Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.94
      1  1.94      matt /*	$NetBSD: fault.c,v 1.94 2014/02/25 09:54:33 matt Exp $	*/
      2   1.1     chris 
      3   1.1     chris /*
      4  1.27       scw  * Copyright 2003 Wasabi Systems, Inc.
      5  1.27       scw  * All rights reserved.
      6  1.27       scw  *
      7  1.27       scw  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  1.27       scw  *
      9  1.27       scw  * Redistribution and use in source and binary forms, with or without
     10  1.27       scw  * modification, are permitted provided that the following conditions
     11  1.27       scw  * are met:
     12  1.27       scw  * 1. Redistributions of source code must retain the above copyright
     13  1.27       scw  *    notice, this list of conditions and the following disclaimer.
     14  1.27       scw  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.27       scw  *    notice, this list of conditions and the following disclaimer in the
     16  1.27       scw  *    documentation and/or other materials provided with the distribution.
     17  1.27       scw  * 3. All advertising materials mentioning features or use of this software
     18  1.27       scw  *    must display the following acknowledgement:
     19  1.27       scw  *      This product includes software developed for the NetBSD Project by
     20  1.27       scw  *      Wasabi Systems, Inc.
     21  1.27       scw  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  1.27       scw  *    or promote products derived from this software without specific prior
     23  1.27       scw  *    written permission.
     24  1.27       scw  *
     25  1.27       scw  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  1.27       scw  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.27       scw  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.27       scw  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  1.27       scw  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.27       scw  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.27       scw  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.27       scw  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.27       scw  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.27       scw  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.27       scw  * POSSIBILITY OF SUCH DAMAGE.
     36  1.27       scw  */
     37  1.27       scw /*
     38   1.1     chris  * Copyright (c) 1994-1997 Mark Brinicombe.
     39   1.1     chris  * Copyright (c) 1994 Brini.
     40   1.1     chris  * All rights reserved.
     41   1.1     chris  *
     42   1.1     chris  * This code is derived from software written for Brini by Mark Brinicombe
     43   1.1     chris  *
     44   1.1     chris  * Redistribution and use in source and binary forms, with or without
     45   1.1     chris  * modification, are permitted provided that the following conditions
     46   1.1     chris  * are met:
     47   1.1     chris  * 1. Redistributions of source code must retain the above copyright
     48   1.1     chris  *    notice, this list of conditions and the following disclaimer.
     49   1.1     chris  * 2. Redistributions in binary form must reproduce the above copyright
     50   1.1     chris  *    notice, this list of conditions and the following disclaimer in the
     51   1.1     chris  *    documentation and/or other materials provided with the distribution.
     52   1.1     chris  * 3. All advertising materials mentioning features or use of this software
     53   1.1     chris  *    must display the following acknowledgement:
     54   1.1     chris  *	This product includes software developed by Brini.
     55   1.1     chris  * 4. The name of the company nor the name of the author may be used to
     56   1.1     chris  *    endorse or promote products derived from this software without specific
     57   1.1     chris  *    prior written permission.
     58   1.1     chris  *
     59   1.1     chris  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60   1.1     chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61   1.1     chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62   1.1     chris  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63   1.1     chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64   1.1     chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65   1.1     chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66   1.1     chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67   1.1     chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68   1.1     chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69   1.1     chris  * SUCH DAMAGE.
     70   1.1     chris  *
     71   1.1     chris  * RiscBSD kernel project
     72   1.1     chris  *
     73   1.1     chris  * fault.c
     74   1.1     chris  *
     75   1.1     chris  * Fault handlers
     76   1.1     chris  *
     77   1.1     chris  * Created      : 28/11/94
     78   1.1     chris  */
     79   1.1     chris 
     80   1.1     chris #include "opt_ddb.h"
     81  1.28    briggs #include "opt_kgdb.h"
     82   1.1     chris 
     83   1.1     chris #include <sys/types.h>
     84  1.94      matt __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.94 2014/02/25 09:54:33 matt Exp $");
     85  1.21     bjh21 
     86   1.1     chris #include <sys/param.h>
     87   1.1     chris #include <sys/systm.h>
     88   1.1     chris #include <sys/proc.h>
     89   1.1     chris #include <sys/kernel.h>
     90  1.60      yamt #include <sys/kauth.h>
     91  1.65      matt #include <sys/cpu.h>
     92  1.90      matt #include <sys/intr.h>
     93   1.1     chris 
     94   1.1     chris #include <uvm/uvm_extern.h>
     95  1.50  rearnsha #include <uvm/uvm_stat.h>
     96  1.50  rearnsha #ifdef UVMHIST
     97  1.50  rearnsha #include <uvm/uvm.h>
     98  1.50  rearnsha #endif
     99  1.18   thorpej 
    100  1.90      matt #include <arm/locore.h>
    101   1.1     chris 
    102   1.5   thorpej #include <arm/arm32/katelib.h>
    103  1.83      matt 
    104  1.83      matt #include <machine/pcb.h>
    105  1.28    briggs #if defined(DDB) || defined(KGDB)
    106   1.1     chris #include <machine/db_machdep.h>
    107  1.28    briggs #ifdef KGDB
    108  1.28    briggs #include <sys/kgdb.h>
    109  1.28    briggs #endif
    110  1.28    briggs #if !defined(DDB)
    111  1.28    briggs #define kdb_trap	kgdb_trap
    112  1.28    briggs #endif
    113   1.1     chris #endif
    114   1.1     chris 
    115   1.1     chris #include <arch/arm/arm/disassem.h>
    116   1.7     chris #include <arm/arm32/machdep.h>
    117   1.7     chris 
    118   1.1     chris extern char fusubailout[];
    119   1.1     chris 
    120  1.27       scw #ifdef DEBUG
    121  1.27       scw int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    122  1.27       scw #endif
    123  1.27       scw 
    124  1.39       scw #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    125  1.39       scw     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    126  1.39       scw /* These CPUs may need data/prefetch abort fixups */
    127  1.39       scw #define	CPU_ABORT_FIXUP_REQUIRED
    128  1.39       scw #endif
    129   1.7     chris 
    130  1.39       scw struct data_abort {
    131  1.39       scw 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132  1.39       scw 	const char *desc;
    133  1.39       scw };
    134   1.1     chris 
    135  1.39       scw static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136  1.39       scw static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    137  1.39       scw static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    138  1.39       scw 
    139  1.39       scw static const struct data_abort data_aborts[] = {
    140  1.39       scw 	{dab_fatal,	"Vector Exception"},
    141  1.39       scw 	{dab_align,	"Alignment Fault 1"},
    142  1.39       scw 	{dab_fatal,	"Terminal Exception"},
    143  1.39       scw 	{dab_align,	"Alignment Fault 3"},
    144  1.39       scw 	{dab_buserr,	"External Linefetch Abort (S)"},
    145  1.39       scw 	{NULL,		"Translation Fault (S)"},
    146  1.39       scw 	{dab_buserr,	"External Linefetch Abort (P)"},
    147  1.39       scw 	{NULL,		"Translation Fault (P)"},
    148  1.39       scw 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    149  1.39       scw 	{NULL,		"Domain Fault (S)"},
    150  1.39       scw 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    151  1.39       scw 	{NULL,		"Domain Fault (P)"},
    152  1.39       scw 	{dab_buserr,	"External Translation Abort (L1)"},
    153  1.39       scw 	{NULL,		"Permission Fault (S)"},
    154  1.39       scw 	{dab_buserr,	"External Translation Abort (L2)"},
    155  1.39       scw 	{NULL,		"Permission Fault (P)"}
    156  1.39       scw };
    157   1.1     chris 
    158  1.39       scw /* Determine if 'x' is a permission fault */
    159  1.39       scw #define	IS_PERMISSION_FAULT(x)					\
    160  1.39       scw 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    161  1.39       scw 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    162   1.1     chris 
    163  1.39       scw #if 0
    164  1.39       scw /* maybe one day we'll do emulations */
    165  1.39       scw #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    166  1.39       scw #else
    167  1.39       scw #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    168   1.1     chris #endif
    169   1.3   thorpej 
    170  1.56     perry static inline void
    171  1.93      matt call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
    172   1.3   thorpej {
    173  1.93      matt 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
    174  1.93      matt 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
    175  1.93      matt 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    176  1.93      matt 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
    177  1.93      matt 		    ksi->ksi_trap);
    178  1.93      matt 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
    179  1.93      matt 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    180  1.93      matt 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
    181  1.93      matt 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    182  1.93      matt 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
    183  1.93      matt 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    184  1.93      matt 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
    185  1.93      matt 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
    186  1.93      matt 		    tf->tf_spsr);
    187  1.93      matt 	}
    188   1.3   thorpej 
    189  1.39       scw 	TRAPSIGNAL(l, ksi);
    190  1.39       scw }
    191   1.3   thorpej 
    192  1.56     perry static inline int
    193  1.39       scw data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    194  1.39       scw {
    195  1.39       scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    196  1.39       scw 	int error;
    197   1.3   thorpej 
    198  1.48       wiz 	/* Call the CPU specific data abort fixup routine */
    199  1.39       scw 	error = cpu_dataabt_fixup(tf);
    200  1.39       scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    201  1.39       scw 		return (error);
    202   1.3   thorpej 
    203  1.39       scw 	/*
    204  1.39       scw 	 * Oops, couldn't fix up the instruction
    205  1.39       scw 	 */
    206  1.79  christos 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    207  1.39       scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    208  1.51  rearnsha #ifdef THUMB_CODE
    209  1.51  rearnsha 	if (tf->tf_spsr & PSR_T_bit) {
    210  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    211  1.86     skrll 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    212  1.86     skrll 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    213  1.51  rearnsha 	}
    214  1.51  rearnsha 	else
    215  1.51  rearnsha #endif
    216  1.51  rearnsha 	{
    217  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    218  1.51  rearnsha 		    *((u_int *)tf->tf_pc));
    219  1.51  rearnsha 	}
    220  1.39       scw 	disassemble(tf->tf_pc);
    221  1.39       scw 
    222  1.39       scw 	/* Die now if this happened in kernel mode */
    223  1.39       scw 	if (!TRAP_USERMODE(tf))
    224  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    225   1.3   thorpej 
    226  1.39       scw 	return (error);
    227  1.39       scw #else
    228  1.39       scw 	return (ABORT_FIXUP_OK);
    229  1.39       scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    230   1.3   thorpej }
    231   1.3   thorpej 
    232   1.1     chris void
    233  1.39       scw data_abort_handler(trapframe_t *tf)
    234   1.1     chris {
    235  1.39       scw 	struct vm_map *map;
    236  1.83      matt 	struct lwp * const l = curlwp;
    237  1.83      matt 	struct cpu_info * const ci = curcpu();
    238  1.83      matt 	u_int far, fsr;
    239  1.39       scw 	vm_prot_t ftype;
    240   1.1     chris 	void *onfault;
    241  1.27       scw 	vaddr_t va;
    242  1.39       scw 	int error;
    243  1.34      matt 	ksiginfo_t ksi;
    244   1.3   thorpej 
    245  1.89      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    246  1.50  rearnsha 
    247  1.39       scw 	/* Grab FAR/FSR before enabling interrupts */
    248  1.39       scw 	far = cpu_faultaddress();
    249  1.39       scw 	fsr = cpu_faultstatus();
    250   1.1     chris 
    251  1.39       scw 	/* Update vmmeter statistics */
    252  1.83      matt 	ci->ci_data.cpu_ntrap++;
    253   1.1     chris 
    254  1.39       scw 	/* Re-enable interrupts if they were enabled previously */
    255  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    256  1.72      matt 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    257  1.72      matt 		restore_interrupts(tf->tf_spsr & IF32_bits);
    258   1.1     chris 
    259  1.67      matt 	/* Get the current lwp structure */
    260   1.1     chris 
    261  1.94      matt 	UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
    262  1.94      matt 	    l, far, fsr, 0);
    263  1.94      matt 	UVMHIST_LOG(maphist, "  tf=%#x, pc=%#x)",
    264  1.94      matt 	    tf, tf->tf_pc, 0, 0);
    265  1.50  rearnsha 
    266  1.39       scw 	/* Data abort came from user mode? */
    267  1.83      matt 	bool user = (TRAP_USERMODE(tf) != 0);
    268  1.83      matt 	if (user)
    269  1.61        ad 		LWP_CACHE_CREDS(l, l->l_proc);
    270   1.1     chris 
    271  1.39       scw 	/* Grab the current pcb */
    272  1.83      matt 	struct pcb * const pcb = lwp_getpcb(l);
    273   1.1     chris 
    274  1.85      matt 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
    275  1.85      matt 
    276  1.39       scw 	/* Invoke the appropriate handler, if necessary */
    277  1.39       scw 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    278  1.79  christos #ifdef DIAGNOSTIC
    279  1.79  christos 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    280  1.79  christos 		    __func__, fsr, far);
    281  1.79  christos #endif
    282  1.39       scw 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    283  1.39       scw 		    l, &ksi))
    284  1.39       scw 			goto do_trapsignal;
    285  1.39       scw 		goto out;
    286  1.39       scw 	}
    287   1.1     chris 
    288   1.1     chris 	/*
    289  1.39       scw 	 * At this point, we're dealing with one of the following data aborts:
    290  1.39       scw 	 *
    291  1.39       scw 	 *  FAULT_TRANS_S  - Translation -- Section
    292  1.39       scw 	 *  FAULT_TRANS_P  - Translation -- Page
    293  1.39       scw 	 *  FAULT_DOMAIN_S - Domain -- Section
    294  1.39       scw 	 *  FAULT_DOMAIN_P - Domain -- Page
    295  1.39       scw 	 *  FAULT_PERM_S   - Permission -- Section
    296  1.39       scw 	 *  FAULT_PERM_P   - Permission -- Page
    297  1.39       scw 	 *
    298  1.39       scw 	 * These are the main virtual memory-related faults signalled by
    299  1.39       scw 	 * the MMU.
    300   1.1     chris 	 */
    301   1.1     chris 
    302   1.1     chris 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    303  1.39       scw 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    304  1.39       scw 		tf->tf_r0 = EFAULT;
    305  1.83      matt 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    306   1.1     chris 		return;
    307   1.1     chris 	}
    308   1.1     chris 
    309  1.73     rmind 	if (user) {
    310  1.83      matt 		lwp_settrapframe(l, tf);
    311  1.73     rmind 	}
    312   1.1     chris 
    313  1.40       scw 	/*
    314  1.40       scw 	 * Make sure the Program Counter is sane. We could fall foul of
    315  1.40       scw 	 * someone executing Thumb code, in which case the PC might not
    316  1.40       scw 	 * be word-aligned. This would cause a kernel alignment fault
    317  1.40       scw 	 * further down if we have to decode the current instruction.
    318  1.40       scw 	 */
    319  1.51  rearnsha #ifdef THUMB_CODE
    320  1.51  rearnsha 	/*
    321  1.51  rearnsha 	 * XXX: It would be nice to be able to support Thumb in the kernel
    322  1.51  rearnsha 	 * at some point.
    323  1.51  rearnsha 	 */
    324  1.51  rearnsha 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    325  1.79  christos 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    326  1.79  christos 		    __func__);
    327  1.51  rearnsha 		dab_fatal(tf, fsr, far, l, NULL);
    328  1.51  rearnsha 	}
    329  1.51  rearnsha #else
    330  1.40       scw 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    331  1.40       scw 		if (user) {
    332  1.40       scw 			/*
    333  1.40       scw 			 * Give the user an illegal instruction signal.
    334  1.40       scw 			 */
    335  1.40       scw 			/* Deliver a SIGILL to the process */
    336  1.40       scw 			KSI_INIT_TRAP(&ksi);
    337  1.40       scw 			ksi.ksi_signo = SIGILL;
    338  1.40       scw 			ksi.ksi_code = ILL_ILLOPC;
    339  1.86     skrll 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    340  1.40       scw 			ksi.ksi_trap = fsr;
    341  1.40       scw 			goto do_trapsignal;
    342  1.40       scw 		}
    343  1.40       scw 
    344  1.40       scw 		/*
    345  1.40       scw 		 * The kernel never executes Thumb code.
    346  1.40       scw 		 */
    347  1.79  christos 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    348  1.79  christos 		    __func__);
    349  1.40       scw 		dab_fatal(tf, fsr, far, l, NULL);
    350  1.27       scw 	}
    351  1.51  rearnsha #endif
    352  1.27       scw 
    353  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    354  1.41       scw 	switch (data_abort_fixup(tf, fsr, far, l)) {
    355  1.41       scw 	case ABORT_FIXUP_RETURN:
    356  1.41       scw 		return;
    357  1.41       scw 	case ABORT_FIXUP_FAILED:
    358  1.41       scw 		/* Deliver a SIGILL to the process */
    359  1.41       scw 		KSI_INIT_TRAP(&ksi);
    360  1.41       scw 		ksi.ksi_signo = SIGILL;
    361  1.41       scw 		ksi.ksi_code = ILL_ILLOPC;
    362  1.86     skrll 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    363  1.41       scw 		ksi.ksi_trap = fsr;
    364  1.41       scw 		goto do_trapsignal;
    365  1.41       scw 	default:
    366  1.41       scw 		break;
    367  1.41       scw 	}
    368  1.41       scw 
    369  1.39       scw 	va = trunc_page((vaddr_t)far);
    370   1.1     chris 
    371  1.27       scw 	/*
    372  1.27       scw 	 * It is only a kernel address space fault iff:
    373  1.27       scw 	 *	1. user == 0  and
    374  1.27       scw 	 *	2. pcb_onfault not set or
    375  1.41       scw 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    376  1.27       scw 	 */
    377  1.83      matt 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    378  1.41       scw 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    379  1.41       scw 	    __predict_true((pcb->pcb_onfault == NULL ||
    380  1.93      matt 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
    381  1.39       scw 		map = kernel_map;
    382  1.39       scw 
    383  1.27       scw 		/* Was the fault due to the FPE/IPKDB ? */
    384  1.39       scw 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    385  1.35   thorpej 			KSI_INIT_TRAP(&ksi);
    386  1.34      matt 			ksi.ksi_signo = SIGSEGV;
    387  1.39       scw 			ksi.ksi_code = SEGV_ACCERR;
    388  1.86     skrll 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    389  1.39       scw 			ksi.ksi_trap = fsr;
    390  1.27       scw 
    391  1.27       scw 			/*
    392  1.27       scw 			 * Force exit via userret()
    393  1.39       scw 			 * This is necessary as the FPE is an extension to
    394  1.39       scw 			 * userland that actually runs in a priveledged mode
    395  1.39       scw 			 * but uses USR mode permissions for its accesses.
    396  1.27       scw 			 */
    397  1.83      matt 			user = true;
    398  1.39       scw 			goto do_trapsignal;
    399  1.27       scw 		}
    400  1.70  wrstuden 	} else {
    401  1.39       scw 		map = &l->l_proc->p_vmspace->vm_map;
    402  1.70  wrstuden 	}
    403   1.1     chris 
    404  1.27       scw 	/*
    405  1.94      matt 	 * We need to know whether the page should be mapped as R or R/W.
    406  1.94      matt 	 * Before ARMv6, the MMU did not give us the info as to whether the
    407  1.94      matt 	 * fault was caused by a read or a write.
    408  1.39       scw 	 *
    409  1.94      matt 	 * However, we know that a permission fault can only be the result of
    410  1.94      matt 	 * a write to a read-only location, so we can deal with those quickly.
    411  1.39       scw 	 *
    412  1.94      matt 	 * Otherwise we need to disassemble the instruction responsible to
    413  1.94      matt 	 * determine if it was a write.
    414  1.27       scw 	 */
    415  1.94      matt 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
    416  1.94      matt 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
    417  1.94      matt 	} else if (IS_PERMISSION_FAULT(fsr)) {
    418  1.27       scw 		ftype = VM_PROT_WRITE;
    419  1.94      matt 	} else {
    420  1.51  rearnsha #ifdef THUMB_CODE
    421  1.51  rearnsha 		/* Fast track the ARM case.  */
    422  1.51  rearnsha 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    423  1.93      matt 			u_int insn = read_thumb_insn(tf->tf_pc, user);
    424  1.51  rearnsha 			u_int insn_f8 = insn & 0xf800;
    425  1.51  rearnsha 			u_int insn_fe = insn & 0xfe00;
    426  1.51  rearnsha 
    427  1.51  rearnsha 			if (insn_f8 == 0x6000 || /* STR(1) */
    428  1.51  rearnsha 			    insn_f8 == 0x7000 || /* STRB(1) */
    429  1.51  rearnsha 			    insn_f8 == 0x8000 || /* STRH(1) */
    430  1.51  rearnsha 			    insn_f8 == 0x9000 || /* STR(3) */
    431  1.51  rearnsha 			    insn_f8 == 0xc000 || /* STM */
    432  1.51  rearnsha 			    insn_fe == 0x5000 || /* STR(2) */
    433  1.51  rearnsha 			    insn_fe == 0x5200 || /* STRH(2) */
    434  1.51  rearnsha 			    insn_fe == 0x5400)   /* STRB(2) */
    435  1.51  rearnsha 				ftype = VM_PROT_WRITE;
    436  1.51  rearnsha 			else
    437  1.51  rearnsha 				ftype = VM_PROT_READ;
    438  1.51  rearnsha 		}
    439  1.51  rearnsha 		else
    440  1.51  rearnsha #endif
    441  1.51  rearnsha 		{
    442  1.93      matt 			u_int insn = read_insn(tf->tf_pc, user);
    443  1.39       scw 
    444  1.51  rearnsha 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    445  1.51  rearnsha 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    446  1.81      matt 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    447  1.81      matt 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    448  1.51  rearnsha 				ftype = VM_PROT_WRITE;
    449  1.51  rearnsha 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    450  1.51  rearnsha 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    451  1.51  rearnsha 			else
    452  1.51  rearnsha 				ftype = VM_PROT_READ;
    453  1.51  rearnsha 		}
    454  1.39       scw 	}
    455  1.39       scw 
    456  1.39       scw 	/*
    457  1.39       scw 	 * See if the fault is as a result of ref/mod emulation,
    458  1.39       scw 	 * or domain mismatch.
    459  1.39       scw 	 */
    460  1.39       scw #ifdef DEBUG
    461  1.39       scw 	last_fault_code = fsr;
    462   1.1     chris #endif
    463  1.42    briggs 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    464  1.50  rearnsha 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    465  1.27       scw 		goto out;
    466  1.42    briggs 	}
    467   1.1     chris 
    468  1.67      matt 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    469  1.45       scw 		if (pcb->pcb_onfault) {
    470  1.45       scw 			tf->tf_r0 = EINVAL;
    471  1.45       scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    472  1.45       scw 			return;
    473  1.45       scw 		}
    474  1.39       scw 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    475  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    476  1.27       scw 	}
    477   1.1     chris 
    478  1.27       scw 	onfault = pcb->pcb_onfault;
    479  1.27       scw 	pcb->pcb_onfault = NULL;
    480  1.57        he 	error = uvm_fault(map, va, ftype);
    481  1.27       scw 	pcb->pcb_onfault = onfault;
    482  1.39       scw 
    483  1.39       scw 	if (__predict_true(error == 0)) {
    484  1.39       scw 		if (user)
    485  1.39       scw 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    486  1.77       chs 		else
    487  1.77       chs 			ucas_ras_check(tf);
    488  1.50  rearnsha 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    489  1.27       scw 		goto out;
    490  1.27       scw 	}
    491  1.39       scw 
    492  1.27       scw 	if (user == 0) {
    493  1.27       scw 		if (pcb->pcb_onfault) {
    494  1.39       scw 			tf->tf_r0 = error;
    495  1.39       scw 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    496  1.39       scw 			return;
    497   1.1     chris 		}
    498  1.39       scw 
    499  1.58  drochner 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    500  1.39       scw 		    error);
    501  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    502  1.27       scw 	}
    503   1.1     chris 
    504  1.43       scw 	KSI_INIT_TRAP(&ksi);
    505  1.43       scw 
    506  1.39       scw 	if (error == ENOMEM) {
    507  1.39       scw 		printf("UVM: pid %d (%s), uid %d killed: "
    508  1.39       scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    509  1.62        ad 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    510  1.43       scw 		ksi.ksi_signo = SIGKILL;
    511  1.43       scw 	} else
    512  1.43       scw 		ksi.ksi_signo = SIGSEGV;
    513  1.34      matt 
    514  1.39       scw 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    515  1.86     skrll 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    516  1.39       scw 	ksi.ksi_trap = fsr;
    517  1.69        is 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
    518  1.39       scw 
    519  1.39       scw do_trapsignal:
    520  1.93      matt 	call_trapsignal(l, tf, &ksi);
    521  1.39       scw out:
    522  1.39       scw 	/* If returning to user mode, make sure to invoke userret() */
    523  1.39       scw 	if (user)
    524  1.39       scw 		userret(l);
    525  1.39       scw }
    526  1.39       scw 
    527  1.39       scw /*
    528  1.39       scw  * dab_fatal() handles the following data aborts:
    529  1.39       scw  *
    530  1.39       scw  *  FAULT_WRTBUF_0 - Vector Exception
    531  1.39       scw  *  FAULT_WRTBUF_1 - Terminal Exception
    532  1.39       scw  *
    533  1.39       scw  * We should never see these on a properly functioning system.
    534  1.39       scw  *
    535  1.39       scw  * This function is also called by the other handlers if they
    536  1.39       scw  * detect a fatal problem.
    537  1.39       scw  *
    538  1.39       scw  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    539  1.39       scw  */
    540  1.39       scw static int
    541  1.39       scw dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    542  1.39       scw {
    543  1.83      matt 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    544  1.39       scw 
    545  1.39       scw 	if (l != NULL) {
    546  1.39       scw 		printf("Fatal %s mode data abort: '%s'\n", mode,
    547  1.39       scw 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    548  1.44       scw 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    549  1.39       scw 		if ((fsr & FAULT_IMPRECISE) == 0)
    550  1.44       scw 			printf("%08x, ", far);
    551  1.39       scw 		else
    552  1.44       scw 			printf("Invalid,  ");
    553  1.44       scw 		printf("spsr=%08x\n", tf->tf_spsr);
    554  1.39       scw 	} else {
    555  1.44       scw 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    556  1.44       scw 		    mode, tf->tf_pc);
    557  1.44       scw 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    558  1.44       scw 	}
    559  1.44       scw 
    560  1.44       scw 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    561  1.44       scw 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    562  1.44       scw 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    563  1.44       scw 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    564  1.44       scw 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    565  1.44       scw 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    566  1.44       scw 	printf("r12=%08x, ", tf->tf_r12);
    567  1.44       scw 
    568  1.44       scw 	if (TRAP_USERMODE(tf))
    569  1.44       scw 		printf("usp=%08x, ulr=%08x",
    570  1.44       scw 		    tf->tf_usr_sp, tf->tf_usr_lr);
    571  1.44       scw 	else
    572  1.44       scw 		printf("ssp=%08x, slr=%08x",
    573  1.44       scw 		    tf->tf_svc_sp, tf->tf_svc_lr);
    574  1.44       scw 	printf(", pc =%08x\n\n", tf->tf_pc);
    575  1.34      matt 
    576  1.39       scw #if defined(DDB) || defined(KGDB)
    577  1.39       scw 	kdb_trap(T_FAULT, tf);
    578  1.34      matt #endif
    579  1.39       scw 	panic("Fatal abort");
    580  1.39       scw 	/*NOTREACHED*/
    581  1.39       scw }
    582  1.39       scw 
    583  1.39       scw /*
    584  1.39       scw  * dab_align() handles the following data aborts:
    585  1.39       scw  *
    586  1.39       scw  *  FAULT_ALIGN_0 - Alignment fault
    587  1.39       scw  *  FAULT_ALIGN_0 - Alignment fault
    588  1.39       scw  *
    589  1.39       scw  * These faults are fatal if they happen in kernel mode. Otherwise, we
    590  1.39       scw  * deliver a bus error to the process.
    591  1.39       scw  */
    592  1.39       scw static int
    593  1.39       scw dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    594  1.39       scw {
    595  1.39       scw 	/* Alignment faults are always fatal if they occur in kernel mode */
    596  1.39       scw 	if (!TRAP_USERMODE(tf))
    597  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    598  1.39       scw 
    599  1.39       scw 	/* pcb_onfault *must* be NULL at this point */
    600  1.83      matt 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    601  1.39       scw 
    602  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    603  1.39       scw 	(void) data_abort_fixup(tf, fsr, far, l);
    604  1.39       scw 
    605  1.39       scw 	/* Deliver a bus error signal to the process */
    606  1.39       scw 	KSI_INIT_TRAP(ksi);
    607  1.39       scw 	ksi->ksi_signo = SIGBUS;
    608  1.39       scw 	ksi->ksi_code = BUS_ADRALN;
    609  1.86     skrll 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    610  1.39       scw 	ksi->ksi_trap = fsr;
    611  1.39       scw 
    612  1.83      matt 	lwp_settrapframe(l, tf);
    613  1.39       scw 
    614  1.39       scw 	return (1);
    615  1.39       scw }
    616  1.39       scw 
    617  1.39       scw /*
    618  1.39       scw  * dab_buserr() handles the following data aborts:
    619  1.39       scw  *
    620  1.39       scw  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    621  1.39       scw  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    622  1.39       scw  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    623  1.39       scw  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    624  1.39       scw  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    625  1.39       scw  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    626  1.39       scw  *
    627  1.39       scw  * If pcb_onfault is set, flag the fault and return to the handler.
    628  1.39       scw  * If the fault occurred in user mode, give the process a SIGBUS.
    629  1.39       scw  *
    630  1.39       scw  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    631  1.39       scw  * can be flagged as imprecise in the FSR. This causes a real headache
    632  1.39       scw  * since some of the machine state is lost. In this case, tf->tf_pc
    633  1.39       scw  * may not actually point to the offending instruction. In fact, if
    634  1.39       scw  * we've taken a double abort fault, it generally points somewhere near
    635  1.39       scw  * the top of "data_abort_entry" in exception.S.
    636  1.39       scw  *
    637  1.39       scw  * In all other cases, these data aborts are considered fatal.
    638  1.39       scw  */
    639  1.39       scw static int
    640  1.39       scw dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    641  1.39       scw     ksiginfo_t *ksi)
    642  1.39       scw {
    643  1.73     rmind 	struct pcb *pcb = lwp_getpcb(l);
    644  1.39       scw 
    645  1.39       scw #ifdef __XSCALE__
    646  1.39       scw 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    647  1.39       scw 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    648  1.39       scw 		/*
    649  1.39       scw 		 * Oops, an imprecise, double abort fault. We've lost the
    650  1.39       scw 		 * r14_abt/spsr_abt values corresponding to the original
    651  1.39       scw 		 * abort, and the spsr saved in the trapframe indicates
    652  1.39       scw 		 * ABT mode.
    653  1.39       scw 		 */
    654  1.39       scw 		tf->tf_spsr &= ~PSR_MODE;
    655  1.39       scw 
    656  1.39       scw 		/*
    657  1.39       scw 		 * We use a simple heuristic to determine if the double abort
    658  1.39       scw 		 * happened as a result of a kernel or user mode access.
    659  1.39       scw 		 * If the current trapframe is at the top of the kernel stack,
    660  1.39       scw 		 * the fault _must_ have come from user mode.
    661  1.39       scw 		 */
    662  1.87      matt 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
    663  1.39       scw 			/*
    664  1.39       scw 			 * Kernel mode. We're either about to die a
    665  1.39       scw 			 * spectacular death, or pcb_onfault will come
    666  1.39       scw 			 * to our rescue. Either way, the current value
    667  1.39       scw 			 * of tf->tf_pc is irrelevant.
    668  1.39       scw 			 */
    669  1.39       scw 			tf->tf_spsr |= PSR_SVC32_MODE;
    670  1.39       scw 			if (pcb->pcb_onfault == NULL)
    671  1.39       scw 				printf("\nKernel mode double abort!\n");
    672  1.39       scw 		} else {
    673  1.39       scw 			/*
    674  1.39       scw 			 * User mode. We've lost the program counter at the
    675  1.39       scw 			 * time of the fault (not that it was accurate anyway;
    676  1.39       scw 			 * it's not called an imprecise fault for nothing).
    677  1.39       scw 			 * About all we can do is copy r14_usr to tf_pc and
    678  1.39       scw 			 * hope for the best. The process is about to get a
    679  1.39       scw 			 * SIGBUS, so it's probably history anyway.
    680  1.39       scw 			 */
    681  1.39       scw 			tf->tf_spsr |= PSR_USR32_MODE;
    682  1.39       scw 			tf->tf_pc = tf->tf_usr_lr;
    683  1.51  rearnsha #ifdef THUMB_CODE
    684  1.51  rearnsha 			tf->tf_spsr &= ~PSR_T_bit;
    685  1.51  rearnsha 			if (tf->tf_usr_lr & 1)
    686  1.51  rearnsha 				tf->tf_spsr |= PSR_T_bit;
    687  1.51  rearnsha #endif
    688  1.39       scw 		}
    689  1.39       scw 	}
    690  1.39       scw 
    691  1.39       scw 	/* FAR is invalid for imprecise exceptions */
    692  1.39       scw 	if ((fsr & FAULT_IMPRECISE) != 0)
    693  1.39       scw 		far = 0;
    694  1.39       scw #endif /* __XSCALE__ */
    695  1.39       scw 
    696  1.39       scw 	if (pcb->pcb_onfault) {
    697  1.39       scw 		KDASSERT(TRAP_USERMODE(tf) == 0);
    698  1.39       scw 		tf->tf_r0 = EFAULT;
    699  1.39       scw 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    700  1.39       scw 		return (0);
    701  1.39       scw 	}
    702  1.39       scw 
    703  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    704  1.39       scw 	(void) data_abort_fixup(tf, fsr, far, l);
    705  1.39       scw 
    706  1.39       scw 	/*
    707  1.39       scw 	 * At this point, if the fault happened in kernel mode, we're toast
    708  1.39       scw 	 */
    709  1.39       scw 	if (!TRAP_USERMODE(tf))
    710  1.39       scw 		dab_fatal(tf, fsr, far, l, NULL);
    711  1.39       scw 
    712  1.39       scw 	/* Deliver a bus error signal to the process */
    713  1.39       scw 	KSI_INIT_TRAP(ksi);
    714  1.39       scw 	ksi->ksi_signo = SIGBUS;
    715  1.39       scw 	ksi->ksi_code = BUS_ADRERR;
    716  1.86     skrll 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    717  1.39       scw 	ksi->ksi_trap = fsr;
    718  1.39       scw 
    719  1.83      matt 	lwp_settrapframe(l, tf);
    720  1.27       scw 
    721  1.39       scw 	return (1);
    722   1.1     chris }
    723   1.1     chris 
    724  1.56     perry static inline int
    725  1.39       scw prefetch_abort_fixup(trapframe_t *tf)
    726  1.39       scw {
    727  1.39       scw #ifdef CPU_ABORT_FIXUP_REQUIRED
    728  1.39       scw 	int error;
    729  1.39       scw 
    730  1.48       wiz 	/* Call the CPU specific prefetch abort fixup routine */
    731  1.39       scw 	error = cpu_prefetchabt_fixup(tf);
    732  1.39       scw 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    733  1.39       scw 		return (error);
    734  1.39       scw 
    735  1.39       scw 	/*
    736  1.39       scw 	 * Oops, couldn't fix up the instruction
    737  1.39       scw 	 */
    738  1.79  christos 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    739  1.39       scw 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    740  1.51  rearnsha #ifdef THUMB_CODE
    741  1.51  rearnsha 	if (tf->tf_spsr & PSR_T_bit) {
    742  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    743  1.86     skrll 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    744  1.86     skrll 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    745  1.51  rearnsha 	}
    746  1.51  rearnsha 	else
    747  1.51  rearnsha #endif
    748  1.51  rearnsha 	{
    749  1.51  rearnsha 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    750  1.51  rearnsha 		    *((u_int *)tf->tf_pc));
    751  1.51  rearnsha 	}
    752  1.39       scw 	disassemble(tf->tf_pc);
    753  1.39       scw 
    754  1.39       scw 	/* Die now if this happened in kernel mode */
    755  1.39       scw 	if (!TRAP_USERMODE(tf))
    756  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    757  1.39       scw 
    758  1.39       scw 	return (error);
    759  1.39       scw #else
    760  1.39       scw 	return (ABORT_FIXUP_OK);
    761  1.39       scw #endif /* CPU_ABORT_FIXUP_REQUIRED */
    762  1.39       scw }
    763   1.1     chris 
    764   1.1     chris /*
    765  1.39       scw  * void prefetch_abort_handler(trapframe_t *tf)
    766   1.1     chris  *
    767   1.1     chris  * Abort handler called when instruction execution occurs at
    768   1.1     chris  * a non existent or restricted (access permissions) memory page.
    769   1.1     chris  * If the address is invalid and we were in SVC mode then panic as
    770   1.1     chris  * the kernel should never prefetch abort.
    771   1.1     chris  * If the address is invalid and the page is mapped then the user process
    772   1.1     chris  * does no have read permission so send it a signal.
    773   1.1     chris  * Otherwise fault the page in and try again.
    774   1.1     chris  */
    775   1.1     chris void
    776  1.39       scw prefetch_abort_handler(trapframe_t *tf)
    777   1.1     chris {
    778  1.26   thorpej 	struct lwp *l;
    779  1.91  christos 	struct pcb *pcb __diagused;
    780  1.14   thorpej 	struct vm_map *map;
    781  1.14   thorpej 	vaddr_t fault_pc, va;
    782  1.39       scw 	ksiginfo_t ksi;
    783  1.61        ad 	int error, user;
    784  1.39       scw 
    785  1.89      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    786  1.50  rearnsha 
    787  1.39       scw 	/* Update vmmeter statistics */
    788  1.78      matt 	curcpu()->ci_data.cpu_ntrap++;
    789   1.1     chris 
    790  1.61        ad 	l = curlwp;
    791  1.73     rmind 	pcb = lwp_getpcb(l);
    792  1.61        ad 
    793  1.61        ad 	if ((user = TRAP_USERMODE(tf)) != 0)
    794  1.61        ad 		LWP_CACHE_CREDS(l, l->l_proc);
    795  1.61        ad 
    796   1.1     chris 	/*
    797   1.1     chris 	 * Enable IRQ's (disabled by the abort) This always comes
    798   1.1     chris 	 * from user mode so we know interrupts were not disabled.
    799   1.1     chris 	 * But we check anyway.
    800   1.1     chris 	 */
    801  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    802  1.72      matt 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
    803  1.72      matt 		restore_interrupts(tf->tf_spsr & IF32_bits);
    804   1.1     chris 
    805  1.48       wiz 	/* See if the CPU state needs to be fixed up */
    806  1.39       scw 	switch (prefetch_abort_fixup(tf)) {
    807  1.39       scw 	case ABORT_FIXUP_RETURN:
    808  1.72      matt 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    809   1.1     chris 		return;
    810  1.39       scw 	case ABORT_FIXUP_FAILED:
    811  1.39       scw 		/* Deliver a SIGILL to the process */
    812  1.39       scw 		KSI_INIT_TRAP(&ksi);
    813  1.39       scw 		ksi.ksi_signo = SIGILL;
    814  1.39       scw 		ksi.ksi_code = ILL_ILLOPC;
    815  1.86     skrll 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
    816  1.83      matt 		lwp_settrapframe(l, tf);
    817  1.39       scw 		goto do_trapsignal;
    818  1.39       scw 	default:
    819  1.39       scw 		break;
    820   1.1     chris 	}
    821   1.1     chris 
    822  1.39       scw 	/* Prefetch aborts cannot happen in kernel mode */
    823  1.61        ad 	if (__predict_false(!user))
    824  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    825   1.1     chris 
    826   1.4   thorpej 	/* Get fault address */
    827  1.39       scw 	fault_pc = tf->tf_pc;
    828  1.83      matt 	lwp_settrapframe(l, tf);
    829  1.50  rearnsha 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
    830  1.50  rearnsha 	    0);
    831  1.14   thorpej 
    832   1.1     chris 	/* Ok validate the address, can only execute in USER space */
    833  1.39       scw 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    834  1.39       scw 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    835  1.35   thorpej 		KSI_INIT_TRAP(&ksi);
    836  1.34      matt 		ksi.ksi_signo = SIGSEGV;
    837  1.34      matt 		ksi.ksi_code = SEGV_ACCERR;
    838  1.86     skrll 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    839  1.34      matt 		ksi.ksi_trap = fault_pc;
    840  1.39       scw 		goto do_trapsignal;
    841  1.39       scw 	}
    842  1.34      matt 
    843  1.39       scw 	map = &l->l_proc->p_vmspace->vm_map;
    844  1.39       scw 	va = trunc_page(fault_pc);
    845   1.1     chris 
    846  1.27       scw 	/*
    847  1.27       scw 	 * See if the pmap can handle this fault on its own...
    848  1.27       scw 	 */
    849  1.39       scw #ifdef DEBUG
    850  1.39       scw 	last_fault_code = -1;
    851  1.39       scw #endif
    852  1.88      matt 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
    853  1.50  rearnsha 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    854  1.39       scw 		goto out;
    855  1.50  rearnsha 	}
    856  1.27       scw 
    857  1.39       scw #ifdef DIAGNOSTIC
    858  1.84      matt 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    859  1.39       scw 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    860  1.39       scw 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    861  1.39       scw 	}
    862   1.1     chris #endif
    863  1.72      matt 
    864  1.76       chs 	KASSERT(pcb->pcb_onfault == NULL);
    865  1.57        he 	error = uvm_fault(map, va, VM_PROT_READ);
    866  1.53      joff 
    867  1.50  rearnsha 	if (__predict_true(error == 0)) {
    868  1.50  rearnsha 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    869  1.39       scw 		goto out;
    870  1.50  rearnsha 	}
    871  1.43       scw 	KSI_INIT_TRAP(&ksi);
    872  1.43       scw 
    873  1.50  rearnsha 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    874  1.39       scw 	if (error == ENOMEM) {
    875  1.39       scw 		printf("UVM: pid %d (%s), uid %d killed: "
    876  1.39       scw 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    877  1.62        ad 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    878  1.43       scw 		ksi.ksi_signo = SIGKILL;
    879  1.43       scw 	} else
    880  1.43       scw 		ksi.ksi_signo = SIGSEGV;
    881   1.1     chris 
    882  1.39       scw 	ksi.ksi_code = SEGV_MAPERR;
    883  1.86     skrll 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    884  1.39       scw 	ksi.ksi_trap = fault_pc;
    885  1.39       scw 
    886  1.39       scw do_trapsignal:
    887  1.93      matt 	call_trapsignal(l, tf, &ksi);
    888  1.39       scw 
    889  1.39       scw out:
    890  1.72      matt 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    891  1.39       scw 	userret(l);
    892  1.39       scw }
    893  1.39       scw 
    894  1.39       scw /*
    895  1.39       scw  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    896  1.39       scw  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    897  1.39       scw  * Else, return EFAULT.
    898  1.39       scw  */
    899  1.39       scw int
    900  1.39       scw badaddr_read(void *addr, size_t size, void *rptr)
    901  1.39       scw {
    902  1.39       scw 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    903  1.39       scw 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    904  1.39       scw 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    905  1.39       scw 	union {
    906  1.39       scw 		uint8_t v1;
    907  1.39       scw 		uint16_t v2;
    908  1.39       scw 		uint32_t v4;
    909  1.39       scw 	} u;
    910  1.47       scw 	int rv, s;
    911  1.39       scw 
    912  1.39       scw 	cpu_drain_writebuf();
    913  1.39       scw 
    914  1.47       scw 	s = splhigh();
    915  1.47       scw 
    916  1.39       scw 	/* Read from the test address. */
    917  1.39       scw 	switch (size) {
    918  1.39       scw 	case sizeof(uint8_t):
    919  1.39       scw 		rv = badaddr_read_1(addr, &u.v1);
    920  1.39       scw 		if (rv == 0 && rptr)
    921  1.39       scw 			*(uint8_t *) rptr = u.v1;
    922  1.39       scw 		break;
    923  1.39       scw 
    924  1.39       scw 	case sizeof(uint16_t):
    925  1.39       scw 		rv = badaddr_read_2(addr, &u.v2);
    926  1.39       scw 		if (rv == 0 && rptr)
    927  1.39       scw 			*(uint16_t *) rptr = u.v2;
    928  1.39       scw 		break;
    929  1.39       scw 
    930  1.39       scw 	case sizeof(uint32_t):
    931  1.39       scw 		rv = badaddr_read_4(addr, &u.v4);
    932  1.39       scw 		if (rv == 0 && rptr)
    933  1.39       scw 			*(uint32_t *) rptr = u.v4;
    934  1.39       scw 		break;
    935  1.39       scw 
    936  1.39       scw 	default:
    937  1.82      matt 		panic("%s: invalid size (%zu)", __func__, size);
    938  1.34      matt 	}
    939  1.39       scw 
    940  1.47       scw 	splx(s);
    941  1.47       scw 
    942  1.39       scw 	/* Return EFAULT if the address was invalid, else zero */
    943  1.39       scw 	return (rv);
    944   1.1     chris }
    945