fault.c revision 1.109 1 1.109 ryo /* $NetBSD: fault.c,v 1.109 2019/11/29 17:33:43 ryo Exp $ */
2 1.1 chris
3 1.1 chris /*
4 1.27 scw * Copyright 2003 Wasabi Systems, Inc.
5 1.27 scw * All rights reserved.
6 1.27 scw *
7 1.27 scw * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 1.27 scw *
9 1.27 scw * Redistribution and use in source and binary forms, with or without
10 1.27 scw * modification, are permitted provided that the following conditions
11 1.27 scw * are met:
12 1.27 scw * 1. Redistributions of source code must retain the above copyright
13 1.27 scw * notice, this list of conditions and the following disclaimer.
14 1.27 scw * 2. Redistributions in binary form must reproduce the above copyright
15 1.27 scw * notice, this list of conditions and the following disclaimer in the
16 1.27 scw * documentation and/or other materials provided with the distribution.
17 1.27 scw * 3. All advertising materials mentioning features or use of this software
18 1.27 scw * must display the following acknowledgement:
19 1.27 scw * This product includes software developed for the NetBSD Project by
20 1.27 scw * Wasabi Systems, Inc.
21 1.27 scw * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.27 scw * or promote products derived from this software without specific prior
23 1.27 scw * written permission.
24 1.27 scw *
25 1.27 scw * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.27 scw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.27 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.27 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.27 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.27 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.27 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.27 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.27 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.27 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.27 scw * POSSIBILITY OF SUCH DAMAGE.
36 1.27 scw */
37 1.27 scw /*
38 1.1 chris * Copyright (c) 1994-1997 Mark Brinicombe.
39 1.1 chris * Copyright (c) 1994 Brini.
40 1.1 chris * All rights reserved.
41 1.1 chris *
42 1.1 chris * This code is derived from software written for Brini by Mark Brinicombe
43 1.1 chris *
44 1.1 chris * Redistribution and use in source and binary forms, with or without
45 1.1 chris * modification, are permitted provided that the following conditions
46 1.1 chris * are met:
47 1.1 chris * 1. Redistributions of source code must retain the above copyright
48 1.1 chris * notice, this list of conditions and the following disclaimer.
49 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 chris * notice, this list of conditions and the following disclaimer in the
51 1.1 chris * documentation and/or other materials provided with the distribution.
52 1.1 chris * 3. All advertising materials mentioning features or use of this software
53 1.1 chris * must display the following acknowledgement:
54 1.1 chris * This product includes software developed by Brini.
55 1.1 chris * 4. The name of the company nor the name of the author may be used to
56 1.1 chris * endorse or promote products derived from this software without specific
57 1.1 chris * prior written permission.
58 1.1 chris *
59 1.1 chris * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 chris * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 chris * SUCH DAMAGE.
70 1.1 chris *
71 1.1 chris * RiscBSD kernel project
72 1.1 chris *
73 1.1 chris * fault.c
74 1.1 chris *
75 1.1 chris * Fault handlers
76 1.1 chris *
77 1.1 chris * Created : 28/11/94
78 1.1 chris */
79 1.1 chris
80 1.1 chris #include "opt_ddb.h"
81 1.28 briggs #include "opt_kgdb.h"
82 1.1 chris
83 1.1 chris #include <sys/types.h>
84 1.109 ryo __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.109 2019/11/29 17:33:43 ryo Exp $");
85 1.21 bjh21
86 1.1 chris #include <sys/param.h>
87 1.1 chris #include <sys/systm.h>
88 1.1 chris #include <sys/proc.h>
89 1.1 chris #include <sys/kernel.h>
90 1.60 yamt #include <sys/kauth.h>
91 1.65 matt #include <sys/cpu.h>
92 1.90 matt #include <sys/intr.h>
93 1.1 chris
94 1.1 chris #include <uvm/uvm_extern.h>
95 1.50 rearnsha #include <uvm/uvm_stat.h>
96 1.50 rearnsha #ifdef UVMHIST
97 1.50 rearnsha #include <uvm/uvm.h>
98 1.50 rearnsha #endif
99 1.18 thorpej
100 1.90 matt #include <arm/locore.h>
101 1.1 chris
102 1.83 matt #include <machine/pcb.h>
103 1.28 briggs #if defined(DDB) || defined(KGDB)
104 1.1 chris #include <machine/db_machdep.h>
105 1.28 briggs #ifdef KGDB
106 1.28 briggs #include <sys/kgdb.h>
107 1.28 briggs #endif
108 1.28 briggs #if !defined(DDB)
109 1.28 briggs #define kdb_trap kgdb_trap
110 1.28 briggs #endif
111 1.1 chris #endif
112 1.1 chris
113 1.1 chris #include <arch/arm/arm/disassem.h>
114 1.7 chris #include <arm/arm32/machdep.h>
115 1.100 skrll
116 1.27 scw #ifdef DEBUG
117 1.27 scw int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 1.27 scw #endif
119 1.27 scw
120 1.107 maxv #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
121 1.39 scw /* These CPUs may need data/prefetch abort fixups */
122 1.39 scw #define CPU_ABORT_FIXUP_REQUIRED
123 1.39 scw #endif
124 1.7 chris
125 1.39 scw struct data_abort {
126 1.39 scw int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
127 1.39 scw const char *desc;
128 1.39 scw };
129 1.1 chris
130 1.39 scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
131 1.39 scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 1.39 scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 1.39 scw
134 1.39 scw static const struct data_abort data_aborts[] = {
135 1.39 scw {dab_fatal, "Vector Exception"},
136 1.39 scw {dab_align, "Alignment Fault 1"},
137 1.39 scw {dab_fatal, "Terminal Exception"},
138 1.39 scw {dab_align, "Alignment Fault 3"},
139 1.39 scw {dab_buserr, "External Linefetch Abort (S)"},
140 1.39 scw {NULL, "Translation Fault (S)"},
141 1.39 scw {dab_buserr, "External Linefetch Abort (P)"},
142 1.39 scw {NULL, "Translation Fault (P)"},
143 1.39 scw {dab_buserr, "External Non-Linefetch Abort (S)"},
144 1.39 scw {NULL, "Domain Fault (S)"},
145 1.39 scw {dab_buserr, "External Non-Linefetch Abort (P)"},
146 1.39 scw {NULL, "Domain Fault (P)"},
147 1.39 scw {dab_buserr, "External Translation Abort (L1)"},
148 1.39 scw {NULL, "Permission Fault (S)"},
149 1.39 scw {dab_buserr, "External Translation Abort (L2)"},
150 1.39 scw {NULL, "Permission Fault (P)"}
151 1.39 scw };
152 1.1 chris
153 1.39 scw /* Determine if 'x' is a permission fault */
154 1.39 scw #define IS_PERMISSION_FAULT(x) \
155 1.39 scw (((1 << ((x) & FAULT_TYPE_MASK)) & \
156 1.39 scw ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
157 1.1 chris
158 1.39 scw #if 0
159 1.39 scw /* maybe one day we'll do emulations */
160 1.39 scw #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
161 1.39 scw #else
162 1.39 scw #define TRAPSIGNAL(l,k) trapsignal((l), (k))
163 1.1 chris #endif
164 1.3 thorpej
165 1.56 perry static inline void
166 1.93 matt call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
167 1.3 thorpej {
168 1.93 matt if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
169 1.93 matt printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
170 1.93 matt l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
171 1.93 matt ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
172 1.93 matt ksi->ksi_trap);
173 1.93 matt printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
174 1.93 matt tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
175 1.93 matt printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
176 1.93 matt tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
177 1.93 matt printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
178 1.93 matt tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
179 1.93 matt printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
180 1.93 matt tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
181 1.93 matt tf->tf_spsr);
182 1.93 matt }
183 1.3 thorpej
184 1.39 scw TRAPSIGNAL(l, ksi);
185 1.39 scw }
186 1.3 thorpej
187 1.56 perry static inline int
188 1.39 scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
189 1.39 scw {
190 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED
191 1.39 scw int error;
192 1.3 thorpej
193 1.48 wiz /* Call the CPU specific data abort fixup routine */
194 1.39 scw error = cpu_dataabt_fixup(tf);
195 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED))
196 1.39 scw return (error);
197 1.3 thorpej
198 1.39 scw /*
199 1.39 scw * Oops, couldn't fix up the instruction
200 1.39 scw */
201 1.79 christos printf("%s: fixup for %s mode data abort failed.\n", __func__,
202 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel");
203 1.51 rearnsha #ifdef THUMB_CODE
204 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) {
205 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
206 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
207 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1)));
208 1.51 rearnsha }
209 1.51 rearnsha else
210 1.51 rearnsha #endif
211 1.51 rearnsha {
212 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
213 1.51 rearnsha *((u_int *)tf->tf_pc));
214 1.51 rearnsha }
215 1.39 scw disassemble(tf->tf_pc);
216 1.39 scw
217 1.39 scw /* Die now if this happened in kernel mode */
218 1.39 scw if (!TRAP_USERMODE(tf))
219 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
220 1.3 thorpej
221 1.39 scw return (error);
222 1.39 scw #else
223 1.39 scw return (ABORT_FIXUP_OK);
224 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
225 1.3 thorpej }
226 1.3 thorpej
227 1.1 chris void
228 1.39 scw data_abort_handler(trapframe_t *tf)
229 1.1 chris {
230 1.39 scw struct vm_map *map;
231 1.83 matt struct lwp * const l = curlwp;
232 1.83 matt struct cpu_info * const ci = curcpu();
233 1.83 matt u_int far, fsr;
234 1.39 scw vm_prot_t ftype;
235 1.1 chris void *onfault;
236 1.27 scw vaddr_t va;
237 1.39 scw int error;
238 1.34 matt ksiginfo_t ksi;
239 1.3 thorpej
240 1.97 matt UVMHIST_FUNC(__func__);
241 1.98 matt UVMHIST_CALLED(maphist);
242 1.50 rearnsha
243 1.39 scw /* Grab FAR/FSR before enabling interrupts */
244 1.39 scw far = cpu_faultaddress();
245 1.39 scw fsr = cpu_faultstatus();
246 1.1 chris
247 1.39 scw /* Update vmmeter statistics */
248 1.83 matt ci->ci_data.cpu_ntrap++;
249 1.1 chris
250 1.39 scw /* Re-enable interrupts if they were enabled previously */
251 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
252 1.101 matt #ifdef __NO_FIQ
253 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
254 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits);
255 1.101 matt #else
256 1.72 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
257 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits);
258 1.101 matt #endif
259 1.1 chris
260 1.67 matt /* Get the current lwp structure */
261 1.1 chris
262 1.105 pgoyette UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
263 1.105 pgoyette (uintptr_t)l, far, fsr, 0);
264 1.105 pgoyette UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)",
265 1.105 pgoyette (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
266 1.50 rearnsha
267 1.39 scw /* Data abort came from user mode? */
268 1.83 matt bool user = (TRAP_USERMODE(tf) != 0);
269 1.83 matt if (user)
270 1.61 ad LWP_CACHE_CREDS(l, l->l_proc);
271 1.1 chris
272 1.39 scw /* Grab the current pcb */
273 1.83 matt struct pcb * const pcb = lwp_getpcb(l);
274 1.1 chris
275 1.85 matt curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
276 1.85 matt
277 1.39 scw /* Invoke the appropriate handler, if necessary */
278 1.39 scw if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
279 1.79 christos #ifdef DIAGNOSTIC
280 1.79 christos printf("%s: data_aborts fsr=0x%x far=0x%x\n",
281 1.79 christos __func__, fsr, far);
282 1.79 christos #endif
283 1.39 scw if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
284 1.39 scw l, &ksi))
285 1.39 scw goto do_trapsignal;
286 1.39 scw goto out;
287 1.39 scw }
288 1.1 chris
289 1.1 chris /*
290 1.39 scw * At this point, we're dealing with one of the following data aborts:
291 1.39 scw *
292 1.39 scw * FAULT_TRANS_S - Translation -- Section
293 1.39 scw * FAULT_TRANS_P - Translation -- Page
294 1.39 scw * FAULT_DOMAIN_S - Domain -- Section
295 1.39 scw * FAULT_DOMAIN_P - Domain -- Page
296 1.39 scw * FAULT_PERM_S - Permission -- Section
297 1.39 scw * FAULT_PERM_P - Permission -- Page
298 1.39 scw *
299 1.39 scw * These are the main virtual memory-related faults signalled by
300 1.39 scw * the MMU.
301 1.1 chris */
302 1.1 chris
303 1.104 skrll KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
304 1.104 skrll lwp_trapframe(l));
305 1.1 chris
306 1.40 scw /*
307 1.40 scw * Make sure the Program Counter is sane. We could fall foul of
308 1.40 scw * someone executing Thumb code, in which case the PC might not
309 1.40 scw * be word-aligned. This would cause a kernel alignment fault
310 1.40 scw * further down if we have to decode the current instruction.
311 1.40 scw */
312 1.51 rearnsha #ifdef THUMB_CODE
313 1.100 skrll /*
314 1.51 rearnsha * XXX: It would be nice to be able to support Thumb in the kernel
315 1.51 rearnsha * at some point.
316 1.51 rearnsha */
317 1.51 rearnsha if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
318 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n",
319 1.79 christos __func__);
320 1.51 rearnsha dab_fatal(tf, fsr, far, l, NULL);
321 1.51 rearnsha }
322 1.51 rearnsha #else
323 1.40 scw if (__predict_false((tf->tf_pc & 3) != 0)) {
324 1.40 scw if (user) {
325 1.40 scw /*
326 1.40 scw * Give the user an illegal instruction signal.
327 1.40 scw */
328 1.40 scw /* Deliver a SIGILL to the process */
329 1.40 scw KSI_INIT_TRAP(&ksi);
330 1.40 scw ksi.ksi_signo = SIGILL;
331 1.40 scw ksi.ksi_code = ILL_ILLOPC;
332 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
333 1.40 scw ksi.ksi_trap = fsr;
334 1.40 scw goto do_trapsignal;
335 1.40 scw }
336 1.40 scw
337 1.40 scw /*
338 1.40 scw * The kernel never executes Thumb code.
339 1.40 scw */
340 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n",
341 1.79 christos __func__);
342 1.40 scw dab_fatal(tf, fsr, far, l, NULL);
343 1.27 scw }
344 1.51 rearnsha #endif
345 1.27 scw
346 1.48 wiz /* See if the CPU state needs to be fixed up */
347 1.41 scw switch (data_abort_fixup(tf, fsr, far, l)) {
348 1.41 scw case ABORT_FIXUP_RETURN:
349 1.41 scw return;
350 1.41 scw case ABORT_FIXUP_FAILED:
351 1.41 scw /* Deliver a SIGILL to the process */
352 1.41 scw KSI_INIT_TRAP(&ksi);
353 1.41 scw ksi.ksi_signo = SIGILL;
354 1.41 scw ksi.ksi_code = ILL_ILLOPC;
355 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
356 1.41 scw ksi.ksi_trap = fsr;
357 1.41 scw goto do_trapsignal;
358 1.41 scw default:
359 1.41 scw break;
360 1.41 scw }
361 1.41 scw
362 1.39 scw va = trunc_page((vaddr_t)far);
363 1.1 chris
364 1.27 scw /*
365 1.27 scw * It is only a kernel address space fault iff:
366 1.27 scw * 1. user == 0 and
367 1.27 scw * 2. pcb_onfault not set or
368 1.41 scw * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
369 1.27 scw */
370 1.83 matt if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
371 1.41 scw (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
372 1.41 scw __predict_true((pcb->pcb_onfault == NULL ||
373 1.93 matt (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
374 1.39 scw map = kernel_map;
375 1.39 scw
376 1.106 maxv /* Was the fault due to the FPE ? */
377 1.39 scw if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
378 1.35 thorpej KSI_INIT_TRAP(&ksi);
379 1.34 matt ksi.ksi_signo = SIGSEGV;
380 1.39 scw ksi.ksi_code = SEGV_ACCERR;
381 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
382 1.39 scw ksi.ksi_trap = fsr;
383 1.27 scw
384 1.27 scw /*
385 1.27 scw * Force exit via userret()
386 1.39 scw * This is necessary as the FPE is an extension to
387 1.39 scw * userland that actually runs in a priveledged mode
388 1.39 scw * but uses USR mode permissions for its accesses.
389 1.27 scw */
390 1.83 matt user = true;
391 1.39 scw goto do_trapsignal;
392 1.27 scw }
393 1.70 wrstuden } else {
394 1.39 scw map = &l->l_proc->p_vmspace->vm_map;
395 1.70 wrstuden }
396 1.1 chris
397 1.27 scw /*
398 1.94 matt * We need to know whether the page should be mapped as R or R/W.
399 1.94 matt * Before ARMv6, the MMU did not give us the info as to whether the
400 1.94 matt * fault was caused by a read or a write.
401 1.39 scw *
402 1.94 matt * However, we know that a permission fault can only be the result of
403 1.94 matt * a write to a read-only location, so we can deal with those quickly.
404 1.39 scw *
405 1.94 matt * Otherwise we need to disassemble the instruction responsible to
406 1.94 matt * determine if it was a write.
407 1.27 scw */
408 1.96 skrll if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
409 1.94 matt ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
410 1.94 matt } else if (IS_PERMISSION_FAULT(fsr)) {
411 1.100 skrll ftype = VM_PROT_WRITE;
412 1.94 matt } else {
413 1.51 rearnsha #ifdef THUMB_CODE
414 1.51 rearnsha /* Fast track the ARM case. */
415 1.51 rearnsha if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
416 1.93 matt u_int insn = read_thumb_insn(tf->tf_pc, user);
417 1.51 rearnsha u_int insn_f8 = insn & 0xf800;
418 1.51 rearnsha u_int insn_fe = insn & 0xfe00;
419 1.51 rearnsha
420 1.51 rearnsha if (insn_f8 == 0x6000 || /* STR(1) */
421 1.51 rearnsha insn_f8 == 0x7000 || /* STRB(1) */
422 1.51 rearnsha insn_f8 == 0x8000 || /* STRH(1) */
423 1.51 rearnsha insn_f8 == 0x9000 || /* STR(3) */
424 1.51 rearnsha insn_f8 == 0xc000 || /* STM */
425 1.51 rearnsha insn_fe == 0x5000 || /* STR(2) */
426 1.51 rearnsha insn_fe == 0x5200 || /* STRH(2) */
427 1.51 rearnsha insn_fe == 0x5400) /* STRB(2) */
428 1.51 rearnsha ftype = VM_PROT_WRITE;
429 1.51 rearnsha else
430 1.51 rearnsha ftype = VM_PROT_READ;
431 1.51 rearnsha }
432 1.51 rearnsha else
433 1.51 rearnsha #endif
434 1.51 rearnsha {
435 1.93 matt u_int insn = read_insn(tf->tf_pc, user);
436 1.39 scw
437 1.51 rearnsha if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
438 1.51 rearnsha ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
439 1.81 matt ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
440 1.81 matt ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
441 1.100 skrll ftype = VM_PROT_WRITE;
442 1.51 rearnsha else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
443 1.100 skrll ftype = VM_PROT_READ | VM_PROT_WRITE;
444 1.51 rearnsha else
445 1.100 skrll ftype = VM_PROT_READ;
446 1.51 rearnsha }
447 1.39 scw }
448 1.39 scw
449 1.39 scw /*
450 1.39 scw * See if the fault is as a result of ref/mod emulation,
451 1.39 scw * or domain mismatch.
452 1.39 scw */
453 1.39 scw #ifdef DEBUG
454 1.39 scw last_fault_code = fsr;
455 1.1 chris #endif
456 1.42 briggs if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
457 1.98 matt UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
458 1.27 scw goto out;
459 1.42 briggs }
460 1.1 chris
461 1.67 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) {
462 1.45 scw if (pcb->pcb_onfault) {
463 1.45 scw tf->tf_r0 = EINVAL;
464 1.45 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
465 1.45 scw return;
466 1.45 scw }
467 1.39 scw printf("\nNon-emulated page fault with intr_depth > 0\n");
468 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
469 1.27 scw }
470 1.1 chris
471 1.27 scw onfault = pcb->pcb_onfault;
472 1.27 scw pcb->pcb_onfault = NULL;
473 1.57 he error = uvm_fault(map, va, ftype);
474 1.27 scw pcb->pcb_onfault = onfault;
475 1.39 scw
476 1.39 scw if (__predict_true(error == 0)) {
477 1.39 scw if (user)
478 1.39 scw uvm_grow(l->l_proc, va); /* Record any stack growth */
479 1.98 matt UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
480 1.27 scw goto out;
481 1.27 scw }
482 1.39 scw
483 1.27 scw if (user == 0) {
484 1.27 scw if (pcb->pcb_onfault) {
485 1.39 scw tf->tf_r0 = error;
486 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
487 1.39 scw return;
488 1.1 chris }
489 1.39 scw
490 1.58 drochner printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
491 1.39 scw error);
492 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
493 1.27 scw }
494 1.1 chris
495 1.43 scw KSI_INIT_TRAP(&ksi);
496 1.43 scw
497 1.103 martin switch (error) {
498 1.103 martin case ENOMEM:
499 1.39 scw printf("UVM: pid %d (%s), uid %d killed: "
500 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
501 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
502 1.43 scw ksi.ksi_signo = SIGKILL;
503 1.103 martin break;
504 1.103 martin case EACCES:
505 1.103 martin ksi.ksi_signo = SIGSEGV;
506 1.103 martin ksi.ksi_code = SEGV_ACCERR;
507 1.103 martin break;
508 1.103 martin case EINVAL:
509 1.103 martin ksi.ksi_signo = SIGBUS;
510 1.103 martin ksi.ksi_code = BUS_ADRERR;
511 1.103 martin break;
512 1.103 martin default:
513 1.43 scw ksi.ksi_signo = SIGSEGV;
514 1.103 martin ksi.ksi_code = SEGV_MAPERR;
515 1.103 martin break;
516 1.103 martin }
517 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
518 1.39 scw ksi.ksi_trap = fsr;
519 1.105 pgoyette UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
520 1.39 scw
521 1.39 scw do_trapsignal:
522 1.93 matt call_trapsignal(l, tf, &ksi);
523 1.39 scw out:
524 1.39 scw /* If returning to user mode, make sure to invoke userret() */
525 1.39 scw if (user)
526 1.39 scw userret(l);
527 1.39 scw }
528 1.39 scw
529 1.39 scw /*
530 1.39 scw * dab_fatal() handles the following data aborts:
531 1.39 scw *
532 1.39 scw * FAULT_WRTBUF_0 - Vector Exception
533 1.39 scw * FAULT_WRTBUF_1 - Terminal Exception
534 1.39 scw *
535 1.39 scw * We should never see these on a properly functioning system.
536 1.39 scw *
537 1.39 scw * This function is also called by the other handlers if they
538 1.39 scw * detect a fatal problem.
539 1.39 scw *
540 1.39 scw * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
541 1.39 scw */
542 1.39 scw static int
543 1.39 scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
544 1.39 scw {
545 1.83 matt const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
546 1.39 scw
547 1.39 scw if (l != NULL) {
548 1.39 scw printf("Fatal %s mode data abort: '%s'\n", mode,
549 1.39 scw data_aborts[fsr & FAULT_TYPE_MASK].desc);
550 1.44 scw printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
551 1.39 scw if ((fsr & FAULT_IMPRECISE) == 0)
552 1.44 scw printf("%08x, ", far);
553 1.39 scw else
554 1.44 scw printf("Invalid, ");
555 1.44 scw printf("spsr=%08x\n", tf->tf_spsr);
556 1.39 scw } else {
557 1.44 scw printf("Fatal %s mode prefetch abort at 0x%08x\n",
558 1.44 scw mode, tf->tf_pc);
559 1.44 scw printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
560 1.44 scw }
561 1.44 scw
562 1.44 scw printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
563 1.44 scw tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
564 1.44 scw printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
565 1.44 scw tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
566 1.44 scw printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
567 1.44 scw tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
568 1.44 scw printf("r12=%08x, ", tf->tf_r12);
569 1.44 scw
570 1.44 scw if (TRAP_USERMODE(tf))
571 1.44 scw printf("usp=%08x, ulr=%08x",
572 1.44 scw tf->tf_usr_sp, tf->tf_usr_lr);
573 1.44 scw else
574 1.44 scw printf("ssp=%08x, slr=%08x",
575 1.44 scw tf->tf_svc_sp, tf->tf_svc_lr);
576 1.44 scw printf(", pc =%08x\n\n", tf->tf_pc);
577 1.34 matt
578 1.39 scw #if defined(DDB) || defined(KGDB)
579 1.39 scw kdb_trap(T_FAULT, tf);
580 1.34 matt #endif
581 1.39 scw panic("Fatal abort");
582 1.39 scw /*NOTREACHED*/
583 1.39 scw }
584 1.39 scw
585 1.39 scw /*
586 1.39 scw * dab_align() handles the following data aborts:
587 1.39 scw *
588 1.39 scw * FAULT_ALIGN_0 - Alignment fault
589 1.39 scw * FAULT_ALIGN_0 - Alignment fault
590 1.39 scw *
591 1.39 scw * These faults are fatal if they happen in kernel mode. Otherwise, we
592 1.39 scw * deliver a bus error to the process.
593 1.39 scw */
594 1.39 scw static int
595 1.39 scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
596 1.39 scw {
597 1.39 scw /* Alignment faults are always fatal if they occur in kernel mode */
598 1.39 scw if (!TRAP_USERMODE(tf))
599 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
600 1.39 scw
601 1.39 scw /* pcb_onfault *must* be NULL at this point */
602 1.83 matt KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
603 1.39 scw
604 1.48 wiz /* See if the CPU state needs to be fixed up */
605 1.39 scw (void) data_abort_fixup(tf, fsr, far, l);
606 1.39 scw
607 1.39 scw /* Deliver a bus error signal to the process */
608 1.39 scw KSI_INIT_TRAP(ksi);
609 1.39 scw ksi->ksi_signo = SIGBUS;
610 1.39 scw ksi->ksi_code = BUS_ADRALN;
611 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far;
612 1.39 scw ksi->ksi_trap = fsr;
613 1.39 scw
614 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
615 1.39 scw
616 1.39 scw return (1);
617 1.39 scw }
618 1.39 scw
619 1.39 scw /*
620 1.39 scw * dab_buserr() handles the following data aborts:
621 1.39 scw *
622 1.39 scw * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
623 1.39 scw * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
624 1.39 scw * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
625 1.39 scw * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
626 1.39 scw * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
627 1.39 scw * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
628 1.39 scw *
629 1.39 scw * If pcb_onfault is set, flag the fault and return to the handler.
630 1.39 scw * If the fault occurred in user mode, give the process a SIGBUS.
631 1.39 scw *
632 1.39 scw * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
633 1.39 scw * can be flagged as imprecise in the FSR. This causes a real headache
634 1.39 scw * since some of the machine state is lost. In this case, tf->tf_pc
635 1.39 scw * may not actually point to the offending instruction. In fact, if
636 1.39 scw * we've taken a double abort fault, it generally points somewhere near
637 1.39 scw * the top of "data_abort_entry" in exception.S.
638 1.39 scw *
639 1.39 scw * In all other cases, these data aborts are considered fatal.
640 1.39 scw */
641 1.39 scw static int
642 1.39 scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
643 1.39 scw ksiginfo_t *ksi)
644 1.39 scw {
645 1.73 rmind struct pcb *pcb = lwp_getpcb(l);
646 1.39 scw
647 1.39 scw #ifdef __XSCALE__
648 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0 &&
649 1.39 scw (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
650 1.39 scw /*
651 1.39 scw * Oops, an imprecise, double abort fault. We've lost the
652 1.39 scw * r14_abt/spsr_abt values corresponding to the original
653 1.39 scw * abort, and the spsr saved in the trapframe indicates
654 1.39 scw * ABT mode.
655 1.39 scw */
656 1.39 scw tf->tf_spsr &= ~PSR_MODE;
657 1.39 scw
658 1.39 scw /*
659 1.39 scw * We use a simple heuristic to determine if the double abort
660 1.39 scw * happened as a result of a kernel or user mode access.
661 1.39 scw * If the current trapframe is at the top of the kernel stack,
662 1.39 scw * the fault _must_ have come from user mode.
663 1.39 scw */
664 1.87 matt if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
665 1.39 scw /*
666 1.39 scw * Kernel mode. We're either about to die a
667 1.39 scw * spectacular death, or pcb_onfault will come
668 1.39 scw * to our rescue. Either way, the current value
669 1.39 scw * of tf->tf_pc is irrelevant.
670 1.39 scw */
671 1.39 scw tf->tf_spsr |= PSR_SVC32_MODE;
672 1.39 scw if (pcb->pcb_onfault == NULL)
673 1.39 scw printf("\nKernel mode double abort!\n");
674 1.39 scw } else {
675 1.39 scw /*
676 1.39 scw * User mode. We've lost the program counter at the
677 1.39 scw * time of the fault (not that it was accurate anyway;
678 1.39 scw * it's not called an imprecise fault for nothing).
679 1.39 scw * About all we can do is copy r14_usr to tf_pc and
680 1.39 scw * hope for the best. The process is about to get a
681 1.39 scw * SIGBUS, so it's probably history anyway.
682 1.39 scw */
683 1.39 scw tf->tf_spsr |= PSR_USR32_MODE;
684 1.39 scw tf->tf_pc = tf->tf_usr_lr;
685 1.51 rearnsha #ifdef THUMB_CODE
686 1.51 rearnsha tf->tf_spsr &= ~PSR_T_bit;
687 1.51 rearnsha if (tf->tf_usr_lr & 1)
688 1.51 rearnsha tf->tf_spsr |= PSR_T_bit;
689 1.51 rearnsha #endif
690 1.39 scw }
691 1.39 scw }
692 1.39 scw
693 1.39 scw /* FAR is invalid for imprecise exceptions */
694 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0)
695 1.39 scw far = 0;
696 1.39 scw #endif /* __XSCALE__ */
697 1.39 scw
698 1.39 scw if (pcb->pcb_onfault) {
699 1.39 scw KDASSERT(TRAP_USERMODE(tf) == 0);
700 1.39 scw tf->tf_r0 = EFAULT;
701 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
702 1.39 scw return (0);
703 1.39 scw }
704 1.39 scw
705 1.48 wiz /* See if the CPU state needs to be fixed up */
706 1.39 scw (void) data_abort_fixup(tf, fsr, far, l);
707 1.39 scw
708 1.39 scw /*
709 1.39 scw * At this point, if the fault happened in kernel mode, we're toast
710 1.39 scw */
711 1.39 scw if (!TRAP_USERMODE(tf))
712 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
713 1.39 scw
714 1.39 scw /* Deliver a bus error signal to the process */
715 1.39 scw KSI_INIT_TRAP(ksi);
716 1.39 scw ksi->ksi_signo = SIGBUS;
717 1.39 scw ksi->ksi_code = BUS_ADRERR;
718 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far;
719 1.39 scw ksi->ksi_trap = fsr;
720 1.39 scw
721 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
722 1.27 scw
723 1.39 scw return (1);
724 1.1 chris }
725 1.1 chris
726 1.56 perry static inline int
727 1.39 scw prefetch_abort_fixup(trapframe_t *tf)
728 1.39 scw {
729 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED
730 1.39 scw int error;
731 1.39 scw
732 1.48 wiz /* Call the CPU specific prefetch abort fixup routine */
733 1.39 scw error = cpu_prefetchabt_fixup(tf);
734 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED))
735 1.39 scw return (error);
736 1.39 scw
737 1.39 scw /*
738 1.39 scw * Oops, couldn't fix up the instruction
739 1.39 scw */
740 1.79 christos printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
741 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel");
742 1.51 rearnsha #ifdef THUMB_CODE
743 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) {
744 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
745 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
746 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1)));
747 1.51 rearnsha }
748 1.51 rearnsha else
749 1.51 rearnsha #endif
750 1.51 rearnsha {
751 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
752 1.51 rearnsha *((u_int *)tf->tf_pc));
753 1.51 rearnsha }
754 1.39 scw disassemble(tf->tf_pc);
755 1.39 scw
756 1.39 scw /* Die now if this happened in kernel mode */
757 1.39 scw if (!TRAP_USERMODE(tf))
758 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
759 1.39 scw
760 1.39 scw return (error);
761 1.39 scw #else
762 1.39 scw return (ABORT_FIXUP_OK);
763 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
764 1.39 scw }
765 1.1 chris
766 1.1 chris /*
767 1.39 scw * void prefetch_abort_handler(trapframe_t *tf)
768 1.1 chris *
769 1.1 chris * Abort handler called when instruction execution occurs at
770 1.1 chris * a non existent or restricted (access permissions) memory page.
771 1.1 chris * If the address is invalid and we were in SVC mode then panic as
772 1.1 chris * the kernel should never prefetch abort.
773 1.1 chris * If the address is invalid and the page is mapped then the user process
774 1.1 chris * does no have read permission so send it a signal.
775 1.1 chris * Otherwise fault the page in and try again.
776 1.1 chris */
777 1.1 chris void
778 1.39 scw prefetch_abort_handler(trapframe_t *tf)
779 1.1 chris {
780 1.26 thorpej struct lwp *l;
781 1.91 christos struct pcb *pcb __diagused;
782 1.14 thorpej struct vm_map *map;
783 1.14 thorpej vaddr_t fault_pc, va;
784 1.39 scw ksiginfo_t ksi;
785 1.61 ad int error, user;
786 1.39 scw
787 1.97 matt UVMHIST_FUNC(__func__);
788 1.98 matt UVMHIST_CALLED(maphist);
789 1.50 rearnsha
790 1.39 scw /* Update vmmeter statistics */
791 1.78 matt curcpu()->ci_data.cpu_ntrap++;
792 1.1 chris
793 1.61 ad l = curlwp;
794 1.73 rmind pcb = lwp_getpcb(l);
795 1.61 ad
796 1.61 ad if ((user = TRAP_USERMODE(tf)) != 0)
797 1.61 ad LWP_CACHE_CREDS(l, l->l_proc);
798 1.61 ad
799 1.1 chris /*
800 1.1 chris * Enable IRQ's (disabled by the abort) This always comes
801 1.1 chris * from user mode so we know interrupts were not disabled.
802 1.1 chris * But we check anyway.
803 1.1 chris */
804 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
805 1.101 matt #ifdef __NO_FIQ
806 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
807 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits);
808 1.101 matt #else
809 1.101 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
810 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits);
811 1.101 matt #endif
812 1.1 chris
813 1.48 wiz /* See if the CPU state needs to be fixed up */
814 1.39 scw switch (prefetch_abort_fixup(tf)) {
815 1.39 scw case ABORT_FIXUP_RETURN:
816 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
817 1.1 chris return;
818 1.39 scw case ABORT_FIXUP_FAILED:
819 1.39 scw /* Deliver a SIGILL to the process */
820 1.39 scw KSI_INIT_TRAP(&ksi);
821 1.39 scw ksi.ksi_signo = SIGILL;
822 1.39 scw ksi.ksi_code = ILL_ILLOPC;
823 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
824 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
825 1.104 skrll lwp_trapframe(l));
826 1.39 scw goto do_trapsignal;
827 1.39 scw default:
828 1.39 scw break;
829 1.1 chris }
830 1.1 chris
831 1.39 scw /* Prefetch aborts cannot happen in kernel mode */
832 1.61 ad if (__predict_false(!user))
833 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
834 1.1 chris
835 1.4 thorpej /* Get fault address */
836 1.39 scw fault_pc = tf->tf_pc;
837 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
838 1.105 pgoyette UVMHIST_LOG(maphist, " (pc=0x%jx, l=0x%#jx, tf=0x%#jx)",
839 1.105 pgoyette fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
840 1.14 thorpej
841 1.109 ryo #ifdef THUMB_CODE
842 1.109 ryo recheck:
843 1.109 ryo #endif
844 1.1 chris /* Ok validate the address, can only execute in USER space */
845 1.39 scw if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
846 1.39 scw (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
847 1.35 thorpej KSI_INIT_TRAP(&ksi);
848 1.34 matt ksi.ksi_signo = SIGSEGV;
849 1.34 matt ksi.ksi_code = SEGV_ACCERR;
850 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
851 1.34 matt ksi.ksi_trap = fault_pc;
852 1.39 scw goto do_trapsignal;
853 1.39 scw }
854 1.34 matt
855 1.39 scw map = &l->l_proc->p_vmspace->vm_map;
856 1.39 scw va = trunc_page(fault_pc);
857 1.1 chris
858 1.27 scw /*
859 1.27 scw * See if the pmap can handle this fault on its own...
860 1.27 scw */
861 1.39 scw #ifdef DEBUG
862 1.39 scw last_fault_code = -1;
863 1.39 scw #endif
864 1.88 matt if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
865 1.98 matt UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
866 1.39 scw goto out;
867 1.50 rearnsha }
868 1.27 scw
869 1.39 scw #ifdef DIAGNOSTIC
870 1.84 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) {
871 1.39 scw printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
872 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
873 1.39 scw }
874 1.1 chris #endif
875 1.72 matt
876 1.76 chs KASSERT(pcb->pcb_onfault == NULL);
877 1.99 matt error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
878 1.53 joff
879 1.50 rearnsha if (__predict_true(error == 0)) {
880 1.98 matt UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
881 1.39 scw goto out;
882 1.50 rearnsha }
883 1.43 scw KSI_INIT_TRAP(&ksi);
884 1.43 scw
885 1.105 pgoyette UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
886 1.98 matt
887 1.39 scw if (error == ENOMEM) {
888 1.39 scw printf("UVM: pid %d (%s), uid %d killed: "
889 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
890 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
891 1.43 scw ksi.ksi_signo = SIGKILL;
892 1.43 scw } else
893 1.43 scw ksi.ksi_signo = SIGSEGV;
894 1.1 chris
895 1.39 scw ksi.ksi_code = SEGV_MAPERR;
896 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
897 1.39 scw ksi.ksi_trap = fault_pc;
898 1.39 scw
899 1.39 scw do_trapsignal:
900 1.93 matt call_trapsignal(l, tf, &ksi);
901 1.39 scw
902 1.39 scw out:
903 1.109 ryo
904 1.109 ryo #ifdef THUMB_CODE
905 1.109 ryo #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800))
906 1.109 ryo /* thumb-32 instruction was located on page boundary? */
907 1.109 ryo if ((tf->tf_spsr & PSR_T_bit) &&
908 1.109 ryo ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) &&
909 1.109 ryo THUMB_32BIT(*(uint16_t *)tf->tf_pc)) {
910 1.109 ryo fault_pc = tf->tf_pc + THUMB_INSN_SIZE;
911 1.109 ryo goto recheck;
912 1.109 ryo }
913 1.109 ryo #endif /* THUMB_CODE */
914 1.109 ryo
915 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
916 1.39 scw userret(l);
917 1.39 scw }
918 1.39 scw
919 1.39 scw /*
920 1.39 scw * Tentatively read an 8, 16, or 32-bit value from 'addr'.
921 1.39 scw * If the read succeeds, the value is written to 'rptr' and zero is returned.
922 1.39 scw * Else, return EFAULT.
923 1.39 scw */
924 1.39 scw int
925 1.39 scw badaddr_read(void *addr, size_t size, void *rptr)
926 1.39 scw {
927 1.39 scw extern int badaddr_read_1(const uint8_t *, uint8_t *);
928 1.39 scw extern int badaddr_read_2(const uint16_t *, uint16_t *);
929 1.39 scw extern int badaddr_read_4(const uint32_t *, uint32_t *);
930 1.39 scw union {
931 1.39 scw uint8_t v1;
932 1.39 scw uint16_t v2;
933 1.39 scw uint32_t v4;
934 1.39 scw } u;
935 1.47 scw int rv, s;
936 1.39 scw
937 1.39 scw cpu_drain_writebuf();
938 1.39 scw
939 1.47 scw s = splhigh();
940 1.47 scw
941 1.39 scw /* Read from the test address. */
942 1.39 scw switch (size) {
943 1.39 scw case sizeof(uint8_t):
944 1.39 scw rv = badaddr_read_1(addr, &u.v1);
945 1.39 scw if (rv == 0 && rptr)
946 1.39 scw *(uint8_t *) rptr = u.v1;
947 1.39 scw break;
948 1.39 scw
949 1.39 scw case sizeof(uint16_t):
950 1.39 scw rv = badaddr_read_2(addr, &u.v2);
951 1.39 scw if (rv == 0 && rptr)
952 1.39 scw *(uint16_t *) rptr = u.v2;
953 1.39 scw break;
954 1.39 scw
955 1.39 scw case sizeof(uint32_t):
956 1.39 scw rv = badaddr_read_4(addr, &u.v4);
957 1.39 scw if (rv == 0 && rptr)
958 1.39 scw *(uint32_t *) rptr = u.v4;
959 1.39 scw break;
960 1.39 scw
961 1.39 scw default:
962 1.82 matt panic("%s: invalid size (%zu)", __func__, size);
963 1.34 matt }
964 1.39 scw
965 1.47 scw splx(s);
966 1.47 scw
967 1.39 scw /* Return EFAULT if the address was invalid, else zero */
968 1.39 scw return (rv);
969 1.1 chris }
970