Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.47
      1  1.47      scw /*	$NetBSD: fault.c,v 1.47 2004/01/26 10:45:24 scw Exp $	*/
      2   1.1    chris 
      3   1.1    chris /*
      4  1.27      scw  * Copyright 2003 Wasabi Systems, Inc.
      5  1.27      scw  * All rights reserved.
      6  1.27      scw  *
      7  1.27      scw  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  1.27      scw  *
      9  1.27      scw  * Redistribution and use in source and binary forms, with or without
     10  1.27      scw  * modification, are permitted provided that the following conditions
     11  1.27      scw  * are met:
     12  1.27      scw  * 1. Redistributions of source code must retain the above copyright
     13  1.27      scw  *    notice, this list of conditions and the following disclaimer.
     14  1.27      scw  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.27      scw  *    notice, this list of conditions and the following disclaimer in the
     16  1.27      scw  *    documentation and/or other materials provided with the distribution.
     17  1.27      scw  * 3. All advertising materials mentioning features or use of this software
     18  1.27      scw  *    must display the following acknowledgement:
     19  1.27      scw  *      This product includes software developed for the NetBSD Project by
     20  1.27      scw  *      Wasabi Systems, Inc.
     21  1.27      scw  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.27      scw  *    or promote products derived from this software without specific prior
     23  1.27      scw  *    written permission.
     24  1.27      scw  *
     25  1.27      scw  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.27      scw  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.27      scw  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.27      scw  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.27      scw  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.27      scw  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.27      scw  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.27      scw  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.27      scw  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.27      scw  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.27      scw  * POSSIBILITY OF SUCH DAMAGE.
     36  1.27      scw  */
     37  1.27      scw /*
     38   1.1    chris  * Copyright (c) 1994-1997 Mark Brinicombe.
     39   1.1    chris  * Copyright (c) 1994 Brini.
     40   1.1    chris  * All rights reserved.
     41   1.1    chris  *
     42   1.1    chris  * This code is derived from software written for Brini by Mark Brinicombe
     43   1.1    chris  *
     44   1.1    chris  * Redistribution and use in source and binary forms, with or without
     45   1.1    chris  * modification, are permitted provided that the following conditions
     46   1.1    chris  * are met:
     47   1.1    chris  * 1. Redistributions of source code must retain the above copyright
     48   1.1    chris  *    notice, this list of conditions and the following disclaimer.
     49   1.1    chris  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1    chris  *    notice, this list of conditions and the following disclaimer in the
     51   1.1    chris  *    documentation and/or other materials provided with the distribution.
     52   1.1    chris  * 3. All advertising materials mentioning features or use of this software
     53   1.1    chris  *    must display the following acknowledgement:
     54   1.1    chris  *	This product includes software developed by Brini.
     55   1.1    chris  * 4. The name of the company nor the name of the author may be used to
     56   1.1    chris  *    endorse or promote products derived from this software without specific
     57   1.1    chris  *    prior written permission.
     58   1.1    chris  *
     59   1.1    chris  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60   1.1    chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61   1.1    chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62   1.1    chris  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63   1.1    chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64   1.1    chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65   1.1    chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66   1.1    chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67   1.1    chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68   1.1    chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69   1.1    chris  * SUCH DAMAGE.
     70   1.1    chris  *
     71   1.1    chris  * RiscBSD kernel project
     72   1.1    chris  *
     73   1.1    chris  * fault.c
     74   1.1    chris  *
     75   1.1    chris  * Fault handlers
     76   1.1    chris  *
     77   1.1    chris  * Created      : 28/11/94
     78   1.1    chris  */
     79   1.1    chris 
     80   1.1    chris #include "opt_ddb.h"
     81  1.28   briggs #include "opt_kgdb.h"
     82   1.1    chris 
     83   1.1    chris #include <sys/types.h>
     84  1.47      scw __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.47 2004/01/26 10:45:24 scw Exp $");
     85  1.21    bjh21 
     86   1.1    chris #include <sys/param.h>
     87   1.1    chris #include <sys/systm.h>
     88   1.1    chris #include <sys/proc.h>
     89  1.33      agc #include <sys/savar.h>
     90   1.1    chris #include <sys/user.h>
     91   1.1    chris #include <sys/kernel.h>
     92   1.1    chris 
     93   1.1    chris #include <uvm/uvm_extern.h>
     94  1.18  thorpej 
     95  1.18  thorpej #include <arm/cpuconf.h>
     96   1.1    chris 
     97   1.1    chris #include <machine/frame.h>
     98   1.5  thorpej #include <arm/arm32/katelib.h>
     99   1.1    chris #include <machine/cpu.h>
    100   1.2     matt #include <machine/intr.h>
    101  1.28   briggs #if defined(DDB) || defined(KGDB)
    102   1.1    chris #include <machine/db_machdep.h>
    103  1.28   briggs #ifdef KGDB
    104  1.28   briggs #include <sys/kgdb.h>
    105  1.28   briggs #endif
    106  1.28   briggs #if !defined(DDB)
    107  1.28   briggs #define kdb_trap	kgdb_trap
    108  1.28   briggs #endif
    109   1.1    chris #endif
    110   1.1    chris 
    111   1.1    chris #include <arch/arm/arm/disassem.h>
    112   1.7    chris #include <arm/arm32/machdep.h>
    113   1.7    chris 
    114   1.1    chris extern char fusubailout[];
    115   1.1    chris 
    116  1.27      scw #ifdef DEBUG
    117  1.27      scw int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    118  1.27      scw #endif
    119  1.27      scw 
    120  1.39      scw #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    121  1.39      scw     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    122  1.39      scw /* These CPUs may need data/prefetch abort fixups */
    123  1.39      scw #define	CPU_ABORT_FIXUP_REQUIRED
    124  1.39      scw #endif
    125   1.7    chris 
    126  1.39      scw struct data_abort {
    127  1.39      scw 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    128  1.39      scw 	const char *desc;
    129  1.39      scw };
    130   1.1    chris 
    131  1.39      scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132  1.39      scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133  1.39      scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134  1.39      scw 
    135  1.39      scw static const struct data_abort data_aborts[] = {
    136  1.39      scw 	{dab_fatal,	"Vector Exception"},
    137  1.39      scw 	{dab_align,	"Alignment Fault 1"},
    138  1.39      scw 	{dab_fatal,	"Terminal Exception"},
    139  1.39      scw 	{dab_align,	"Alignment Fault 3"},
    140  1.39      scw 	{dab_buserr,	"External Linefetch Abort (S)"},
    141  1.39      scw 	{NULL,		"Translation Fault (S)"},
    142  1.39      scw 	{dab_buserr,	"External Linefetch Abort (P)"},
    143  1.39      scw 	{NULL,		"Translation Fault (P)"},
    144  1.39      scw 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    145  1.39      scw 	{NULL,		"Domain Fault (S)"},
    146  1.39      scw 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    147  1.39      scw 	{NULL,		"Domain Fault (P)"},
    148  1.39      scw 	{dab_buserr,	"External Translation Abort (L1)"},
    149  1.39      scw 	{NULL,		"Permission Fault (S)"},
    150  1.39      scw 	{dab_buserr,	"External Translation Abort (L2)"},
    151  1.39      scw 	{NULL,		"Permission Fault (P)"}
    152  1.39      scw };
    153   1.1    chris 
    154  1.39      scw /* Determine if a fault came from user mode */
    155  1.39      scw #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    156  1.39      scw 
    157  1.39      scw /* Determine if 'x' is a permission fault */
    158  1.39      scw #define	IS_PERMISSION_FAULT(x)					\
    159  1.39      scw 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    160  1.39      scw 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    161   1.1    chris 
    162  1.39      scw #if 0
    163  1.39      scw /* maybe one day we'll do emulations */
    164  1.39      scw #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    165  1.39      scw #else
    166  1.39      scw #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    167   1.1    chris #endif
    168   1.3  thorpej 
    169  1.39      scw static __inline void
    170  1.39      scw call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    171   1.3  thorpej {
    172   1.3  thorpej 
    173  1.39      scw 	KERNEL_PROC_LOCK(l->l_proc);
    174  1.39      scw 	TRAPSIGNAL(l, ksi);
    175  1.39      scw 	KERNEL_PROC_UNLOCK(l->l_proc);
    176  1.39      scw }
    177   1.3  thorpej 
    178  1.39      scw static __inline int
    179  1.39      scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    180  1.39      scw {
    181  1.39      scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    182  1.39      scw 	int error;
    183   1.3  thorpej 
    184  1.39      scw 	/* Call the cpu specific data abort fixup routine */
    185  1.39      scw 	error = cpu_dataabt_fixup(tf);
    186  1.39      scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    187  1.39      scw 		return (error);
    188   1.3  thorpej 
    189  1.39      scw 	/*
    190  1.39      scw 	 * Oops, couldn't fix up the instruction
    191  1.39      scw 	 */
    192  1.39      scw 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
    193  1.39      scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    194  1.39      scw 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    195  1.39      scw 	    *((u_int *)tf->tf_pc));
    196  1.39      scw 	disassemble(tf->tf_pc);
    197  1.39      scw 
    198  1.39      scw 	/* Die now if this happened in kernel mode */
    199  1.39      scw 	if (!TRAP_USERMODE(tf))
    200  1.39      scw 		dab_fatal(tf, fsr, far, l, NULL);
    201   1.3  thorpej 
    202  1.39      scw 	return (error);
    203  1.39      scw #else
    204  1.39      scw 	return (ABORT_FIXUP_OK);
    205  1.39      scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    206   1.3  thorpej }
    207   1.3  thorpej 
    208   1.1    chris void
    209  1.39      scw data_abort_handler(trapframe_t *tf)
    210   1.1    chris {
    211  1.39      scw 	struct vm_map *map;
    212  1.39      scw 	struct pcb *pcb;
    213  1.26  thorpej 	struct lwp *l;
    214  1.39      scw 	u_int user, far, fsr;
    215  1.39      scw 	vm_prot_t ftype;
    216   1.1    chris 	void *onfault;
    217  1.27      scw 	vaddr_t va;
    218  1.39      scw 	int error;
    219  1.34     matt 	ksiginfo_t ksi;
    220   1.3  thorpej 
    221  1.39      scw 	/* Grab FAR/FSR before enabling interrupts */
    222  1.39      scw 	far = cpu_faultaddress();
    223  1.39      scw 	fsr = cpu_faultstatus();
    224   1.1    chris 
    225  1.39      scw 	/* Update vmmeter statistics */
    226  1.39      scw 	uvmexp.traps++;
    227   1.1    chris 
    228  1.39      scw 	/* Re-enable interrupts if they were enabled previously */
    229  1.41      scw 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    230   1.1    chris 		enable_interrupts(I32_bit);
    231   1.1    chris 
    232  1.39      scw 	/* Get the current lwp structure or lwp0 if there is none */
    233  1.39      scw 	l = (curlwp != NULL) ? curlwp : &lwp0;
    234   1.1    chris 
    235  1.39      scw 	/* Data abort came from user mode? */
    236  1.39      scw 	user = TRAP_USERMODE(tf);
    237   1.1    chris 
    238  1.39      scw 	/* Grab the current pcb */
    239  1.39      scw 	pcb = &l->l_addr->u_pcb;
    240   1.1    chris 
    241  1.39      scw 	/* Invoke the appropriate handler, if necessary */
    242  1.39      scw 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    243  1.39      scw 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    244  1.39      scw 		    l, &ksi))
    245  1.39      scw 			goto do_trapsignal;
    246  1.39      scw 		goto out;
    247  1.39      scw 	}
    248   1.1    chris 
    249   1.1    chris 	/*
    250  1.39      scw 	 * At this point, we're dealing with one of the following data aborts:
    251  1.39      scw 	 *
    252  1.39      scw 	 *  FAULT_TRANS_S  - Translation -- Section
    253  1.39      scw 	 *  FAULT_TRANS_P  - Translation -- Page
    254  1.39      scw 	 *  FAULT_DOMAIN_S - Domain -- Section
    255  1.39      scw 	 *  FAULT_DOMAIN_P - Domain -- Page
    256  1.39      scw 	 *  FAULT_PERM_S   - Permission -- Section
    257  1.39      scw 	 *  FAULT_PERM_P   - Permission -- Page
    258  1.39      scw 	 *
    259  1.39      scw 	 * These are the main virtual memory-related faults signalled by
    260  1.39      scw 	 * the MMU.
    261   1.1    chris 	 */
    262   1.1    chris 
    263   1.1    chris 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    264  1.39      scw 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    265  1.39      scw 		tf->tf_r0 = EFAULT;
    266  1.39      scw 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    267   1.1    chris 		return;
    268   1.1    chris 	}
    269   1.1    chris 
    270  1.39      scw 	if (user)
    271  1.39      scw 		l->l_addr->u_pcb.pcb_tf = tf;
    272   1.1    chris 
    273  1.40      scw 	/*
    274  1.40      scw 	 * Make sure the Program Counter is sane. We could fall foul of
    275  1.40      scw 	 * someone executing Thumb code, in which case the PC might not
    276  1.40      scw 	 * be word-aligned. This would cause a kernel alignment fault
    277  1.40      scw 	 * further down if we have to decode the current instruction.
    278  1.40      scw 	 * XXX: It would be nice to be able to support Thumb at some point.
    279  1.40      scw 	 */
    280  1.40      scw 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    281  1.40      scw 		if (user) {
    282  1.40      scw 			/*
    283  1.40      scw 			 * Give the user an illegal instruction signal.
    284  1.40      scw 			 */
    285  1.40      scw 			/* Deliver a SIGILL to the process */
    286  1.40      scw 			KSI_INIT_TRAP(&ksi);
    287  1.40      scw 			ksi.ksi_signo = SIGILL;
    288  1.40      scw 			ksi.ksi_code = ILL_ILLOPC;
    289  1.40      scw 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    290  1.40      scw 			ksi.ksi_trap = fsr;
    291  1.40      scw 			goto do_trapsignal;
    292  1.40      scw 		}
    293  1.40      scw 
    294  1.40      scw 		/*
    295  1.40      scw 		 * The kernel never executes Thumb code.
    296  1.40      scw 		 */
    297  1.40      scw 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    298  1.40      scw 		    "Program Counter\n");
    299  1.40      scw 		dab_fatal(tf, fsr, far, l, NULL);
    300  1.27      scw 	}
    301  1.27      scw 
    302  1.41      scw 	/* See if the cpu state needs to be fixed up */
    303  1.41      scw 	switch (data_abort_fixup(tf, fsr, far, l)) {
    304  1.41      scw 	case ABORT_FIXUP_RETURN:
    305  1.41      scw 		return;
    306  1.41      scw 	case ABORT_FIXUP_FAILED:
    307  1.41      scw 		/* Deliver a SIGILL to the process */
    308  1.41      scw 		KSI_INIT_TRAP(&ksi);
    309  1.41      scw 		ksi.ksi_signo = SIGILL;
    310  1.41      scw 		ksi.ksi_code = ILL_ILLOPC;
    311  1.41      scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    312  1.41      scw 		ksi.ksi_trap = fsr;
    313  1.41      scw 		goto do_trapsignal;
    314  1.41      scw 	default:
    315  1.41      scw 		break;
    316  1.41      scw 	}
    317  1.41      scw 
    318  1.39      scw 	va = trunc_page((vaddr_t)far);
    319   1.1    chris 
    320  1.27      scw 	/*
    321  1.27      scw 	 * It is only a kernel address space fault iff:
    322  1.27      scw 	 *	1. user == 0  and
    323  1.27      scw 	 *	2. pcb_onfault not set or
    324  1.41      scw 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    325  1.27      scw 	 */
    326  1.39      scw 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    327  1.41      scw 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    328  1.41      scw 	    __predict_true((pcb->pcb_onfault == NULL ||
    329  1.41      scw 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    330  1.39      scw 		map = kernel_map;
    331  1.39      scw 
    332  1.27      scw 		/* Was the fault due to the FPE/IPKDB ? */
    333  1.39      scw 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    334  1.35  thorpej 			KSI_INIT_TRAP(&ksi);
    335  1.34     matt 			ksi.ksi_signo = SIGSEGV;
    336  1.39      scw 			ksi.ksi_code = SEGV_ACCERR;
    337  1.39      scw 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    338  1.39      scw 			ksi.ksi_trap = fsr;
    339  1.27      scw 
    340  1.27      scw 			/*
    341  1.27      scw 			 * Force exit via userret()
    342  1.39      scw 			 * This is necessary as the FPE is an extension to
    343  1.39      scw 			 * userland that actually runs in a priveledged mode
    344  1.39      scw 			 * but uses USR mode permissions for its accesses.
    345  1.27      scw 			 */
    346  1.39      scw 			user = 1;
    347  1.39      scw 			goto do_trapsignal;
    348  1.27      scw 		}
    349  1.32       cl 	} else {
    350  1.39      scw 		map = &l->l_proc->p_vmspace->vm_map;
    351  1.32       cl 		if (l->l_flag & L_SA) {
    352  1.39      scw 			KDASSERT(l->l_proc->p_sa != NULL);
    353  1.39      scw 			l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
    354  1.32       cl 			l->l_flag |= L_SA_PAGEFAULT;
    355  1.32       cl 		}
    356  1.32       cl 	}
    357   1.1    chris 
    358  1.27      scw 	/*
    359  1.27      scw 	 * We need to know whether the page should be mapped
    360  1.27      scw 	 * as R or R/W. The MMU does not give us the info as
    361  1.27      scw 	 * to whether the fault was caused by a read or a write.
    362  1.39      scw 	 *
    363  1.39      scw 	 * However, we know that a permission fault can only be
    364  1.39      scw 	 * the result of a write to a read-only location, so
    365  1.39      scw 	 * we can deal with those quickly.
    366  1.39      scw 	 *
    367  1.39      scw 	 * Otherwise we need to disassemble the instruction
    368  1.39      scw 	 * responsible to determine if it was a write.
    369  1.27      scw 	 */
    370  1.39      scw 	if (IS_PERMISSION_FAULT(fsr))
    371  1.27      scw 		ftype = VM_PROT_WRITE;
    372  1.39      scw 	else {
    373  1.39      scw 		u_int insn = ReadWord(tf->tf_pc);
    374  1.39      scw 
    375  1.39      scw 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
    376  1.39      scw 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
    377  1.39      scw 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
    378  1.39      scw 			ftype = VM_PROT_WRITE;
    379  1.39      scw 		else
    380  1.39      scw 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
    381  1.39      scw 			ftype = VM_PROT_READ | VM_PROT_WRITE;
    382  1.39      scw 		else
    383  1.39      scw 			ftype = VM_PROT_READ;
    384  1.39      scw 	}
    385  1.39      scw 
    386  1.39      scw 	/*
    387  1.39      scw 	 * See if the fault is as a result of ref/mod emulation,
    388  1.39      scw 	 * or domain mismatch.
    389  1.39      scw 	 */
    390  1.39      scw #ifdef DEBUG
    391  1.39      scw 	last_fault_code = fsr;
    392   1.1    chris #endif
    393  1.42   briggs 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    394  1.42   briggs 		if (map != kernel_map)
    395  1.42   briggs 			l->l_flag &= ~L_SA_PAGEFAULT;
    396  1.27      scw 		goto out;
    397  1.42   briggs 	}
    398   1.1    chris 
    399  1.39      scw 	if (__predict_false(current_intr_depth > 0)) {
    400  1.45      scw 		if (pcb->pcb_onfault) {
    401  1.45      scw 			tf->tf_r0 = EINVAL;
    402  1.45      scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    403  1.45      scw 			return;
    404  1.45      scw 		}
    405  1.39      scw 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    406  1.39      scw 		dab_fatal(tf, fsr, far, l, NULL);
    407  1.27      scw 	}
    408   1.1    chris 
    409  1.27      scw 	onfault = pcb->pcb_onfault;
    410  1.27      scw 	pcb->pcb_onfault = NULL;
    411  1.39      scw 	error = uvm_fault(map, va, 0, ftype);
    412  1.27      scw 	pcb->pcb_onfault = onfault;
    413  1.39      scw 
    414  1.32       cl 	if (map != kernel_map)
    415  1.32       cl 		l->l_flag &= ~L_SA_PAGEFAULT;
    416  1.39      scw 
    417  1.39      scw 	if (__predict_true(error == 0)) {
    418  1.39      scw 		if (user)
    419  1.39      scw 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    420  1.27      scw 		goto out;
    421  1.27      scw 	}
    422  1.39      scw 
    423  1.27      scw 	if (user == 0) {
    424  1.27      scw 		if (pcb->pcb_onfault) {
    425  1.39      scw 			tf->tf_r0 = error;
    426  1.39      scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    427  1.39      scw 			return;
    428   1.1    chris 		}
    429  1.39      scw 
    430  1.39      scw 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
    431  1.39      scw 		    error);
    432  1.39      scw 		dab_fatal(tf, fsr, far, l, NULL);
    433  1.27      scw 	}
    434   1.1    chris 
    435  1.43      scw 	KSI_INIT_TRAP(&ksi);
    436  1.43      scw 
    437  1.39      scw 	if (error == ENOMEM) {
    438  1.39      scw 		printf("UVM: pid %d (%s), uid %d killed: "
    439  1.39      scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    440  1.39      scw 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    441  1.39      scw 		     l->l_proc->p_ucred->cr_uid : -1);
    442  1.43      scw 		ksi.ksi_signo = SIGKILL;
    443  1.43      scw 	} else
    444  1.43      scw 		ksi.ksi_signo = SIGSEGV;
    445  1.34     matt 
    446  1.39      scw 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    447  1.39      scw 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    448  1.39      scw 	ksi.ksi_trap = fsr;
    449  1.39      scw 
    450  1.39      scw do_trapsignal:
    451  1.39      scw 	call_trapsignal(l, &ksi);
    452  1.39      scw out:
    453  1.39      scw 	/* If returning to user mode, make sure to invoke userret() */
    454  1.39      scw 	if (user)
    455  1.39      scw 		userret(l);
    456  1.39      scw }
    457  1.39      scw 
    458  1.39      scw /*
    459  1.39      scw  * dab_fatal() handles the following data aborts:
    460  1.39      scw  *
    461  1.39      scw  *  FAULT_WRTBUF_0 - Vector Exception
    462  1.39      scw  *  FAULT_WRTBUF_1 - Terminal Exception
    463  1.39      scw  *
    464  1.39      scw  * We should never see these on a properly functioning system.
    465  1.39      scw  *
    466  1.39      scw  * This function is also called by the other handlers if they
    467  1.39      scw  * detect a fatal problem.
    468  1.39      scw  *
    469  1.39      scw  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    470  1.39      scw  */
    471  1.39      scw static int
    472  1.39      scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    473  1.39      scw {
    474  1.39      scw 	const char *mode;
    475  1.39      scw 
    476  1.39      scw 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    477  1.39      scw 
    478  1.39      scw 	if (l != NULL) {
    479  1.39      scw 		printf("Fatal %s mode data abort: '%s'\n", mode,
    480  1.39      scw 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    481  1.44      scw 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    482  1.39      scw 		if ((fsr & FAULT_IMPRECISE) == 0)
    483  1.44      scw 			printf("%08x, ", far);
    484  1.39      scw 		else
    485  1.44      scw 			printf("Invalid,  ");
    486  1.44      scw 		printf("spsr=%08x\n", tf->tf_spsr);
    487  1.39      scw 	} else {
    488  1.44      scw 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    489  1.44      scw 		    mode, tf->tf_pc);
    490  1.44      scw 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    491  1.44      scw 	}
    492  1.44      scw 
    493  1.44      scw 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    494  1.44      scw 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    495  1.44      scw 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    496  1.44      scw 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    497  1.44      scw 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    498  1.44      scw 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    499  1.44      scw 	printf("r12=%08x, ", tf->tf_r12);
    500  1.44      scw 
    501  1.44      scw 	if (TRAP_USERMODE(tf))
    502  1.44      scw 		printf("usp=%08x, ulr=%08x",
    503  1.44      scw 		    tf->tf_usr_sp, tf->tf_usr_lr);
    504  1.44      scw 	else
    505  1.44      scw 		printf("ssp=%08x, slr=%08x",
    506  1.44      scw 		    tf->tf_svc_sp, tf->tf_svc_lr);
    507  1.44      scw 	printf(", pc =%08x\n\n", tf->tf_pc);
    508  1.34     matt 
    509  1.39      scw #if defined(DDB) || defined(KGDB)
    510  1.39      scw 	kdb_trap(T_FAULT, tf);
    511  1.34     matt #endif
    512  1.39      scw 	panic("Fatal abort");
    513  1.39      scw 	/*NOTREACHED*/
    514  1.39      scw }
    515  1.39      scw 
    516  1.39      scw /*
    517  1.39      scw  * dab_align() handles the following data aborts:
    518  1.39      scw  *
    519  1.39      scw  *  FAULT_ALIGN_0 - Alignment fault
    520  1.39      scw  *  FAULT_ALIGN_0 - Alignment fault
    521  1.39      scw  *
    522  1.39      scw  * These faults are fatal if they happen in kernel mode. Otherwise, we
    523  1.39      scw  * deliver a bus error to the process.
    524  1.39      scw  */
    525  1.39      scw static int
    526  1.39      scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    527  1.39      scw {
    528  1.39      scw 
    529  1.39      scw 	/* Alignment faults are always fatal if they occur in kernel mode */
    530  1.39      scw 	if (!TRAP_USERMODE(tf))
    531  1.39      scw 		dab_fatal(tf, fsr, far, l, NULL);
    532  1.39      scw 
    533  1.39      scw 	/* pcb_onfault *must* be NULL at this point */
    534  1.39      scw 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
    535  1.39      scw 
    536  1.39      scw 	/* See if the cpu state needs to be fixed up */
    537  1.39      scw 	(void) data_abort_fixup(tf, fsr, far, l);
    538  1.39      scw 
    539  1.39      scw 	/* Deliver a bus error signal to the process */
    540  1.39      scw 	KSI_INIT_TRAP(ksi);
    541  1.39      scw 	ksi->ksi_signo = SIGBUS;
    542  1.39      scw 	ksi->ksi_code = BUS_ADRALN;
    543  1.39      scw 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    544  1.39      scw 	ksi->ksi_trap = fsr;
    545  1.39      scw 
    546  1.39      scw 	l->l_addr->u_pcb.pcb_tf = tf;
    547  1.39      scw 
    548  1.39      scw 	return (1);
    549  1.39      scw }
    550  1.39      scw 
    551  1.39      scw /*
    552  1.39      scw  * dab_buserr() handles the following data aborts:
    553  1.39      scw  *
    554  1.39      scw  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    555  1.39      scw  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    556  1.39      scw  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    557  1.39      scw  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    558  1.39      scw  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    559  1.39      scw  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    560  1.39      scw  *
    561  1.39      scw  * If pcb_onfault is set, flag the fault and return to the handler.
    562  1.39      scw  * If the fault occurred in user mode, give the process a SIGBUS.
    563  1.39      scw  *
    564  1.39      scw  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    565  1.39      scw  * can be flagged as imprecise in the FSR. This causes a real headache
    566  1.39      scw  * since some of the machine state is lost. In this case, tf->tf_pc
    567  1.39      scw  * may not actually point to the offending instruction. In fact, if
    568  1.39      scw  * we've taken a double abort fault, it generally points somewhere near
    569  1.39      scw  * the top of "data_abort_entry" in exception.S.
    570  1.39      scw  *
    571  1.39      scw  * In all other cases, these data aborts are considered fatal.
    572  1.39      scw  */
    573  1.39      scw static int
    574  1.39      scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    575  1.39      scw     ksiginfo_t *ksi)
    576  1.39      scw {
    577  1.39      scw 	struct pcb *pcb = &l->l_addr->u_pcb;
    578  1.39      scw 
    579  1.39      scw #ifdef __XSCALE__
    580  1.39      scw 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    581  1.39      scw 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    582  1.39      scw 		/*
    583  1.39      scw 		 * Oops, an imprecise, double abort fault. We've lost the
    584  1.39      scw 		 * r14_abt/spsr_abt values corresponding to the original
    585  1.39      scw 		 * abort, and the spsr saved in the trapframe indicates
    586  1.39      scw 		 * ABT mode.
    587  1.39      scw 		 */
    588  1.39      scw 		tf->tf_spsr &= ~PSR_MODE;
    589  1.39      scw 
    590  1.39      scw 		/*
    591  1.39      scw 		 * We use a simple heuristic to determine if the double abort
    592  1.39      scw 		 * happened as a result of a kernel or user mode access.
    593  1.39      scw 		 * If the current trapframe is at the top of the kernel stack,
    594  1.39      scw 		 * the fault _must_ have come from user mode.
    595  1.39      scw 		 */
    596  1.39      scw 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    597  1.39      scw 			/*
    598  1.39      scw 			 * Kernel mode. We're either about to die a
    599  1.39      scw 			 * spectacular death, or pcb_onfault will come
    600  1.39      scw 			 * to our rescue. Either way, the current value
    601  1.39      scw 			 * of tf->tf_pc is irrelevant.
    602  1.39      scw 			 */
    603  1.39      scw 			tf->tf_spsr |= PSR_SVC32_MODE;
    604  1.39      scw 			if (pcb->pcb_onfault == NULL)
    605  1.39      scw 				printf("\nKernel mode double abort!\n");
    606  1.39      scw 		} else {
    607  1.39      scw 			/*
    608  1.39      scw 			 * User mode. We've lost the program counter at the
    609  1.39      scw 			 * time of the fault (not that it was accurate anyway;
    610  1.39      scw 			 * it's not called an imprecise fault for nothing).
    611  1.39      scw 			 * About all we can do is copy r14_usr to tf_pc and
    612  1.39      scw 			 * hope for the best. The process is about to get a
    613  1.39      scw 			 * SIGBUS, so it's probably history anyway.
    614  1.39      scw 			 */
    615  1.39      scw 			tf->tf_spsr |= PSR_USR32_MODE;
    616  1.39      scw 			tf->tf_pc = tf->tf_usr_lr;
    617  1.39      scw 		}
    618  1.39      scw 	}
    619  1.39      scw 
    620  1.39      scw 	/* FAR is invalid for imprecise exceptions */
    621  1.39      scw 	if ((fsr & FAULT_IMPRECISE) != 0)
    622  1.39      scw 		far = 0;
    623  1.39      scw #endif /* __XSCALE__ */
    624  1.39      scw 
    625  1.39      scw 	if (pcb->pcb_onfault) {
    626  1.39      scw 		KDASSERT(TRAP_USERMODE(tf) == 0);
    627  1.39      scw 		tf->tf_r0 = EFAULT;
    628  1.39      scw 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    629  1.39      scw 		return (0);
    630  1.39      scw 	}
    631  1.39      scw 
    632  1.39      scw 	/* See if the cpu state needs to be fixed up */
    633  1.39      scw 	(void) data_abort_fixup(tf, fsr, far, l);
    634  1.39      scw 
    635  1.39      scw 	/*
    636  1.39      scw 	 * At this point, if the fault happened in kernel mode, we're toast
    637  1.39      scw 	 */
    638  1.39      scw 	if (!TRAP_USERMODE(tf))
    639  1.39      scw 		dab_fatal(tf, fsr, far, l, NULL);
    640  1.39      scw 
    641  1.39      scw 	/* Deliver a bus error signal to the process */
    642  1.39      scw 	KSI_INIT_TRAP(ksi);
    643  1.39      scw 	ksi->ksi_signo = SIGBUS;
    644  1.39      scw 	ksi->ksi_code = BUS_ADRERR;
    645  1.39      scw 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    646  1.39      scw 	ksi->ksi_trap = fsr;
    647  1.39      scw 
    648  1.39      scw 	l->l_addr->u_pcb.pcb_tf = tf;
    649  1.27      scw 
    650  1.39      scw 	return (1);
    651   1.1    chris }
    652   1.1    chris 
    653  1.39      scw static __inline int
    654  1.39      scw prefetch_abort_fixup(trapframe_t *tf)
    655  1.39      scw {
    656  1.39      scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    657  1.39      scw 	int error;
    658  1.39      scw 
    659  1.39      scw 	/* Call the cpu specific prefetch abort fixup routine */
    660  1.39      scw 	error = cpu_prefetchabt_fixup(tf);
    661  1.39      scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    662  1.39      scw 		return (error);
    663  1.39      scw 
    664  1.39      scw 	/*
    665  1.39      scw 	 * Oops, couldn't fix up the instruction
    666  1.39      scw 	 */
    667  1.39      scw 	printf(
    668  1.39      scw 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
    669  1.39      scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    670  1.39      scw 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    671  1.39      scw 	    *((u_int *)tf->tf_pc));
    672  1.39      scw 	disassemble(tf->tf_pc);
    673  1.39      scw 
    674  1.39      scw 	/* Die now if this happened in kernel mode */
    675  1.39      scw 	if (!TRAP_USERMODE(tf))
    676  1.39      scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    677  1.39      scw 
    678  1.39      scw 	return (error);
    679  1.39      scw #else
    680  1.39      scw 	return (ABORT_FIXUP_OK);
    681  1.39      scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    682  1.39      scw }
    683   1.1    chris 
    684   1.1    chris /*
    685  1.39      scw  * void prefetch_abort_handler(trapframe_t *tf)
    686   1.1    chris  *
    687   1.1    chris  * Abort handler called when instruction execution occurs at
    688   1.1    chris  * a non existent or restricted (access permissions) memory page.
    689   1.1    chris  * If the address is invalid and we were in SVC mode then panic as
    690   1.1    chris  * the kernel should never prefetch abort.
    691   1.1    chris  * If the address is invalid and the page is mapped then the user process
    692   1.1    chris  * does no have read permission so send it a signal.
    693   1.1    chris  * Otherwise fault the page in and try again.
    694   1.1    chris  */
    695   1.1    chris void
    696  1.39      scw prefetch_abort_handler(trapframe_t *tf)
    697   1.1    chris {
    698  1.26  thorpej 	struct lwp *l;
    699  1.14  thorpej 	struct vm_map *map;
    700  1.14  thorpej 	vaddr_t fault_pc, va;
    701  1.39      scw 	ksiginfo_t ksi;
    702   1.1    chris 	int error;
    703  1.39      scw 
    704  1.39      scw 	/* Update vmmeter statistics */
    705  1.39      scw 	uvmexp.traps++;
    706   1.1    chris 
    707   1.1    chris 	/*
    708   1.1    chris 	 * Enable IRQ's (disabled by the abort) This always comes
    709   1.1    chris 	 * from user mode so we know interrupts were not disabled.
    710   1.1    chris 	 * But we check anyway.
    711   1.1    chris 	 */
    712  1.41      scw 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    713   1.1    chris 		enable_interrupts(I32_bit);
    714   1.1    chris 
    715  1.39      scw 	/* See if the cpu state needs to be fixed up */
    716  1.39      scw 	switch (prefetch_abort_fixup(tf)) {
    717  1.39      scw 	case ABORT_FIXUP_RETURN:
    718   1.1    chris 		return;
    719  1.39      scw 	case ABORT_FIXUP_FAILED:
    720  1.39      scw 		/* Deliver a SIGILL to the process */
    721  1.39      scw 		KSI_INIT_TRAP(&ksi);
    722  1.39      scw 		ksi.ksi_signo = SIGILL;
    723  1.39      scw 		ksi.ksi_code = ILL_ILLOPC;
    724  1.39      scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    725  1.39      scw 		l = curlwp;
    726  1.39      scw 		l->l_addr->u_pcb.pcb_tf = tf;
    727  1.39      scw 		goto do_trapsignal;
    728  1.39      scw 	default:
    729  1.39      scw 		break;
    730   1.1    chris 	}
    731   1.1    chris 
    732  1.39      scw 	/* Prefetch aborts cannot happen in kernel mode */
    733  1.39      scw 	if (__predict_false(!TRAP_USERMODE(tf)))
    734  1.39      scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    735   1.1    chris 
    736   1.4  thorpej 	/* Get fault address */
    737  1.39      scw 	fault_pc = tf->tf_pc;
    738  1.39      scw 	l = curlwp;
    739  1.39      scw 	l->l_addr->u_pcb.pcb_tf = tf;
    740  1.14  thorpej 
    741   1.1    chris 	/* Ok validate the address, can only execute in USER space */
    742  1.39      scw 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    743  1.39      scw 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    744  1.35  thorpej 		KSI_INIT_TRAP(&ksi);
    745  1.34     matt 		ksi.ksi_signo = SIGSEGV;
    746  1.34     matt 		ksi.ksi_code = SEGV_ACCERR;
    747  1.39      scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    748  1.34     matt 		ksi.ksi_trap = fault_pc;
    749  1.39      scw 		goto do_trapsignal;
    750  1.39      scw 	}
    751  1.34     matt 
    752  1.39      scw 	map = &l->l_proc->p_vmspace->vm_map;
    753  1.39      scw 	va = trunc_page(fault_pc);
    754   1.1    chris 
    755  1.27      scw 	/*
    756  1.27      scw 	 * See if the pmap can handle this fault on its own...
    757  1.27      scw 	 */
    758  1.39      scw #ifdef DEBUG
    759  1.39      scw 	last_fault_code = -1;
    760  1.39      scw #endif
    761  1.29      scw 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
    762  1.39      scw 		goto out;
    763  1.27      scw 
    764  1.39      scw #ifdef DIAGNOSTIC
    765  1.39      scw 	if (__predict_false(current_intr_depth > 0)) {
    766  1.39      scw 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    767  1.39      scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    768  1.39      scw 	}
    769   1.1    chris #endif
    770  1.39      scw 
    771  1.39      scw 	error = uvm_fault(map, va, 0, VM_PROT_READ);
    772  1.39      scw 	if (__predict_true(error == 0))
    773  1.39      scw 		goto out;
    774  1.39      scw 
    775  1.43      scw 	KSI_INIT_TRAP(&ksi);
    776  1.43      scw 
    777  1.39      scw 	if (error == ENOMEM) {
    778  1.39      scw 		printf("UVM: pid %d (%s), uid %d killed: "
    779  1.39      scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    780  1.39      scw 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    781  1.39      scw 		     l->l_proc->p_ucred->cr_uid : -1);
    782  1.43      scw 		ksi.ksi_signo = SIGKILL;
    783  1.43      scw 	} else
    784  1.43      scw 		ksi.ksi_signo = SIGSEGV;
    785   1.1    chris 
    786  1.39      scw 	ksi.ksi_code = SEGV_MAPERR;
    787  1.39      scw 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    788  1.39      scw 	ksi.ksi_trap = fault_pc;
    789  1.39      scw 
    790  1.39      scw do_trapsignal:
    791  1.39      scw 	call_trapsignal(l, &ksi);
    792  1.39      scw 
    793  1.39      scw out:
    794  1.39      scw 	userret(l);
    795  1.39      scw }
    796  1.39      scw 
    797  1.39      scw /*
    798  1.39      scw  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    799  1.39      scw  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    800  1.39      scw  * Else, return EFAULT.
    801  1.39      scw  */
    802  1.39      scw int
    803  1.39      scw badaddr_read(void *addr, size_t size, void *rptr)
    804  1.39      scw {
    805  1.39      scw 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    806  1.39      scw 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    807  1.39      scw 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    808  1.39      scw 	union {
    809  1.39      scw 		uint8_t v1;
    810  1.39      scw 		uint16_t v2;
    811  1.39      scw 		uint32_t v4;
    812  1.39      scw 	} u;
    813  1.47      scw 	struct pcb *curpcb_save;
    814  1.47      scw 	int rv, s;
    815  1.39      scw 
    816  1.39      scw 	cpu_drain_writebuf();
    817  1.39      scw 
    818  1.47      scw 	/*
    819  1.47      scw 	 * We might be called at interrupt time, so arrange to steal
    820  1.47      scw 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
    821  1.47      scw 	 * handling works correctly.
    822  1.47      scw 	 */
    823  1.47      scw 	s = splhigh();
    824  1.47      scw 	if ((curpcb_save = curpcb) == NULL)
    825  1.47      scw 		curpcb = &lwp0.l_addr->u_pcb;
    826  1.47      scw 
    827  1.39      scw 	/* Read from the test address. */
    828  1.39      scw 	switch (size) {
    829  1.39      scw 	case sizeof(uint8_t):
    830  1.39      scw 		rv = badaddr_read_1(addr, &u.v1);
    831  1.39      scw 		if (rv == 0 && rptr)
    832  1.39      scw 			*(uint8_t *) rptr = u.v1;
    833  1.39      scw 		break;
    834  1.39      scw 
    835  1.39      scw 	case sizeof(uint16_t):
    836  1.39      scw 		rv = badaddr_read_2(addr, &u.v2);
    837  1.39      scw 		if (rv == 0 && rptr)
    838  1.39      scw 			*(uint16_t *) rptr = u.v2;
    839  1.39      scw 		break;
    840  1.39      scw 
    841  1.39      scw 	case sizeof(uint32_t):
    842  1.39      scw 		rv = badaddr_read_4(addr, &u.v4);
    843  1.39      scw 		if (rv == 0 && rptr)
    844  1.39      scw 			*(uint32_t *) rptr = u.v4;
    845  1.39      scw 		break;
    846  1.39      scw 
    847  1.39      scw 	default:
    848  1.47      scw 		curpcb = curpcb_save;
    849  1.39      scw 		panic("badaddr: invalid size (%lu)", (u_long) size);
    850  1.34     matt 	}
    851  1.39      scw 
    852  1.47      scw 	/* Restore curpcb */
    853  1.47      scw 	curpcb = curpcb_save;
    854  1.47      scw 	splx(s);
    855  1.47      scw 
    856  1.39      scw 	/* Return EFAULT if the address was invalid, else zero */
    857  1.39      scw 	return (rv);
    858   1.1    chris }
    859