fault.c revision 1.30.2.1 1 1.30.2.1 skrll /* $NetBSD: fault.c,v 1.30.2.1 2004/08/03 10:32:29 skrll Exp $ */
2 1.1 chris
3 1.1 chris /*
4 1.27 scw * Copyright 2003 Wasabi Systems, Inc.
5 1.27 scw * All rights reserved.
6 1.27 scw *
7 1.27 scw * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 1.27 scw *
9 1.27 scw * Redistribution and use in source and binary forms, with or without
10 1.27 scw * modification, are permitted provided that the following conditions
11 1.27 scw * are met:
12 1.27 scw * 1. Redistributions of source code must retain the above copyright
13 1.27 scw * notice, this list of conditions and the following disclaimer.
14 1.27 scw * 2. Redistributions in binary form must reproduce the above copyright
15 1.27 scw * notice, this list of conditions and the following disclaimer in the
16 1.27 scw * documentation and/or other materials provided with the distribution.
17 1.27 scw * 3. All advertising materials mentioning features or use of this software
18 1.27 scw * must display the following acknowledgement:
19 1.27 scw * This product includes software developed for the NetBSD Project by
20 1.27 scw * Wasabi Systems, Inc.
21 1.27 scw * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.27 scw * or promote products derived from this software without specific prior
23 1.27 scw * written permission.
24 1.27 scw *
25 1.27 scw * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.27 scw * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.27 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.27 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.27 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.27 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.27 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.27 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.27 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.27 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.27 scw * POSSIBILITY OF SUCH DAMAGE.
36 1.27 scw */
37 1.27 scw /*
38 1.1 chris * Copyright (c) 1994-1997 Mark Brinicombe.
39 1.1 chris * Copyright (c) 1994 Brini.
40 1.1 chris * All rights reserved.
41 1.1 chris *
42 1.1 chris * This code is derived from software written for Brini by Mark Brinicombe
43 1.1 chris *
44 1.1 chris * Redistribution and use in source and binary forms, with or without
45 1.1 chris * modification, are permitted provided that the following conditions
46 1.1 chris * are met:
47 1.1 chris * 1. Redistributions of source code must retain the above copyright
48 1.1 chris * notice, this list of conditions and the following disclaimer.
49 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 chris * notice, this list of conditions and the following disclaimer in the
51 1.1 chris * documentation and/or other materials provided with the distribution.
52 1.1 chris * 3. All advertising materials mentioning features or use of this software
53 1.1 chris * must display the following acknowledgement:
54 1.1 chris * This product includes software developed by Brini.
55 1.1 chris * 4. The name of the company nor the name of the author may be used to
56 1.1 chris * endorse or promote products derived from this software without specific
57 1.1 chris * prior written permission.
58 1.1 chris *
59 1.1 chris * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 chris * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 chris * SUCH DAMAGE.
70 1.1 chris *
71 1.1 chris * RiscBSD kernel project
72 1.1 chris *
73 1.1 chris * fault.c
74 1.1 chris *
75 1.1 chris * Fault handlers
76 1.1 chris *
77 1.1 chris * Created : 28/11/94
78 1.1 chris */
79 1.1 chris
80 1.1 chris #include "opt_ddb.h"
81 1.28 briggs #include "opt_kgdb.h"
82 1.1 chris
83 1.1 chris #include <sys/types.h>
84 1.30.2.1 skrll __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.30.2.1 2004/08/03 10:32:29 skrll Exp $");
85 1.21 bjh21
86 1.1 chris #include <sys/param.h>
87 1.1 chris #include <sys/systm.h>
88 1.1 chris #include <sys/proc.h>
89 1.30.2.1 skrll #include <sys/savar.h>
90 1.1 chris #include <sys/user.h>
91 1.1 chris #include <sys/kernel.h>
92 1.1 chris
93 1.1 chris #include <uvm/uvm_extern.h>
94 1.18 thorpej
95 1.18 thorpej #include <arm/cpuconf.h>
96 1.1 chris
97 1.1 chris #include <machine/frame.h>
98 1.5 thorpej #include <arm/arm32/katelib.h>
99 1.1 chris #include <machine/cpu.h>
100 1.2 matt #include <machine/intr.h>
101 1.28 briggs #if defined(DDB) || defined(KGDB)
102 1.1 chris #include <machine/db_machdep.h>
103 1.28 briggs #ifdef KGDB
104 1.28 briggs #include <sys/kgdb.h>
105 1.28 briggs #endif
106 1.28 briggs #if !defined(DDB)
107 1.28 briggs #define kdb_trap kgdb_trap
108 1.28 briggs #endif
109 1.1 chris #endif
110 1.1 chris
111 1.1 chris #include <arch/arm/arm/disassem.h>
112 1.7 chris #include <arm/arm32/machdep.h>
113 1.7 chris
114 1.1 chris extern char fusubailout[];
115 1.1 chris
116 1.27 scw #ifdef DEBUG
117 1.27 scw int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 1.27 scw #endif
119 1.27 scw
120 1.30.2.1 skrll #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 1.30.2.1 skrll defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 1.30.2.1 skrll /* These CPUs may need data/prefetch abort fixups */
123 1.30.2.1 skrll #define CPU_ABORT_FIXUP_REQUIRED
124 1.30.2.1 skrll #endif
125 1.1 chris
126 1.30.2.1 skrll struct data_abort {
127 1.30.2.1 skrll int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 1.30.2.1 skrll const char *desc;
129 1.30.2.1 skrll };
130 1.1 chris
131 1.30.2.1 skrll static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 1.30.2.1 skrll static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 1.30.2.1 skrll static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 1.30.2.1 skrll
135 1.30.2.1 skrll static const struct data_abort data_aborts[] = {
136 1.30.2.1 skrll {dab_fatal, "Vector Exception"},
137 1.30.2.1 skrll {dab_align, "Alignment Fault 1"},
138 1.30.2.1 skrll {dab_fatal, "Terminal Exception"},
139 1.30.2.1 skrll {dab_align, "Alignment Fault 3"},
140 1.30.2.1 skrll {dab_buserr, "External Linefetch Abort (S)"},
141 1.30.2.1 skrll {NULL, "Translation Fault (S)"},
142 1.30.2.1 skrll {dab_buserr, "External Linefetch Abort (P)"},
143 1.30.2.1 skrll {NULL, "Translation Fault (P)"},
144 1.30.2.1 skrll {dab_buserr, "External Non-Linefetch Abort (S)"},
145 1.30.2.1 skrll {NULL, "Domain Fault (S)"},
146 1.30.2.1 skrll {dab_buserr, "External Non-Linefetch Abort (P)"},
147 1.30.2.1 skrll {NULL, "Domain Fault (P)"},
148 1.30.2.1 skrll {dab_buserr, "External Translation Abort (L1)"},
149 1.30.2.1 skrll {NULL, "Permission Fault (S)"},
150 1.30.2.1 skrll {dab_buserr, "External Translation Abort (L2)"},
151 1.30.2.1 skrll {NULL, "Permission Fault (P)"}
152 1.1 chris };
153 1.1 chris
154 1.30.2.1 skrll /* Determine if a fault came from user mode */
155 1.30.2.1 skrll #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156 1.1 chris
157 1.30.2.1 skrll /* Determine if 'x' is a permission fault */
158 1.30.2.1 skrll #define IS_PERMISSION_FAULT(x) \
159 1.30.2.1 skrll (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 1.30.2.1 skrll ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161 1.30.2.1 skrll
162 1.30.2.1 skrll #if 0
163 1.30.2.1 skrll /* maybe one day we'll do emulations */
164 1.30.2.1 skrll #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 1.30.2.1 skrll #else
166 1.30.2.1 skrll #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 1.30.2.1 skrll #endif
168 1.3 thorpej
169 1.30.2.1 skrll static __inline void
170 1.30.2.1 skrll call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 1.3 thorpej {
172 1.3 thorpej
173 1.30.2.1 skrll KERNEL_PROC_LOCK(l->l_proc);
174 1.30.2.1 skrll TRAPSIGNAL(l, ksi);
175 1.30.2.1 skrll KERNEL_PROC_UNLOCK(l->l_proc);
176 1.30.2.1 skrll }
177 1.3 thorpej
178 1.30.2.1 skrll static __inline int
179 1.30.2.1 skrll data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 1.30.2.1 skrll {
181 1.30.2.1 skrll #ifdef CPU_ABORT_FIXUP_REQUIRED
182 1.30.2.1 skrll int error;
183 1.3 thorpej
184 1.30.2.1 skrll /* Call the CPU specific data abort fixup routine */
185 1.30.2.1 skrll error = cpu_dataabt_fixup(tf);
186 1.30.2.1 skrll if (__predict_true(error != ABORT_FIXUP_FAILED))
187 1.30.2.1 skrll return (error);
188 1.3 thorpej
189 1.30.2.1 skrll /*
190 1.30.2.1 skrll * Oops, couldn't fix up the instruction
191 1.30.2.1 skrll */
192 1.30.2.1 skrll printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 1.30.2.1 skrll TRAP_USERMODE(tf) ? "user" : "kernel");
194 1.30.2.1 skrll printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 1.30.2.1 skrll *((u_int *)tf->tf_pc));
196 1.30.2.1 skrll disassemble(tf->tf_pc);
197 1.30.2.1 skrll
198 1.30.2.1 skrll /* Die now if this happened in kernel mode */
199 1.30.2.1 skrll if (!TRAP_USERMODE(tf))
200 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
201 1.3 thorpej
202 1.30.2.1 skrll return (error);
203 1.30.2.1 skrll #else
204 1.30.2.1 skrll return (ABORT_FIXUP_OK);
205 1.30.2.1 skrll #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 1.3 thorpej }
207 1.3 thorpej
208 1.1 chris void
209 1.30.2.1 skrll data_abort_handler(trapframe_t *tf)
210 1.1 chris {
211 1.30.2.1 skrll struct vm_map *map;
212 1.1 chris struct pcb *pcb;
213 1.30.2.1 skrll struct lwp *l;
214 1.30.2.1 skrll u_int user, far, fsr;
215 1.30.2.1 skrll vm_prot_t ftype;
216 1.1 chris void *onfault;
217 1.27 scw vaddr_t va;
218 1.30.2.1 skrll int error;
219 1.30.2.1 skrll ksiginfo_t ksi;
220 1.1 chris
221 1.30.2.1 skrll /* Grab FAR/FSR before enabling interrupts */
222 1.30.2.1 skrll far = cpu_faultaddress();
223 1.30.2.1 skrll fsr = cpu_faultstatus();
224 1.1 chris
225 1.1 chris /* Update vmmeter statistics */
226 1.1 chris uvmexp.traps++;
227 1.1 chris
228 1.30.2.1 skrll /* Re-enable interrupts if they were enabled previously */
229 1.30.2.1 skrll if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 1.30.2.1 skrll enable_interrupts(I32_bit);
231 1.1 chris
232 1.26 thorpej /* Get the current lwp structure or lwp0 if there is none */
233 1.30.2.1 skrll l = (curlwp != NULL) ? curlwp : &lwp0;
234 1.1 chris
235 1.30.2.1 skrll /* Data abort came from user mode? */
236 1.30.2.1 skrll user = TRAP_USERMODE(tf);
237 1.1 chris
238 1.30.2.1 skrll /* Grab the current pcb */
239 1.30.2.1 skrll pcb = &l->l_addr->u_pcb;
240 1.1 chris
241 1.30.2.1 skrll /* Invoke the appropriate handler, if necessary */
242 1.30.2.1 skrll if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 1.30.2.1 skrll if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 1.30.2.1 skrll l, &ksi))
245 1.30.2.1 skrll goto do_trapsignal;
246 1.30.2.1 skrll goto out;
247 1.1 chris }
248 1.1 chris
249 1.30.2.1 skrll /*
250 1.30.2.1 skrll * At this point, we're dealing with one of the following data aborts:
251 1.30.2.1 skrll *
252 1.30.2.1 skrll * FAULT_TRANS_S - Translation -- Section
253 1.30.2.1 skrll * FAULT_TRANS_P - Translation -- Page
254 1.30.2.1 skrll * FAULT_DOMAIN_S - Domain -- Section
255 1.30.2.1 skrll * FAULT_DOMAIN_P - Domain -- Page
256 1.30.2.1 skrll * FAULT_PERM_S - Permission -- Section
257 1.30.2.1 skrll * FAULT_PERM_P - Permission -- Page
258 1.30.2.1 skrll *
259 1.30.2.1 skrll * These are the main virtual memory-related faults signalled by
260 1.30.2.1 skrll * the MMU.
261 1.30.2.1 skrll */
262 1.1 chris
263 1.30.2.1 skrll /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 1.30.2.1 skrll if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 1.30.2.1 skrll tf->tf_r0 = EFAULT;
266 1.30.2.1 skrll tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 1.1 chris return;
268 1.1 chris }
269 1.1 chris
270 1.30.2.1 skrll if (user)
271 1.30.2.1 skrll l->l_addr->u_pcb.pcb_tf = tf;
272 1.11 reinoud
273 1.30.2.1 skrll /*
274 1.30.2.1 skrll * Make sure the Program Counter is sane. We could fall foul of
275 1.30.2.1 skrll * someone executing Thumb code, in which case the PC might not
276 1.30.2.1 skrll * be word-aligned. This would cause a kernel alignment fault
277 1.30.2.1 skrll * further down if we have to decode the current instruction.
278 1.30.2.1 skrll * XXX: It would be nice to be able to support Thumb at some point.
279 1.30.2.1 skrll */
280 1.30.2.1 skrll if (__predict_false((tf->tf_pc & 3) != 0)) {
281 1.11 reinoud if (user) {
282 1.30.2.1 skrll /*
283 1.30.2.1 skrll * Give the user an illegal instruction signal.
284 1.30.2.1 skrll */
285 1.30.2.1 skrll /* Deliver a SIGILL to the process */
286 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
287 1.30.2.1 skrll ksi.ksi_signo = SIGILL;
288 1.30.2.1 skrll ksi.ksi_code = ILL_ILLOPC;
289 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 1.30.2.1 skrll ksi.ksi_trap = fsr;
291 1.30.2.1 skrll goto do_trapsignal;
292 1.30.2.1 skrll }
293 1.1 chris
294 1.1 chris /*
295 1.30.2.1 skrll * The kernel never executes Thumb code.
296 1.1 chris */
297 1.30.2.1 skrll printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 1.30.2.1 skrll "Program Counter\n");
299 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
300 1.30.2.1 skrll }
301 1.1 chris
302 1.30.2.1 skrll /* See if the CPU state needs to be fixed up */
303 1.30.2.1 skrll switch (data_abort_fixup(tf, fsr, far, l)) {
304 1.30.2.1 skrll case ABORT_FIXUP_RETURN:
305 1.1 chris return;
306 1.30.2.1 skrll case ABORT_FIXUP_FAILED:
307 1.30.2.1 skrll /* Deliver a SIGILL to the process */
308 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
309 1.30.2.1 skrll ksi.ksi_signo = SIGILL;
310 1.30.2.1 skrll ksi.ksi_code = ILL_ILLOPC;
311 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 1.30.2.1 skrll ksi.ksi_trap = fsr;
313 1.30.2.1 skrll goto do_trapsignal;
314 1.30.2.1 skrll default:
315 1.30.2.1 skrll break;
316 1.27 scw }
317 1.27 scw
318 1.30.2.1 skrll va = trunc_page((vaddr_t)far);
319 1.1 chris
320 1.27 scw /*
321 1.27 scw * It is only a kernel address space fault iff:
322 1.27 scw * 1. user == 0 and
323 1.27 scw * 2. pcb_onfault not set or
324 1.30.2.1 skrll * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 1.27 scw */
326 1.30.2.1 skrll if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 1.30.2.1 skrll (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 1.30.2.1 skrll __predict_true((pcb->pcb_onfault == NULL ||
329 1.30.2.1 skrll (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 1.30.2.1 skrll map = kernel_map;
331 1.30.2.1 skrll
332 1.27 scw /* Was the fault due to the FPE/IPKDB ? */
333 1.30.2.1 skrll if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
335 1.30.2.1 skrll ksi.ksi_signo = SIGSEGV;
336 1.30.2.1 skrll ksi.ksi_code = SEGV_ACCERR;
337 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 1.30.2.1 skrll ksi.ksi_trap = fsr;
339 1.27 scw
340 1.27 scw /*
341 1.27 scw * Force exit via userret()
342 1.30.2.1 skrll * This is necessary as the FPE is an extension to
343 1.30.2.1 skrll * userland that actually runs in a priveledged mode
344 1.30.2.1 skrll * but uses USR mode permissions for its accesses.
345 1.27 scw */
346 1.30.2.1 skrll user = 1;
347 1.30.2.1 skrll goto do_trapsignal;
348 1.27 scw }
349 1.30.2.1 skrll } else {
350 1.30.2.1 skrll map = &l->l_proc->p_vmspace->vm_map;
351 1.30.2.1 skrll if (l->l_flag & L_SA) {
352 1.30.2.1 skrll l->l_savp->savp_faultaddr = (vaddr_t)far;
353 1.30.2.1 skrll l->l_flag |= L_SA_PAGEFAULT;
354 1.30.2.1 skrll }
355 1.30.2.1 skrll }
356 1.1 chris
357 1.27 scw /*
358 1.27 scw * We need to know whether the page should be mapped
359 1.27 scw * as R or R/W. The MMU does not give us the info as
360 1.27 scw * to whether the fault was caused by a read or a write.
361 1.30.2.1 skrll *
362 1.30.2.1 skrll * However, we know that a permission fault can only be
363 1.30.2.1 skrll * the result of a write to a read-only location, so
364 1.30.2.1 skrll * we can deal with those quickly.
365 1.30.2.1 skrll *
366 1.30.2.1 skrll * Otherwise we need to disassemble the instruction
367 1.30.2.1 skrll * responsible to determine if it was a write.
368 1.27 scw */
369 1.30.2.1 skrll if (IS_PERMISSION_FAULT(fsr))
370 1.27 scw ftype = VM_PROT_WRITE;
371 1.30.2.1 skrll else {
372 1.30.2.1 skrll u_int insn = ReadWord(tf->tf_pc);
373 1.1 chris
374 1.30.2.1 skrll if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
375 1.30.2.1 skrll ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
376 1.30.2.1 skrll ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
377 1.30.2.1 skrll ftype = VM_PROT_WRITE;
378 1.30.2.1 skrll else
379 1.30.2.1 skrll if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
380 1.30.2.1 skrll ftype = VM_PROT_READ | VM_PROT_WRITE;
381 1.30.2.1 skrll else
382 1.30.2.1 skrll ftype = VM_PROT_READ;
383 1.30.2.1 skrll }
384 1.30.2.1 skrll
385 1.30.2.1 skrll /*
386 1.30.2.1 skrll * See if the fault is as a result of ref/mod emulation,
387 1.30.2.1 skrll * or domain mismatch.
388 1.30.2.1 skrll */
389 1.30.2.1 skrll #ifdef DEBUG
390 1.30.2.1 skrll last_fault_code = fsr;
391 1.1 chris #endif
392 1.30.2.1 skrll if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
393 1.30.2.1 skrll if (map != kernel_map)
394 1.30.2.1 skrll l->l_flag &= ~L_SA_PAGEFAULT;
395 1.27 scw goto out;
396 1.30.2.1 skrll }
397 1.1 chris
398 1.30.2.1 skrll if (__predict_false(current_intr_depth > 0)) {
399 1.30.2.1 skrll if (pcb->pcb_onfault) {
400 1.30.2.1 skrll tf->tf_r0 = EINVAL;
401 1.30.2.1 skrll tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
402 1.30.2.1 skrll return;
403 1.30.2.1 skrll }
404 1.30.2.1 skrll printf("\nNon-emulated page fault with intr_depth > 0\n");
405 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
406 1.27 scw }
407 1.1 chris
408 1.27 scw onfault = pcb->pcb_onfault;
409 1.27 scw pcb->pcb_onfault = NULL;
410 1.30.2.1 skrll error = uvm_fault(map, va, 0, ftype);
411 1.27 scw pcb->pcb_onfault = onfault;
412 1.30.2.1 skrll
413 1.30.2.1 skrll if (map != kernel_map)
414 1.30.2.1 skrll l->l_flag &= ~L_SA_PAGEFAULT;
415 1.30.2.1 skrll
416 1.30.2.1 skrll if (__predict_true(error == 0)) {
417 1.30.2.1 skrll if (user)
418 1.30.2.1 skrll uvm_grow(l->l_proc, va); /* Record any stack growth */
419 1.27 scw goto out;
420 1.27 scw }
421 1.30.2.1 skrll
422 1.27 scw if (user == 0) {
423 1.27 scw if (pcb->pcb_onfault) {
424 1.30.2.1 skrll tf->tf_r0 = error;
425 1.30.2.1 skrll tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
426 1.30.2.1 skrll return;
427 1.1 chris }
428 1.30.2.1 skrll
429 1.30.2.1 skrll printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
430 1.30.2.1 skrll error);
431 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
432 1.27 scw }
433 1.1 chris
434 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
435 1.30.2.1 skrll
436 1.30.2.1 skrll if (error == ENOMEM) {
437 1.27 scw printf("UVM: pid %d (%s), uid %d killed: "
438 1.30.2.1 skrll "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
439 1.30.2.1 skrll (l->l_proc->p_cred && l->l_proc->p_ucred) ?
440 1.30.2.1 skrll l->l_proc->p_ucred->cr_uid : -1);
441 1.30.2.1 skrll ksi.ksi_signo = SIGKILL;
442 1.27 scw } else
443 1.30.2.1 skrll ksi.ksi_signo = SIGSEGV;
444 1.27 scw
445 1.30.2.1 skrll ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
446 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
447 1.30.2.1 skrll ksi.ksi_trap = fsr;
448 1.30.2.1 skrll
449 1.30.2.1 skrll do_trapsignal:
450 1.30.2.1 skrll call_trapsignal(l, &ksi);
451 1.27 scw out:
452 1.30.2.1 skrll /* If returning to user mode, make sure to invoke userret() */
453 1.1 chris if (user)
454 1.26 thorpej userret(l);
455 1.1 chris }
456 1.1 chris
457 1.30.2.1 skrll /*
458 1.30.2.1 skrll * dab_fatal() handles the following data aborts:
459 1.30.2.1 skrll *
460 1.30.2.1 skrll * FAULT_WRTBUF_0 - Vector Exception
461 1.30.2.1 skrll * FAULT_WRTBUF_1 - Terminal Exception
462 1.30.2.1 skrll *
463 1.30.2.1 skrll * We should never see these on a properly functioning system.
464 1.30.2.1 skrll *
465 1.30.2.1 skrll * This function is also called by the other handlers if they
466 1.30.2.1 skrll * detect a fatal problem.
467 1.30.2.1 skrll *
468 1.30.2.1 skrll * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
469 1.30.2.1 skrll */
470 1.30.2.1 skrll static int
471 1.30.2.1 skrll dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
472 1.30.2.1 skrll {
473 1.30.2.1 skrll const char *mode;
474 1.30.2.1 skrll
475 1.30.2.1 skrll mode = TRAP_USERMODE(tf) ? "user" : "kernel";
476 1.30.2.1 skrll
477 1.30.2.1 skrll if (l != NULL) {
478 1.30.2.1 skrll printf("Fatal %s mode data abort: '%s'\n", mode,
479 1.30.2.1 skrll data_aborts[fsr & FAULT_TYPE_MASK].desc);
480 1.30.2.1 skrll printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
481 1.30.2.1 skrll if ((fsr & FAULT_IMPRECISE) == 0)
482 1.30.2.1 skrll printf("%08x, ", far);
483 1.30.2.1 skrll else
484 1.30.2.1 skrll printf("Invalid, ");
485 1.30.2.1 skrll printf("spsr=%08x\n", tf->tf_spsr);
486 1.30.2.1 skrll } else {
487 1.30.2.1 skrll printf("Fatal %s mode prefetch abort at 0x%08x\n",
488 1.30.2.1 skrll mode, tf->tf_pc);
489 1.30.2.1 skrll printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
490 1.30.2.1 skrll }
491 1.30.2.1 skrll
492 1.30.2.1 skrll printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
493 1.30.2.1 skrll tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
494 1.30.2.1 skrll printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
495 1.30.2.1 skrll tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
496 1.30.2.1 skrll printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
497 1.30.2.1 skrll tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
498 1.30.2.1 skrll printf("r12=%08x, ", tf->tf_r12);
499 1.30.2.1 skrll
500 1.30.2.1 skrll if (TRAP_USERMODE(tf))
501 1.30.2.1 skrll printf("usp=%08x, ulr=%08x",
502 1.30.2.1 skrll tf->tf_usr_sp, tf->tf_usr_lr);
503 1.30.2.1 skrll else
504 1.30.2.1 skrll printf("ssp=%08x, slr=%08x",
505 1.30.2.1 skrll tf->tf_svc_sp, tf->tf_svc_lr);
506 1.30.2.1 skrll printf(", pc =%08x\n\n", tf->tf_pc);
507 1.30.2.1 skrll
508 1.30.2.1 skrll #if defined(DDB) || defined(KGDB)
509 1.30.2.1 skrll kdb_trap(T_FAULT, tf);
510 1.30.2.1 skrll #endif
511 1.30.2.1 skrll panic("Fatal abort");
512 1.30.2.1 skrll /*NOTREACHED*/
513 1.30.2.1 skrll }
514 1.30.2.1 skrll
515 1.30.2.1 skrll /*
516 1.30.2.1 skrll * dab_align() handles the following data aborts:
517 1.30.2.1 skrll *
518 1.30.2.1 skrll * FAULT_ALIGN_0 - Alignment fault
519 1.30.2.1 skrll * FAULT_ALIGN_0 - Alignment fault
520 1.30.2.1 skrll *
521 1.30.2.1 skrll * These faults are fatal if they happen in kernel mode. Otherwise, we
522 1.30.2.1 skrll * deliver a bus error to the process.
523 1.30.2.1 skrll */
524 1.30.2.1 skrll static int
525 1.30.2.1 skrll dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
526 1.30.2.1 skrll {
527 1.30.2.1 skrll
528 1.30.2.1 skrll /* Alignment faults are always fatal if they occur in kernel mode */
529 1.30.2.1 skrll if (!TRAP_USERMODE(tf))
530 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
531 1.30.2.1 skrll
532 1.30.2.1 skrll /* pcb_onfault *must* be NULL at this point */
533 1.30.2.1 skrll KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
534 1.30.2.1 skrll
535 1.30.2.1 skrll /* See if the CPU state needs to be fixed up */
536 1.30.2.1 skrll (void) data_abort_fixup(tf, fsr, far, l);
537 1.30.2.1 skrll
538 1.30.2.1 skrll /* Deliver a bus error signal to the process */
539 1.30.2.1 skrll KSI_INIT_TRAP(ksi);
540 1.30.2.1 skrll ksi->ksi_signo = SIGBUS;
541 1.30.2.1 skrll ksi->ksi_code = BUS_ADRALN;
542 1.30.2.1 skrll ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
543 1.30.2.1 skrll ksi->ksi_trap = fsr;
544 1.30.2.1 skrll
545 1.30.2.1 skrll l->l_addr->u_pcb.pcb_tf = tf;
546 1.30.2.1 skrll
547 1.30.2.1 skrll return (1);
548 1.30.2.1 skrll }
549 1.30.2.1 skrll
550 1.30.2.1 skrll /*
551 1.30.2.1 skrll * dab_buserr() handles the following data aborts:
552 1.30.2.1 skrll *
553 1.30.2.1 skrll * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
554 1.30.2.1 skrll * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
555 1.30.2.1 skrll * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
556 1.30.2.1 skrll * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
557 1.30.2.1 skrll * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
558 1.30.2.1 skrll * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
559 1.30.2.1 skrll *
560 1.30.2.1 skrll * If pcb_onfault is set, flag the fault and return to the handler.
561 1.30.2.1 skrll * If the fault occurred in user mode, give the process a SIGBUS.
562 1.30.2.1 skrll *
563 1.30.2.1 skrll * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
564 1.30.2.1 skrll * can be flagged as imprecise in the FSR. This causes a real headache
565 1.30.2.1 skrll * since some of the machine state is lost. In this case, tf->tf_pc
566 1.30.2.1 skrll * may not actually point to the offending instruction. In fact, if
567 1.30.2.1 skrll * we've taken a double abort fault, it generally points somewhere near
568 1.30.2.1 skrll * the top of "data_abort_entry" in exception.S.
569 1.30.2.1 skrll *
570 1.30.2.1 skrll * In all other cases, these data aborts are considered fatal.
571 1.30.2.1 skrll */
572 1.30.2.1 skrll static int
573 1.30.2.1 skrll dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
574 1.30.2.1 skrll ksiginfo_t *ksi)
575 1.30.2.1 skrll {
576 1.30.2.1 skrll struct pcb *pcb = &l->l_addr->u_pcb;
577 1.30.2.1 skrll
578 1.30.2.1 skrll #ifdef __XSCALE__
579 1.30.2.1 skrll if ((fsr & FAULT_IMPRECISE) != 0 &&
580 1.30.2.1 skrll (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
581 1.30.2.1 skrll /*
582 1.30.2.1 skrll * Oops, an imprecise, double abort fault. We've lost the
583 1.30.2.1 skrll * r14_abt/spsr_abt values corresponding to the original
584 1.30.2.1 skrll * abort, and the spsr saved in the trapframe indicates
585 1.30.2.1 skrll * ABT mode.
586 1.30.2.1 skrll */
587 1.30.2.1 skrll tf->tf_spsr &= ~PSR_MODE;
588 1.30.2.1 skrll
589 1.30.2.1 skrll /*
590 1.30.2.1 skrll * We use a simple heuristic to determine if the double abort
591 1.30.2.1 skrll * happened as a result of a kernel or user mode access.
592 1.30.2.1 skrll * If the current trapframe is at the top of the kernel stack,
593 1.30.2.1 skrll * the fault _must_ have come from user mode.
594 1.30.2.1 skrll */
595 1.30.2.1 skrll if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
596 1.30.2.1 skrll /*
597 1.30.2.1 skrll * Kernel mode. We're either about to die a
598 1.30.2.1 skrll * spectacular death, or pcb_onfault will come
599 1.30.2.1 skrll * to our rescue. Either way, the current value
600 1.30.2.1 skrll * of tf->tf_pc is irrelevant.
601 1.30.2.1 skrll */
602 1.30.2.1 skrll tf->tf_spsr |= PSR_SVC32_MODE;
603 1.30.2.1 skrll if (pcb->pcb_onfault == NULL)
604 1.30.2.1 skrll printf("\nKernel mode double abort!\n");
605 1.30.2.1 skrll } else {
606 1.30.2.1 skrll /*
607 1.30.2.1 skrll * User mode. We've lost the program counter at the
608 1.30.2.1 skrll * time of the fault (not that it was accurate anyway;
609 1.30.2.1 skrll * it's not called an imprecise fault for nothing).
610 1.30.2.1 skrll * About all we can do is copy r14_usr to tf_pc and
611 1.30.2.1 skrll * hope for the best. The process is about to get a
612 1.30.2.1 skrll * SIGBUS, so it's probably history anyway.
613 1.30.2.1 skrll */
614 1.30.2.1 skrll tf->tf_spsr |= PSR_USR32_MODE;
615 1.30.2.1 skrll tf->tf_pc = tf->tf_usr_lr;
616 1.30.2.1 skrll }
617 1.30.2.1 skrll }
618 1.30.2.1 skrll
619 1.30.2.1 skrll /* FAR is invalid for imprecise exceptions */
620 1.30.2.1 skrll if ((fsr & FAULT_IMPRECISE) != 0)
621 1.30.2.1 skrll far = 0;
622 1.30.2.1 skrll #endif /* __XSCALE__ */
623 1.30.2.1 skrll
624 1.30.2.1 skrll if (pcb->pcb_onfault) {
625 1.30.2.1 skrll KDASSERT(TRAP_USERMODE(tf) == 0);
626 1.30.2.1 skrll tf->tf_r0 = EFAULT;
627 1.30.2.1 skrll tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
628 1.30.2.1 skrll return (0);
629 1.30.2.1 skrll }
630 1.30.2.1 skrll
631 1.30.2.1 skrll /* See if the CPU state needs to be fixed up */
632 1.30.2.1 skrll (void) data_abort_fixup(tf, fsr, far, l);
633 1.30.2.1 skrll
634 1.30.2.1 skrll /*
635 1.30.2.1 skrll * At this point, if the fault happened in kernel mode, we're toast
636 1.30.2.1 skrll */
637 1.30.2.1 skrll if (!TRAP_USERMODE(tf))
638 1.30.2.1 skrll dab_fatal(tf, fsr, far, l, NULL);
639 1.30.2.1 skrll
640 1.30.2.1 skrll /* Deliver a bus error signal to the process */
641 1.30.2.1 skrll KSI_INIT_TRAP(ksi);
642 1.30.2.1 skrll ksi->ksi_signo = SIGBUS;
643 1.30.2.1 skrll ksi->ksi_code = BUS_ADRERR;
644 1.30.2.1 skrll ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
645 1.30.2.1 skrll ksi->ksi_trap = fsr;
646 1.30.2.1 skrll
647 1.30.2.1 skrll l->l_addr->u_pcb.pcb_tf = tf;
648 1.30.2.1 skrll
649 1.30.2.1 skrll return (1);
650 1.30.2.1 skrll }
651 1.30.2.1 skrll
652 1.30.2.1 skrll static __inline int
653 1.30.2.1 skrll prefetch_abort_fixup(trapframe_t *tf)
654 1.30.2.1 skrll {
655 1.30.2.1 skrll #ifdef CPU_ABORT_FIXUP_REQUIRED
656 1.30.2.1 skrll int error;
657 1.30.2.1 skrll
658 1.30.2.1 skrll /* Call the CPU specific prefetch abort fixup routine */
659 1.30.2.1 skrll error = cpu_prefetchabt_fixup(tf);
660 1.30.2.1 skrll if (__predict_true(error != ABORT_FIXUP_FAILED))
661 1.30.2.1 skrll return (error);
662 1.30.2.1 skrll
663 1.30.2.1 skrll /*
664 1.30.2.1 skrll * Oops, couldn't fix up the instruction
665 1.30.2.1 skrll */
666 1.30.2.1 skrll printf(
667 1.30.2.1 skrll "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
668 1.30.2.1 skrll TRAP_USERMODE(tf) ? "user" : "kernel");
669 1.30.2.1 skrll printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
670 1.30.2.1 skrll *((u_int *)tf->tf_pc));
671 1.30.2.1 skrll disassemble(tf->tf_pc);
672 1.30.2.1 skrll
673 1.30.2.1 skrll /* Die now if this happened in kernel mode */
674 1.30.2.1 skrll if (!TRAP_USERMODE(tf))
675 1.30.2.1 skrll dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
676 1.30.2.1 skrll
677 1.30.2.1 skrll return (error);
678 1.30.2.1 skrll #else
679 1.30.2.1 skrll return (ABORT_FIXUP_OK);
680 1.30.2.1 skrll #endif /* CPU_ABORT_FIXUP_REQUIRED */
681 1.30.2.1 skrll }
682 1.1 chris
683 1.1 chris /*
684 1.30.2.1 skrll * void prefetch_abort_handler(trapframe_t *tf)
685 1.1 chris *
686 1.1 chris * Abort handler called when instruction execution occurs at
687 1.1 chris * a non existent or restricted (access permissions) memory page.
688 1.1 chris * If the address is invalid and we were in SVC mode then panic as
689 1.1 chris * the kernel should never prefetch abort.
690 1.1 chris * If the address is invalid and the page is mapped then the user process
691 1.1 chris * does no have read permission so send it a signal.
692 1.1 chris * Otherwise fault the page in and try again.
693 1.1 chris */
694 1.1 chris void
695 1.30.2.1 skrll prefetch_abort_handler(trapframe_t *tf)
696 1.1 chris {
697 1.26 thorpej struct lwp *l;
698 1.14 thorpej struct vm_map *map;
699 1.14 thorpej vaddr_t fault_pc, va;
700 1.30.2.1 skrll ksiginfo_t ksi;
701 1.1 chris int error;
702 1.1 chris
703 1.30.2.1 skrll /* Update vmmeter statistics */
704 1.30.2.1 skrll uvmexp.traps++;
705 1.30.2.1 skrll
706 1.1 chris /*
707 1.1 chris * Enable IRQ's (disabled by the abort) This always comes
708 1.1 chris * from user mode so we know interrupts were not disabled.
709 1.1 chris * But we check anyway.
710 1.1 chris */
711 1.30.2.1 skrll if (__predict_true((tf->tf_spsr & I32_bit) == 0))
712 1.1 chris enable_interrupts(I32_bit);
713 1.1 chris
714 1.30.2.1 skrll /* See if the CPU state needs to be fixed up */
715 1.30.2.1 skrll switch (prefetch_abort_fixup(tf)) {
716 1.30.2.1 skrll case ABORT_FIXUP_RETURN:
717 1.1 chris return;
718 1.30.2.1 skrll case ABORT_FIXUP_FAILED:
719 1.30.2.1 skrll /* Deliver a SIGILL to the process */
720 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
721 1.30.2.1 skrll ksi.ksi_signo = SIGILL;
722 1.30.2.1 skrll ksi.ksi_code = ILL_ILLOPC;
723 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
724 1.30.2.1 skrll l = curlwp;
725 1.30.2.1 skrll l->l_addr->u_pcb.pcb_tf = tf;
726 1.30.2.1 skrll goto do_trapsignal;
727 1.30.2.1 skrll default:
728 1.30.2.1 skrll break;
729 1.1 chris }
730 1.1 chris
731 1.30.2.1 skrll /* Prefetch aborts cannot happen in kernel mode */
732 1.30.2.1 skrll if (__predict_false(!TRAP_USERMODE(tf)))
733 1.30.2.1 skrll dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
734 1.1 chris
735 1.4 thorpej /* Get fault address */
736 1.30.2.1 skrll fault_pc = tf->tf_pc;
737 1.30.2.1 skrll l = curlwp;
738 1.30.2.1 skrll l->l_addr->u_pcb.pcb_tf = tf;
739 1.4 thorpej
740 1.1 chris /* Ok validate the address, can only execute in USER space */
741 1.30.2.1 skrll if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
742 1.30.2.1 skrll (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
743 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
744 1.30.2.1 skrll ksi.ksi_signo = SIGSEGV;
745 1.30.2.1 skrll ksi.ksi_code = SEGV_ACCERR;
746 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
747 1.30.2.1 skrll ksi.ksi_trap = fault_pc;
748 1.30.2.1 skrll goto do_trapsignal;
749 1.1 chris }
750 1.1 chris
751 1.30.2.1 skrll map = &l->l_proc->p_vmspace->vm_map;
752 1.30.2.1 skrll va = trunc_page(fault_pc);
753 1.30.2.1 skrll
754 1.27 scw /*
755 1.27 scw * See if the pmap can handle this fault on its own...
756 1.27 scw */
757 1.30.2.1 skrll #ifdef DEBUG
758 1.30.2.1 skrll last_fault_code = -1;
759 1.30.2.1 skrll #endif
760 1.29 scw if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
761 1.27 scw goto out;
762 1.27 scw
763 1.30.2.1 skrll #ifdef DIAGNOSTIC
764 1.30.2.1 skrll if (__predict_false(current_intr_depth > 0)) {
765 1.30.2.1 skrll printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
766 1.30.2.1 skrll dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
767 1.1 chris }
768 1.30.2.1 skrll #endif
769 1.1 chris
770 1.14 thorpej error = uvm_fault(map, va, 0, VM_PROT_READ);
771 1.30.2.1 skrll if (__predict_true(error == 0))
772 1.14 thorpej goto out;
773 1.14 thorpej
774 1.30.2.1 skrll KSI_INIT_TRAP(&ksi);
775 1.30.2.1 skrll
776 1.14 thorpej if (error == ENOMEM) {
777 1.14 thorpej printf("UVM: pid %d (%s), uid %d killed: "
778 1.30.2.1 skrll "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
779 1.30.2.1 skrll (l->l_proc->p_cred && l->l_proc->p_ucred) ?
780 1.30.2.1 skrll l->l_proc->p_ucred->cr_uid : -1);
781 1.30.2.1 skrll ksi.ksi_signo = SIGKILL;
782 1.14 thorpej } else
783 1.30.2.1 skrll ksi.ksi_signo = SIGSEGV;
784 1.30.2.1 skrll
785 1.30.2.1 skrll ksi.ksi_code = SEGV_MAPERR;
786 1.30.2.1 skrll ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
787 1.30.2.1 skrll ksi.ksi_trap = fault_pc;
788 1.30.2.1 skrll
789 1.30.2.1 skrll do_trapsignal:
790 1.30.2.1 skrll call_trapsignal(l, &ksi);
791 1.30.2.1 skrll
792 1.27 scw out:
793 1.26 thorpej userret(l);
794 1.1 chris }
795 1.30.2.1 skrll
796 1.30.2.1 skrll /*
797 1.30.2.1 skrll * Tentatively read an 8, 16, or 32-bit value from 'addr'.
798 1.30.2.1 skrll * If the read succeeds, the value is written to 'rptr' and zero is returned.
799 1.30.2.1 skrll * Else, return EFAULT.
800 1.30.2.1 skrll */
801 1.30.2.1 skrll int
802 1.30.2.1 skrll badaddr_read(void *addr, size_t size, void *rptr)
803 1.30.2.1 skrll {
804 1.30.2.1 skrll extern int badaddr_read_1(const uint8_t *, uint8_t *);
805 1.30.2.1 skrll extern int badaddr_read_2(const uint16_t *, uint16_t *);
806 1.30.2.1 skrll extern int badaddr_read_4(const uint32_t *, uint32_t *);
807 1.30.2.1 skrll union {
808 1.30.2.1 skrll uint8_t v1;
809 1.30.2.1 skrll uint16_t v2;
810 1.30.2.1 skrll uint32_t v4;
811 1.30.2.1 skrll } u;
812 1.30.2.1 skrll struct pcb *curpcb_save;
813 1.30.2.1 skrll int rv, s;
814 1.30.2.1 skrll
815 1.30.2.1 skrll cpu_drain_writebuf();
816 1.30.2.1 skrll
817 1.30.2.1 skrll /*
818 1.30.2.1 skrll * We might be called at interrupt time, so arrange to steal
819 1.30.2.1 skrll * lwp0's PCB temporarily, if required, so that pcb_onfault
820 1.30.2.1 skrll * handling works correctly.
821 1.30.2.1 skrll */
822 1.30.2.1 skrll s = splhigh();
823 1.30.2.1 skrll if ((curpcb_save = curpcb) == NULL)
824 1.30.2.1 skrll curpcb = &lwp0.l_addr->u_pcb;
825 1.30.2.1 skrll
826 1.30.2.1 skrll /* Read from the test address. */
827 1.30.2.1 skrll switch (size) {
828 1.30.2.1 skrll case sizeof(uint8_t):
829 1.30.2.1 skrll rv = badaddr_read_1(addr, &u.v1);
830 1.30.2.1 skrll if (rv == 0 && rptr)
831 1.30.2.1 skrll *(uint8_t *) rptr = u.v1;
832 1.30.2.1 skrll break;
833 1.30.2.1 skrll
834 1.30.2.1 skrll case sizeof(uint16_t):
835 1.30.2.1 skrll rv = badaddr_read_2(addr, &u.v2);
836 1.30.2.1 skrll if (rv == 0 && rptr)
837 1.30.2.1 skrll *(uint16_t *) rptr = u.v2;
838 1.30.2.1 skrll break;
839 1.30.2.1 skrll
840 1.30.2.1 skrll case sizeof(uint32_t):
841 1.30.2.1 skrll rv = badaddr_read_4(addr, &u.v4);
842 1.30.2.1 skrll if (rv == 0 && rptr)
843 1.30.2.1 skrll *(uint32_t *) rptr = u.v4;
844 1.30.2.1 skrll break;
845 1.30.2.1 skrll
846 1.30.2.1 skrll default:
847 1.30.2.1 skrll curpcb = curpcb_save;
848 1.30.2.1 skrll panic("badaddr: invalid size (%lu)", (u_long) size);
849 1.30.2.1 skrll }
850 1.30.2.1 skrll
851 1.30.2.1 skrll /* Restore curpcb */
852 1.30.2.1 skrll curpcb = curpcb_save;
853 1.30.2.1 skrll splx(s);
854 1.30.2.1 skrll
855 1.30.2.1 skrll /* Return EFAULT if the address was invalid, else zero */
856 1.30.2.1 skrll return (rv);
857 1.30.2.1 skrll }
858