fault.c revision 1.113 1 1.113 skrll /* $NetBSD: fault.c,v 1.113 2020/06/20 15:45:22 skrll Exp $ */
2 1.1 chris
3 1.1 chris /*
4 1.27 scw * Copyright 2003 Wasabi Systems, Inc.
5 1.27 scw * All rights reserved.
6 1.27 scw *
7 1.27 scw * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 1.27 scw *
9 1.27 scw * Redistribution and use in source and binary forms, with or without
10 1.27 scw * modification, are permitted provided that the following conditions
11 1.27 scw * are met:
12 1.27 scw * 1. Redistributions of source code must retain the above copyright
13 1.27 scw * notice, this list of conditions and the following disclaimer.
14 1.27 scw * 2. Redistributions in binary form must reproduce the above copyright
15 1.27 scw * notice, this list of conditions and the following disclaimer in the
16 1.27 scw * documentation and/or other materials provided with the distribution.
17 1.27 scw * 3. All advertising materials mentioning features or use of this software
18 1.27 scw * must display the following acknowledgement:
19 1.27 scw * This product includes software developed for the NetBSD Project by
20 1.27 scw * Wasabi Systems, Inc.
21 1.27 scw * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.27 scw * or promote products derived from this software without specific prior
23 1.27 scw * written permission.
24 1.27 scw *
25 1.27 scw * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.27 scw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.27 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.27 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.27 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.27 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.27 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.27 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.27 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.27 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.27 scw * POSSIBILITY OF SUCH DAMAGE.
36 1.27 scw */
37 1.27 scw /*
38 1.1 chris * Copyright (c) 1994-1997 Mark Brinicombe.
39 1.1 chris * Copyright (c) 1994 Brini.
40 1.1 chris * All rights reserved.
41 1.1 chris *
42 1.1 chris * This code is derived from software written for Brini by Mark Brinicombe
43 1.1 chris *
44 1.1 chris * Redistribution and use in source and binary forms, with or without
45 1.1 chris * modification, are permitted provided that the following conditions
46 1.1 chris * are met:
47 1.1 chris * 1. Redistributions of source code must retain the above copyright
48 1.1 chris * notice, this list of conditions and the following disclaimer.
49 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 chris * notice, this list of conditions and the following disclaimer in the
51 1.1 chris * documentation and/or other materials provided with the distribution.
52 1.1 chris * 3. All advertising materials mentioning features or use of this software
53 1.1 chris * must display the following acknowledgement:
54 1.1 chris * This product includes software developed by Brini.
55 1.1 chris * 4. The name of the company nor the name of the author may be used to
56 1.1 chris * endorse or promote products derived from this software without specific
57 1.1 chris * prior written permission.
58 1.1 chris *
59 1.1 chris * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 chris * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 chris * SUCH DAMAGE.
70 1.1 chris *
71 1.1 chris * RiscBSD kernel project
72 1.1 chris *
73 1.1 chris * fault.c
74 1.1 chris *
75 1.1 chris * Fault handlers
76 1.1 chris *
77 1.1 chris * Created : 28/11/94
78 1.1 chris */
79 1.1 chris
80 1.1 chris #include "opt_ddb.h"
81 1.28 briggs #include "opt_kgdb.h"
82 1.1 chris
83 1.1 chris #include <sys/types.h>
84 1.113 skrll __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.113 2020/06/20 15:45:22 skrll Exp $");
85 1.21 bjh21
86 1.1 chris #include <sys/param.h>
87 1.112 skrll
88 1.65 matt #include <sys/cpu.h>
89 1.90 matt #include <sys/intr.h>
90 1.112 skrll #include <sys/kauth.h>
91 1.112 skrll #include <sys/kernel.h>
92 1.112 skrll #include <sys/proc.h>
93 1.112 skrll #include <sys/systm.h>
94 1.1 chris
95 1.1 chris #include <uvm/uvm_extern.h>
96 1.50 rearnsha #include <uvm/uvm_stat.h>
97 1.50 rearnsha #ifdef UVMHIST
98 1.50 rearnsha #include <uvm/uvm.h>
99 1.50 rearnsha #endif
100 1.18 thorpej
101 1.90 matt #include <arm/locore.h>
102 1.1 chris
103 1.83 matt #include <machine/pcb.h>
104 1.28 briggs #if defined(DDB) || defined(KGDB)
105 1.1 chris #include <machine/db_machdep.h>
106 1.28 briggs #ifdef KGDB
107 1.28 briggs #include <sys/kgdb.h>
108 1.28 briggs #endif
109 1.28 briggs #if !defined(DDB)
110 1.28 briggs #define kdb_trap kgdb_trap
111 1.28 briggs #endif
112 1.1 chris #endif
113 1.1 chris
114 1.1 chris #include <arch/arm/arm/disassem.h>
115 1.7 chris #include <arm/arm32/machdep.h>
116 1.100 skrll
117 1.27 scw #ifdef DEBUG
118 1.27 scw int last_fault_code; /* For the benefit of pmap_fault_fixup() */
119 1.27 scw #endif
120 1.27 scw
121 1.107 maxv #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 1.39 scw /* These CPUs may need data/prefetch abort fixups */
123 1.39 scw #define CPU_ABORT_FIXUP_REQUIRED
124 1.39 scw #endif
125 1.7 chris
126 1.39 scw struct data_abort {
127 1.39 scw int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 1.39 scw const char *desc;
129 1.39 scw };
130 1.1 chris
131 1.39 scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 1.39 scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 1.39 scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 1.39 scw
135 1.39 scw static const struct data_abort data_aborts[] = {
136 1.39 scw {dab_fatal, "Vector Exception"},
137 1.39 scw {dab_align, "Alignment Fault 1"},
138 1.39 scw {dab_fatal, "Terminal Exception"},
139 1.39 scw {dab_align, "Alignment Fault 3"},
140 1.39 scw {dab_buserr, "External Linefetch Abort (S)"},
141 1.39 scw {NULL, "Translation Fault (S)"},
142 1.39 scw {dab_buserr, "External Linefetch Abort (P)"},
143 1.39 scw {NULL, "Translation Fault (P)"},
144 1.39 scw {dab_buserr, "External Non-Linefetch Abort (S)"},
145 1.39 scw {NULL, "Domain Fault (S)"},
146 1.39 scw {dab_buserr, "External Non-Linefetch Abort (P)"},
147 1.39 scw {NULL, "Domain Fault (P)"},
148 1.39 scw {dab_buserr, "External Translation Abort (L1)"},
149 1.39 scw {NULL, "Permission Fault (S)"},
150 1.39 scw {dab_buserr, "External Translation Abort (L2)"},
151 1.39 scw {NULL, "Permission Fault (P)"}
152 1.39 scw };
153 1.1 chris
154 1.39 scw /* Determine if 'x' is a permission fault */
155 1.39 scw #define IS_PERMISSION_FAULT(x) \
156 1.39 scw (((1 << ((x) & FAULT_TYPE_MASK)) & \
157 1.39 scw ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
158 1.1 chris
159 1.39 scw #if 0
160 1.39 scw /* maybe one day we'll do emulations */
161 1.39 scw #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
162 1.39 scw #else
163 1.39 scw #define TRAPSIGNAL(l,k) trapsignal((l), (k))
164 1.1 chris #endif
165 1.3 thorpej
166 1.56 perry static inline void
167 1.93 matt call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
168 1.3 thorpej {
169 1.93 matt if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
170 1.93 matt printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
171 1.93 matt l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
172 1.93 matt ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
173 1.93 matt ksi->ksi_trap);
174 1.93 matt printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
175 1.93 matt tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
176 1.93 matt printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
177 1.93 matt tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
178 1.93 matt printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
179 1.93 matt tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
180 1.93 matt printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
181 1.93 matt tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
182 1.93 matt tf->tf_spsr);
183 1.93 matt }
184 1.3 thorpej
185 1.39 scw TRAPSIGNAL(l, ksi);
186 1.39 scw }
187 1.3 thorpej
188 1.56 perry static inline int
189 1.39 scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
190 1.39 scw {
191 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED
192 1.39 scw int error;
193 1.3 thorpej
194 1.48 wiz /* Call the CPU specific data abort fixup routine */
195 1.39 scw error = cpu_dataabt_fixup(tf);
196 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED))
197 1.113 skrll return error;
198 1.3 thorpej
199 1.39 scw /*
200 1.39 scw * Oops, couldn't fix up the instruction
201 1.39 scw */
202 1.79 christos printf("%s: fixup for %s mode data abort failed.\n", __func__,
203 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel");
204 1.51 rearnsha #ifdef THUMB_CODE
205 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) {
206 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
207 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
208 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1)));
209 1.51 rearnsha }
210 1.51 rearnsha else
211 1.51 rearnsha #endif
212 1.51 rearnsha {
213 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
214 1.51 rearnsha *((u_int *)tf->tf_pc));
215 1.51 rearnsha }
216 1.39 scw disassemble(tf->tf_pc);
217 1.39 scw
218 1.39 scw /* Die now if this happened in kernel mode */
219 1.39 scw if (!TRAP_USERMODE(tf))
220 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
221 1.3 thorpej
222 1.113 skrll return error;
223 1.39 scw #else
224 1.113 skrll return ABORT_FIXUP_OK;
225 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
226 1.3 thorpej }
227 1.3 thorpej
228 1.1 chris void
229 1.39 scw data_abort_handler(trapframe_t *tf)
230 1.1 chris {
231 1.39 scw struct vm_map *map;
232 1.83 matt struct lwp * const l = curlwp;
233 1.83 matt struct cpu_info * const ci = curcpu();
234 1.83 matt u_int far, fsr;
235 1.39 scw vm_prot_t ftype;
236 1.1 chris void *onfault;
237 1.27 scw vaddr_t va;
238 1.39 scw int error;
239 1.34 matt ksiginfo_t ksi;
240 1.3 thorpej
241 1.97 matt UVMHIST_FUNC(__func__);
242 1.98 matt UVMHIST_CALLED(maphist);
243 1.50 rearnsha
244 1.39 scw /* Grab FAR/FSR before enabling interrupts */
245 1.39 scw far = cpu_faultaddress();
246 1.39 scw fsr = cpu_faultstatus();
247 1.1 chris
248 1.39 scw /* Update vmmeter statistics */
249 1.83 matt ci->ci_data.cpu_ntrap++;
250 1.1 chris
251 1.39 scw /* Re-enable interrupts if they were enabled previously */
252 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
253 1.101 matt #ifdef __NO_FIQ
254 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
255 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits);
256 1.101 matt #else
257 1.72 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
258 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits);
259 1.101 matt #endif
260 1.1 chris
261 1.67 matt /* Get the current lwp structure */
262 1.1 chris
263 1.105 pgoyette UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
264 1.105 pgoyette (uintptr_t)l, far, fsr, 0);
265 1.105 pgoyette UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)",
266 1.105 pgoyette (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
267 1.50 rearnsha
268 1.39 scw /* Data abort came from user mode? */
269 1.83 matt bool user = (TRAP_USERMODE(tf) != 0);
270 1.83 matt if (user)
271 1.61 ad LWP_CACHE_CREDS(l, l->l_proc);
272 1.1 chris
273 1.39 scw /* Grab the current pcb */
274 1.83 matt struct pcb * const pcb = lwp_getpcb(l);
275 1.1 chris
276 1.85 matt curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
277 1.85 matt
278 1.39 scw /* Invoke the appropriate handler, if necessary */
279 1.39 scw if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
280 1.79 christos #ifdef DIAGNOSTIC
281 1.79 christos printf("%s: data_aborts fsr=0x%x far=0x%x\n",
282 1.79 christos __func__, fsr, far);
283 1.79 christos #endif
284 1.39 scw if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
285 1.39 scw l, &ksi))
286 1.39 scw goto do_trapsignal;
287 1.39 scw goto out;
288 1.39 scw }
289 1.1 chris
290 1.1 chris /*
291 1.39 scw * At this point, we're dealing with one of the following data aborts:
292 1.39 scw *
293 1.39 scw * FAULT_TRANS_S - Translation -- Section
294 1.39 scw * FAULT_TRANS_P - Translation -- Page
295 1.39 scw * FAULT_DOMAIN_S - Domain -- Section
296 1.39 scw * FAULT_DOMAIN_P - Domain -- Page
297 1.39 scw * FAULT_PERM_S - Permission -- Section
298 1.39 scw * FAULT_PERM_P - Permission -- Page
299 1.39 scw *
300 1.39 scw * These are the main virtual memory-related faults signalled by
301 1.39 scw * the MMU.
302 1.1 chris */
303 1.1 chris
304 1.104 skrll KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
305 1.104 skrll lwp_trapframe(l));
306 1.1 chris
307 1.40 scw /*
308 1.40 scw * Make sure the Program Counter is sane. We could fall foul of
309 1.40 scw * someone executing Thumb code, in which case the PC might not
310 1.40 scw * be word-aligned. This would cause a kernel alignment fault
311 1.40 scw * further down if we have to decode the current instruction.
312 1.40 scw */
313 1.51 rearnsha #ifdef THUMB_CODE
314 1.100 skrll /*
315 1.51 rearnsha * XXX: It would be nice to be able to support Thumb in the kernel
316 1.51 rearnsha * at some point.
317 1.51 rearnsha */
318 1.51 rearnsha if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
319 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n",
320 1.79 christos __func__);
321 1.51 rearnsha dab_fatal(tf, fsr, far, l, NULL);
322 1.51 rearnsha }
323 1.51 rearnsha #else
324 1.40 scw if (__predict_false((tf->tf_pc & 3) != 0)) {
325 1.40 scw if (user) {
326 1.40 scw /*
327 1.40 scw * Give the user an illegal instruction signal.
328 1.40 scw */
329 1.40 scw /* Deliver a SIGILL to the process */
330 1.40 scw KSI_INIT_TRAP(&ksi);
331 1.40 scw ksi.ksi_signo = SIGILL;
332 1.40 scw ksi.ksi_code = ILL_ILLOPC;
333 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
334 1.40 scw ksi.ksi_trap = fsr;
335 1.40 scw goto do_trapsignal;
336 1.40 scw }
337 1.40 scw
338 1.40 scw /*
339 1.40 scw * The kernel never executes Thumb code.
340 1.40 scw */
341 1.79 christos printf("\n%s: Misaligned Kernel-mode Program Counter\n",
342 1.79 christos __func__);
343 1.40 scw dab_fatal(tf, fsr, far, l, NULL);
344 1.27 scw }
345 1.51 rearnsha #endif
346 1.27 scw
347 1.48 wiz /* See if the CPU state needs to be fixed up */
348 1.41 scw switch (data_abort_fixup(tf, fsr, far, l)) {
349 1.41 scw case ABORT_FIXUP_RETURN:
350 1.41 scw return;
351 1.41 scw case ABORT_FIXUP_FAILED:
352 1.41 scw /* Deliver a SIGILL to the process */
353 1.41 scw KSI_INIT_TRAP(&ksi);
354 1.41 scw ksi.ksi_signo = SIGILL;
355 1.41 scw ksi.ksi_code = ILL_ILLOPC;
356 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
357 1.41 scw ksi.ksi_trap = fsr;
358 1.41 scw goto do_trapsignal;
359 1.41 scw default:
360 1.41 scw break;
361 1.41 scw }
362 1.41 scw
363 1.39 scw va = trunc_page((vaddr_t)far);
364 1.1 chris
365 1.27 scw /*
366 1.27 scw * It is only a kernel address space fault iff:
367 1.27 scw * 1. user == 0 and
368 1.27 scw * 2. pcb_onfault not set or
369 1.41 scw * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
370 1.27 scw */
371 1.83 matt if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
372 1.41 scw (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
373 1.41 scw __predict_true((pcb->pcb_onfault == NULL ||
374 1.93 matt (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
375 1.39 scw map = kernel_map;
376 1.39 scw
377 1.106 maxv /* Was the fault due to the FPE ? */
378 1.39 scw if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
379 1.35 thorpej KSI_INIT_TRAP(&ksi);
380 1.34 matt ksi.ksi_signo = SIGSEGV;
381 1.39 scw ksi.ksi_code = SEGV_ACCERR;
382 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
383 1.39 scw ksi.ksi_trap = fsr;
384 1.27 scw
385 1.27 scw /*
386 1.27 scw * Force exit via userret()
387 1.39 scw * This is necessary as the FPE is an extension to
388 1.39 scw * userland that actually runs in a priveledged mode
389 1.39 scw * but uses USR mode permissions for its accesses.
390 1.27 scw */
391 1.83 matt user = true;
392 1.39 scw goto do_trapsignal;
393 1.27 scw }
394 1.70 wrstuden } else {
395 1.39 scw map = &l->l_proc->p_vmspace->vm_map;
396 1.70 wrstuden }
397 1.1 chris
398 1.27 scw /*
399 1.94 matt * We need to know whether the page should be mapped as R or R/W.
400 1.94 matt * Before ARMv6, the MMU did not give us the info as to whether the
401 1.94 matt * fault was caused by a read or a write.
402 1.39 scw *
403 1.94 matt * However, we know that a permission fault can only be the result of
404 1.94 matt * a write to a read-only location, so we can deal with those quickly.
405 1.39 scw *
406 1.94 matt * Otherwise we need to disassemble the instruction responsible to
407 1.94 matt * determine if it was a write.
408 1.27 scw */
409 1.96 skrll if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
410 1.94 matt ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
411 1.94 matt } else if (IS_PERMISSION_FAULT(fsr)) {
412 1.100 skrll ftype = VM_PROT_WRITE;
413 1.94 matt } else {
414 1.51 rearnsha #ifdef THUMB_CODE
415 1.51 rearnsha /* Fast track the ARM case. */
416 1.51 rearnsha if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
417 1.93 matt u_int insn = read_thumb_insn(tf->tf_pc, user);
418 1.51 rearnsha u_int insn_f8 = insn & 0xf800;
419 1.51 rearnsha u_int insn_fe = insn & 0xfe00;
420 1.51 rearnsha
421 1.51 rearnsha if (insn_f8 == 0x6000 || /* STR(1) */
422 1.51 rearnsha insn_f8 == 0x7000 || /* STRB(1) */
423 1.51 rearnsha insn_f8 == 0x8000 || /* STRH(1) */
424 1.51 rearnsha insn_f8 == 0x9000 || /* STR(3) */
425 1.51 rearnsha insn_f8 == 0xc000 || /* STM */
426 1.51 rearnsha insn_fe == 0x5000 || /* STR(2) */
427 1.51 rearnsha insn_fe == 0x5200 || /* STRH(2) */
428 1.51 rearnsha insn_fe == 0x5400) /* STRB(2) */
429 1.51 rearnsha ftype = VM_PROT_WRITE;
430 1.51 rearnsha else
431 1.51 rearnsha ftype = VM_PROT_READ;
432 1.51 rearnsha }
433 1.51 rearnsha else
434 1.51 rearnsha #endif
435 1.51 rearnsha {
436 1.93 matt u_int insn = read_insn(tf->tf_pc, user);
437 1.39 scw
438 1.51 rearnsha if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
439 1.51 rearnsha ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
440 1.81 matt ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
441 1.81 matt ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
442 1.100 skrll ftype = VM_PROT_WRITE;
443 1.51 rearnsha else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
444 1.100 skrll ftype = VM_PROT_READ | VM_PROT_WRITE;
445 1.51 rearnsha else
446 1.100 skrll ftype = VM_PROT_READ;
447 1.51 rearnsha }
448 1.39 scw }
449 1.39 scw
450 1.39 scw /*
451 1.39 scw * See if the fault is as a result of ref/mod emulation,
452 1.39 scw * or domain mismatch.
453 1.39 scw */
454 1.39 scw #ifdef DEBUG
455 1.39 scw last_fault_code = fsr;
456 1.1 chris #endif
457 1.42 briggs if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
458 1.98 matt UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
459 1.27 scw goto out;
460 1.42 briggs }
461 1.1 chris
462 1.67 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) {
463 1.45 scw if (pcb->pcb_onfault) {
464 1.45 scw tf->tf_r0 = EINVAL;
465 1.45 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
466 1.45 scw return;
467 1.45 scw }
468 1.39 scw printf("\nNon-emulated page fault with intr_depth > 0\n");
469 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
470 1.27 scw }
471 1.1 chris
472 1.111 skrll #ifdef PMAP_FAULTINFO
473 1.111 skrll struct pcb_faultinfo * const pfi = &pcb->pcb_faultinfo;
474 1.111 skrll struct proc * const p = curproc;
475 1.111 skrll
476 1.111 skrll if (p->p_pid == pfi->pfi_lastpid && va == pfi->pfi_faultaddr) {
477 1.111 skrll if (++pfi->pfi_repeats > 4) {
478 1.111 skrll tlb_asid_t asid = tlb_get_asid();
479 1.111 skrll pt_entry_t *ptep = pfi->pfi_faultptep;
480 1.111 skrll
481 1.111 skrll printf("%s: fault #%u (%x/%s) for %#" PRIxVADDR
482 1.111 skrll "(%#x) at pc %#" PRIxREGISTER " curpid=%u/%u "
483 1.111 skrll "ptep@%p=%#" PRIxPTE ")\n", __func__,
484 1.111 skrll pfi->pfi_repeats, fsr & FAULT_TYPE_MASK,
485 1.111 skrll data_aborts[fsr & FAULT_TYPE_MASK].desc, va,
486 1.111 skrll far, tf->tf_pc, map->pmap->pm_pai[0].pai_asid,
487 1.111 skrll asid, ptep, ptep ? *ptep : 0);
488 1.111 skrll cpu_Debugger();
489 1.111 skrll }
490 1.111 skrll } else {
491 1.111 skrll pfi->pfi_lastpid = p->p_pid;
492 1.111 skrll pfi->pfi_faultaddr = va;
493 1.111 skrll pfi->pfi_repeats = 0;
494 1.111 skrll pfi->pfi_faultptep = NULL;
495 1.111 skrll pfi->pfi_faulttype = fsr & FAULT_TYPE_MASK;
496 1.111 skrll }
497 1.111 skrll #endif /* PMAP_FAULTINFO */
498 1.111 skrll
499 1.27 scw onfault = pcb->pcb_onfault;
500 1.27 scw pcb->pcb_onfault = NULL;
501 1.57 he error = uvm_fault(map, va, ftype);
502 1.27 scw pcb->pcb_onfault = onfault;
503 1.39 scw
504 1.39 scw if (__predict_true(error == 0)) {
505 1.39 scw if (user)
506 1.39 scw uvm_grow(l->l_proc, va); /* Record any stack growth */
507 1.98 matt UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
508 1.27 scw goto out;
509 1.27 scw }
510 1.39 scw
511 1.27 scw if (user == 0) {
512 1.27 scw if (pcb->pcb_onfault) {
513 1.39 scw tf->tf_r0 = error;
514 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
515 1.39 scw return;
516 1.1 chris }
517 1.39 scw
518 1.58 drochner printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
519 1.39 scw error);
520 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
521 1.27 scw }
522 1.1 chris
523 1.43 scw KSI_INIT_TRAP(&ksi);
524 1.43 scw
525 1.103 martin switch (error) {
526 1.103 martin case ENOMEM:
527 1.39 scw printf("UVM: pid %d (%s), uid %d killed: "
528 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
529 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
530 1.43 scw ksi.ksi_signo = SIGKILL;
531 1.103 martin break;
532 1.103 martin case EACCES:
533 1.103 martin ksi.ksi_signo = SIGSEGV;
534 1.103 martin ksi.ksi_code = SEGV_ACCERR;
535 1.103 martin break;
536 1.103 martin case EINVAL:
537 1.103 martin ksi.ksi_signo = SIGBUS;
538 1.103 martin ksi.ksi_code = BUS_ADRERR;
539 1.103 martin break;
540 1.103 martin default:
541 1.43 scw ksi.ksi_signo = SIGSEGV;
542 1.103 martin ksi.ksi_code = SEGV_MAPERR;
543 1.103 martin break;
544 1.103 martin }
545 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) far;
546 1.39 scw ksi.ksi_trap = fsr;
547 1.105 pgoyette UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
548 1.39 scw
549 1.39 scw do_trapsignal:
550 1.93 matt call_trapsignal(l, tf, &ksi);
551 1.39 scw out:
552 1.39 scw /* If returning to user mode, make sure to invoke userret() */
553 1.39 scw if (user)
554 1.39 scw userret(l);
555 1.39 scw }
556 1.39 scw
557 1.39 scw /*
558 1.39 scw * dab_fatal() handles the following data aborts:
559 1.39 scw *
560 1.39 scw * FAULT_WRTBUF_0 - Vector Exception
561 1.39 scw * FAULT_WRTBUF_1 - Terminal Exception
562 1.39 scw *
563 1.39 scw * We should never see these on a properly functioning system.
564 1.39 scw *
565 1.39 scw * This function is also called by the other handlers if they
566 1.39 scw * detect a fatal problem.
567 1.39 scw *
568 1.39 scw * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
569 1.39 scw */
570 1.39 scw static int
571 1.39 scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
572 1.39 scw {
573 1.83 matt const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
574 1.39 scw
575 1.39 scw if (l != NULL) {
576 1.39 scw printf("Fatal %s mode data abort: '%s'\n", mode,
577 1.39 scw data_aborts[fsr & FAULT_TYPE_MASK].desc);
578 1.44 scw printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
579 1.39 scw if ((fsr & FAULT_IMPRECISE) == 0)
580 1.44 scw printf("%08x, ", far);
581 1.39 scw else
582 1.44 scw printf("Invalid, ");
583 1.44 scw printf("spsr=%08x\n", tf->tf_spsr);
584 1.39 scw } else {
585 1.44 scw printf("Fatal %s mode prefetch abort at 0x%08x\n",
586 1.44 scw mode, tf->tf_pc);
587 1.44 scw printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
588 1.44 scw }
589 1.44 scw
590 1.44 scw printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
591 1.44 scw tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
592 1.44 scw printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
593 1.44 scw tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
594 1.44 scw printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
595 1.44 scw tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
596 1.44 scw printf("r12=%08x, ", tf->tf_r12);
597 1.44 scw
598 1.44 scw if (TRAP_USERMODE(tf))
599 1.44 scw printf("usp=%08x, ulr=%08x",
600 1.44 scw tf->tf_usr_sp, tf->tf_usr_lr);
601 1.44 scw else
602 1.44 scw printf("ssp=%08x, slr=%08x",
603 1.44 scw tf->tf_svc_sp, tf->tf_svc_lr);
604 1.44 scw printf(", pc =%08x\n\n", tf->tf_pc);
605 1.34 matt
606 1.39 scw #if defined(DDB) || defined(KGDB)
607 1.39 scw kdb_trap(T_FAULT, tf);
608 1.34 matt #endif
609 1.39 scw panic("Fatal abort");
610 1.39 scw /*NOTREACHED*/
611 1.39 scw }
612 1.39 scw
613 1.39 scw /*
614 1.39 scw * dab_align() handles the following data aborts:
615 1.39 scw *
616 1.39 scw * FAULT_ALIGN_0 - Alignment fault
617 1.39 scw * FAULT_ALIGN_0 - Alignment fault
618 1.39 scw *
619 1.39 scw * These faults are fatal if they happen in kernel mode. Otherwise, we
620 1.39 scw * deliver a bus error to the process.
621 1.39 scw */
622 1.39 scw static int
623 1.39 scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
624 1.39 scw {
625 1.39 scw /* Alignment faults are always fatal if they occur in kernel mode */
626 1.39 scw if (!TRAP_USERMODE(tf))
627 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
628 1.39 scw
629 1.39 scw /* pcb_onfault *must* be NULL at this point */
630 1.83 matt KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
631 1.39 scw
632 1.48 wiz /* See if the CPU state needs to be fixed up */
633 1.39 scw (void) data_abort_fixup(tf, fsr, far, l);
634 1.39 scw
635 1.39 scw /* Deliver a bus error signal to the process */
636 1.39 scw KSI_INIT_TRAP(ksi);
637 1.39 scw ksi->ksi_signo = SIGBUS;
638 1.39 scw ksi->ksi_code = BUS_ADRALN;
639 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far;
640 1.39 scw ksi->ksi_trap = fsr;
641 1.39 scw
642 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
643 1.39 scw
644 1.113 skrll return 1;
645 1.39 scw }
646 1.39 scw
647 1.39 scw /*
648 1.39 scw * dab_buserr() handles the following data aborts:
649 1.39 scw *
650 1.39 scw * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
651 1.39 scw * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
652 1.39 scw * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
653 1.39 scw * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
654 1.39 scw * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
655 1.39 scw * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
656 1.39 scw *
657 1.39 scw * If pcb_onfault is set, flag the fault and return to the handler.
658 1.39 scw * If the fault occurred in user mode, give the process a SIGBUS.
659 1.39 scw *
660 1.39 scw * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
661 1.39 scw * can be flagged as imprecise in the FSR. This causes a real headache
662 1.39 scw * since some of the machine state is lost. In this case, tf->tf_pc
663 1.39 scw * may not actually point to the offending instruction. In fact, if
664 1.39 scw * we've taken a double abort fault, it generally points somewhere near
665 1.39 scw * the top of "data_abort_entry" in exception.S.
666 1.39 scw *
667 1.39 scw * In all other cases, these data aborts are considered fatal.
668 1.39 scw */
669 1.39 scw static int
670 1.39 scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
671 1.39 scw ksiginfo_t *ksi)
672 1.39 scw {
673 1.73 rmind struct pcb *pcb = lwp_getpcb(l);
674 1.39 scw
675 1.39 scw #ifdef __XSCALE__
676 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0 &&
677 1.39 scw (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
678 1.39 scw /*
679 1.39 scw * Oops, an imprecise, double abort fault. We've lost the
680 1.39 scw * r14_abt/spsr_abt values corresponding to the original
681 1.39 scw * abort, and the spsr saved in the trapframe indicates
682 1.39 scw * ABT mode.
683 1.39 scw */
684 1.39 scw tf->tf_spsr &= ~PSR_MODE;
685 1.39 scw
686 1.39 scw /*
687 1.39 scw * We use a simple heuristic to determine if the double abort
688 1.39 scw * happened as a result of a kernel or user mode access.
689 1.39 scw * If the current trapframe is at the top of the kernel stack,
690 1.39 scw * the fault _must_ have come from user mode.
691 1.39 scw */
692 1.87 matt if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
693 1.39 scw /*
694 1.39 scw * Kernel mode. We're either about to die a
695 1.39 scw * spectacular death, or pcb_onfault will come
696 1.39 scw * to our rescue. Either way, the current value
697 1.39 scw * of tf->tf_pc is irrelevant.
698 1.39 scw */
699 1.39 scw tf->tf_spsr |= PSR_SVC32_MODE;
700 1.39 scw if (pcb->pcb_onfault == NULL)
701 1.39 scw printf("\nKernel mode double abort!\n");
702 1.39 scw } else {
703 1.39 scw /*
704 1.39 scw * User mode. We've lost the program counter at the
705 1.39 scw * time of the fault (not that it was accurate anyway;
706 1.39 scw * it's not called an imprecise fault for nothing).
707 1.39 scw * About all we can do is copy r14_usr to tf_pc and
708 1.39 scw * hope for the best. The process is about to get a
709 1.39 scw * SIGBUS, so it's probably history anyway.
710 1.39 scw */
711 1.39 scw tf->tf_spsr |= PSR_USR32_MODE;
712 1.39 scw tf->tf_pc = tf->tf_usr_lr;
713 1.51 rearnsha #ifdef THUMB_CODE
714 1.51 rearnsha tf->tf_spsr &= ~PSR_T_bit;
715 1.51 rearnsha if (tf->tf_usr_lr & 1)
716 1.51 rearnsha tf->tf_spsr |= PSR_T_bit;
717 1.51 rearnsha #endif
718 1.39 scw }
719 1.39 scw }
720 1.39 scw
721 1.39 scw /* FAR is invalid for imprecise exceptions */
722 1.39 scw if ((fsr & FAULT_IMPRECISE) != 0)
723 1.39 scw far = 0;
724 1.39 scw #endif /* __XSCALE__ */
725 1.39 scw
726 1.39 scw if (pcb->pcb_onfault) {
727 1.39 scw KDASSERT(TRAP_USERMODE(tf) == 0);
728 1.39 scw tf->tf_r0 = EFAULT;
729 1.39 scw tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
730 1.113 skrll return 0;
731 1.39 scw }
732 1.39 scw
733 1.48 wiz /* See if the CPU state needs to be fixed up */
734 1.39 scw (void) data_abort_fixup(tf, fsr, far, l);
735 1.39 scw
736 1.39 scw /*
737 1.39 scw * At this point, if the fault happened in kernel mode, we're toast
738 1.39 scw */
739 1.39 scw if (!TRAP_USERMODE(tf))
740 1.39 scw dab_fatal(tf, fsr, far, l, NULL);
741 1.39 scw
742 1.39 scw /* Deliver a bus error signal to the process */
743 1.39 scw KSI_INIT_TRAP(ksi);
744 1.39 scw ksi->ksi_signo = SIGBUS;
745 1.39 scw ksi->ksi_code = BUS_ADRERR;
746 1.86 skrll ksi->ksi_addr = (uint32_t *)(intptr_t)far;
747 1.39 scw ksi->ksi_trap = fsr;
748 1.39 scw
749 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
750 1.27 scw
751 1.113 skrll return 1;
752 1.1 chris }
753 1.1 chris
754 1.56 perry static inline int
755 1.39 scw prefetch_abort_fixup(trapframe_t *tf)
756 1.39 scw {
757 1.39 scw #ifdef CPU_ABORT_FIXUP_REQUIRED
758 1.39 scw int error;
759 1.39 scw
760 1.48 wiz /* Call the CPU specific prefetch abort fixup routine */
761 1.39 scw error = cpu_prefetchabt_fixup(tf);
762 1.39 scw if (__predict_true(error != ABORT_FIXUP_FAILED))
763 1.113 skrll return error;
764 1.39 scw
765 1.39 scw /*
766 1.39 scw * Oops, couldn't fix up the instruction
767 1.39 scw */
768 1.79 christos printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
769 1.39 scw TRAP_USERMODE(tf) ? "user" : "kernel");
770 1.51 rearnsha #ifdef THUMB_CODE
771 1.51 rearnsha if (tf->tf_spsr & PSR_T_bit) {
772 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
773 1.86 skrll tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
774 1.86 skrll *((uint16 *)((tf->tf_pc + 2) & ~1)));
775 1.51 rearnsha }
776 1.51 rearnsha else
777 1.51 rearnsha #endif
778 1.51 rearnsha {
779 1.51 rearnsha printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
780 1.51 rearnsha *((u_int *)tf->tf_pc));
781 1.51 rearnsha }
782 1.39 scw disassemble(tf->tf_pc);
783 1.39 scw
784 1.39 scw /* Die now if this happened in kernel mode */
785 1.39 scw if (!TRAP_USERMODE(tf))
786 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
787 1.39 scw
788 1.113 skrll return error;
789 1.39 scw #else
790 1.113 skrll return ABORT_FIXUP_OK;
791 1.39 scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
792 1.39 scw }
793 1.1 chris
794 1.1 chris /*
795 1.39 scw * void prefetch_abort_handler(trapframe_t *tf)
796 1.1 chris *
797 1.1 chris * Abort handler called when instruction execution occurs at
798 1.1 chris * a non existent or restricted (access permissions) memory page.
799 1.1 chris * If the address is invalid and we were in SVC mode then panic as
800 1.1 chris * the kernel should never prefetch abort.
801 1.1 chris * If the address is invalid and the page is mapped then the user process
802 1.1 chris * does no have read permission so send it a signal.
803 1.1 chris * Otherwise fault the page in and try again.
804 1.1 chris */
805 1.1 chris void
806 1.39 scw prefetch_abort_handler(trapframe_t *tf)
807 1.1 chris {
808 1.26 thorpej struct lwp *l;
809 1.91 christos struct pcb *pcb __diagused;
810 1.14 thorpej struct vm_map *map;
811 1.14 thorpej vaddr_t fault_pc, va;
812 1.39 scw ksiginfo_t ksi;
813 1.61 ad int error, user;
814 1.39 scw
815 1.97 matt UVMHIST_FUNC(__func__);
816 1.98 matt UVMHIST_CALLED(maphist);
817 1.50 rearnsha
818 1.39 scw /* Update vmmeter statistics */
819 1.78 matt curcpu()->ci_data.cpu_ntrap++;
820 1.1 chris
821 1.61 ad l = curlwp;
822 1.73 rmind pcb = lwp_getpcb(l);
823 1.61 ad
824 1.61 ad if ((user = TRAP_USERMODE(tf)) != 0)
825 1.61 ad LWP_CACHE_CREDS(l, l->l_proc);
826 1.61 ad
827 1.1 chris /*
828 1.1 chris * Enable IRQ's (disabled by the abort) This always comes
829 1.1 chris * from user mode so we know interrupts were not disabled.
830 1.1 chris * But we check anyway.
831 1.1 chris */
832 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
833 1.101 matt #ifdef __NO_FIQ
834 1.101 matt if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
835 1.72 matt restore_interrupts(tf->tf_spsr & IF32_bits);
836 1.101 matt #else
837 1.101 matt if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
838 1.101 matt restore_interrupts(tf->tf_spsr & IF32_bits);
839 1.101 matt #endif
840 1.1 chris
841 1.48 wiz /* See if the CPU state needs to be fixed up */
842 1.39 scw switch (prefetch_abort_fixup(tf)) {
843 1.39 scw case ABORT_FIXUP_RETURN:
844 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
845 1.1 chris return;
846 1.39 scw case ABORT_FIXUP_FAILED:
847 1.39 scw /* Deliver a SIGILL to the process */
848 1.39 scw KSI_INIT_TRAP(&ksi);
849 1.39 scw ksi.ksi_signo = SIGILL;
850 1.39 scw ksi.ksi_code = ILL_ILLOPC;
851 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
852 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
853 1.104 skrll lwp_trapframe(l));
854 1.39 scw goto do_trapsignal;
855 1.39 scw default:
856 1.39 scw break;
857 1.1 chris }
858 1.1 chris
859 1.39 scw /* Prefetch aborts cannot happen in kernel mode */
860 1.61 ad if (__predict_false(!user))
861 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
862 1.1 chris
863 1.4 thorpej /* Get fault address */
864 1.39 scw fault_pc = tf->tf_pc;
865 1.104 skrll KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
866 1.110 rin UVMHIST_LOG(maphist, " (pc=%#jx, l=%#jx, tf=%#jx)",
867 1.105 pgoyette fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
868 1.14 thorpej
869 1.109 ryo #ifdef THUMB_CODE
870 1.109 ryo recheck:
871 1.109 ryo #endif
872 1.1 chris /* Ok validate the address, can only execute in USER space */
873 1.39 scw if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
874 1.39 scw (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
875 1.35 thorpej KSI_INIT_TRAP(&ksi);
876 1.34 matt ksi.ksi_signo = SIGSEGV;
877 1.34 matt ksi.ksi_code = SEGV_ACCERR;
878 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
879 1.34 matt ksi.ksi_trap = fault_pc;
880 1.39 scw goto do_trapsignal;
881 1.39 scw }
882 1.34 matt
883 1.39 scw map = &l->l_proc->p_vmspace->vm_map;
884 1.39 scw va = trunc_page(fault_pc);
885 1.1 chris
886 1.27 scw /*
887 1.27 scw * See if the pmap can handle this fault on its own...
888 1.27 scw */
889 1.39 scw #ifdef DEBUG
890 1.39 scw last_fault_code = -1;
891 1.39 scw #endif
892 1.88 matt if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
893 1.98 matt UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
894 1.39 scw goto out;
895 1.50 rearnsha }
896 1.27 scw
897 1.39 scw #ifdef DIAGNOSTIC
898 1.84 matt if (__predict_false(curcpu()->ci_intr_depth > 0)) {
899 1.39 scw printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
900 1.39 scw dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
901 1.39 scw }
902 1.1 chris #endif
903 1.72 matt
904 1.76 chs KASSERT(pcb->pcb_onfault == NULL);
905 1.99 matt error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
906 1.53 joff
907 1.50 rearnsha if (__predict_true(error == 0)) {
908 1.98 matt UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
909 1.39 scw goto out;
910 1.50 rearnsha }
911 1.43 scw KSI_INIT_TRAP(&ksi);
912 1.43 scw
913 1.105 pgoyette UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
914 1.98 matt
915 1.39 scw if (error == ENOMEM) {
916 1.39 scw printf("UVM: pid %d (%s), uid %d killed: "
917 1.39 scw "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
918 1.62 ad l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
919 1.43 scw ksi.ksi_signo = SIGKILL;
920 1.43 scw } else
921 1.43 scw ksi.ksi_signo = SIGSEGV;
922 1.1 chris
923 1.39 scw ksi.ksi_code = SEGV_MAPERR;
924 1.86 skrll ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
925 1.39 scw ksi.ksi_trap = fault_pc;
926 1.39 scw
927 1.39 scw do_trapsignal:
928 1.93 matt call_trapsignal(l, tf, &ksi);
929 1.39 scw
930 1.39 scw out:
931 1.109 ryo
932 1.109 ryo #ifdef THUMB_CODE
933 1.109 ryo #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800))
934 1.109 ryo /* thumb-32 instruction was located on page boundary? */
935 1.109 ryo if ((tf->tf_spsr & PSR_T_bit) &&
936 1.109 ryo ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) &&
937 1.109 ryo THUMB_32BIT(*(uint16_t *)tf->tf_pc)) {
938 1.109 ryo fault_pc = tf->tf_pc + THUMB_INSN_SIZE;
939 1.109 ryo goto recheck;
940 1.109 ryo }
941 1.109 ryo #endif /* THUMB_CODE */
942 1.109 ryo
943 1.101 matt KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
944 1.39 scw userret(l);
945 1.39 scw }
946 1.39 scw
947 1.39 scw /*
948 1.39 scw * Tentatively read an 8, 16, or 32-bit value from 'addr'.
949 1.39 scw * If the read succeeds, the value is written to 'rptr' and zero is returned.
950 1.39 scw * Else, return EFAULT.
951 1.39 scw */
952 1.39 scw int
953 1.39 scw badaddr_read(void *addr, size_t size, void *rptr)
954 1.39 scw {
955 1.39 scw extern int badaddr_read_1(const uint8_t *, uint8_t *);
956 1.39 scw extern int badaddr_read_2(const uint16_t *, uint16_t *);
957 1.39 scw extern int badaddr_read_4(const uint32_t *, uint32_t *);
958 1.39 scw union {
959 1.39 scw uint8_t v1;
960 1.39 scw uint16_t v2;
961 1.39 scw uint32_t v4;
962 1.39 scw } u;
963 1.47 scw int rv, s;
964 1.39 scw
965 1.39 scw cpu_drain_writebuf();
966 1.39 scw
967 1.47 scw s = splhigh();
968 1.47 scw
969 1.39 scw /* Read from the test address. */
970 1.39 scw switch (size) {
971 1.39 scw case sizeof(uint8_t):
972 1.39 scw rv = badaddr_read_1(addr, &u.v1);
973 1.39 scw if (rv == 0 && rptr)
974 1.39 scw *(uint8_t *) rptr = u.v1;
975 1.39 scw break;
976 1.39 scw
977 1.39 scw case sizeof(uint16_t):
978 1.39 scw rv = badaddr_read_2(addr, &u.v2);
979 1.39 scw if (rv == 0 && rptr)
980 1.39 scw *(uint16_t *) rptr = u.v2;
981 1.39 scw break;
982 1.39 scw
983 1.39 scw case sizeof(uint32_t):
984 1.39 scw rv = badaddr_read_4(addr, &u.v4);
985 1.39 scw if (rv == 0 && rptr)
986 1.39 scw *(uint32_t *) rptr = u.v4;
987 1.39 scw break;
988 1.39 scw
989 1.39 scw default:
990 1.82 matt panic("%s: invalid size (%zu)", __func__, size);
991 1.34 matt }
992 1.39 scw
993 1.47 scw splx(s);
994 1.47 scw
995 1.39 scw /* Return EFAULT if the address was invalid, else zero */
996 1.113 skrll return rv;
997 1.1 chris }
998