Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.102
      1 /*	$NetBSD: fault.c,v 1.102 2014/10/25 10:58:12 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.102 2014/10/25 10:58:12 skrll Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kauth.h>
     91 #include <sys/cpu.h>
     92 #include <sys/intr.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 #include <uvm/uvm_stat.h>
     96 #ifdef UVMHIST
     97 #include <uvm/uvm.h>
     98 #endif
     99 
    100 #include <arm/locore.h>
    101 
    102 #include <machine/pcb.h>
    103 #if defined(DDB) || defined(KGDB)
    104 #include <machine/db_machdep.h>
    105 #ifdef KGDB
    106 #include <sys/kgdb.h>
    107 #endif
    108 #if !defined(DDB)
    109 #define kdb_trap	kgdb_trap
    110 #endif
    111 #endif
    112 
    113 #include <arch/arm/arm/disassem.h>
    114 #include <arm/arm32/machdep.h>
    115 
    116 extern char fusubailout[];
    117 
    118 #ifdef DEBUG
    119 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    120 #endif
    121 
    122 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    123     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    124 /* These CPUs may need data/prefetch abort fixups */
    125 #define	CPU_ABORT_FIXUP_REQUIRED
    126 #endif
    127 
    128 struct data_abort {
    129 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    130 	const char *desc;
    131 };
    132 
    133 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    135 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136 
    137 static const struct data_abort data_aborts[] = {
    138 	{dab_fatal,	"Vector Exception"},
    139 	{dab_align,	"Alignment Fault 1"},
    140 	{dab_fatal,	"Terminal Exception"},
    141 	{dab_align,	"Alignment Fault 3"},
    142 	{dab_buserr,	"External Linefetch Abort (S)"},
    143 	{NULL,		"Translation Fault (S)"},
    144 	{dab_buserr,	"External Linefetch Abort (P)"},
    145 	{NULL,		"Translation Fault (P)"},
    146 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    147 	{NULL,		"Domain Fault (S)"},
    148 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    149 	{NULL,		"Domain Fault (P)"},
    150 	{dab_buserr,	"External Translation Abort (L1)"},
    151 	{NULL,		"Permission Fault (S)"},
    152 	{dab_buserr,	"External Translation Abort (L2)"},
    153 	{NULL,		"Permission Fault (P)"}
    154 };
    155 
    156 /* Determine if 'x' is a permission fault */
    157 #define	IS_PERMISSION_FAULT(x)					\
    158 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    159 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    160 
    161 #if 0
    162 /* maybe one day we'll do emulations */
    163 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    164 #else
    165 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    166 #endif
    167 
    168 static inline void
    169 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
    170 {
    171 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
    172 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
    173 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    174 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
    175 		    ksi->ksi_trap);
    176 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
    177 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    178 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
    179 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    180 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
    181 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    182 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
    183 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
    184 		    tf->tf_spsr);
    185 	}
    186 
    187 	TRAPSIGNAL(l, ksi);
    188 }
    189 
    190 static inline int
    191 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    192 {
    193 #ifdef CPU_ABORT_FIXUP_REQUIRED
    194 	int error;
    195 
    196 	/* Call the CPU specific data abort fixup routine */
    197 	error = cpu_dataabt_fixup(tf);
    198 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    199 		return (error);
    200 
    201 	/*
    202 	 * Oops, couldn't fix up the instruction
    203 	 */
    204 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    205 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    206 #ifdef THUMB_CODE
    207 	if (tf->tf_spsr & PSR_T_bit) {
    208 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    209 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    210 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    211 	}
    212 	else
    213 #endif
    214 	{
    215 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    216 		    *((u_int *)tf->tf_pc));
    217 	}
    218 	disassemble(tf->tf_pc);
    219 
    220 	/* Die now if this happened in kernel mode */
    221 	if (!TRAP_USERMODE(tf))
    222 		dab_fatal(tf, fsr, far, l, NULL);
    223 
    224 	return (error);
    225 #else
    226 	return (ABORT_FIXUP_OK);
    227 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    228 }
    229 
    230 void
    231 data_abort_handler(trapframe_t *tf)
    232 {
    233 	struct vm_map *map;
    234 	struct lwp * const l = curlwp;
    235 	struct cpu_info * const ci = curcpu();
    236 	u_int far, fsr;
    237 	vm_prot_t ftype;
    238 	void *onfault;
    239 	vaddr_t va;
    240 	int error;
    241 	ksiginfo_t ksi;
    242 
    243 	UVMHIST_FUNC(__func__);
    244 	UVMHIST_CALLED(maphist);
    245 
    246 	/* Grab FAR/FSR before enabling interrupts */
    247 	far = cpu_faultaddress();
    248 	fsr = cpu_faultstatus();
    249 
    250 	/* Update vmmeter statistics */
    251 	ci->ci_data.cpu_ntrap++;
    252 
    253 	/* Re-enable interrupts if they were enabled previously */
    254 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    255 #ifdef __NO_FIQ
    256 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    257 		restore_interrupts(tf->tf_spsr & IF32_bits);
    258 #else
    259 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    260 		restore_interrupts(tf->tf_spsr & IF32_bits);
    261 #endif
    262 
    263 	/* Get the current lwp structure */
    264 
    265 	UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
    266 	    l, far, fsr, 0);
    267 	UVMHIST_LOG(maphist, "  tf=%#x, pc=%#x)",
    268 	    tf, tf->tf_pc, 0, 0);
    269 
    270 	/* Data abort came from user mode? */
    271 	bool user = (TRAP_USERMODE(tf) != 0);
    272 	if (user)
    273 		LWP_CACHE_CREDS(l, l->l_proc);
    274 
    275 	/* Grab the current pcb */
    276 	struct pcb * const pcb = lwp_getpcb(l);
    277 
    278 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
    279 
    280 	/* Invoke the appropriate handler, if necessary */
    281 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    282 #ifdef DIAGNOSTIC
    283 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    284 		    __func__, fsr, far);
    285 #endif
    286 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    287 		    l, &ksi))
    288 			goto do_trapsignal;
    289 		goto out;
    290 	}
    291 
    292 	/*
    293 	 * At this point, we're dealing with one of the following data aborts:
    294 	 *
    295 	 *  FAULT_TRANS_S  - Translation -- Section
    296 	 *  FAULT_TRANS_P  - Translation -- Page
    297 	 *  FAULT_DOMAIN_S - Domain -- Section
    298 	 *  FAULT_DOMAIN_P - Domain -- Page
    299 	 *  FAULT_PERM_S   - Permission -- Section
    300 	 *  FAULT_PERM_P   - Permission -- Page
    301 	 *
    302 	 * These are the main virtual memory-related faults signalled by
    303 	 * the MMU.
    304 	 */
    305 
    306 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    307 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    308 		tf->tf_r0 = EFAULT;
    309 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    310 		return;
    311 	}
    312 
    313 	if (user) {
    314 		lwp_settrapframe(l, tf);
    315 	}
    316 
    317 	/*
    318 	 * Make sure the Program Counter is sane. We could fall foul of
    319 	 * someone executing Thumb code, in which case the PC might not
    320 	 * be word-aligned. This would cause a kernel alignment fault
    321 	 * further down if we have to decode the current instruction.
    322 	 */
    323 #ifdef THUMB_CODE
    324 	/*
    325 	 * XXX: It would be nice to be able to support Thumb in the kernel
    326 	 * at some point.
    327 	 */
    328 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    329 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    330 		    __func__);
    331 		dab_fatal(tf, fsr, far, l, NULL);
    332 	}
    333 #else
    334 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    335 		if (user) {
    336 			/*
    337 			 * Give the user an illegal instruction signal.
    338 			 */
    339 			/* Deliver a SIGILL to the process */
    340 			KSI_INIT_TRAP(&ksi);
    341 			ksi.ksi_signo = SIGILL;
    342 			ksi.ksi_code = ILL_ILLOPC;
    343 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    344 			ksi.ksi_trap = fsr;
    345 			goto do_trapsignal;
    346 		}
    347 
    348 		/*
    349 		 * The kernel never executes Thumb code.
    350 		 */
    351 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    352 		    __func__);
    353 		dab_fatal(tf, fsr, far, l, NULL);
    354 	}
    355 #endif
    356 
    357 	/* See if the CPU state needs to be fixed up */
    358 	switch (data_abort_fixup(tf, fsr, far, l)) {
    359 	case ABORT_FIXUP_RETURN:
    360 		return;
    361 	case ABORT_FIXUP_FAILED:
    362 		/* Deliver a SIGILL to the process */
    363 		KSI_INIT_TRAP(&ksi);
    364 		ksi.ksi_signo = SIGILL;
    365 		ksi.ksi_code = ILL_ILLOPC;
    366 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    367 		ksi.ksi_trap = fsr;
    368 		goto do_trapsignal;
    369 	default:
    370 		break;
    371 	}
    372 
    373 	va = trunc_page((vaddr_t)far);
    374 
    375 	/*
    376 	 * It is only a kernel address space fault iff:
    377 	 *	1. user == 0  and
    378 	 *	2. pcb_onfault not set or
    379 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    380 	 */
    381 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    382 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    383 	    __predict_true((pcb->pcb_onfault == NULL ||
    384 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
    385 		map = kernel_map;
    386 
    387 		/* Was the fault due to the FPE/IPKDB ? */
    388 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    389 			KSI_INIT_TRAP(&ksi);
    390 			ksi.ksi_signo = SIGSEGV;
    391 			ksi.ksi_code = SEGV_ACCERR;
    392 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    393 			ksi.ksi_trap = fsr;
    394 
    395 			/*
    396 			 * Force exit via userret()
    397 			 * This is necessary as the FPE is an extension to
    398 			 * userland that actually runs in a priveledged mode
    399 			 * but uses USR mode permissions for its accesses.
    400 			 */
    401 			user = true;
    402 			goto do_trapsignal;
    403 		}
    404 	} else {
    405 		map = &l->l_proc->p_vmspace->vm_map;
    406 	}
    407 
    408 	/*
    409 	 * We need to know whether the page should be mapped as R or R/W.
    410 	 * Before ARMv6, the MMU did not give us the info as to whether the
    411 	 * fault was caused by a read or a write.
    412 	 *
    413 	 * However, we know that a permission fault can only be the result of
    414 	 * a write to a read-only location, so we can deal with those quickly.
    415 	 *
    416 	 * Otherwise we need to disassemble the instruction responsible to
    417 	 * determine if it was a write.
    418 	 */
    419 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
    420 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
    421 	} else if (IS_PERMISSION_FAULT(fsr)) {
    422 		ftype = VM_PROT_WRITE;
    423 	} else {
    424 #ifdef THUMB_CODE
    425 		/* Fast track the ARM case.  */
    426 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    427 			u_int insn = read_thumb_insn(tf->tf_pc, user);
    428 			u_int insn_f8 = insn & 0xf800;
    429 			u_int insn_fe = insn & 0xfe00;
    430 
    431 			if (insn_f8 == 0x6000 || /* STR(1) */
    432 			    insn_f8 == 0x7000 || /* STRB(1) */
    433 			    insn_f8 == 0x8000 || /* STRH(1) */
    434 			    insn_f8 == 0x9000 || /* STR(3) */
    435 			    insn_f8 == 0xc000 || /* STM */
    436 			    insn_fe == 0x5000 || /* STR(2) */
    437 			    insn_fe == 0x5200 || /* STRH(2) */
    438 			    insn_fe == 0x5400)   /* STRB(2) */
    439 				ftype = VM_PROT_WRITE;
    440 			else
    441 				ftype = VM_PROT_READ;
    442 		}
    443 		else
    444 #endif
    445 		{
    446 			u_int insn = read_insn(tf->tf_pc, user);
    447 
    448 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    449 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    450 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    451 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    452 				ftype = VM_PROT_WRITE;
    453 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    454 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    455 			else
    456 				ftype = VM_PROT_READ;
    457 		}
    458 	}
    459 
    460 	/*
    461 	 * See if the fault is as a result of ref/mod emulation,
    462 	 * or domain mismatch.
    463 	 */
    464 #ifdef DEBUG
    465 	last_fault_code = fsr;
    466 #endif
    467 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    468 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    469 		goto out;
    470 	}
    471 
    472 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    473 		if (pcb->pcb_onfault) {
    474 			tf->tf_r0 = EINVAL;
    475 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    476 			return;
    477 		}
    478 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    479 		dab_fatal(tf, fsr, far, l, NULL);
    480 	}
    481 
    482 	onfault = pcb->pcb_onfault;
    483 	pcb->pcb_onfault = NULL;
    484 	error = uvm_fault(map, va, ftype);
    485 	pcb->pcb_onfault = onfault;
    486 
    487 	if (__predict_true(error == 0)) {
    488 		if (user)
    489 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    490 		else
    491 			ucas_ras_check(tf);
    492 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    493 		goto out;
    494 	}
    495 
    496 	if (user == 0) {
    497 		if (pcb->pcb_onfault) {
    498 			tf->tf_r0 = error;
    499 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    500 			return;
    501 		}
    502 
    503 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    504 		    error);
    505 		dab_fatal(tf, fsr, far, l, NULL);
    506 	}
    507 
    508 	KSI_INIT_TRAP(&ksi);
    509 
    510 	if (error == ENOMEM) {
    511 		printf("UVM: pid %d (%s), uid %d killed: "
    512 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    513 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    514 		ksi.ksi_signo = SIGKILL;
    515 	} else
    516 		ksi.ksi_signo = SIGSEGV;
    517 
    518 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    519 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    520 	ksi.ksi_trap = fsr;
    521 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
    522 
    523 do_trapsignal:
    524 	call_trapsignal(l, tf, &ksi);
    525 out:
    526 	/* If returning to user mode, make sure to invoke userret() */
    527 	if (user)
    528 		userret(l);
    529 }
    530 
    531 /*
    532  * dab_fatal() handles the following data aborts:
    533  *
    534  *  FAULT_WRTBUF_0 - Vector Exception
    535  *  FAULT_WRTBUF_1 - Terminal Exception
    536  *
    537  * We should never see these on a properly functioning system.
    538  *
    539  * This function is also called by the other handlers if they
    540  * detect a fatal problem.
    541  *
    542  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    543  */
    544 static int
    545 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    546 {
    547 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    548 
    549 	if (l != NULL) {
    550 		printf("Fatal %s mode data abort: '%s'\n", mode,
    551 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    552 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    553 		if ((fsr & FAULT_IMPRECISE) == 0)
    554 			printf("%08x, ", far);
    555 		else
    556 			printf("Invalid,  ");
    557 		printf("spsr=%08x\n", tf->tf_spsr);
    558 	} else {
    559 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    560 		    mode, tf->tf_pc);
    561 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    562 	}
    563 
    564 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    565 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    566 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    567 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    568 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    569 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    570 	printf("r12=%08x, ", tf->tf_r12);
    571 
    572 	if (TRAP_USERMODE(tf))
    573 		printf("usp=%08x, ulr=%08x",
    574 		    tf->tf_usr_sp, tf->tf_usr_lr);
    575 	else
    576 		printf("ssp=%08x, slr=%08x",
    577 		    tf->tf_svc_sp, tf->tf_svc_lr);
    578 	printf(", pc =%08x\n\n", tf->tf_pc);
    579 
    580 #if defined(DDB) || defined(KGDB)
    581 	kdb_trap(T_FAULT, tf);
    582 #endif
    583 	panic("Fatal abort");
    584 	/*NOTREACHED*/
    585 }
    586 
    587 /*
    588  * dab_align() handles the following data aborts:
    589  *
    590  *  FAULT_ALIGN_0 - Alignment fault
    591  *  FAULT_ALIGN_0 - Alignment fault
    592  *
    593  * These faults are fatal if they happen in kernel mode. Otherwise, we
    594  * deliver a bus error to the process.
    595  */
    596 static int
    597 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    598 {
    599 	/* Alignment faults are always fatal if they occur in kernel mode */
    600 	if (!TRAP_USERMODE(tf))
    601 		dab_fatal(tf, fsr, far, l, NULL);
    602 
    603 	/* pcb_onfault *must* be NULL at this point */
    604 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    605 
    606 	/* See if the CPU state needs to be fixed up */
    607 	(void) data_abort_fixup(tf, fsr, far, l);
    608 
    609 	/* Deliver a bus error signal to the process */
    610 	KSI_INIT_TRAP(ksi);
    611 	ksi->ksi_signo = SIGBUS;
    612 	ksi->ksi_code = BUS_ADRALN;
    613 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    614 	ksi->ksi_trap = fsr;
    615 
    616 	lwp_settrapframe(l, tf);
    617 
    618 	return (1);
    619 }
    620 
    621 /*
    622  * dab_buserr() handles the following data aborts:
    623  *
    624  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    625  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    626  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    627  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    628  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    629  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    630  *
    631  * If pcb_onfault is set, flag the fault and return to the handler.
    632  * If the fault occurred in user mode, give the process a SIGBUS.
    633  *
    634  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    635  * can be flagged as imprecise in the FSR. This causes a real headache
    636  * since some of the machine state is lost. In this case, tf->tf_pc
    637  * may not actually point to the offending instruction. In fact, if
    638  * we've taken a double abort fault, it generally points somewhere near
    639  * the top of "data_abort_entry" in exception.S.
    640  *
    641  * In all other cases, these data aborts are considered fatal.
    642  */
    643 static int
    644 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    645     ksiginfo_t *ksi)
    646 {
    647 	struct pcb *pcb = lwp_getpcb(l);
    648 
    649 #ifdef __XSCALE__
    650 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    651 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    652 		/*
    653 		 * Oops, an imprecise, double abort fault. We've lost the
    654 		 * r14_abt/spsr_abt values corresponding to the original
    655 		 * abort, and the spsr saved in the trapframe indicates
    656 		 * ABT mode.
    657 		 */
    658 		tf->tf_spsr &= ~PSR_MODE;
    659 
    660 		/*
    661 		 * We use a simple heuristic to determine if the double abort
    662 		 * happened as a result of a kernel or user mode access.
    663 		 * If the current trapframe is at the top of the kernel stack,
    664 		 * the fault _must_ have come from user mode.
    665 		 */
    666 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
    667 			/*
    668 			 * Kernel mode. We're either about to die a
    669 			 * spectacular death, or pcb_onfault will come
    670 			 * to our rescue. Either way, the current value
    671 			 * of tf->tf_pc is irrelevant.
    672 			 */
    673 			tf->tf_spsr |= PSR_SVC32_MODE;
    674 			if (pcb->pcb_onfault == NULL)
    675 				printf("\nKernel mode double abort!\n");
    676 		} else {
    677 			/*
    678 			 * User mode. We've lost the program counter at the
    679 			 * time of the fault (not that it was accurate anyway;
    680 			 * it's not called an imprecise fault for nothing).
    681 			 * About all we can do is copy r14_usr to tf_pc and
    682 			 * hope for the best. The process is about to get a
    683 			 * SIGBUS, so it's probably history anyway.
    684 			 */
    685 			tf->tf_spsr |= PSR_USR32_MODE;
    686 			tf->tf_pc = tf->tf_usr_lr;
    687 #ifdef THUMB_CODE
    688 			tf->tf_spsr &= ~PSR_T_bit;
    689 			if (tf->tf_usr_lr & 1)
    690 				tf->tf_spsr |= PSR_T_bit;
    691 #endif
    692 		}
    693 	}
    694 
    695 	/* FAR is invalid for imprecise exceptions */
    696 	if ((fsr & FAULT_IMPRECISE) != 0)
    697 		far = 0;
    698 #endif /* __XSCALE__ */
    699 
    700 	if (pcb->pcb_onfault) {
    701 		KDASSERT(TRAP_USERMODE(tf) == 0);
    702 		tf->tf_r0 = EFAULT;
    703 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    704 		return (0);
    705 	}
    706 
    707 	/* See if the CPU state needs to be fixed up */
    708 	(void) data_abort_fixup(tf, fsr, far, l);
    709 
    710 	/*
    711 	 * At this point, if the fault happened in kernel mode, we're toast
    712 	 */
    713 	if (!TRAP_USERMODE(tf))
    714 		dab_fatal(tf, fsr, far, l, NULL);
    715 
    716 	/* Deliver a bus error signal to the process */
    717 	KSI_INIT_TRAP(ksi);
    718 	ksi->ksi_signo = SIGBUS;
    719 	ksi->ksi_code = BUS_ADRERR;
    720 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    721 	ksi->ksi_trap = fsr;
    722 
    723 	lwp_settrapframe(l, tf);
    724 
    725 	return (1);
    726 }
    727 
    728 static inline int
    729 prefetch_abort_fixup(trapframe_t *tf)
    730 {
    731 #ifdef CPU_ABORT_FIXUP_REQUIRED
    732 	int error;
    733 
    734 	/* Call the CPU specific prefetch abort fixup routine */
    735 	error = cpu_prefetchabt_fixup(tf);
    736 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    737 		return (error);
    738 
    739 	/*
    740 	 * Oops, couldn't fix up the instruction
    741 	 */
    742 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    743 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    744 #ifdef THUMB_CODE
    745 	if (tf->tf_spsr & PSR_T_bit) {
    746 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    747 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    748 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    749 	}
    750 	else
    751 #endif
    752 	{
    753 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    754 		    *((u_int *)tf->tf_pc));
    755 	}
    756 	disassemble(tf->tf_pc);
    757 
    758 	/* Die now if this happened in kernel mode */
    759 	if (!TRAP_USERMODE(tf))
    760 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    761 
    762 	return (error);
    763 #else
    764 	return (ABORT_FIXUP_OK);
    765 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    766 }
    767 
    768 /*
    769  * void prefetch_abort_handler(trapframe_t *tf)
    770  *
    771  * Abort handler called when instruction execution occurs at
    772  * a non existent or restricted (access permissions) memory page.
    773  * If the address is invalid and we were in SVC mode then panic as
    774  * the kernel should never prefetch abort.
    775  * If the address is invalid and the page is mapped then the user process
    776  * does no have read permission so send it a signal.
    777  * Otherwise fault the page in and try again.
    778  */
    779 void
    780 prefetch_abort_handler(trapframe_t *tf)
    781 {
    782 	struct lwp *l;
    783 	struct pcb *pcb __diagused;
    784 	struct vm_map *map;
    785 	vaddr_t fault_pc, va;
    786 	ksiginfo_t ksi;
    787 	int error, user;
    788 
    789 	UVMHIST_FUNC(__func__);
    790 	UVMHIST_CALLED(maphist);
    791 
    792 	/* Update vmmeter statistics */
    793 	curcpu()->ci_data.cpu_ntrap++;
    794 
    795 	l = curlwp;
    796 	pcb = lwp_getpcb(l);
    797 
    798 	if ((user = TRAP_USERMODE(tf)) != 0)
    799 		LWP_CACHE_CREDS(l, l->l_proc);
    800 
    801 	/*
    802 	 * Enable IRQ's (disabled by the abort) This always comes
    803 	 * from user mode so we know interrupts were not disabled.
    804 	 * But we check anyway.
    805 	 */
    806 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    807 #ifdef __NO_FIQ
    808 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    809 		restore_interrupts(tf->tf_spsr & IF32_bits);
    810 #else
    811 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    812 		restore_interrupts(tf->tf_spsr & IF32_bits);
    813 #endif
    814 
    815 	/* See if the CPU state needs to be fixed up */
    816 	switch (prefetch_abort_fixup(tf)) {
    817 	case ABORT_FIXUP_RETURN:
    818 		KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    819 		return;
    820 	case ABORT_FIXUP_FAILED:
    821 		/* Deliver a SIGILL to the process */
    822 		KSI_INIT_TRAP(&ksi);
    823 		ksi.ksi_signo = SIGILL;
    824 		ksi.ksi_code = ILL_ILLOPC;
    825 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
    826 		lwp_settrapframe(l, tf);
    827 		goto do_trapsignal;
    828 	default:
    829 		break;
    830 	}
    831 
    832 	/* Prefetch aborts cannot happen in kernel mode */
    833 	if (__predict_false(!user))
    834 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    835 
    836 	/* Get fault address */
    837 	fault_pc = tf->tf_pc;
    838 	lwp_settrapframe(l, tf);
    839 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)",
    840 	    fault_pc, l, tf, 0);
    841 
    842 	/* Ok validate the address, can only execute in USER space */
    843 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    844 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    845 		KSI_INIT_TRAP(&ksi);
    846 		ksi.ksi_signo = SIGSEGV;
    847 		ksi.ksi_code = SEGV_ACCERR;
    848 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    849 		ksi.ksi_trap = fault_pc;
    850 		goto do_trapsignal;
    851 	}
    852 
    853 	map = &l->l_proc->p_vmspace->vm_map;
    854 	va = trunc_page(fault_pc);
    855 
    856 	/*
    857 	 * See if the pmap can handle this fault on its own...
    858 	 */
    859 #ifdef DEBUG
    860 	last_fault_code = -1;
    861 #endif
    862 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
    863 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    864 		goto out;
    865 	}
    866 
    867 #ifdef DIAGNOSTIC
    868 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    869 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    870 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    871 	}
    872 #endif
    873 
    874 	KASSERT(pcb->pcb_onfault == NULL);
    875 	error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
    876 
    877 	if (__predict_true(error == 0)) {
    878 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    879 		goto out;
    880 	}
    881 	KSI_INIT_TRAP(&ksi);
    882 
    883 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    884 
    885 	if (error == ENOMEM) {
    886 		printf("UVM: pid %d (%s), uid %d killed: "
    887 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    888 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    889 		ksi.ksi_signo = SIGKILL;
    890 	} else
    891 		ksi.ksi_signo = SIGSEGV;
    892 
    893 	ksi.ksi_code = SEGV_MAPERR;
    894 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    895 	ksi.ksi_trap = fault_pc;
    896 
    897 do_trapsignal:
    898 	call_trapsignal(l, tf, &ksi);
    899 
    900 out:
    901 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    902 	userret(l);
    903 }
    904 
    905 /*
    906  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    907  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    908  * Else, return EFAULT.
    909  */
    910 int
    911 badaddr_read(void *addr, size_t size, void *rptr)
    912 {
    913 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    914 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    915 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    916 	union {
    917 		uint8_t v1;
    918 		uint16_t v2;
    919 		uint32_t v4;
    920 	} u;
    921 	int rv, s;
    922 
    923 	cpu_drain_writebuf();
    924 
    925 	s = splhigh();
    926 
    927 	/* Read from the test address. */
    928 	switch (size) {
    929 	case sizeof(uint8_t):
    930 		rv = badaddr_read_1(addr, &u.v1);
    931 		if (rv == 0 && rptr)
    932 			*(uint8_t *) rptr = u.v1;
    933 		break;
    934 
    935 	case sizeof(uint16_t):
    936 		rv = badaddr_read_2(addr, &u.v2);
    937 		if (rv == 0 && rptr)
    938 			*(uint16_t *) rptr = u.v2;
    939 		break;
    940 
    941 	case sizeof(uint32_t):
    942 		rv = badaddr_read_4(addr, &u.v4);
    943 		if (rv == 0 && rptr)
    944 			*(uint32_t *) rptr = u.v4;
    945 		break;
    946 
    947 	default:
    948 		panic("%s: invalid size (%zu)", __func__, size);
    949 	}
    950 
    951 	splx(s);
    952 
    953 	/* Return EFAULT if the address was invalid, else zero */
    954 	return (rv);
    955 }
    956