fault.c revision 1.101 1 /* $NetBSD: fault.c,v 1.101 2014/08/13 21:41:32 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.101 2014/08/13 21:41:32 matt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/locore.h>
101
102 #include <arm/arm32/katelib.h>
103
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if 'x' is a permission fault */
159 #define IS_PERMISSION_FAULT(x) \
160 (((1 << ((x) & FAULT_TYPE_MASK)) & \
161 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
168 #endif
169
170 static inline void
171 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
172 {
173 if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
174 printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
175 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
176 ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
177 ksi->ksi_trap);
178 printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
179 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
180 printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
181 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
182 printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
183 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
184 printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
185 tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
186 tf->tf_spsr);
187 }
188
189 TRAPSIGNAL(l, ksi);
190 }
191
192 static inline int
193 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
194 {
195 #ifdef CPU_ABORT_FIXUP_REQUIRED
196 int error;
197
198 /* Call the CPU specific data abort fixup routine */
199 error = cpu_dataabt_fixup(tf);
200 if (__predict_true(error != ABORT_FIXUP_FAILED))
201 return (error);
202
203 /*
204 * Oops, couldn't fix up the instruction
205 */
206 printf("%s: fixup for %s mode data abort failed.\n", __func__,
207 TRAP_USERMODE(tf) ? "user" : "kernel");
208 #ifdef THUMB_CODE
209 if (tf->tf_spsr & PSR_T_bit) {
210 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
211 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
212 *((uint16 *)((tf->tf_pc + 2) & ~1)));
213 }
214 else
215 #endif
216 {
217 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
218 *((u_int *)tf->tf_pc));
219 }
220 disassemble(tf->tf_pc);
221
222 /* Die now if this happened in kernel mode */
223 if (!TRAP_USERMODE(tf))
224 dab_fatal(tf, fsr, far, l, NULL);
225
226 return (error);
227 #else
228 return (ABORT_FIXUP_OK);
229 #endif /* CPU_ABORT_FIXUP_REQUIRED */
230 }
231
232 void
233 data_abort_handler(trapframe_t *tf)
234 {
235 struct vm_map *map;
236 struct lwp * const l = curlwp;
237 struct cpu_info * const ci = curcpu();
238 u_int far, fsr;
239 vm_prot_t ftype;
240 void *onfault;
241 vaddr_t va;
242 int error;
243 ksiginfo_t ksi;
244
245 UVMHIST_FUNC(__func__);
246 UVMHIST_CALLED(maphist);
247
248 /* Grab FAR/FSR before enabling interrupts */
249 far = cpu_faultaddress();
250 fsr = cpu_faultstatus();
251
252 /* Update vmmeter statistics */
253 ci->ci_data.cpu_ntrap++;
254
255 /* Re-enable interrupts if they were enabled previously */
256 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
257 #ifdef __NO_FIQ
258 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
259 restore_interrupts(tf->tf_spsr & IF32_bits);
260 #else
261 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
262 restore_interrupts(tf->tf_spsr & IF32_bits);
263 #endif
264
265 /* Get the current lwp structure */
266
267 UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
268 l, far, fsr, 0);
269 UVMHIST_LOG(maphist, " tf=%#x, pc=%#x)",
270 tf, tf->tf_pc, 0, 0);
271
272 /* Data abort came from user mode? */
273 bool user = (TRAP_USERMODE(tf) != 0);
274 if (user)
275 LWP_CACHE_CREDS(l, l->l_proc);
276
277 /* Grab the current pcb */
278 struct pcb * const pcb = lwp_getpcb(l);
279
280 curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
281
282 /* Invoke the appropriate handler, if necessary */
283 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
284 #ifdef DIAGNOSTIC
285 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
286 __func__, fsr, far);
287 #endif
288 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
289 l, &ksi))
290 goto do_trapsignal;
291 goto out;
292 }
293
294 /*
295 * At this point, we're dealing with one of the following data aborts:
296 *
297 * FAULT_TRANS_S - Translation -- Section
298 * FAULT_TRANS_P - Translation -- Page
299 * FAULT_DOMAIN_S - Domain -- Section
300 * FAULT_DOMAIN_P - Domain -- Page
301 * FAULT_PERM_S - Permission -- Section
302 * FAULT_PERM_P - Permission -- Page
303 *
304 * These are the main virtual memory-related faults signalled by
305 * the MMU.
306 */
307
308 /* fusubailout is used by [fs]uswintr to avoid page faulting */
309 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
310 tf->tf_r0 = EFAULT;
311 tf->tf_pc = (intptr_t) pcb->pcb_onfault;
312 return;
313 }
314
315 if (user) {
316 lwp_settrapframe(l, tf);
317 }
318
319 /*
320 * Make sure the Program Counter is sane. We could fall foul of
321 * someone executing Thumb code, in which case the PC might not
322 * be word-aligned. This would cause a kernel alignment fault
323 * further down if we have to decode the current instruction.
324 */
325 #ifdef THUMB_CODE
326 /*
327 * XXX: It would be nice to be able to support Thumb in the kernel
328 * at some point.
329 */
330 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
331 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
332 __func__);
333 dab_fatal(tf, fsr, far, l, NULL);
334 }
335 #else
336 if (__predict_false((tf->tf_pc & 3) != 0)) {
337 if (user) {
338 /*
339 * Give the user an illegal instruction signal.
340 */
341 /* Deliver a SIGILL to the process */
342 KSI_INIT_TRAP(&ksi);
343 ksi.ksi_signo = SIGILL;
344 ksi.ksi_code = ILL_ILLOPC;
345 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
346 ksi.ksi_trap = fsr;
347 goto do_trapsignal;
348 }
349
350 /*
351 * The kernel never executes Thumb code.
352 */
353 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
354 __func__);
355 dab_fatal(tf, fsr, far, l, NULL);
356 }
357 #endif
358
359 /* See if the CPU state needs to be fixed up */
360 switch (data_abort_fixup(tf, fsr, far, l)) {
361 case ABORT_FIXUP_RETURN:
362 return;
363 case ABORT_FIXUP_FAILED:
364 /* Deliver a SIGILL to the process */
365 KSI_INIT_TRAP(&ksi);
366 ksi.ksi_signo = SIGILL;
367 ksi.ksi_code = ILL_ILLOPC;
368 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
369 ksi.ksi_trap = fsr;
370 goto do_trapsignal;
371 default:
372 break;
373 }
374
375 va = trunc_page((vaddr_t)far);
376
377 /*
378 * It is only a kernel address space fault iff:
379 * 1. user == 0 and
380 * 2. pcb_onfault not set or
381 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
382 */
383 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
384 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
385 __predict_true((pcb->pcb_onfault == NULL ||
386 (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
387 map = kernel_map;
388
389 /* Was the fault due to the FPE/IPKDB ? */
390 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
391 KSI_INIT_TRAP(&ksi);
392 ksi.ksi_signo = SIGSEGV;
393 ksi.ksi_code = SEGV_ACCERR;
394 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
395 ksi.ksi_trap = fsr;
396
397 /*
398 * Force exit via userret()
399 * This is necessary as the FPE is an extension to
400 * userland that actually runs in a priveledged mode
401 * but uses USR mode permissions for its accesses.
402 */
403 user = true;
404 goto do_trapsignal;
405 }
406 } else {
407 map = &l->l_proc->p_vmspace->vm_map;
408 }
409
410 /*
411 * We need to know whether the page should be mapped as R or R/W.
412 * Before ARMv6, the MMU did not give us the info as to whether the
413 * fault was caused by a read or a write.
414 *
415 * However, we know that a permission fault can only be the result of
416 * a write to a read-only location, so we can deal with those quickly.
417 *
418 * Otherwise we need to disassemble the instruction responsible to
419 * determine if it was a write.
420 */
421 if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
422 ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
423 } else if (IS_PERMISSION_FAULT(fsr)) {
424 ftype = VM_PROT_WRITE;
425 } else {
426 #ifdef THUMB_CODE
427 /* Fast track the ARM case. */
428 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
429 u_int insn = read_thumb_insn(tf->tf_pc, user);
430 u_int insn_f8 = insn & 0xf800;
431 u_int insn_fe = insn & 0xfe00;
432
433 if (insn_f8 == 0x6000 || /* STR(1) */
434 insn_f8 == 0x7000 || /* STRB(1) */
435 insn_f8 == 0x8000 || /* STRH(1) */
436 insn_f8 == 0x9000 || /* STR(3) */
437 insn_f8 == 0xc000 || /* STM */
438 insn_fe == 0x5000 || /* STR(2) */
439 insn_fe == 0x5200 || /* STRH(2) */
440 insn_fe == 0x5400) /* STRB(2) */
441 ftype = VM_PROT_WRITE;
442 else
443 ftype = VM_PROT_READ;
444 }
445 else
446 #endif
447 {
448 u_int insn = read_insn(tf->tf_pc, user);
449
450 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
451 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
452 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
453 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
454 ftype = VM_PROT_WRITE;
455 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
456 ftype = VM_PROT_READ | VM_PROT_WRITE;
457 else
458 ftype = VM_PROT_READ;
459 }
460 }
461
462 /*
463 * See if the fault is as a result of ref/mod emulation,
464 * or domain mismatch.
465 */
466 #ifdef DEBUG
467 last_fault_code = fsr;
468 #endif
469 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
470 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
471 goto out;
472 }
473
474 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
475 if (pcb->pcb_onfault) {
476 tf->tf_r0 = EINVAL;
477 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
478 return;
479 }
480 printf("\nNon-emulated page fault with intr_depth > 0\n");
481 dab_fatal(tf, fsr, far, l, NULL);
482 }
483
484 onfault = pcb->pcb_onfault;
485 pcb->pcb_onfault = NULL;
486 error = uvm_fault(map, va, ftype);
487 pcb->pcb_onfault = onfault;
488
489 if (__predict_true(error == 0)) {
490 if (user)
491 uvm_grow(l->l_proc, va); /* Record any stack growth */
492 else
493 ucas_ras_check(tf);
494 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
495 goto out;
496 }
497
498 if (user == 0) {
499 if (pcb->pcb_onfault) {
500 tf->tf_r0 = error;
501 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
502 return;
503 }
504
505 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
506 error);
507 dab_fatal(tf, fsr, far, l, NULL);
508 }
509
510 KSI_INIT_TRAP(&ksi);
511
512 if (error == ENOMEM) {
513 printf("UVM: pid %d (%s), uid %d killed: "
514 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
515 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
516 ksi.ksi_signo = SIGKILL;
517 } else
518 ksi.ksi_signo = SIGSEGV;
519
520 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
521 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
522 ksi.ksi_trap = fsr;
523 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
524
525 do_trapsignal:
526 call_trapsignal(l, tf, &ksi);
527 out:
528 /* If returning to user mode, make sure to invoke userret() */
529 if (user)
530 userret(l);
531 }
532
533 /*
534 * dab_fatal() handles the following data aborts:
535 *
536 * FAULT_WRTBUF_0 - Vector Exception
537 * FAULT_WRTBUF_1 - Terminal Exception
538 *
539 * We should never see these on a properly functioning system.
540 *
541 * This function is also called by the other handlers if they
542 * detect a fatal problem.
543 *
544 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
545 */
546 static int
547 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
548 {
549 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
550
551 if (l != NULL) {
552 printf("Fatal %s mode data abort: '%s'\n", mode,
553 data_aborts[fsr & FAULT_TYPE_MASK].desc);
554 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
555 if ((fsr & FAULT_IMPRECISE) == 0)
556 printf("%08x, ", far);
557 else
558 printf("Invalid, ");
559 printf("spsr=%08x\n", tf->tf_spsr);
560 } else {
561 printf("Fatal %s mode prefetch abort at 0x%08x\n",
562 mode, tf->tf_pc);
563 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
564 }
565
566 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
567 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
568 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
569 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
570 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
571 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
572 printf("r12=%08x, ", tf->tf_r12);
573
574 if (TRAP_USERMODE(tf))
575 printf("usp=%08x, ulr=%08x",
576 tf->tf_usr_sp, tf->tf_usr_lr);
577 else
578 printf("ssp=%08x, slr=%08x",
579 tf->tf_svc_sp, tf->tf_svc_lr);
580 printf(", pc =%08x\n\n", tf->tf_pc);
581
582 #if defined(DDB) || defined(KGDB)
583 kdb_trap(T_FAULT, tf);
584 #endif
585 panic("Fatal abort");
586 /*NOTREACHED*/
587 }
588
589 /*
590 * dab_align() handles the following data aborts:
591 *
592 * FAULT_ALIGN_0 - Alignment fault
593 * FAULT_ALIGN_0 - Alignment fault
594 *
595 * These faults are fatal if they happen in kernel mode. Otherwise, we
596 * deliver a bus error to the process.
597 */
598 static int
599 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
600 {
601 /* Alignment faults are always fatal if they occur in kernel mode */
602 if (!TRAP_USERMODE(tf))
603 dab_fatal(tf, fsr, far, l, NULL);
604
605 /* pcb_onfault *must* be NULL at this point */
606 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
607
608 /* See if the CPU state needs to be fixed up */
609 (void) data_abort_fixup(tf, fsr, far, l);
610
611 /* Deliver a bus error signal to the process */
612 KSI_INIT_TRAP(ksi);
613 ksi->ksi_signo = SIGBUS;
614 ksi->ksi_code = BUS_ADRALN;
615 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
616 ksi->ksi_trap = fsr;
617
618 lwp_settrapframe(l, tf);
619
620 return (1);
621 }
622
623 /*
624 * dab_buserr() handles the following data aborts:
625 *
626 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
627 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
628 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
629 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
630 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
631 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
632 *
633 * If pcb_onfault is set, flag the fault and return to the handler.
634 * If the fault occurred in user mode, give the process a SIGBUS.
635 *
636 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
637 * can be flagged as imprecise in the FSR. This causes a real headache
638 * since some of the machine state is lost. In this case, tf->tf_pc
639 * may not actually point to the offending instruction. In fact, if
640 * we've taken a double abort fault, it generally points somewhere near
641 * the top of "data_abort_entry" in exception.S.
642 *
643 * In all other cases, these data aborts are considered fatal.
644 */
645 static int
646 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
647 ksiginfo_t *ksi)
648 {
649 struct pcb *pcb = lwp_getpcb(l);
650
651 #ifdef __XSCALE__
652 if ((fsr & FAULT_IMPRECISE) != 0 &&
653 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
654 /*
655 * Oops, an imprecise, double abort fault. We've lost the
656 * r14_abt/spsr_abt values corresponding to the original
657 * abort, and the spsr saved in the trapframe indicates
658 * ABT mode.
659 */
660 tf->tf_spsr &= ~PSR_MODE;
661
662 /*
663 * We use a simple heuristic to determine if the double abort
664 * happened as a result of a kernel or user mode access.
665 * If the current trapframe is at the top of the kernel stack,
666 * the fault _must_ have come from user mode.
667 */
668 if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
669 /*
670 * Kernel mode. We're either about to die a
671 * spectacular death, or pcb_onfault will come
672 * to our rescue. Either way, the current value
673 * of tf->tf_pc is irrelevant.
674 */
675 tf->tf_spsr |= PSR_SVC32_MODE;
676 if (pcb->pcb_onfault == NULL)
677 printf("\nKernel mode double abort!\n");
678 } else {
679 /*
680 * User mode. We've lost the program counter at the
681 * time of the fault (not that it was accurate anyway;
682 * it's not called an imprecise fault for nothing).
683 * About all we can do is copy r14_usr to tf_pc and
684 * hope for the best. The process is about to get a
685 * SIGBUS, so it's probably history anyway.
686 */
687 tf->tf_spsr |= PSR_USR32_MODE;
688 tf->tf_pc = tf->tf_usr_lr;
689 #ifdef THUMB_CODE
690 tf->tf_spsr &= ~PSR_T_bit;
691 if (tf->tf_usr_lr & 1)
692 tf->tf_spsr |= PSR_T_bit;
693 #endif
694 }
695 }
696
697 /* FAR is invalid for imprecise exceptions */
698 if ((fsr & FAULT_IMPRECISE) != 0)
699 far = 0;
700 #endif /* __XSCALE__ */
701
702 if (pcb->pcb_onfault) {
703 KDASSERT(TRAP_USERMODE(tf) == 0);
704 tf->tf_r0 = EFAULT;
705 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
706 return (0);
707 }
708
709 /* See if the CPU state needs to be fixed up */
710 (void) data_abort_fixup(tf, fsr, far, l);
711
712 /*
713 * At this point, if the fault happened in kernel mode, we're toast
714 */
715 if (!TRAP_USERMODE(tf))
716 dab_fatal(tf, fsr, far, l, NULL);
717
718 /* Deliver a bus error signal to the process */
719 KSI_INIT_TRAP(ksi);
720 ksi->ksi_signo = SIGBUS;
721 ksi->ksi_code = BUS_ADRERR;
722 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
723 ksi->ksi_trap = fsr;
724
725 lwp_settrapframe(l, tf);
726
727 return (1);
728 }
729
730 static inline int
731 prefetch_abort_fixup(trapframe_t *tf)
732 {
733 #ifdef CPU_ABORT_FIXUP_REQUIRED
734 int error;
735
736 /* Call the CPU specific prefetch abort fixup routine */
737 error = cpu_prefetchabt_fixup(tf);
738 if (__predict_true(error != ABORT_FIXUP_FAILED))
739 return (error);
740
741 /*
742 * Oops, couldn't fix up the instruction
743 */
744 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
745 TRAP_USERMODE(tf) ? "user" : "kernel");
746 #ifdef THUMB_CODE
747 if (tf->tf_spsr & PSR_T_bit) {
748 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
749 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
750 *((uint16 *)((tf->tf_pc + 2) & ~1)));
751 }
752 else
753 #endif
754 {
755 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
756 *((u_int *)tf->tf_pc));
757 }
758 disassemble(tf->tf_pc);
759
760 /* Die now if this happened in kernel mode */
761 if (!TRAP_USERMODE(tf))
762 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
763
764 return (error);
765 #else
766 return (ABORT_FIXUP_OK);
767 #endif /* CPU_ABORT_FIXUP_REQUIRED */
768 }
769
770 /*
771 * void prefetch_abort_handler(trapframe_t *tf)
772 *
773 * Abort handler called when instruction execution occurs at
774 * a non existent or restricted (access permissions) memory page.
775 * If the address is invalid and we were in SVC mode then panic as
776 * the kernel should never prefetch abort.
777 * If the address is invalid and the page is mapped then the user process
778 * does no have read permission so send it a signal.
779 * Otherwise fault the page in and try again.
780 */
781 void
782 prefetch_abort_handler(trapframe_t *tf)
783 {
784 struct lwp *l;
785 struct pcb *pcb __diagused;
786 struct vm_map *map;
787 vaddr_t fault_pc, va;
788 ksiginfo_t ksi;
789 int error, user;
790
791 UVMHIST_FUNC(__func__);
792 UVMHIST_CALLED(maphist);
793
794 /* Update vmmeter statistics */
795 curcpu()->ci_data.cpu_ntrap++;
796
797 l = curlwp;
798 pcb = lwp_getpcb(l);
799
800 if ((user = TRAP_USERMODE(tf)) != 0)
801 LWP_CACHE_CREDS(l, l->l_proc);
802
803 /*
804 * Enable IRQ's (disabled by the abort) This always comes
805 * from user mode so we know interrupts were not disabled.
806 * But we check anyway.
807 */
808 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
809 #ifdef __NO_FIQ
810 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
811 restore_interrupts(tf->tf_spsr & IF32_bits);
812 #else
813 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
814 restore_interrupts(tf->tf_spsr & IF32_bits);
815 #endif
816
817 /* See if the CPU state needs to be fixed up */
818 switch (prefetch_abort_fixup(tf)) {
819 case ABORT_FIXUP_RETURN:
820 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
821 return;
822 case ABORT_FIXUP_FAILED:
823 /* Deliver a SIGILL to the process */
824 KSI_INIT_TRAP(&ksi);
825 ksi.ksi_signo = SIGILL;
826 ksi.ksi_code = ILL_ILLOPC;
827 ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
828 lwp_settrapframe(l, tf);
829 goto do_trapsignal;
830 default:
831 break;
832 }
833
834 /* Prefetch aborts cannot happen in kernel mode */
835 if (__predict_false(!user))
836 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
837
838 /* Get fault address */
839 fault_pc = tf->tf_pc;
840 lwp_settrapframe(l, tf);
841 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)",
842 fault_pc, l, tf, 0);
843
844 /* Ok validate the address, can only execute in USER space */
845 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
846 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
847 KSI_INIT_TRAP(&ksi);
848 ksi.ksi_signo = SIGSEGV;
849 ksi.ksi_code = SEGV_ACCERR;
850 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
851 ksi.ksi_trap = fault_pc;
852 goto do_trapsignal;
853 }
854
855 map = &l->l_proc->p_vmspace->vm_map;
856 va = trunc_page(fault_pc);
857
858 /*
859 * See if the pmap can handle this fault on its own...
860 */
861 #ifdef DEBUG
862 last_fault_code = -1;
863 #endif
864 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
865 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
866 goto out;
867 }
868
869 #ifdef DIAGNOSTIC
870 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
871 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
872 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
873 }
874 #endif
875
876 KASSERT(pcb->pcb_onfault == NULL);
877 error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
878
879 if (__predict_true(error == 0)) {
880 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
881 goto out;
882 }
883 KSI_INIT_TRAP(&ksi);
884
885 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
886
887 if (error == ENOMEM) {
888 printf("UVM: pid %d (%s), uid %d killed: "
889 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
890 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
891 ksi.ksi_signo = SIGKILL;
892 } else
893 ksi.ksi_signo = SIGSEGV;
894
895 ksi.ksi_code = SEGV_MAPERR;
896 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
897 ksi.ksi_trap = fault_pc;
898
899 do_trapsignal:
900 call_trapsignal(l, tf, &ksi);
901
902 out:
903 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
904 userret(l);
905 }
906
907 /*
908 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
909 * If the read succeeds, the value is written to 'rptr' and zero is returned.
910 * Else, return EFAULT.
911 */
912 int
913 badaddr_read(void *addr, size_t size, void *rptr)
914 {
915 extern int badaddr_read_1(const uint8_t *, uint8_t *);
916 extern int badaddr_read_2(const uint16_t *, uint16_t *);
917 extern int badaddr_read_4(const uint32_t *, uint32_t *);
918 union {
919 uint8_t v1;
920 uint16_t v2;
921 uint32_t v4;
922 } u;
923 int rv, s;
924
925 cpu_drain_writebuf();
926
927 s = splhigh();
928
929 /* Read from the test address. */
930 switch (size) {
931 case sizeof(uint8_t):
932 rv = badaddr_read_1(addr, &u.v1);
933 if (rv == 0 && rptr)
934 *(uint8_t *) rptr = u.v1;
935 break;
936
937 case sizeof(uint16_t):
938 rv = badaddr_read_2(addr, &u.v2);
939 if (rv == 0 && rptr)
940 *(uint16_t *) rptr = u.v2;
941 break;
942
943 case sizeof(uint32_t):
944 rv = badaddr_read_4(addr, &u.v4);
945 if (rv == 0 && rptr)
946 *(uint32_t *) rptr = u.v4;
947 break;
948
949 default:
950 panic("%s: invalid size (%zu)", __func__, size);
951 }
952
953 splx(s);
954
955 /* Return EFAULT if the address was invalid, else zero */
956 return (rv);
957 }
958