Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.84
      1  1.84      matt /*	$NetBSD: fault.c,v 1.84 2012/08/29 16:48:11 matt Exp $	*/
      2   1.1     chris 
      3   1.1     chris /*
      4  1.27       scw  * Copyright 2003 Wasabi Systems, Inc.
      5  1.27       scw  * All rights reserved.
      6  1.27       scw  *
      7  1.27       scw  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  1.27       scw  *
      9  1.27       scw  * Redistribution and use in source and binary forms, with or without
     10  1.27       scw  * modification, are permitted provided that the following conditions
     11  1.27       scw  * are met:
     12  1.27       scw  * 1. Redistributions of source code must retain the above copyright
     13  1.27       scw  *    notice, this list of conditions and the following disclaimer.
     14  1.27       scw  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.27       scw  *    notice, this list of conditions and the following disclaimer in the
     16  1.27       scw  *    documentation and/or other materials provided with the distribution.
     17  1.27       scw  * 3. All advertising materials mentioning features or use of this software
     18  1.27       scw  *    must display the following acknowledgement:
     19  1.27       scw  *      This product includes software developed for the NetBSD Project by
     20  1.27       scw  *      Wasabi Systems, Inc.
     21  1.27       scw  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.27       scw  *    or promote products derived from this software without specific prior
     23  1.27       scw  *    written permission.
     24  1.27       scw  *
     25  1.27       scw  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.27       scw  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.27       scw  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.27       scw  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.27       scw  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.27       scw  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.27       scw  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.27       scw  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.27       scw  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.27       scw  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.27       scw  * POSSIBILITY OF SUCH DAMAGE.
     36  1.27       scw  */
     37  1.27       scw /*
     38   1.1     chris  * Copyright (c) 1994-1997 Mark Brinicombe.
     39   1.1     chris  * Copyright (c) 1994 Brini.
     40   1.1     chris  * All rights reserved.
     41   1.1     chris  *
     42   1.1     chris  * This code is derived from software written for Brini by Mark Brinicombe
     43   1.1     chris  *
     44   1.1     chris  * Redistribution and use in source and binary forms, with or without
     45   1.1     chris  * modification, are permitted provided that the following conditions
     46   1.1     chris  * are met:
     47   1.1     chris  * 1. Redistributions of source code must retain the above copyright
     48   1.1     chris  *    notice, this list of conditions and the following disclaimer.
     49   1.1     chris  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1     chris  *    notice, this list of conditions and the following disclaimer in the
     51   1.1     chris  *    documentation and/or other materials provided with the distribution.
     52   1.1     chris  * 3. All advertising materials mentioning features or use of this software
     53   1.1     chris  *    must display the following acknowledgement:
     54   1.1     chris  *	This product includes software developed by Brini.
     55   1.1     chris  * 4. The name of the company nor the name of the author may be used to
     56   1.1     chris  *    endorse or promote products derived from this software without specific
     57   1.1     chris  *    prior written permission.
     58   1.1     chris  *
     59   1.1     chris  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60   1.1     chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61   1.1     chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62   1.1     chris  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63   1.1     chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64   1.1     chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65   1.1     chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66   1.1     chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67   1.1     chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68   1.1     chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69   1.1     chris  * SUCH DAMAGE.
     70   1.1     chris  *
     71   1.1     chris  * RiscBSD kernel project
     72   1.1     chris  *
     73   1.1     chris  * fault.c
     74   1.1     chris  *
     75   1.1     chris  * Fault handlers
     76   1.1     chris  *
     77   1.1     chris  * Created      : 28/11/94
     78   1.1     chris  */
     79   1.1     chris 
     80   1.1     chris #include "opt_ddb.h"
     81  1.28    briggs #include "opt_kgdb.h"
     82   1.1     chris 
     83   1.1     chris #include <sys/types.h>
     84  1.84      matt __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.84 2012/08/29 16:48:11 matt Exp $");
     85  1.21     bjh21 
     86   1.1     chris #include <sys/param.h>
     87   1.1     chris #include <sys/systm.h>
     88   1.1     chris #include <sys/proc.h>
     89   1.1     chris #include <sys/kernel.h>
     90  1.60      yamt #include <sys/kauth.h>
     91  1.65      matt #include <sys/cpu.h>
     92   1.1     chris 
     93   1.1     chris #include <uvm/uvm_extern.h>
     94  1.50  rearnsha #include <uvm/uvm_stat.h>
     95  1.50  rearnsha #ifdef UVMHIST
     96  1.50  rearnsha #include <uvm/uvm.h>
     97  1.50  rearnsha #endif
     98  1.18   thorpej 
     99  1.18   thorpej #include <arm/cpuconf.h>
    100   1.1     chris 
    101   1.5   thorpej #include <arm/arm32/katelib.h>
    102  1.83      matt 
    103   1.2      matt #include <machine/intr.h>
    104  1.83      matt #include <machine/pcb.h>
    105  1.28    briggs #if defined(DDB) || defined(KGDB)
    106   1.1     chris #include <machine/db_machdep.h>
    107  1.28    briggs #ifdef KGDB
    108  1.28    briggs #include <sys/kgdb.h>
    109  1.28    briggs #endif
    110  1.28    briggs #if !defined(DDB)
    111  1.28    briggs #define kdb_trap	kgdb_trap
    112  1.28    briggs #endif
    113   1.1     chris #endif
    114   1.1     chris 
    115   1.1     chris #include <arch/arm/arm/disassem.h>
    116   1.7     chris #include <arm/arm32/machdep.h>
    117   1.7     chris 
    118   1.1     chris extern char fusubailout[];
    119   1.1     chris 
    120  1.27       scw #ifdef DEBUG
    121  1.27       scw int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    122  1.27       scw #endif
    123  1.27       scw 
    124  1.39       scw #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    125  1.39       scw     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    126  1.39       scw /* These CPUs may need data/prefetch abort fixups */
    127  1.39       scw #define	CPU_ABORT_FIXUP_REQUIRED
    128  1.39       scw #endif
    129   1.7     chris 
    130  1.39       scw struct data_abort {
    131  1.39       scw 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132  1.39       scw 	const char *desc;
    133  1.39       scw };
    134   1.1     chris 
    135  1.39       scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136  1.39       scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    137  1.39       scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    138  1.39       scw 
    139  1.39       scw static const struct data_abort data_aborts[] = {
    140  1.39       scw 	{dab_fatal,	"Vector Exception"},
    141  1.39       scw 	{dab_align,	"Alignment Fault 1"},
    142  1.39       scw 	{dab_fatal,	"Terminal Exception"},
    143  1.39       scw 	{dab_align,	"Alignment Fault 3"},
    144  1.39       scw 	{dab_buserr,	"External Linefetch Abort (S)"},
    145  1.39       scw 	{NULL,		"Translation Fault (S)"},
    146  1.39       scw 	{dab_buserr,	"External Linefetch Abort (P)"},
    147  1.39       scw 	{NULL,		"Translation Fault (P)"},
    148  1.39       scw 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    149  1.39       scw 	{NULL,		"Domain Fault (S)"},
    150  1.39       scw 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    151  1.39       scw 	{NULL,		"Domain Fault (P)"},
    152  1.39       scw 	{dab_buserr,	"External Translation Abort (L1)"},
    153  1.39       scw 	{NULL,		"Permission Fault (S)"},
    154  1.39       scw 	{dab_buserr,	"External Translation Abort (L2)"},
    155  1.39       scw 	{NULL,		"Permission Fault (P)"}
    156  1.39       scw };
    157   1.1     chris 
    158  1.39       scw /* Determine if 'x' is a permission fault */
    159  1.39       scw #define	IS_PERMISSION_FAULT(x)					\
    160  1.39       scw 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    161  1.39       scw 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    162   1.1     chris 
    163  1.39       scw #if 0
    164  1.39       scw /* maybe one day we'll do emulations */
    165  1.39       scw #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    166  1.39       scw #else
    167  1.39       scw #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    168   1.1     chris #endif
    169   1.3   thorpej 
    170  1.56     perry static inline void
    171  1.39       scw call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    172   1.3   thorpej {
    173   1.3   thorpej 
    174  1.39       scw 	TRAPSIGNAL(l, ksi);
    175  1.39       scw }
    176   1.3   thorpej 
    177  1.56     perry static inline int
    178  1.39       scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    179  1.39       scw {
    180  1.39       scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    181  1.39       scw 	int error;
    182   1.3   thorpej 
    183  1.48       wiz 	/* Call the CPU specific data abort fixup routine */
    184  1.39       scw 	error = cpu_dataabt_fixup(tf);
    185  1.39       scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    186  1.39       scw 		return (error);
    187   1.3   thorpej 
    188  1.39       scw 	/*
    189  1.39       scw 	 * Oops, couldn't fix up the instruction
    190  1.39       scw 	 */
    191  1.79  christos 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    192  1.39       scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    193  1.51  rearnsha #ifdef THUMB_CODE
    194  1.51  rearnsha 	if (tf->tf_spsr & PSR_T_bit) {
    195  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    196  1.66     chris 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
    197  1.66     chris 		    *((u_int16 *)((tf->tf_pc + 2) & ~1)));
    198  1.51  rearnsha 	}
    199  1.51  rearnsha 	else
    200  1.51  rearnsha #endif
    201  1.51  rearnsha 	{
    202  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    203  1.51  rearnsha 		    *((u_int *)tf->tf_pc));
    204  1.51  rearnsha 	}
    205  1.39       scw 	disassemble(tf->tf_pc);
    206  1.39       scw 
    207  1.39       scw 	/* Die now if this happened in kernel mode */
    208  1.39       scw 	if (!TRAP_USERMODE(tf))
    209  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    210   1.3   thorpej 
    211  1.39       scw 	return (error);
    212  1.39       scw #else
    213  1.39       scw 	return (ABORT_FIXUP_OK);
    214  1.39       scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    215   1.3   thorpej }
    216   1.3   thorpej 
    217   1.1     chris void
    218  1.39       scw data_abort_handler(trapframe_t *tf)
    219   1.1     chris {
    220  1.39       scw 	struct vm_map *map;
    221  1.83      matt 	struct lwp * const l = curlwp;
    222  1.83      matt 	struct cpu_info * const ci = curcpu();
    223  1.83      matt 	u_int far, fsr;
    224  1.39       scw 	vm_prot_t ftype;
    225   1.1     chris 	void *onfault;
    226  1.27       scw 	vaddr_t va;
    227  1.39       scw 	int error;
    228  1.34      matt 	ksiginfo_t ksi;
    229   1.3   thorpej 
    230  1.50  rearnsha 	UVMHIST_FUNC("data_abort_handler");
    231  1.50  rearnsha 
    232  1.39       scw 	/* Grab FAR/FSR before enabling interrupts */
    233  1.39       scw 	far = cpu_faultaddress();
    234  1.39       scw 	fsr = cpu_faultstatus();
    235   1.1     chris 
    236  1.50  rearnsha 	UVMHIST_CALLED(maphist);
    237  1.39       scw 	/* Update vmmeter statistics */
    238  1.83      matt 	ci->ci_data.cpu_ntrap++;
    239   1.1     chris 
    240  1.39       scw 	/* Re-enable interrupts if they were enabled previously */
    241  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    242  1.72      matt 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    243  1.72      matt 		restore_interrupts(tf->tf_spsr & IF32_bits);
    244   1.1     chris 
    245  1.67      matt 	/* Get the current lwp structure */
    246   1.1     chris 
    247  1.50  rearnsha 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
    248  1.50  rearnsha 	    tf->tf_pc, l, far, fsr);
    249  1.50  rearnsha 
    250  1.39       scw 	/* Data abort came from user mode? */
    251  1.83      matt 	bool user = (TRAP_USERMODE(tf) != 0);
    252  1.83      matt 	if (user)
    253  1.61        ad 		LWP_CACHE_CREDS(l, l->l_proc);
    254   1.1     chris 
    255  1.39       scw 	/* Grab the current pcb */
    256  1.83      matt 	struct pcb * const pcb = lwp_getpcb(l);
    257   1.1     chris 
    258  1.39       scw 	/* Invoke the appropriate handler, if necessary */
    259  1.39       scw 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    260  1.79  christos #ifdef DIAGNOSTIC
    261  1.79  christos 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    262  1.79  christos 		    __func__, fsr, far);
    263  1.79  christos #endif
    264  1.39       scw 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    265  1.39       scw 		    l, &ksi))
    266  1.39       scw 			goto do_trapsignal;
    267  1.39       scw 		goto out;
    268  1.39       scw 	}
    269   1.1     chris 
    270   1.1     chris 	/*
    271  1.39       scw 	 * At this point, we're dealing with one of the following data aborts:
    272  1.39       scw 	 *
    273  1.39       scw 	 *  FAULT_TRANS_S  - Translation -- Section
    274  1.39       scw 	 *  FAULT_TRANS_P  - Translation -- Page
    275  1.39       scw 	 *  FAULT_DOMAIN_S - Domain -- Section
    276  1.39       scw 	 *  FAULT_DOMAIN_P - Domain -- Page
    277  1.39       scw 	 *  FAULT_PERM_S   - Permission -- Section
    278  1.39       scw 	 *  FAULT_PERM_P   - Permission -- Page
    279  1.39       scw 	 *
    280  1.39       scw 	 * These are the main virtual memory-related faults signalled by
    281  1.39       scw 	 * the MMU.
    282   1.1     chris 	 */
    283   1.1     chris 
    284   1.1     chris 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    285  1.39       scw 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    286  1.39       scw 		tf->tf_r0 = EFAULT;
    287  1.83      matt 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    288   1.1     chris 		return;
    289   1.1     chris 	}
    290   1.1     chris 
    291  1.73     rmind 	if (user) {
    292  1.83      matt 		lwp_settrapframe(l, tf);
    293  1.73     rmind 	}
    294   1.1     chris 
    295  1.40       scw 	/*
    296  1.40       scw 	 * Make sure the Program Counter is sane. We could fall foul of
    297  1.40       scw 	 * someone executing Thumb code, in which case the PC might not
    298  1.40       scw 	 * be word-aligned. This would cause a kernel alignment fault
    299  1.40       scw 	 * further down if we have to decode the current instruction.
    300  1.40       scw 	 */
    301  1.51  rearnsha #ifdef THUMB_CODE
    302  1.51  rearnsha 	/*
    303  1.51  rearnsha 	 * XXX: It would be nice to be able to support Thumb in the kernel
    304  1.51  rearnsha 	 * at some point.
    305  1.51  rearnsha 	 */
    306  1.51  rearnsha 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    307  1.79  christos 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    308  1.79  christos 		    __func__);
    309  1.51  rearnsha 		dab_fatal(tf, fsr, far, l, NULL);
    310  1.51  rearnsha 	}
    311  1.51  rearnsha #else
    312  1.40       scw 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    313  1.40       scw 		if (user) {
    314  1.40       scw 			/*
    315  1.40       scw 			 * Give the user an illegal instruction signal.
    316  1.40       scw 			 */
    317  1.40       scw 			/* Deliver a SIGILL to the process */
    318  1.40       scw 			KSI_INIT_TRAP(&ksi);
    319  1.40       scw 			ksi.ksi_signo = SIGILL;
    320  1.40       scw 			ksi.ksi_code = ILL_ILLOPC;
    321  1.40       scw 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    322  1.40       scw 			ksi.ksi_trap = fsr;
    323  1.40       scw 			goto do_trapsignal;
    324  1.40       scw 		}
    325  1.40       scw 
    326  1.40       scw 		/*
    327  1.40       scw 		 * The kernel never executes Thumb code.
    328  1.40       scw 		 */
    329  1.79  christos 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    330  1.79  christos 		    __func__);
    331  1.40       scw 		dab_fatal(tf, fsr, far, l, NULL);
    332  1.27       scw 	}
    333  1.51  rearnsha #endif
    334  1.27       scw 
    335  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    336  1.41       scw 	switch (data_abort_fixup(tf, fsr, far, l)) {
    337  1.41       scw 	case ABORT_FIXUP_RETURN:
    338  1.41       scw 		return;
    339  1.41       scw 	case ABORT_FIXUP_FAILED:
    340  1.41       scw 		/* Deliver a SIGILL to the process */
    341  1.41       scw 		KSI_INIT_TRAP(&ksi);
    342  1.41       scw 		ksi.ksi_signo = SIGILL;
    343  1.41       scw 		ksi.ksi_code = ILL_ILLOPC;
    344  1.41       scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    345  1.41       scw 		ksi.ksi_trap = fsr;
    346  1.41       scw 		goto do_trapsignal;
    347  1.41       scw 	default:
    348  1.41       scw 		break;
    349  1.41       scw 	}
    350  1.41       scw 
    351  1.39       scw 	va = trunc_page((vaddr_t)far);
    352   1.1     chris 
    353  1.27       scw 	/*
    354  1.27       scw 	 * It is only a kernel address space fault iff:
    355  1.27       scw 	 *	1. user == 0  and
    356  1.27       scw 	 *	2. pcb_onfault not set or
    357  1.41       scw 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    358  1.27       scw 	 */
    359  1.83      matt 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    360  1.41       scw 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    361  1.41       scw 	    __predict_true((pcb->pcb_onfault == NULL ||
    362  1.41       scw 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    363  1.39       scw 		map = kernel_map;
    364  1.39       scw 
    365  1.27       scw 		/* Was the fault due to the FPE/IPKDB ? */
    366  1.39       scw 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    367  1.35   thorpej 			KSI_INIT_TRAP(&ksi);
    368  1.34      matt 			ksi.ksi_signo = SIGSEGV;
    369  1.39       scw 			ksi.ksi_code = SEGV_ACCERR;
    370  1.39       scw 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    371  1.39       scw 			ksi.ksi_trap = fsr;
    372  1.27       scw 
    373  1.27       scw 			/*
    374  1.27       scw 			 * Force exit via userret()
    375  1.39       scw 			 * This is necessary as the FPE is an extension to
    376  1.39       scw 			 * userland that actually runs in a priveledged mode
    377  1.39       scw 			 * but uses USR mode permissions for its accesses.
    378  1.27       scw 			 */
    379  1.83      matt 			user = true;
    380  1.39       scw 			goto do_trapsignal;
    381  1.27       scw 		}
    382  1.70  wrstuden 	} else {
    383  1.39       scw 		map = &l->l_proc->p_vmspace->vm_map;
    384  1.70  wrstuden 	}
    385   1.1     chris 
    386  1.27       scw 	/*
    387  1.27       scw 	 * We need to know whether the page should be mapped
    388  1.27       scw 	 * as R or R/W. The MMU does not give us the info as
    389  1.27       scw 	 * to whether the fault was caused by a read or a write.
    390  1.39       scw 	 *
    391  1.39       scw 	 * However, we know that a permission fault can only be
    392  1.39       scw 	 * the result of a write to a read-only location, so
    393  1.39       scw 	 * we can deal with those quickly.
    394  1.39       scw 	 *
    395  1.39       scw 	 * Otherwise we need to disassemble the instruction
    396  1.39       scw 	 * responsible to determine if it was a write.
    397  1.27       scw 	 */
    398  1.39       scw 	if (IS_PERMISSION_FAULT(fsr))
    399  1.27       scw 		ftype = VM_PROT_WRITE;
    400  1.39       scw 	else {
    401  1.51  rearnsha #ifdef THUMB_CODE
    402  1.51  rearnsha 		/* Fast track the ARM case.  */
    403  1.51  rearnsha 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    404  1.51  rearnsha 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
    405  1.51  rearnsha 			u_int insn_f8 = insn & 0xf800;
    406  1.51  rearnsha 			u_int insn_fe = insn & 0xfe00;
    407  1.51  rearnsha 
    408  1.51  rearnsha 			if (insn_f8 == 0x6000 || /* STR(1) */
    409  1.51  rearnsha 			    insn_f8 == 0x7000 || /* STRB(1) */
    410  1.51  rearnsha 			    insn_f8 == 0x8000 || /* STRH(1) */
    411  1.51  rearnsha 			    insn_f8 == 0x9000 || /* STR(3) */
    412  1.51  rearnsha 			    insn_f8 == 0xc000 || /* STM */
    413  1.51  rearnsha 			    insn_fe == 0x5000 || /* STR(2) */
    414  1.51  rearnsha 			    insn_fe == 0x5200 || /* STRH(2) */
    415  1.51  rearnsha 			    insn_fe == 0x5400)   /* STRB(2) */
    416  1.51  rearnsha 				ftype = VM_PROT_WRITE;
    417  1.51  rearnsha 			else
    418  1.51  rearnsha 				ftype = VM_PROT_READ;
    419  1.51  rearnsha 		}
    420  1.51  rearnsha 		else
    421  1.51  rearnsha #endif
    422  1.51  rearnsha 		{
    423  1.51  rearnsha 			u_int insn = ReadWord(tf->tf_pc);
    424  1.39       scw 
    425  1.51  rearnsha 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    426  1.51  rearnsha 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    427  1.81      matt 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    428  1.81      matt 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    429  1.51  rearnsha 				ftype = VM_PROT_WRITE;
    430  1.51  rearnsha 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    431  1.51  rearnsha 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    432  1.51  rearnsha 			else
    433  1.51  rearnsha 				ftype = VM_PROT_READ;
    434  1.51  rearnsha 		}
    435  1.39       scw 	}
    436  1.39       scw 
    437  1.39       scw 	/*
    438  1.39       scw 	 * See if the fault is as a result of ref/mod emulation,
    439  1.39       scw 	 * or domain mismatch.
    440  1.39       scw 	 */
    441  1.39       scw #ifdef DEBUG
    442  1.39       scw 	last_fault_code = fsr;
    443   1.1     chris #endif
    444  1.42    briggs 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    445  1.50  rearnsha 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    446  1.27       scw 		goto out;
    447  1.42    briggs 	}
    448   1.1     chris 
    449  1.67      matt 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    450  1.45       scw 		if (pcb->pcb_onfault) {
    451  1.45       scw 			tf->tf_r0 = EINVAL;
    452  1.45       scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    453  1.45       scw 			return;
    454  1.45       scw 		}
    455  1.39       scw 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    456  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    457  1.27       scw 	}
    458   1.1     chris 
    459  1.27       scw 	onfault = pcb->pcb_onfault;
    460  1.27       scw 	pcb->pcb_onfault = NULL;
    461  1.57        he 	error = uvm_fault(map, va, ftype);
    462  1.27       scw 	pcb->pcb_onfault = onfault;
    463  1.39       scw 
    464  1.39       scw 	if (__predict_true(error == 0)) {
    465  1.39       scw 		if (user)
    466  1.39       scw 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    467  1.77       chs 		else
    468  1.77       chs 			ucas_ras_check(tf);
    469  1.50  rearnsha 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    470  1.27       scw 		goto out;
    471  1.27       scw 	}
    472  1.39       scw 
    473  1.27       scw 	if (user == 0) {
    474  1.27       scw 		if (pcb->pcb_onfault) {
    475  1.39       scw 			tf->tf_r0 = error;
    476  1.39       scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    477  1.39       scw 			return;
    478   1.1     chris 		}
    479  1.39       scw 
    480  1.58  drochner 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    481  1.39       scw 		    error);
    482  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    483  1.27       scw 	}
    484   1.1     chris 
    485  1.43       scw 	KSI_INIT_TRAP(&ksi);
    486  1.43       scw 
    487  1.39       scw 	if (error == ENOMEM) {
    488  1.39       scw 		printf("UVM: pid %d (%s), uid %d killed: "
    489  1.39       scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    490  1.62        ad 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    491  1.43       scw 		ksi.ksi_signo = SIGKILL;
    492  1.43       scw 	} else
    493  1.43       scw 		ksi.ksi_signo = SIGSEGV;
    494  1.34      matt 
    495  1.39       scw 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    496  1.39       scw 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    497  1.39       scw 	ksi.ksi_trap = fsr;
    498  1.69        is 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
    499  1.39       scw 
    500  1.39       scw do_trapsignal:
    501  1.39       scw 	call_trapsignal(l, &ksi);
    502  1.39       scw out:
    503  1.39       scw 	/* If returning to user mode, make sure to invoke userret() */
    504  1.39       scw 	if (user)
    505  1.39       scw 		userret(l);
    506  1.39       scw }
    507  1.39       scw 
    508  1.39       scw /*
    509  1.39       scw  * dab_fatal() handles the following data aborts:
    510  1.39       scw  *
    511  1.39       scw  *  FAULT_WRTBUF_0 - Vector Exception
    512  1.39       scw  *  FAULT_WRTBUF_1 - Terminal Exception
    513  1.39       scw  *
    514  1.39       scw  * We should never see these on a properly functioning system.
    515  1.39       scw  *
    516  1.39       scw  * This function is also called by the other handlers if they
    517  1.39       scw  * detect a fatal problem.
    518  1.39       scw  *
    519  1.39       scw  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    520  1.39       scw  */
    521  1.39       scw static int
    522  1.39       scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    523  1.39       scw {
    524  1.83      matt 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    525  1.39       scw 
    526  1.39       scw 	if (l != NULL) {
    527  1.39       scw 		printf("Fatal %s mode data abort: '%s'\n", mode,
    528  1.39       scw 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    529  1.44       scw 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    530  1.39       scw 		if ((fsr & FAULT_IMPRECISE) == 0)
    531  1.44       scw 			printf("%08x, ", far);
    532  1.39       scw 		else
    533  1.44       scw 			printf("Invalid,  ");
    534  1.44       scw 		printf("spsr=%08x\n", tf->tf_spsr);
    535  1.39       scw 	} else {
    536  1.44       scw 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    537  1.44       scw 		    mode, tf->tf_pc);
    538  1.44       scw 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    539  1.44       scw 	}
    540  1.44       scw 
    541  1.44       scw 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    542  1.44       scw 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    543  1.44       scw 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    544  1.44       scw 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    545  1.44       scw 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    546  1.44       scw 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    547  1.44       scw 	printf("r12=%08x, ", tf->tf_r12);
    548  1.44       scw 
    549  1.44       scw 	if (TRAP_USERMODE(tf))
    550  1.44       scw 		printf("usp=%08x, ulr=%08x",
    551  1.44       scw 		    tf->tf_usr_sp, tf->tf_usr_lr);
    552  1.44       scw 	else
    553  1.44       scw 		printf("ssp=%08x, slr=%08x",
    554  1.44       scw 		    tf->tf_svc_sp, tf->tf_svc_lr);
    555  1.44       scw 	printf(", pc =%08x\n\n", tf->tf_pc);
    556  1.34      matt 
    557  1.39       scw #if defined(DDB) || defined(KGDB)
    558  1.39       scw 	kdb_trap(T_FAULT, tf);
    559  1.34      matt #endif
    560  1.39       scw 	panic("Fatal abort");
    561  1.39       scw 	/*NOTREACHED*/
    562  1.39       scw }
    563  1.39       scw 
    564  1.39       scw /*
    565  1.39       scw  * dab_align() handles the following data aborts:
    566  1.39       scw  *
    567  1.39       scw  *  FAULT_ALIGN_0 - Alignment fault
    568  1.39       scw  *  FAULT_ALIGN_0 - Alignment fault
    569  1.39       scw  *
    570  1.39       scw  * These faults are fatal if they happen in kernel mode. Otherwise, we
    571  1.39       scw  * deliver a bus error to the process.
    572  1.39       scw  */
    573  1.39       scw static int
    574  1.39       scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    575  1.39       scw {
    576  1.39       scw 	/* Alignment faults are always fatal if they occur in kernel mode */
    577  1.39       scw 	if (!TRAP_USERMODE(tf))
    578  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    579  1.39       scw 
    580  1.39       scw 	/* pcb_onfault *must* be NULL at this point */
    581  1.83      matt 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    582  1.39       scw 
    583  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    584  1.39       scw 	(void) data_abort_fixup(tf, fsr, far, l);
    585  1.39       scw 
    586  1.39       scw 	/* Deliver a bus error signal to the process */
    587  1.39       scw 	KSI_INIT_TRAP(ksi);
    588  1.39       scw 	ksi->ksi_signo = SIGBUS;
    589  1.39       scw 	ksi->ksi_code = BUS_ADRALN;
    590  1.39       scw 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    591  1.39       scw 	ksi->ksi_trap = fsr;
    592  1.39       scw 
    593  1.83      matt 	lwp_settrapframe(l, tf);
    594  1.39       scw 
    595  1.39       scw 	return (1);
    596  1.39       scw }
    597  1.39       scw 
    598  1.39       scw /*
    599  1.39       scw  * dab_buserr() handles the following data aborts:
    600  1.39       scw  *
    601  1.39       scw  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    602  1.39       scw  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    603  1.39       scw  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    604  1.39       scw  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    605  1.39       scw  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    606  1.39       scw  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    607  1.39       scw  *
    608  1.39       scw  * If pcb_onfault is set, flag the fault and return to the handler.
    609  1.39       scw  * If the fault occurred in user mode, give the process a SIGBUS.
    610  1.39       scw  *
    611  1.39       scw  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    612  1.39       scw  * can be flagged as imprecise in the FSR. This causes a real headache
    613  1.39       scw  * since some of the machine state is lost. In this case, tf->tf_pc
    614  1.39       scw  * may not actually point to the offending instruction. In fact, if
    615  1.39       scw  * we've taken a double abort fault, it generally points somewhere near
    616  1.39       scw  * the top of "data_abort_entry" in exception.S.
    617  1.39       scw  *
    618  1.39       scw  * In all other cases, these data aborts are considered fatal.
    619  1.39       scw  */
    620  1.39       scw static int
    621  1.39       scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    622  1.39       scw     ksiginfo_t *ksi)
    623  1.39       scw {
    624  1.73     rmind 	struct pcb *pcb = lwp_getpcb(l);
    625  1.39       scw 
    626  1.39       scw #ifdef __XSCALE__
    627  1.39       scw 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    628  1.39       scw 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    629  1.39       scw 		/*
    630  1.39       scw 		 * Oops, an imprecise, double abort fault. We've lost the
    631  1.39       scw 		 * r14_abt/spsr_abt values corresponding to the original
    632  1.39       scw 		 * abort, and the spsr saved in the trapframe indicates
    633  1.39       scw 		 * ABT mode.
    634  1.39       scw 		 */
    635  1.39       scw 		tf->tf_spsr &= ~PSR_MODE;
    636  1.39       scw 
    637  1.39       scw 		/*
    638  1.39       scw 		 * We use a simple heuristic to determine if the double abort
    639  1.39       scw 		 * happened as a result of a kernel or user mode access.
    640  1.39       scw 		 * If the current trapframe is at the top of the kernel stack,
    641  1.39       scw 		 * the fault _must_ have come from user mode.
    642  1.39       scw 		 */
    643  1.83      matt 		if (tf != ((trapframe_t *)pcb->pcb_sp) - 1) {
    644  1.39       scw 			/*
    645  1.39       scw 			 * Kernel mode. We're either about to die a
    646  1.39       scw 			 * spectacular death, or pcb_onfault will come
    647  1.39       scw 			 * to our rescue. Either way, the current value
    648  1.39       scw 			 * of tf->tf_pc is irrelevant.
    649  1.39       scw 			 */
    650  1.39       scw 			tf->tf_spsr |= PSR_SVC32_MODE;
    651  1.39       scw 			if (pcb->pcb_onfault == NULL)
    652  1.39       scw 				printf("\nKernel mode double abort!\n");
    653  1.39       scw 		} else {
    654  1.39       scw 			/*
    655  1.39       scw 			 * User mode. We've lost the program counter at the
    656  1.39       scw 			 * time of the fault (not that it was accurate anyway;
    657  1.39       scw 			 * it's not called an imprecise fault for nothing).
    658  1.39       scw 			 * About all we can do is copy r14_usr to tf_pc and
    659  1.39       scw 			 * hope for the best. The process is about to get a
    660  1.39       scw 			 * SIGBUS, so it's probably history anyway.
    661  1.39       scw 			 */
    662  1.39       scw 			tf->tf_spsr |= PSR_USR32_MODE;
    663  1.39       scw 			tf->tf_pc = tf->tf_usr_lr;
    664  1.51  rearnsha #ifdef THUMB_CODE
    665  1.51  rearnsha 			tf->tf_spsr &= ~PSR_T_bit;
    666  1.51  rearnsha 			if (tf->tf_usr_lr & 1)
    667  1.51  rearnsha 				tf->tf_spsr |= PSR_T_bit;
    668  1.51  rearnsha #endif
    669  1.39       scw 		}
    670  1.39       scw 	}
    671  1.39       scw 
    672  1.39       scw 	/* FAR is invalid for imprecise exceptions */
    673  1.39       scw 	if ((fsr & FAULT_IMPRECISE) != 0)
    674  1.39       scw 		far = 0;
    675  1.39       scw #endif /* __XSCALE__ */
    676  1.39       scw 
    677  1.39       scw 	if (pcb->pcb_onfault) {
    678  1.39       scw 		KDASSERT(TRAP_USERMODE(tf) == 0);
    679  1.39       scw 		tf->tf_r0 = EFAULT;
    680  1.39       scw 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    681  1.39       scw 		return (0);
    682  1.39       scw 	}
    683  1.39       scw 
    684  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    685  1.39       scw 	(void) data_abort_fixup(tf, fsr, far, l);
    686  1.39       scw 
    687  1.39       scw 	/*
    688  1.39       scw 	 * At this point, if the fault happened in kernel mode, we're toast
    689  1.39       scw 	 */
    690  1.39       scw 	if (!TRAP_USERMODE(tf))
    691  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    692  1.39       scw 
    693  1.39       scw 	/* Deliver a bus error signal to the process */
    694  1.39       scw 	KSI_INIT_TRAP(ksi);
    695  1.39       scw 	ksi->ksi_signo = SIGBUS;
    696  1.39       scw 	ksi->ksi_code = BUS_ADRERR;
    697  1.39       scw 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    698  1.39       scw 	ksi->ksi_trap = fsr;
    699  1.39       scw 
    700  1.83      matt 	lwp_settrapframe(l, tf);
    701  1.27       scw 
    702  1.39       scw 	return (1);
    703   1.1     chris }
    704   1.1     chris 
    705  1.56     perry static inline int
    706  1.39       scw prefetch_abort_fixup(trapframe_t *tf)
    707  1.39       scw {
    708  1.39       scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    709  1.39       scw 	int error;
    710  1.39       scw 
    711  1.48       wiz 	/* Call the CPU specific prefetch abort fixup routine */
    712  1.39       scw 	error = cpu_prefetchabt_fixup(tf);
    713  1.39       scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    714  1.39       scw 		return (error);
    715  1.39       scw 
    716  1.39       scw 	/*
    717  1.39       scw 	 * Oops, couldn't fix up the instruction
    718  1.39       scw 	 */
    719  1.79  christos 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    720  1.39       scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    721  1.51  rearnsha #ifdef THUMB_CODE
    722  1.51  rearnsha 	if (tf->tf_spsr & PSR_T_bit) {
    723  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    724  1.75       wiz 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
    725  1.75       wiz 		    *((u_int16 *)((tf->tf_pc + 2) & ~1)));
    726  1.51  rearnsha 	}
    727  1.51  rearnsha 	else
    728  1.51  rearnsha #endif
    729  1.51  rearnsha 	{
    730  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    731  1.51  rearnsha 		    *((u_int *)tf->tf_pc));
    732  1.51  rearnsha 	}
    733  1.39       scw 	disassemble(tf->tf_pc);
    734  1.39       scw 
    735  1.39       scw 	/* Die now if this happened in kernel mode */
    736  1.39       scw 	if (!TRAP_USERMODE(tf))
    737  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    738  1.39       scw 
    739  1.39       scw 	return (error);
    740  1.39       scw #else
    741  1.39       scw 	return (ABORT_FIXUP_OK);
    742  1.39       scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    743  1.39       scw }
    744   1.1     chris 
    745   1.1     chris /*
    746  1.39       scw  * void prefetch_abort_handler(trapframe_t *tf)
    747   1.1     chris  *
    748   1.1     chris  * Abort handler called when instruction execution occurs at
    749   1.1     chris  * a non existent or restricted (access permissions) memory page.
    750   1.1     chris  * If the address is invalid and we were in SVC mode then panic as
    751   1.1     chris  * the kernel should never prefetch abort.
    752   1.1     chris  * If the address is invalid and the page is mapped then the user process
    753   1.1     chris  * does no have read permission so send it a signal.
    754   1.1     chris  * Otherwise fault the page in and try again.
    755   1.1     chris  */
    756   1.1     chris void
    757  1.39       scw prefetch_abort_handler(trapframe_t *tf)
    758   1.1     chris {
    759  1.26   thorpej 	struct lwp *l;
    760  1.73     rmind 	struct pcb *pcb;
    761  1.14   thorpej 	struct vm_map *map;
    762  1.14   thorpej 	vaddr_t fault_pc, va;
    763  1.39       scw 	ksiginfo_t ksi;
    764  1.61        ad 	int error, user;
    765  1.39       scw 
    766  1.50  rearnsha 	UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
    767  1.50  rearnsha 
    768  1.39       scw 	/* Update vmmeter statistics */
    769  1.78      matt 	curcpu()->ci_data.cpu_ntrap++;
    770   1.1     chris 
    771  1.61        ad 	l = curlwp;
    772  1.73     rmind 	pcb = lwp_getpcb(l);
    773  1.61        ad 
    774  1.61        ad 	if ((user = TRAP_USERMODE(tf)) != 0)
    775  1.61        ad 		LWP_CACHE_CREDS(l, l->l_proc);
    776  1.61        ad 
    777   1.1     chris 	/*
    778   1.1     chris 	 * Enable IRQ's (disabled by the abort) This always comes
    779   1.1     chris 	 * from user mode so we know interrupts were not disabled.
    780   1.1     chris 	 * But we check anyway.
    781   1.1     chris 	 */
    782  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    783  1.72      matt 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
    784  1.72      matt 		restore_interrupts(tf->tf_spsr & IF32_bits);
    785   1.1     chris 
    786  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    787  1.39       scw 	switch (prefetch_abort_fixup(tf)) {
    788  1.39       scw 	case ABORT_FIXUP_RETURN:
    789  1.72      matt 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    790   1.1     chris 		return;
    791  1.39       scw 	case ABORT_FIXUP_FAILED:
    792  1.39       scw 		/* Deliver a SIGILL to the process */
    793  1.39       scw 		KSI_INIT_TRAP(&ksi);
    794  1.39       scw 		ksi.ksi_signo = SIGILL;
    795  1.39       scw 		ksi.ksi_code = ILL_ILLOPC;
    796  1.39       scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    797  1.83      matt 		lwp_settrapframe(l, tf);
    798  1.39       scw 		goto do_trapsignal;
    799  1.39       scw 	default:
    800  1.39       scw 		break;
    801   1.1     chris 	}
    802   1.1     chris 
    803  1.39       scw 	/* Prefetch aborts cannot happen in kernel mode */
    804  1.61        ad 	if (__predict_false(!user))
    805  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    806   1.1     chris 
    807   1.4   thorpej 	/* Get fault address */
    808  1.39       scw 	fault_pc = tf->tf_pc;
    809  1.83      matt 	lwp_settrapframe(l, tf);
    810  1.50  rearnsha 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
    811  1.50  rearnsha 	    0);
    812  1.14   thorpej 
    813   1.1     chris 	/* Ok validate the address, can only execute in USER space */
    814  1.39       scw 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    815  1.39       scw 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    816  1.35   thorpej 		KSI_INIT_TRAP(&ksi);
    817  1.34      matt 		ksi.ksi_signo = SIGSEGV;
    818  1.34      matt 		ksi.ksi_code = SEGV_ACCERR;
    819  1.39       scw 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    820  1.34      matt 		ksi.ksi_trap = fault_pc;
    821  1.39       scw 		goto do_trapsignal;
    822  1.39       scw 	}
    823  1.34      matt 
    824  1.39       scw 	map = &l->l_proc->p_vmspace->vm_map;
    825  1.39       scw 	va = trunc_page(fault_pc);
    826   1.1     chris 
    827  1.27       scw 	/*
    828  1.27       scw 	 * See if the pmap can handle this fault on its own...
    829  1.27       scw 	 */
    830  1.39       scw #ifdef DEBUG
    831  1.39       scw 	last_fault_code = -1;
    832  1.39       scw #endif
    833  1.50  rearnsha 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
    834  1.50  rearnsha 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    835  1.39       scw 		goto out;
    836  1.50  rearnsha 	}
    837  1.27       scw 
    838  1.39       scw #ifdef DIAGNOSTIC
    839  1.84      matt 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    840  1.39       scw 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    841  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    842  1.39       scw 	}
    843   1.1     chris #endif
    844  1.72      matt 
    845  1.76       chs 	KASSERT(pcb->pcb_onfault == NULL);
    846  1.57        he 	error = uvm_fault(map, va, VM_PROT_READ);
    847  1.53      joff 
    848  1.50  rearnsha 	if (__predict_true(error == 0)) {
    849  1.50  rearnsha 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    850  1.39       scw 		goto out;
    851  1.50  rearnsha 	}
    852  1.43       scw 	KSI_INIT_TRAP(&ksi);
    853  1.43       scw 
    854  1.50  rearnsha 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    855  1.39       scw 	if (error == ENOMEM) {
    856  1.39       scw 		printf("UVM: pid %d (%s), uid %d killed: "
    857  1.39       scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    858  1.62        ad 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    859  1.43       scw 		ksi.ksi_signo = SIGKILL;
    860  1.43       scw 	} else
    861  1.43       scw 		ksi.ksi_signo = SIGSEGV;
    862   1.1     chris 
    863  1.39       scw 	ksi.ksi_code = SEGV_MAPERR;
    864  1.39       scw 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    865  1.39       scw 	ksi.ksi_trap = fault_pc;
    866  1.39       scw 
    867  1.39       scw do_trapsignal:
    868  1.39       scw 	call_trapsignal(l, &ksi);
    869  1.39       scw 
    870  1.39       scw out:
    871  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    872  1.39       scw 	userret(l);
    873  1.39       scw }
    874  1.39       scw 
    875  1.39       scw /*
    876  1.39       scw  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    877  1.39       scw  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    878  1.39       scw  * Else, return EFAULT.
    879  1.39       scw  */
    880  1.39       scw int
    881  1.39       scw badaddr_read(void *addr, size_t size, void *rptr)
    882  1.39       scw {
    883  1.39       scw 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    884  1.39       scw 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    885  1.39       scw 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    886  1.39       scw 	union {
    887  1.39       scw 		uint8_t v1;
    888  1.39       scw 		uint16_t v2;
    889  1.39       scw 		uint32_t v4;
    890  1.39       scw 	} u;
    891  1.47       scw 	int rv, s;
    892  1.39       scw 
    893  1.39       scw 	cpu_drain_writebuf();
    894  1.39       scw 
    895  1.47       scw 	s = splhigh();
    896  1.47       scw 
    897  1.39       scw 	/* Read from the test address. */
    898  1.39       scw 	switch (size) {
    899  1.39       scw 	case sizeof(uint8_t):
    900  1.39       scw 		rv = badaddr_read_1(addr, &u.v1);
    901  1.39       scw 		if (rv == 0 && rptr)
    902  1.39       scw 			*(uint8_t *) rptr = u.v1;
    903  1.39       scw 		break;
    904  1.39       scw 
    905  1.39       scw 	case sizeof(uint16_t):
    906  1.39       scw 		rv = badaddr_read_2(addr, &u.v2);
    907  1.39       scw 		if (rv == 0 && rptr)
    908  1.39       scw 			*(uint16_t *) rptr = u.v2;
    909  1.39       scw 		break;
    910  1.39       scw 
    911  1.39       scw 	case sizeof(uint32_t):
    912  1.39       scw 		rv = badaddr_read_4(addr, &u.v4);
    913  1.39       scw 		if (rv == 0 && rptr)
    914  1.39       scw 			*(uint32_t *) rptr = u.v4;
    915  1.39       scw 		break;
    916  1.39       scw 
    917  1.39       scw 	default:
    918  1.82      matt 		panic("%s: invalid size (%zu)", __func__, size);
    919  1.34      matt 	}
    920  1.39       scw 
    921  1.47       scw 	splx(s);
    922  1.47       scw 
    923  1.39       scw 	/* Return EFAULT if the address was invalid, else zero */
    924  1.39       scw 	return (rv);
    925   1.1     chris }
    926