - dr->dr_sysbase;
1839 }
1840 dr++;
1841 }
1842 }
1843
1844 return 0;
1845 #else
1846 return EOPNOTSUPP;
1847 #endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
1848 }
1849
1850 void
1851 _bus_dmatag_destroy(bus_dma_tag_t tag)
1852 {
1853 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
1854 switch (tag->_tag_needs_free) {
1855 case 0:
1856 break; /* not allocated with kmem */
1857 case 1: {
1858 const size_t tagsize = sizeof(*tag)
1859 + tag->_nranges * sizeof(*tag->_ranges);
1860 kmem_intr_free(tag, tagsize); /* last reference to tag */
1861 break;
1862 }
1863 default:
1864 (tag->_tag_needs_free)--; /* one less reference */
1865 }
1866 #endif
1867 }
1868