1 1.119 andvar /* $NetBSD: fault.c,v 1.119 2024/02/02 22:00:32 andvar Exp $ */ 2 1.1 chris 3 1.1 chris /* 4 1.27 scw * Copyright 2003 Wasabi Systems, Inc. 5 1.27 scw * All rights reserved. 6 1.27 scw * 7 1.27 scw * Written by Steve C. Woodford for Wasabi Systems, Inc. 8 1.27 scw * 9 1.27 scw * Redistribution and use in source and binary forms, with or without 10 1.27 scw * modification, are permitted provided that the following conditions 11 1.27 scw * are met: 12 1.27 scw * 1. Redistributions of source code must retain the above copyright 13 1.27 scw * notice, this list of conditions and the following disclaimer. 14 1.27 scw * 2. Redistributions in binary form must reproduce the above copyright 15 1.27 scw * notice, this list of conditions and the following disclaimer in the 16 1.27 scw * documentation and/or other materials provided with the distribution. 17 1.27 scw * 3. All advertising materials mentioning features or use of this software 18 1.27 scw * must display the following acknowledgement: 19 1.27 scw * This product includes software developed for the NetBSD Project by 20 1.27 scw * Wasabi Systems, Inc. 21 1.27 scw * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 1.27 scw * or promote products derived from this software without specific prior 23 1.27 scw * written permission. 24 1.27 scw * 25 1.27 scw * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 1.27 scw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 1.27 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 1.27 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 1.27 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 1.27 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 1.27 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 1.27 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 1.27 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 1.27 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 1.27 scw * POSSIBILITY OF SUCH DAMAGE. 36 1.27 scw */ 37 1.27 scw /* 38 1.1 chris * Copyright (c) 1994-1997 Mark Brinicombe. 39 1.1 chris * Copyright (c) 1994 Brini. 40 1.1 chris * All rights reserved. 41 1.1 chris * 42 1.1 chris * This code is derived from software written for Brini by Mark Brinicombe 43 1.1 chris * 44 1.1 chris * Redistribution and use in source and binary forms, with or without 45 1.1 chris * modification, are permitted provided that the following conditions 46 1.1 chris * are met: 47 1.1 chris * 1. Redistributions of source code must retain the above copyright 48 1.1 chris * notice, this list of conditions and the following disclaimer. 49 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright 50 1.1 chris * notice, this list of conditions and the following disclaimer in the 51 1.1 chris * documentation and/or other materials provided with the distribution. 52 1.1 chris * 3. All advertising materials mentioning features or use of this software 53 1.1 chris * must display the following acknowledgement: 54 1.1 chris * This product includes software developed by Brini. 55 1.1 chris * 4. The name of the company nor the name of the author may be used to 56 1.1 chris * endorse or promote products derived from this software without specific 57 1.1 chris * prior written permission. 58 1.1 chris * 59 1.1 chris * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 60 1.1 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 61 1.1 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 62 1.1 chris * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 63 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 64 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 65 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 1.1 chris * SUCH DAMAGE. 70 1.1 chris * 71 1.1 chris * RiscBSD kernel project 72 1.1 chris * 73 1.1 chris * fault.c 74 1.1 chris * 75 1.1 chris * Fault handlers 76 1.1 chris * 77 1.1 chris * Created : 28/11/94 78 1.1 chris */ 79 1.1 chris 80 1.1 chris #include "opt_ddb.h" 81 1.28 briggs #include "opt_kgdb.h" 82 1.115 skrll #include "opt_multiprocessor.h" 83 1.1 chris 84 1.1 chris #include <sys/types.h> 85 1.119 andvar __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.119 2024/02/02 22:00:32 andvar Exp $"); 86 1.21 bjh21 87 1.1 chris #include <sys/param.h> 88 1.112 skrll 89 1.65 matt #include <sys/cpu.h> 90 1.90 matt #include <sys/intr.h> 91 1.112 skrll #include <sys/kauth.h> 92 1.112 skrll #include <sys/kernel.h> 93 1.112 skrll #include <sys/proc.h> 94 1.112 skrll #include <sys/systm.h> 95 1.1 chris 96 1.1 chris #include <uvm/uvm_extern.h> 97 1.50 rearnsha #include <uvm/uvm_stat.h> 98 1.50 rearnsha #ifdef UVMHIST 99 1.50 rearnsha #include <uvm/uvm.h> 100 1.50 rearnsha #endif 101 1.18 thorpej 102 1.90 matt #include <arm/locore.h> 103 1.1 chris 104 1.83 matt #include <machine/pcb.h> 105 1.28 briggs #if defined(DDB) || defined(KGDB) 106 1.1 chris #include <machine/db_machdep.h> 107 1.28 briggs #ifdef KGDB 108 1.28 briggs #include <sys/kgdb.h> 109 1.28 briggs #endif 110 1.28 briggs #if !defined(DDB) 111 1.28 briggs #define kdb_trap kgdb_trap 112 1.28 briggs #endif 113 1.1 chris #endif 114 1.1 chris 115 1.1 chris #include <arch/arm/arm/disassem.h> 116 1.7 chris #include <arm/arm32/machdep.h> 117 1.100 skrll 118 1.115 skrll #if defined(DEBUG) && !defined(MULTIPROCESSOR) 119 1.27 scw int last_fault_code; /* For the benefit of pmap_fault_fixup() */ 120 1.27 scw #endif 121 1.27 scw 122 1.107 maxv #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI) 123 1.39 scw /* These CPUs may need data/prefetch abort fixups */ 124 1.39 scw #define CPU_ABORT_FIXUP_REQUIRED 125 1.39 scw #endif 126 1.7 chris 127 1.39 scw struct data_abort { 128 1.39 scw int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 129 1.39 scw const char *desc; 130 1.39 scw }; 131 1.1 chris 132 1.39 scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 133 1.39 scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 134 1.39 scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); 135 1.39 scw 136 1.39 scw static const struct data_abort data_aborts[] = { 137 1.39 scw {dab_fatal, "Vector Exception"}, 138 1.39 scw {dab_align, "Alignment Fault 1"}, 139 1.39 scw {dab_fatal, "Terminal Exception"}, 140 1.39 scw {dab_align, "Alignment Fault 3"}, 141 1.39 scw {dab_buserr, "External Linefetch Abort (S)"}, 142 1.39 scw {NULL, "Translation Fault (S)"}, 143 1.39 scw {dab_buserr, "External Linefetch Abort (P)"}, 144 1.39 scw {NULL, "Translation Fault (P)"}, 145 1.39 scw {dab_buserr, "External Non-Linefetch Abort (S)"}, 146 1.39 scw {NULL, "Domain Fault (S)"}, 147 1.39 scw {dab_buserr, "External Non-Linefetch Abort (P)"}, 148 1.39 scw {NULL, "Domain Fault (P)"}, 149 1.39 scw {dab_buserr, "External Translation Abort (L1)"}, 150 1.39 scw {NULL, "Permission Fault (S)"}, 151 1.39 scw {dab_buserr, "External Translation Abort (L2)"}, 152 1.39 scw {NULL, "Permission Fault (P)"} 153 1.39 scw }; 154 1.1 chris 155 1.39 scw /* Determine if 'x' is a permission fault */ 156 1.39 scw #define IS_PERMISSION_FAULT(x) \ 157 1.39 scw (((1 << ((x) & FAULT_TYPE_MASK)) & \ 158 1.39 scw ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0) 159 1.1 chris 160 1.39 scw #if 0 161 1.39 scw /* maybe one day we'll do emulations */ 162 1.39 scw #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k)) 163 1.39 scw #else 164 1.39 scw #define TRAPSIGNAL(l,k) trapsignal((l), (k)) 165 1.1 chris #endif 166 1.3 thorpej 167 1.56 perry static inline void 168 1.93 matt call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi) 169 1.3 thorpej { 170 1.93 matt if (l->l_proc->p_pid == 1 || cpu_printfataltraps) { 171 1.93 matt printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n", 172 1.93 matt l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, 173 1.93 matt ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr, 174 1.93 matt ksi->ksi_trap); 175 1.93 matt printf("r0=%08x r1=%08x r2=%08x r3=%08x\n", 176 1.93 matt tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3); 177 1.93 matt printf("r4=%08x r5=%08x r6=%08x r7=%08x\n", 178 1.93 matt tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7); 179 1.93 matt printf("r8=%08x r9=%08x rA=%08x rB=%08x\n", 180 1.93 matt tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11); 181 1.93 matt printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n", 182 1.93 matt tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc, 183 1.93 matt tf->tf_spsr); 184 1.93 matt } 185 1.3 thorpej 186 1.39 scw TRAPSIGNAL(l, ksi); 187 1.39 scw } 188 1.3 thorpej 189 1.56 perry static inline int 190 1.39 scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l) 191 1.39 scw { 192 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED 193 1.39 scw int error; 194 1.3 thorpej 195 1.48 wiz /* Call the CPU specific data abort fixup routine */ 196 1.39 scw error = cpu_dataabt_fixup(tf); 197 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED)) 198 1.113 skrll return error; 199 1.3 thorpej 200 1.39 scw /* 201 1.39 scw * Oops, couldn't fix up the instruction 202 1.39 scw */ 203 1.79 christos printf("%s: fixup for %s mode data abort failed.\n", __func__, 204 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel"); 205 1.51 rearnsha #ifdef THUMB_CODE 206 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) { 207 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ", 208 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)), 209 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1))); 210 1.51 rearnsha } 211 1.51 rearnsha else 212 1.51 rearnsha #endif 213 1.51 rearnsha { 214 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, 215 1.51 rearnsha *((u_int *)tf->tf_pc)); 216 1.51 rearnsha } 217 1.39 scw disassemble(tf->tf_pc); 218 1.39 scw 219 1.39 scw /* Die now if this happened in kernel mode */ 220 1.39 scw if (!TRAP_USERMODE(tf)) 221 1.39 scw dab_fatal(tf, fsr, far, l, NULL); 222 1.3 thorpej 223 1.113 skrll return error; 224 1.39 scw #else 225 1.113 skrll return ABORT_FIXUP_OK; 226 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */ 227 1.3 thorpej } 228 1.3 thorpej 229 1.1 chris void 230 1.39 scw data_abort_handler(trapframe_t *tf) 231 1.1 chris { 232 1.39 scw struct vm_map *map; 233 1.83 matt struct lwp * const l = curlwp; 234 1.83 matt struct cpu_info * const ci = curcpu(); 235 1.83 matt u_int far, fsr; 236 1.39 scw vm_prot_t ftype; 237 1.1 chris void *onfault; 238 1.27 scw vaddr_t va; 239 1.39 scw int error; 240 1.34 matt ksiginfo_t ksi; 241 1.3 thorpej 242 1.97 matt UVMHIST_FUNC(__func__); 243 1.98 matt UVMHIST_CALLED(maphist); 244 1.50 rearnsha 245 1.39 scw /* Grab FAR/FSR before enabling interrupts */ 246 1.39 scw far = cpu_faultaddress(); 247 1.39 scw fsr = cpu_faultstatus(); 248 1.1 chris 249 1.39 scw /* Update vmmeter statistics */ 250 1.83 matt ci->ci_data.cpu_ntrap++; 251 1.1 chris 252 1.39 scw /* Re-enable interrupts if they were enabled previously */ 253 1.116 skrll KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); 254 1.101 matt #ifdef __NO_FIQ 255 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit)) 256 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits); 257 1.101 matt #else 258 1.72 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits)) 259 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits); 260 1.101 matt #endif 261 1.1 chris 262 1.67 matt /* Get the current lwp structure */ 263 1.1 chris 264 1.105 pgoyette UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx", 265 1.105 pgoyette (uintptr_t)l, far, fsr, 0); 266 1.105 pgoyette UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)", 267 1.105 pgoyette (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0); 268 1.50 rearnsha 269 1.39 scw /* Data abort came from user mode? */ 270 1.83 matt bool user = (TRAP_USERMODE(tf) != 0); 271 1.1 chris 272 1.39 scw /* Grab the current pcb */ 273 1.83 matt struct pcb * const pcb = lwp_getpcb(l); 274 1.1 chris 275 1.85 matt curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++; 276 1.85 matt 277 1.39 scw /* Invoke the appropriate handler, if necessary */ 278 1.39 scw if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) { 279 1.79 christos #ifdef DIAGNOSTIC 280 1.79 christos printf("%s: data_aborts fsr=0x%x far=0x%x\n", 281 1.79 christos __func__, fsr, far); 282 1.79 christos #endif 283 1.39 scw if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far, 284 1.39 scw l, &ksi)) 285 1.39 scw goto do_trapsignal; 286 1.39 scw goto out; 287 1.39 scw } 288 1.1 chris 289 1.1 chris /* 290 1.39 scw * At this point, we're dealing with one of the following data aborts: 291 1.39 scw * 292 1.39 scw * FAULT_TRANS_S - Translation -- Section 293 1.39 scw * FAULT_TRANS_P - Translation -- Page 294 1.39 scw * FAULT_DOMAIN_S - Domain -- Section 295 1.39 scw * FAULT_DOMAIN_P - Domain -- Page 296 1.39 scw * FAULT_PERM_S - Permission -- Section 297 1.39 scw * FAULT_PERM_P - Permission -- Page 298 1.39 scw * 299 1.39 scw * These are the main virtual memory-related faults signalled by 300 1.39 scw * the MMU. 301 1.1 chris */ 302 1.1 chris 303 1.104 skrll KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf, 304 1.104 skrll lwp_trapframe(l)); 305 1.1 chris 306 1.40 scw /* 307 1.40 scw * Make sure the Program Counter is sane. We could fall foul of 308 1.40 scw * someone executing Thumb code, in which case the PC might not 309 1.40 scw * be word-aligned. This would cause a kernel alignment fault 310 1.40 scw * further down if we have to decode the current instruction. 311 1.40 scw */ 312 1.51 rearnsha #ifdef THUMB_CODE 313 1.100 skrll /* 314 1.51 rearnsha * XXX: It would be nice to be able to support Thumb in the kernel 315 1.51 rearnsha * at some point. 316 1.51 rearnsha */ 317 1.51 rearnsha if (__predict_false(!user && (tf->tf_pc & 3) != 0)) { 318 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n", 319 1.79 christos __func__); 320 1.51 rearnsha dab_fatal(tf, fsr, far, l, NULL); 321 1.51 rearnsha } 322 1.51 rearnsha #else 323 1.40 scw if (__predict_false((tf->tf_pc & 3) != 0)) { 324 1.40 scw if (user) { 325 1.40 scw /* 326 1.40 scw * Give the user an illegal instruction signal. 327 1.40 scw */ 328 1.40 scw /* Deliver a SIGILL to the process */ 329 1.40 scw KSI_INIT_TRAP(&ksi); 330 1.40 scw ksi.ksi_signo = SIGILL; 331 1.40 scw ksi.ksi_code = ILL_ILLOPC; 332 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far; 333 1.40 scw ksi.ksi_trap = fsr; 334 1.40 scw goto do_trapsignal; 335 1.40 scw } 336 1.40 scw 337 1.40 scw /* 338 1.40 scw * The kernel never executes Thumb code. 339 1.40 scw */ 340 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n", 341 1.79 christos __func__); 342 1.40 scw dab_fatal(tf, fsr, far, l, NULL); 343 1.27 scw } 344 1.51 rearnsha #endif 345 1.27 scw 346 1.48 wiz /* See if the CPU state needs to be fixed up */ 347 1.41 scw switch (data_abort_fixup(tf, fsr, far, l)) { 348 1.41 scw case ABORT_FIXUP_RETURN: 349 1.41 scw return; 350 1.41 scw case ABORT_FIXUP_FAILED: 351 1.41 scw /* Deliver a SIGILL to the process */ 352 1.41 scw KSI_INIT_TRAP(&ksi); 353 1.41 scw ksi.ksi_signo = SIGILL; 354 1.41 scw ksi.ksi_code = ILL_ILLOPC; 355 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far; 356 1.41 scw ksi.ksi_trap = fsr; 357 1.41 scw goto do_trapsignal; 358 1.41 scw default: 359 1.41 scw break; 360 1.41 scw } 361 1.41 scw 362 1.39 scw va = trunc_page((vaddr_t)far); 363 1.1 chris 364 1.27 scw /* 365 1.27 scw * It is only a kernel address space fault iff: 366 1.27 scw * 1. user == 0 and 367 1.27 scw * 2. pcb_onfault not set or 368 1.41 scw * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction. 369 1.27 scw */ 370 1.83 matt if (!user && (va >= VM_MIN_KERNEL_ADDRESS || 371 1.41 scw (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) && 372 1.41 scw __predict_true((pcb->pcb_onfault == NULL || 373 1.93 matt (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) { 374 1.39 scw map = kernel_map; 375 1.39 scw 376 1.106 maxv /* Was the fault due to the FPE ? */ 377 1.39 scw if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) { 378 1.35 thorpej KSI_INIT_TRAP(&ksi); 379 1.34 matt ksi.ksi_signo = SIGSEGV; 380 1.39 scw ksi.ksi_code = SEGV_ACCERR; 381 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far; 382 1.39 scw ksi.ksi_trap = fsr; 383 1.27 scw 384 1.27 scw /* 385 1.27 scw * Force exit via userret() 386 1.39 scw * This is necessary as the FPE is an extension to 387 1.119 andvar * userland that actually runs in a privileged mode 388 1.39 scw * but uses USR mode permissions for its accesses. 389 1.27 scw */ 390 1.83 matt user = true; 391 1.39 scw goto do_trapsignal; 392 1.27 scw } 393 1.70 wrstuden } else { 394 1.39 scw map = &l->l_proc->p_vmspace->vm_map; 395 1.70 wrstuden } 396 1.1 chris 397 1.27 scw /* 398 1.94 matt * We need to know whether the page should be mapped as R or R/W. 399 1.94 matt * Before ARMv6, the MMU did not give us the info as to whether the 400 1.94 matt * fault was caused by a read or a write. 401 1.39 scw * 402 1.94 matt * However, we know that a permission fault can only be the result of 403 1.94 matt * a write to a read-only location, so we can deal with those quickly. 404 1.39 scw * 405 1.94 matt * Otherwise we need to disassemble the instruction responsible to 406 1.94 matt * determine if it was a write. 407 1.27 scw */ 408 1.96 skrll if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) { 409 1.94 matt ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ; 410 1.94 matt } else if (IS_PERMISSION_FAULT(fsr)) { 411 1.100 skrll ftype = VM_PROT_WRITE; 412 1.94 matt } else { 413 1.51 rearnsha #ifdef THUMB_CODE 414 1.51 rearnsha /* Fast track the ARM case. */ 415 1.51 rearnsha if (__predict_false(tf->tf_spsr & PSR_T_bit)) { 416 1.93 matt u_int insn = read_thumb_insn(tf->tf_pc, user); 417 1.51 rearnsha u_int insn_f8 = insn & 0xf800; 418 1.51 rearnsha u_int insn_fe = insn & 0xfe00; 419 1.51 rearnsha 420 1.51 rearnsha if (insn_f8 == 0x6000 || /* STR(1) */ 421 1.51 rearnsha insn_f8 == 0x7000 || /* STRB(1) */ 422 1.51 rearnsha insn_f8 == 0x8000 || /* STRH(1) */ 423 1.51 rearnsha insn_f8 == 0x9000 || /* STR(3) */ 424 1.51 rearnsha insn_f8 == 0xc000 || /* STM */ 425 1.51 rearnsha insn_fe == 0x5000 || /* STR(2) */ 426 1.51 rearnsha insn_fe == 0x5200 || /* STRH(2) */ 427 1.51 rearnsha insn_fe == 0x5400) /* STRB(2) */ 428 1.51 rearnsha ftype = VM_PROT_WRITE; 429 1.51 rearnsha else 430 1.51 rearnsha ftype = VM_PROT_READ; 431 1.51 rearnsha } 432 1.51 rearnsha else 433 1.51 rearnsha #endif 434 1.51 rearnsha { 435 1.93 matt u_int insn = read_insn(tf->tf_pc, user); 436 1.39 scw 437 1.51 rearnsha if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */ 438 1.51 rearnsha ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/ 439 1.81 matt ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/ 440 1.81 matt ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */ 441 1.100 skrll ftype = VM_PROT_WRITE; 442 1.51 rearnsha else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */ 443 1.100 skrll ftype = VM_PROT_READ | VM_PROT_WRITE; 444 1.51 rearnsha else 445 1.100 skrll ftype = VM_PROT_READ; 446 1.51 rearnsha } 447 1.39 scw } 448 1.39 scw 449 1.39 scw /* 450 1.39 scw * See if the fault is as a result of ref/mod emulation, 451 1.39 scw * or domain mismatch. 452 1.39 scw */ 453 1.115 skrll #if defined(DEBUG) && !defined(MULTIPROCESSOR) 454 1.39 scw last_fault_code = fsr; 455 1.1 chris #endif 456 1.42 briggs if (pmap_fault_fixup(map->pmap, va, ftype, user)) { 457 1.98 matt UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0); 458 1.27 scw goto out; 459 1.42 briggs } 460 1.1 chris 461 1.67 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) { 462 1.45 scw if (pcb->pcb_onfault) { 463 1.45 scw tf->tf_r0 = EINVAL; 464 1.45 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 465 1.45 scw return; 466 1.45 scw } 467 1.39 scw printf("\nNon-emulated page fault with intr_depth > 0\n"); 468 1.39 scw dab_fatal(tf, fsr, far, l, NULL); 469 1.27 scw } 470 1.1 chris 471 1.111 skrll #ifdef PMAP_FAULTINFO 472 1.111 skrll struct pcb_faultinfo * const pfi = &pcb->pcb_faultinfo; 473 1.111 skrll struct proc * const p = curproc; 474 1.111 skrll 475 1.111 skrll if (p->p_pid == pfi->pfi_lastpid && va == pfi->pfi_faultaddr) { 476 1.111 skrll if (++pfi->pfi_repeats > 4) { 477 1.111 skrll tlb_asid_t asid = tlb_get_asid(); 478 1.111 skrll pt_entry_t *ptep = pfi->pfi_faultptep; 479 1.111 skrll 480 1.111 skrll printf("%s: fault #%u (%x/%s) for %#" PRIxVADDR 481 1.111 skrll "(%#x) at pc %#" PRIxREGISTER " curpid=%u/%u " 482 1.111 skrll "ptep@%p=%#" PRIxPTE ")\n", __func__, 483 1.111 skrll pfi->pfi_repeats, fsr & FAULT_TYPE_MASK, 484 1.111 skrll data_aborts[fsr & FAULT_TYPE_MASK].desc, va, 485 1.111 skrll far, tf->tf_pc, map->pmap->pm_pai[0].pai_asid, 486 1.111 skrll asid, ptep, ptep ? *ptep : 0); 487 1.111 skrll cpu_Debugger(); 488 1.111 skrll } 489 1.111 skrll } else { 490 1.111 skrll pfi->pfi_lastpid = p->p_pid; 491 1.111 skrll pfi->pfi_faultaddr = va; 492 1.111 skrll pfi->pfi_repeats = 0; 493 1.111 skrll pfi->pfi_faultptep = NULL; 494 1.111 skrll pfi->pfi_faulttype = fsr & FAULT_TYPE_MASK; 495 1.111 skrll } 496 1.111 skrll #endif /* PMAP_FAULTINFO */ 497 1.111 skrll 498 1.27 scw onfault = pcb->pcb_onfault; 499 1.27 scw pcb->pcb_onfault = NULL; 500 1.57 he error = uvm_fault(map, va, ftype); 501 1.27 scw pcb->pcb_onfault = onfault; 502 1.39 scw 503 1.39 scw if (__predict_true(error == 0)) { 504 1.39 scw if (user) 505 1.39 scw uvm_grow(l->l_proc, va); /* Record any stack growth */ 506 1.98 matt UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0); 507 1.27 scw goto out; 508 1.27 scw } 509 1.39 scw 510 1.27 scw if (user == 0) { 511 1.27 scw if (pcb->pcb_onfault) { 512 1.39 scw tf->tf_r0 = error; 513 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 514 1.39 scw return; 515 1.1 chris } 516 1.39 scw 517 1.58 drochner printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype, 518 1.39 scw error); 519 1.39 scw dab_fatal(tf, fsr, far, l, NULL); 520 1.27 scw } 521 1.1 chris 522 1.43 scw KSI_INIT_TRAP(&ksi); 523 1.43 scw 524 1.103 martin switch (error) { 525 1.103 martin case ENOMEM: 526 1.39 scw printf("UVM: pid %d (%s), uid %d killed: " 527 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, 528 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); 529 1.43 scw ksi.ksi_signo = SIGKILL; 530 1.103 martin break; 531 1.103 martin case EACCES: 532 1.103 martin ksi.ksi_signo = SIGSEGV; 533 1.103 martin ksi.ksi_code = SEGV_ACCERR; 534 1.103 martin break; 535 1.103 martin case EINVAL: 536 1.103 martin ksi.ksi_signo = SIGBUS; 537 1.103 martin ksi.ksi_code = BUS_ADRERR; 538 1.103 martin break; 539 1.103 martin default: 540 1.43 scw ksi.ksi_signo = SIGSEGV; 541 1.103 martin ksi.ksi_code = SEGV_MAPERR; 542 1.103 martin break; 543 1.103 martin } 544 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far; 545 1.39 scw ksi.ksi_trap = fsr; 546 1.105 pgoyette UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0); 547 1.39 scw 548 1.39 scw do_trapsignal: 549 1.93 matt call_trapsignal(l, tf, &ksi); 550 1.39 scw out: 551 1.39 scw /* If returning to user mode, make sure to invoke userret() */ 552 1.39 scw if (user) 553 1.39 scw userret(l); 554 1.39 scw } 555 1.39 scw 556 1.39 scw /* 557 1.39 scw * dab_fatal() handles the following data aborts: 558 1.39 scw * 559 1.39 scw * FAULT_WRTBUF_0 - Vector Exception 560 1.39 scw * FAULT_WRTBUF_1 - Terminal Exception 561 1.39 scw * 562 1.39 scw * We should never see these on a properly functioning system. 563 1.39 scw * 564 1.39 scw * This function is also called by the other handlers if they 565 1.39 scw * detect a fatal problem. 566 1.39 scw * 567 1.39 scw * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort. 568 1.39 scw */ 569 1.39 scw static int 570 1.39 scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) 571 1.39 scw { 572 1.83 matt const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel"; 573 1.39 scw 574 1.39 scw if (l != NULL) { 575 1.39 scw printf("Fatal %s mode data abort: '%s'\n", mode, 576 1.39 scw data_aborts[fsr & FAULT_TYPE_MASK].desc); 577 1.44 scw printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr); 578 1.39 scw if ((fsr & FAULT_IMPRECISE) == 0) 579 1.44 scw printf("%08x, ", far); 580 1.39 scw else 581 1.44 scw printf("Invalid, "); 582 1.44 scw printf("spsr=%08x\n", tf->tf_spsr); 583 1.39 scw } else { 584 1.44 scw printf("Fatal %s mode prefetch abort at 0x%08x\n", 585 1.44 scw mode, tf->tf_pc); 586 1.44 scw printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr); 587 1.44 scw } 588 1.44 scw 589 1.44 scw printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n", 590 1.44 scw tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3); 591 1.44 scw printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n", 592 1.44 scw tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7); 593 1.44 scw printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n", 594 1.44 scw tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11); 595 1.44 scw printf("r12=%08x, ", tf->tf_r12); 596 1.44 scw 597 1.44 scw if (TRAP_USERMODE(tf)) 598 1.44 scw printf("usp=%08x, ulr=%08x", 599 1.44 scw tf->tf_usr_sp, tf->tf_usr_lr); 600 1.44 scw else 601 1.44 scw printf("ssp=%08x, slr=%08x", 602 1.44 scw tf->tf_svc_sp, tf->tf_svc_lr); 603 1.44 scw printf(", pc =%08x\n\n", tf->tf_pc); 604 1.34 matt 605 1.39 scw #if defined(DDB) || defined(KGDB) 606 1.39 scw kdb_trap(T_FAULT, tf); 607 1.34 matt #endif 608 1.39 scw panic("Fatal abort"); 609 1.39 scw /*NOTREACHED*/ 610 1.39 scw } 611 1.39 scw 612 1.39 scw /* 613 1.39 scw * dab_align() handles the following data aborts: 614 1.39 scw * 615 1.39 scw * FAULT_ALIGN_0 - Alignment fault 616 1.39 scw * FAULT_ALIGN_0 - Alignment fault 617 1.39 scw * 618 1.39 scw * These faults are fatal if they happen in kernel mode. Otherwise, we 619 1.39 scw * deliver a bus error to the process. 620 1.39 scw */ 621 1.39 scw static int 622 1.39 scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) 623 1.39 scw { 624 1.39 scw /* Alignment faults are always fatal if they occur in kernel mode */ 625 1.39 scw if (!TRAP_USERMODE(tf)) 626 1.39 scw dab_fatal(tf, fsr, far, l, NULL); 627 1.39 scw 628 1.39 scw /* pcb_onfault *must* be NULL at this point */ 629 1.83 matt KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL); 630 1.39 scw 631 1.48 wiz /* See if the CPU state needs to be fixed up */ 632 1.39 scw (void) data_abort_fixup(tf, fsr, far, l); 633 1.39 scw 634 1.39 scw /* Deliver a bus error signal to the process */ 635 1.39 scw KSI_INIT_TRAP(ksi); 636 1.39 scw ksi->ksi_signo = SIGBUS; 637 1.39 scw ksi->ksi_code = BUS_ADRALN; 638 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far; 639 1.39 scw ksi->ksi_trap = fsr; 640 1.39 scw 641 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); 642 1.39 scw 643 1.113 skrll return 1; 644 1.39 scw } 645 1.39 scw 646 1.39 scw /* 647 1.39 scw * dab_buserr() handles the following data aborts: 648 1.39 scw * 649 1.39 scw * FAULT_BUSERR_0 - External Abort on Linefetch -- Section 650 1.39 scw * FAULT_BUSERR_1 - External Abort on Linefetch -- Page 651 1.39 scw * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section 652 1.39 scw * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page 653 1.39 scw * FAULT_BUSTRNL1 - External abort on Translation -- Level 1 654 1.39 scw * FAULT_BUSTRNL2 - External abort on Translation -- Level 2 655 1.39 scw * 656 1.39 scw * If pcb_onfault is set, flag the fault and return to the handler. 657 1.39 scw * If the fault occurred in user mode, give the process a SIGBUS. 658 1.39 scw * 659 1.39 scw * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2 660 1.39 scw * can be flagged as imprecise in the FSR. This causes a real headache 661 1.39 scw * since some of the machine state is lost. In this case, tf->tf_pc 662 1.39 scw * may not actually point to the offending instruction. In fact, if 663 1.39 scw * we've taken a double abort fault, it generally points somewhere near 664 1.39 scw * the top of "data_abort_entry" in exception.S. 665 1.39 scw * 666 1.39 scw * In all other cases, these data aborts are considered fatal. 667 1.39 scw */ 668 1.39 scw static int 669 1.39 scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, 670 1.39 scw ksiginfo_t *ksi) 671 1.39 scw { 672 1.73 rmind struct pcb *pcb = lwp_getpcb(l); 673 1.39 scw 674 1.39 scw #ifdef __XSCALE__ 675 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0 && 676 1.39 scw (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) { 677 1.39 scw /* 678 1.39 scw * Oops, an imprecise, double abort fault. We've lost the 679 1.39 scw * r14_abt/spsr_abt values corresponding to the original 680 1.39 scw * abort, and the spsr saved in the trapframe indicates 681 1.39 scw * ABT mode. 682 1.39 scw */ 683 1.39 scw tf->tf_spsr &= ~PSR_MODE; 684 1.39 scw 685 1.39 scw /* 686 1.39 scw * We use a simple heuristic to determine if the double abort 687 1.39 scw * happened as a result of a kernel or user mode access. 688 1.39 scw * If the current trapframe is at the top of the kernel stack, 689 1.39 scw * the fault _must_ have come from user mode. 690 1.39 scw */ 691 1.87 matt if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) { 692 1.39 scw /* 693 1.39 scw * Kernel mode. We're either about to die a 694 1.39 scw * spectacular death, or pcb_onfault will come 695 1.39 scw * to our rescue. Either way, the current value 696 1.39 scw * of tf->tf_pc is irrelevant. 697 1.39 scw */ 698 1.39 scw tf->tf_spsr |= PSR_SVC32_MODE; 699 1.39 scw if (pcb->pcb_onfault == NULL) 700 1.39 scw printf("\nKernel mode double abort!\n"); 701 1.39 scw } else { 702 1.39 scw /* 703 1.39 scw * User mode. We've lost the program counter at the 704 1.39 scw * time of the fault (not that it was accurate anyway; 705 1.39 scw * it's not called an imprecise fault for nothing). 706 1.39 scw * About all we can do is copy r14_usr to tf_pc and 707 1.39 scw * hope for the best. The process is about to get a 708 1.39 scw * SIGBUS, so it's probably history anyway. 709 1.39 scw */ 710 1.39 scw tf->tf_spsr |= PSR_USR32_MODE; 711 1.39 scw tf->tf_pc = tf->tf_usr_lr; 712 1.51 rearnsha #ifdef THUMB_CODE 713 1.51 rearnsha tf->tf_spsr &= ~PSR_T_bit; 714 1.51 rearnsha if (tf->tf_usr_lr & 1) 715 1.51 rearnsha tf->tf_spsr |= PSR_T_bit; 716 1.51 rearnsha #endif 717 1.39 scw } 718 1.39 scw } 719 1.39 scw 720 1.39 scw /* FAR is invalid for imprecise exceptions */ 721 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0) 722 1.39 scw far = 0; 723 1.39 scw #endif /* __XSCALE__ */ 724 1.39 scw 725 1.39 scw if (pcb->pcb_onfault) { 726 1.39 scw KDASSERT(TRAP_USERMODE(tf) == 0); 727 1.39 scw tf->tf_r0 = EFAULT; 728 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; 729 1.113 skrll return 0; 730 1.39 scw } 731 1.39 scw 732 1.48 wiz /* See if the CPU state needs to be fixed up */ 733 1.39 scw (void) data_abort_fixup(tf, fsr, far, l); 734 1.39 scw 735 1.39 scw /* 736 1.39 scw * At this point, if the fault happened in kernel mode, we're toast 737 1.39 scw */ 738 1.39 scw if (!TRAP_USERMODE(tf)) 739 1.39 scw dab_fatal(tf, fsr, far, l, NULL); 740 1.39 scw 741 1.39 scw /* Deliver a bus error signal to the process */ 742 1.39 scw KSI_INIT_TRAP(ksi); 743 1.39 scw ksi->ksi_signo = SIGBUS; 744 1.39 scw ksi->ksi_code = BUS_ADRERR; 745 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far; 746 1.39 scw ksi->ksi_trap = fsr; 747 1.39 scw 748 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); 749 1.27 scw 750 1.113 skrll return 1; 751 1.1 chris } 752 1.1 chris 753 1.56 perry static inline int 754 1.39 scw prefetch_abort_fixup(trapframe_t *tf) 755 1.39 scw { 756 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED 757 1.39 scw int error; 758 1.39 scw 759 1.48 wiz /* Call the CPU specific prefetch abort fixup routine */ 760 1.39 scw error = cpu_prefetchabt_fixup(tf); 761 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED)) 762 1.113 skrll return error; 763 1.39 scw 764 1.39 scw /* 765 1.39 scw * Oops, couldn't fix up the instruction 766 1.39 scw */ 767 1.79 christos printf("%s: fixup for %s mode prefetch abort failed.\n", __func__, 768 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel"); 769 1.51 rearnsha #ifdef THUMB_CODE 770 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) { 771 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ", 772 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)), 773 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1))); 774 1.51 rearnsha } 775 1.51 rearnsha else 776 1.51 rearnsha #endif 777 1.51 rearnsha { 778 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, 779 1.51 rearnsha *((u_int *)tf->tf_pc)); 780 1.51 rearnsha } 781 1.39 scw disassemble(tf->tf_pc); 782 1.39 scw 783 1.39 scw /* Die now if this happened in kernel mode */ 784 1.39 scw if (!TRAP_USERMODE(tf)) 785 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 786 1.39 scw 787 1.113 skrll return error; 788 1.39 scw #else 789 1.113 skrll return ABORT_FIXUP_OK; 790 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */ 791 1.39 scw } 792 1.1 chris 793 1.1 chris /* 794 1.39 scw * void prefetch_abort_handler(trapframe_t *tf) 795 1.1 chris * 796 1.1 chris * Abort handler called when instruction execution occurs at 797 1.1 chris * a non existent or restricted (access permissions) memory page. 798 1.1 chris * If the address is invalid and we were in SVC mode then panic as 799 1.1 chris * the kernel should never prefetch abort. 800 1.1 chris * If the address is invalid and the page is mapped then the user process 801 1.114 skrll * does not have read permission so send it a signal. 802 1.1 chris * Otherwise fault the page in and try again. 803 1.1 chris */ 804 1.1 chris void 805 1.39 scw prefetch_abort_handler(trapframe_t *tf) 806 1.1 chris { 807 1.26 thorpej struct lwp *l; 808 1.91 christos struct pcb *pcb __diagused; 809 1.14 thorpej struct vm_map *map; 810 1.14 thorpej vaddr_t fault_pc, va; 811 1.39 scw ksiginfo_t ksi; 812 1.61 ad int error, user; 813 1.39 scw 814 1.97 matt UVMHIST_FUNC(__func__); 815 1.98 matt UVMHIST_CALLED(maphist); 816 1.50 rearnsha 817 1.39 scw /* Update vmmeter statistics */ 818 1.78 matt curcpu()->ci_data.cpu_ntrap++; 819 1.1 chris 820 1.61 ad l = curlwp; 821 1.73 rmind pcb = lwp_getpcb(l); 822 1.118 martin user = TRAP_USERMODE(tf) != 0; 823 1.61 ad 824 1.1 chris /* 825 1.1 chris * Enable IRQ's (disabled by the abort) This always comes 826 1.1 chris * from user mode so we know interrupts were not disabled. 827 1.1 chris * But we check anyway. 828 1.1 chris */ 829 1.118 martin KASSERT(!user || VALID_PSR(tf->tf_spsr)); 830 1.101 matt #ifdef __NO_FIQ 831 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit)) 832 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits); 833 1.101 matt #else 834 1.101 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits)) 835 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits); 836 1.101 matt #endif 837 1.1 chris 838 1.48 wiz /* See if the CPU state needs to be fixed up */ 839 1.39 scw switch (prefetch_abort_fixup(tf)) { 840 1.39 scw case ABORT_FIXUP_RETURN: 841 1.116 skrll KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); 842 1.1 chris return; 843 1.39 scw case ABORT_FIXUP_FAILED: 844 1.39 scw /* Deliver a SIGILL to the process */ 845 1.39 scw KSI_INIT_TRAP(&ksi); 846 1.39 scw ksi.ksi_signo = SIGILL; 847 1.39 scw ksi.ksi_code = ILL_ILLOPC; 848 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc; 849 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, 850 1.104 skrll lwp_trapframe(l)); 851 1.39 scw goto do_trapsignal; 852 1.39 scw default: 853 1.39 scw break; 854 1.1 chris } 855 1.1 chris 856 1.39 scw /* Prefetch aborts cannot happen in kernel mode */ 857 1.61 ad if (__predict_false(!user)) 858 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 859 1.1 chris 860 1.4 thorpej /* Get fault address */ 861 1.39 scw fault_pc = tf->tf_pc; 862 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); 863 1.110 rin UVMHIST_LOG(maphist, " (pc=%#jx, l=%#jx, tf=%#jx)", 864 1.105 pgoyette fault_pc, (uintptr_t)l, (uintptr_t)tf, 0); 865 1.14 thorpej 866 1.109 ryo #ifdef THUMB_CODE 867 1.109 ryo recheck: 868 1.109 ryo #endif 869 1.1 chris /* Ok validate the address, can only execute in USER space */ 870 1.39 scw if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS || 871 1.39 scw (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) { 872 1.35 thorpej KSI_INIT_TRAP(&ksi); 873 1.34 matt ksi.ksi_signo = SIGSEGV; 874 1.34 matt ksi.ksi_code = SEGV_ACCERR; 875 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc; 876 1.34 matt ksi.ksi_trap = fault_pc; 877 1.39 scw goto do_trapsignal; 878 1.39 scw } 879 1.34 matt 880 1.39 scw map = &l->l_proc->p_vmspace->vm_map; 881 1.39 scw va = trunc_page(fault_pc); 882 1.1 chris 883 1.27 scw /* 884 1.27 scw * See if the pmap can handle this fault on its own... 885 1.27 scw */ 886 1.115 skrll #if defined(DEBUG) && !defined(MULTIPROCESSOR) 887 1.39 scw last_fault_code = -1; 888 1.39 scw #endif 889 1.88 matt if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) { 890 1.98 matt UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0); 891 1.39 scw goto out; 892 1.50 rearnsha } 893 1.27 scw 894 1.39 scw #ifdef DIAGNOSTIC 895 1.84 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) { 896 1.39 scw printf("\nNon-emulated prefetch abort with intr_depth > 0\n"); 897 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); 898 1.39 scw } 899 1.1 chris #endif 900 1.72 matt 901 1.76 chs KASSERT(pcb->pcb_onfault == NULL); 902 1.99 matt error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE); 903 1.53 joff 904 1.50 rearnsha if (__predict_true(error == 0)) { 905 1.98 matt UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0); 906 1.39 scw goto out; 907 1.50 rearnsha } 908 1.43 scw KSI_INIT_TRAP(&ksi); 909 1.43 scw 910 1.105 pgoyette UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0); 911 1.98 matt 912 1.39 scw if (error == ENOMEM) { 913 1.39 scw printf("UVM: pid %d (%s), uid %d killed: " 914 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, 915 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); 916 1.43 scw ksi.ksi_signo = SIGKILL; 917 1.43 scw } else 918 1.43 scw ksi.ksi_signo = SIGSEGV; 919 1.1 chris 920 1.39 scw ksi.ksi_code = SEGV_MAPERR; 921 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc; 922 1.39 scw ksi.ksi_trap = fault_pc; 923 1.39 scw 924 1.39 scw do_trapsignal: 925 1.93 matt call_trapsignal(l, tf, &ksi); 926 1.39 scw 927 1.39 scw out: 928 1.109 ryo 929 1.109 ryo #ifdef THUMB_CODE 930 1.109 ryo #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800)) 931 1.109 ryo /* thumb-32 instruction was located on page boundary? */ 932 1.109 ryo if ((tf->tf_spsr & PSR_T_bit) && 933 1.109 ryo ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) && 934 1.109 ryo THUMB_32BIT(*(uint16_t *)tf->tf_pc)) { 935 1.109 ryo fault_pc = tf->tf_pc + THUMB_INSN_SIZE; 936 1.109 ryo goto recheck; 937 1.109 ryo } 938 1.109 ryo #endif /* THUMB_CODE */ 939 1.109 ryo 940 1.116 skrll KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); 941 1.39 scw userret(l); 942 1.39 scw } 943 1.39 scw 944 1.39 scw /* 945 1.39 scw * Tentatively read an 8, 16, or 32-bit value from 'addr'. 946 1.39 scw * If the read succeeds, the value is written to 'rptr' and zero is returned. 947 1.39 scw * Else, return EFAULT. 948 1.39 scw */ 949 1.39 scw int 950 1.39 scw badaddr_read(void *addr, size_t size, void *rptr) 951 1.39 scw { 952 1.39 scw extern int badaddr_read_1(const uint8_t *, uint8_t *); 953 1.39 scw extern int badaddr_read_2(const uint16_t *, uint16_t *); 954 1.39 scw extern int badaddr_read_4(const uint32_t *, uint32_t *); 955 1.39 scw union { 956 1.39 scw uint8_t v1; 957 1.39 scw uint16_t v2; 958 1.39 scw uint32_t v4; 959 1.39 scw } u; 960 1.47 scw int rv, s; 961 1.39 scw 962 1.39 scw cpu_drain_writebuf(); 963 1.39 scw 964 1.47 scw s = splhigh(); 965 1.47 scw 966 1.39 scw /* Read from the test address. */ 967 1.39 scw switch (size) { 968 1.39 scw case sizeof(uint8_t): 969 1.39 scw rv = badaddr_read_1(addr, &u.v1); 970 1.39 scw if (rv == 0 && rptr) 971 1.39 scw *(uint8_t *) rptr = u.v1; 972 1.39 scw break; 973 1.39 scw 974 1.39 scw case sizeof(uint16_t): 975 1.39 scw rv = badaddr_read_2(addr, &u.v2); 976 1.39 scw if (rv == 0 && rptr) 977 1.39 scw *(uint16_t *) rptr = u.v2; 978 1.39 scw break; 979 1.39 scw 980 1.39 scw case sizeof(uint32_t): 981 1.39 scw rv = badaddr_read_4(addr, &u.v4); 982 1.39 scw if (rv == 0 && rptr) 983 1.39 scw *(uint32_t *) rptr = u.v4; 984 1.39 scw break; 985 1.39 scw 986 1.39 scw default: 987 1.82 matt panic("%s: invalid size (%zu)", __func__, size); 988 1.34 matt } 989 1.39 scw 990 1.47 scw splx(s); 991 1.47 scw 992 1.39 scw /* Return EFAULT if the address was invalid, else zero */ 993 1.113 skrll return rv; 994 1.1 chris } 995