fault.c revision 1.102.2.1 1 /* $NetBSD: fault.c,v 1.102.2.1 2015/04/06 15:17:52 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.102.2.1 2015/04/06 15:17:52 skrll Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/locore.h>
101
102 #include <machine/pcb.h>
103 #if defined(DDB) || defined(KGDB)
104 #include <machine/db_machdep.h>
105 #ifdef KGDB
106 #include <sys/kgdb.h>
107 #endif
108 #if !defined(DDB)
109 #define kdb_trap kgdb_trap
110 #endif
111 #endif
112
113 #include <arch/arm/arm/disassem.h>
114 #include <arm/arm32/machdep.h>
115
116 extern char fusubailout[];
117
118 #ifdef DEBUG
119 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
120 #endif
121
122 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
123 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
124 /* These CPUs may need data/prefetch abort fixups */
125 #define CPU_ABORT_FIXUP_REQUIRED
126 #endif
127
128 struct data_abort {
129 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
130 const char *desc;
131 };
132
133 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
135 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136
137 static const struct data_abort data_aborts[] = {
138 {dab_fatal, "Vector Exception"},
139 {dab_align, "Alignment Fault 1"},
140 {dab_fatal, "Terminal Exception"},
141 {dab_align, "Alignment Fault 3"},
142 {dab_buserr, "External Linefetch Abort (S)"},
143 {NULL, "Translation Fault (S)"},
144 {dab_buserr, "External Linefetch Abort (P)"},
145 {NULL, "Translation Fault (P)"},
146 {dab_buserr, "External Non-Linefetch Abort (S)"},
147 {NULL, "Domain Fault (S)"},
148 {dab_buserr, "External Non-Linefetch Abort (P)"},
149 {NULL, "Domain Fault (P)"},
150 {dab_buserr, "External Translation Abort (L1)"},
151 {NULL, "Permission Fault (S)"},
152 {dab_buserr, "External Translation Abort (L2)"},
153 {NULL, "Permission Fault (P)"}
154 };
155
156 /* Determine if 'x' is a permission fault */
157 #define IS_PERMISSION_FAULT(x) \
158 (((1 << ((x) & FAULT_TYPE_MASK)) & \
159 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
160
161 #if 0
162 /* maybe one day we'll do emulations */
163 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
164 #else
165 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
166 #endif
167
168 static inline void
169 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
170 {
171 if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
172 printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
173 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
174 ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
175 ksi->ksi_trap);
176 printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
177 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
178 printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
179 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
180 printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
181 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
182 printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
183 tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
184 tf->tf_spsr);
185 }
186
187 TRAPSIGNAL(l, ksi);
188 }
189
190 static inline int
191 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
192 {
193 #ifdef CPU_ABORT_FIXUP_REQUIRED
194 int error;
195
196 /* Call the CPU specific data abort fixup routine */
197 error = cpu_dataabt_fixup(tf);
198 if (__predict_true(error != ABORT_FIXUP_FAILED))
199 return (error);
200
201 /*
202 * Oops, couldn't fix up the instruction
203 */
204 printf("%s: fixup for %s mode data abort failed.\n", __func__,
205 TRAP_USERMODE(tf) ? "user" : "kernel");
206 #ifdef THUMB_CODE
207 if (tf->tf_spsr & PSR_T_bit) {
208 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
209 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
210 *((uint16 *)((tf->tf_pc + 2) & ~1)));
211 }
212 else
213 #endif
214 {
215 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
216 *((u_int *)tf->tf_pc));
217 }
218 disassemble(tf->tf_pc);
219
220 /* Die now if this happened in kernel mode */
221 if (!TRAP_USERMODE(tf))
222 dab_fatal(tf, fsr, far, l, NULL);
223
224 return (error);
225 #else
226 return (ABORT_FIXUP_OK);
227 #endif /* CPU_ABORT_FIXUP_REQUIRED */
228 }
229
230 void
231 data_abort_handler(trapframe_t *tf)
232 {
233 struct vm_map *map;
234 struct lwp * const l = curlwp;
235 struct cpu_info * const ci = curcpu();
236 u_int far, fsr;
237 vm_prot_t ftype;
238 void *onfault;
239 vaddr_t va;
240 int error;
241 ksiginfo_t ksi;
242
243 UVMHIST_FUNC(__func__);
244 UVMHIST_CALLED(maphist);
245
246 /* Grab FAR/FSR before enabling interrupts */
247 far = cpu_faultaddress();
248 fsr = cpu_faultstatus();
249
250 /* Update vmmeter statistics */
251 ci->ci_data.cpu_ntrap++;
252
253 /* Re-enable interrupts if they were enabled previously */
254 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
255 #ifdef __NO_FIQ
256 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
257 restore_interrupts(tf->tf_spsr & IF32_bits);
258 #else
259 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
260 restore_interrupts(tf->tf_spsr & IF32_bits);
261 #endif
262
263 /* Get the current lwp structure */
264
265 UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
266 l, far, fsr, 0);
267 UVMHIST_LOG(maphist, " tf=%#x, pc=%#x)",
268 tf, tf->tf_pc, 0, 0);
269
270 /* Data abort came from user mode? */
271 bool user = (TRAP_USERMODE(tf) != 0);
272 if (user)
273 LWP_CACHE_CREDS(l, l->l_proc);
274
275 /* Grab the current pcb */
276 struct pcb * const pcb = lwp_getpcb(l);
277
278 curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
279
280 /* Invoke the appropriate handler, if necessary */
281 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
282 #ifdef DIAGNOSTIC
283 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
284 __func__, fsr, far);
285 #endif
286 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
287 l, &ksi))
288 goto do_trapsignal;
289 goto out;
290 }
291
292 /*
293 * At this point, we're dealing with one of the following data aborts:
294 *
295 * FAULT_TRANS_S - Translation -- Section
296 * FAULT_TRANS_P - Translation -- Page
297 * FAULT_DOMAIN_S - Domain -- Section
298 * FAULT_DOMAIN_P - Domain -- Page
299 * FAULT_PERM_S - Permission -- Section
300 * FAULT_PERM_P - Permission -- Page
301 *
302 * These are the main virtual memory-related faults signalled by
303 * the MMU.
304 */
305
306 /* fusubailout is used by [fs]uswintr to avoid page faulting */
307 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
308 tf->tf_r0 = EFAULT;
309 tf->tf_pc = (intptr_t) pcb->pcb_onfault;
310 return;
311 }
312
313 if (user) {
314 lwp_settrapframe(l, tf);
315 }
316
317 /*
318 * Make sure the Program Counter is sane. We could fall foul of
319 * someone executing Thumb code, in which case the PC might not
320 * be word-aligned. This would cause a kernel alignment fault
321 * further down if we have to decode the current instruction.
322 */
323 #ifdef THUMB_CODE
324 /*
325 * XXX: It would be nice to be able to support Thumb in the kernel
326 * at some point.
327 */
328 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
329 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
330 __func__);
331 dab_fatal(tf, fsr, far, l, NULL);
332 }
333 #else
334 if (__predict_false((tf->tf_pc & 3) != 0)) {
335 if (user) {
336 /*
337 * Give the user an illegal instruction signal.
338 */
339 /* Deliver a SIGILL to the process */
340 KSI_INIT_TRAP(&ksi);
341 ksi.ksi_signo = SIGILL;
342 ksi.ksi_code = ILL_ILLOPC;
343 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
344 ksi.ksi_trap = fsr;
345 goto do_trapsignal;
346 }
347
348 /*
349 * The kernel never executes Thumb code.
350 */
351 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
352 __func__);
353 dab_fatal(tf, fsr, far, l, NULL);
354 }
355 #endif
356
357 /* See if the CPU state needs to be fixed up */
358 switch (data_abort_fixup(tf, fsr, far, l)) {
359 case ABORT_FIXUP_RETURN:
360 return;
361 case ABORT_FIXUP_FAILED:
362 /* Deliver a SIGILL to the process */
363 KSI_INIT_TRAP(&ksi);
364 ksi.ksi_signo = SIGILL;
365 ksi.ksi_code = ILL_ILLOPC;
366 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
367 ksi.ksi_trap = fsr;
368 goto do_trapsignal;
369 default:
370 break;
371 }
372
373 va = trunc_page((vaddr_t)far);
374
375 /*
376 * It is only a kernel address space fault iff:
377 * 1. user == 0 and
378 * 2. pcb_onfault not set or
379 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
380 */
381 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
382 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
383 __predict_true((pcb->pcb_onfault == NULL ||
384 (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
385 map = kernel_map;
386
387 /* Was the fault due to the FPE/IPKDB ? */
388 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
389 KSI_INIT_TRAP(&ksi);
390 ksi.ksi_signo = SIGSEGV;
391 ksi.ksi_code = SEGV_ACCERR;
392 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
393 ksi.ksi_trap = fsr;
394
395 /*
396 * Force exit via userret()
397 * This is necessary as the FPE is an extension to
398 * userland that actually runs in a priveledged mode
399 * but uses USR mode permissions for its accesses.
400 */
401 user = true;
402 goto do_trapsignal;
403 }
404 } else {
405 map = &l->l_proc->p_vmspace->vm_map;
406 }
407
408 /*
409 * We need to know whether the page should be mapped as R or R/W.
410 * Before ARMv6, the MMU did not give us the info as to whether the
411 * fault was caused by a read or a write.
412 *
413 * However, we know that a permission fault can only be the result of
414 * a write to a read-only location, so we can deal with those quickly.
415 *
416 * Otherwise we need to disassemble the instruction responsible to
417 * determine if it was a write.
418 */
419 if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
420 ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
421 } else if (IS_PERMISSION_FAULT(fsr)) {
422 ftype = VM_PROT_WRITE;
423 } else {
424 #ifdef THUMB_CODE
425 /* Fast track the ARM case. */
426 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
427 u_int insn = read_thumb_insn(tf->tf_pc, user);
428 u_int insn_f8 = insn & 0xf800;
429 u_int insn_fe = insn & 0xfe00;
430
431 if (insn_f8 == 0x6000 || /* STR(1) */
432 insn_f8 == 0x7000 || /* STRB(1) */
433 insn_f8 == 0x8000 || /* STRH(1) */
434 insn_f8 == 0x9000 || /* STR(3) */
435 insn_f8 == 0xc000 || /* STM */
436 insn_fe == 0x5000 || /* STR(2) */
437 insn_fe == 0x5200 || /* STRH(2) */
438 insn_fe == 0x5400) /* STRB(2) */
439 ftype = VM_PROT_WRITE;
440 else
441 ftype = VM_PROT_READ;
442 }
443 else
444 #endif
445 {
446 u_int insn = read_insn(tf->tf_pc, user);
447
448 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
449 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
450 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
451 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
452 ftype = VM_PROT_WRITE;
453 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
454 ftype = VM_PROT_READ | VM_PROT_WRITE;
455 else
456 ftype = VM_PROT_READ;
457 }
458 }
459
460 /*
461 * See if the fault is as a result of ref/mod emulation,
462 * or domain mismatch.
463 */
464 #ifdef DEBUG
465 last_fault_code = fsr;
466 #endif
467 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
468 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
469 goto out;
470 }
471
472 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
473 if (pcb->pcb_onfault) {
474 tf->tf_r0 = EINVAL;
475 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
476 return;
477 }
478 printf("\nNon-emulated page fault with intr_depth > 0\n");
479 dab_fatal(tf, fsr, far, l, NULL);
480 }
481
482 onfault = pcb->pcb_onfault;
483 pcb->pcb_onfault = NULL;
484 error = uvm_fault(map, va, ftype);
485 pcb->pcb_onfault = onfault;
486
487 if (__predict_true(error == 0)) {
488 if (user)
489 uvm_grow(l->l_proc, va); /* Record any stack growth */
490 else
491 ucas_ras_check(tf);
492 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
493 goto out;
494 }
495
496 if (user == 0) {
497 if (pcb->pcb_onfault) {
498 tf->tf_r0 = error;
499 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
500 return;
501 }
502
503 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
504 error);
505 dab_fatal(tf, fsr, far, l, NULL);
506 }
507
508 KSI_INIT_TRAP(&ksi);
509
510 switch (error) {
511 case ENOMEM:
512 printf("UVM: pid %d (%s), uid %d killed: "
513 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
514 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
515 ksi.ksi_signo = SIGKILL;
516 break;
517 case EACCES:
518 ksi.ksi_signo = SIGSEGV;
519 ksi.ksi_code = SEGV_ACCERR;
520 break;
521 case EINVAL:
522 ksi.ksi_signo = SIGBUS;
523 ksi.ksi_code = BUS_ADRERR;
524 break;
525 default:
526 ksi.ksi_signo = SIGSEGV;
527 ksi.ksi_code = SEGV_MAPERR;
528 break;
529 }
530 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
531 ksi.ksi_trap = fsr;
532 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
533
534 do_trapsignal:
535 call_trapsignal(l, tf, &ksi);
536 out:
537 /* If returning to user mode, make sure to invoke userret() */
538 if (user)
539 userret(l);
540 }
541
542 /*
543 * dab_fatal() handles the following data aborts:
544 *
545 * FAULT_WRTBUF_0 - Vector Exception
546 * FAULT_WRTBUF_1 - Terminal Exception
547 *
548 * We should never see these on a properly functioning system.
549 *
550 * This function is also called by the other handlers if they
551 * detect a fatal problem.
552 *
553 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
554 */
555 static int
556 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
557 {
558 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
559
560 if (l != NULL) {
561 printf("Fatal %s mode data abort: '%s'\n", mode,
562 data_aborts[fsr & FAULT_TYPE_MASK].desc);
563 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
564 if ((fsr & FAULT_IMPRECISE) == 0)
565 printf("%08x, ", far);
566 else
567 printf("Invalid, ");
568 printf("spsr=%08x\n", tf->tf_spsr);
569 } else {
570 printf("Fatal %s mode prefetch abort at 0x%08x\n",
571 mode, tf->tf_pc);
572 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
573 }
574
575 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
576 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
577 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
578 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
579 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
580 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
581 printf("r12=%08x, ", tf->tf_r12);
582
583 if (TRAP_USERMODE(tf))
584 printf("usp=%08x, ulr=%08x",
585 tf->tf_usr_sp, tf->tf_usr_lr);
586 else
587 printf("ssp=%08x, slr=%08x",
588 tf->tf_svc_sp, tf->tf_svc_lr);
589 printf(", pc =%08x\n\n", tf->tf_pc);
590
591 #if defined(DDB) || defined(KGDB)
592 kdb_trap(T_FAULT, tf);
593 #endif
594 panic("Fatal abort");
595 /*NOTREACHED*/
596 }
597
598 /*
599 * dab_align() handles the following data aborts:
600 *
601 * FAULT_ALIGN_0 - Alignment fault
602 * FAULT_ALIGN_0 - Alignment fault
603 *
604 * These faults are fatal if they happen in kernel mode. Otherwise, we
605 * deliver a bus error to the process.
606 */
607 static int
608 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
609 {
610 /* Alignment faults are always fatal if they occur in kernel mode */
611 if (!TRAP_USERMODE(tf))
612 dab_fatal(tf, fsr, far, l, NULL);
613
614 /* pcb_onfault *must* be NULL at this point */
615 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
616
617 /* See if the CPU state needs to be fixed up */
618 (void) data_abort_fixup(tf, fsr, far, l);
619
620 /* Deliver a bus error signal to the process */
621 KSI_INIT_TRAP(ksi);
622 ksi->ksi_signo = SIGBUS;
623 ksi->ksi_code = BUS_ADRALN;
624 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
625 ksi->ksi_trap = fsr;
626
627 lwp_settrapframe(l, tf);
628
629 return (1);
630 }
631
632 /*
633 * dab_buserr() handles the following data aborts:
634 *
635 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
636 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
637 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
638 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
639 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
640 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
641 *
642 * If pcb_onfault is set, flag the fault and return to the handler.
643 * If the fault occurred in user mode, give the process a SIGBUS.
644 *
645 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
646 * can be flagged as imprecise in the FSR. This causes a real headache
647 * since some of the machine state is lost. In this case, tf->tf_pc
648 * may not actually point to the offending instruction. In fact, if
649 * we've taken a double abort fault, it generally points somewhere near
650 * the top of "data_abort_entry" in exception.S.
651 *
652 * In all other cases, these data aborts are considered fatal.
653 */
654 static int
655 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
656 ksiginfo_t *ksi)
657 {
658 struct pcb *pcb = lwp_getpcb(l);
659
660 #ifdef __XSCALE__
661 if ((fsr & FAULT_IMPRECISE) != 0 &&
662 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
663 /*
664 * Oops, an imprecise, double abort fault. We've lost the
665 * r14_abt/spsr_abt values corresponding to the original
666 * abort, and the spsr saved in the trapframe indicates
667 * ABT mode.
668 */
669 tf->tf_spsr &= ~PSR_MODE;
670
671 /*
672 * We use a simple heuristic to determine if the double abort
673 * happened as a result of a kernel or user mode access.
674 * If the current trapframe is at the top of the kernel stack,
675 * the fault _must_ have come from user mode.
676 */
677 if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
678 /*
679 * Kernel mode. We're either about to die a
680 * spectacular death, or pcb_onfault will come
681 * to our rescue. Either way, the current value
682 * of tf->tf_pc is irrelevant.
683 */
684 tf->tf_spsr |= PSR_SVC32_MODE;
685 if (pcb->pcb_onfault == NULL)
686 printf("\nKernel mode double abort!\n");
687 } else {
688 /*
689 * User mode. We've lost the program counter at the
690 * time of the fault (not that it was accurate anyway;
691 * it's not called an imprecise fault for nothing).
692 * About all we can do is copy r14_usr to tf_pc and
693 * hope for the best. The process is about to get a
694 * SIGBUS, so it's probably history anyway.
695 */
696 tf->tf_spsr |= PSR_USR32_MODE;
697 tf->tf_pc = tf->tf_usr_lr;
698 #ifdef THUMB_CODE
699 tf->tf_spsr &= ~PSR_T_bit;
700 if (tf->tf_usr_lr & 1)
701 tf->tf_spsr |= PSR_T_bit;
702 #endif
703 }
704 }
705
706 /* FAR is invalid for imprecise exceptions */
707 if ((fsr & FAULT_IMPRECISE) != 0)
708 far = 0;
709 #endif /* __XSCALE__ */
710
711 if (pcb->pcb_onfault) {
712 KDASSERT(TRAP_USERMODE(tf) == 0);
713 tf->tf_r0 = EFAULT;
714 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
715 return (0);
716 }
717
718 /* See if the CPU state needs to be fixed up */
719 (void) data_abort_fixup(tf, fsr, far, l);
720
721 /*
722 * At this point, if the fault happened in kernel mode, we're toast
723 */
724 if (!TRAP_USERMODE(tf))
725 dab_fatal(tf, fsr, far, l, NULL);
726
727 /* Deliver a bus error signal to the process */
728 KSI_INIT_TRAP(ksi);
729 ksi->ksi_signo = SIGBUS;
730 ksi->ksi_code = BUS_ADRERR;
731 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
732 ksi->ksi_trap = fsr;
733
734 lwp_settrapframe(l, tf);
735
736 return (1);
737 }
738
739 static inline int
740 prefetch_abort_fixup(trapframe_t *tf)
741 {
742 #ifdef CPU_ABORT_FIXUP_REQUIRED
743 int error;
744
745 /* Call the CPU specific prefetch abort fixup routine */
746 error = cpu_prefetchabt_fixup(tf);
747 if (__predict_true(error != ABORT_FIXUP_FAILED))
748 return (error);
749
750 /*
751 * Oops, couldn't fix up the instruction
752 */
753 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
754 TRAP_USERMODE(tf) ? "user" : "kernel");
755 #ifdef THUMB_CODE
756 if (tf->tf_spsr & PSR_T_bit) {
757 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
758 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
759 *((uint16 *)((tf->tf_pc + 2) & ~1)));
760 }
761 else
762 #endif
763 {
764 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
765 *((u_int *)tf->tf_pc));
766 }
767 disassemble(tf->tf_pc);
768
769 /* Die now if this happened in kernel mode */
770 if (!TRAP_USERMODE(tf))
771 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
772
773 return (error);
774 #else
775 return (ABORT_FIXUP_OK);
776 #endif /* CPU_ABORT_FIXUP_REQUIRED */
777 }
778
779 /*
780 * void prefetch_abort_handler(trapframe_t *tf)
781 *
782 * Abort handler called when instruction execution occurs at
783 * a non existent or restricted (access permissions) memory page.
784 * If the address is invalid and we were in SVC mode then panic as
785 * the kernel should never prefetch abort.
786 * If the address is invalid and the page is mapped then the user process
787 * does no have read permission so send it a signal.
788 * Otherwise fault the page in and try again.
789 */
790 void
791 prefetch_abort_handler(trapframe_t *tf)
792 {
793 struct lwp *l;
794 struct pcb *pcb __diagused;
795 struct vm_map *map;
796 vaddr_t fault_pc, va;
797 ksiginfo_t ksi;
798 int error, user;
799
800 UVMHIST_FUNC(__func__);
801 UVMHIST_CALLED(maphist);
802
803 /* Update vmmeter statistics */
804 curcpu()->ci_data.cpu_ntrap++;
805
806 l = curlwp;
807 pcb = lwp_getpcb(l);
808
809 if ((user = TRAP_USERMODE(tf)) != 0)
810 LWP_CACHE_CREDS(l, l->l_proc);
811
812 /*
813 * Enable IRQ's (disabled by the abort) This always comes
814 * from user mode so we know interrupts were not disabled.
815 * But we check anyway.
816 */
817 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
818 #ifdef __NO_FIQ
819 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
820 restore_interrupts(tf->tf_spsr & IF32_bits);
821 #else
822 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
823 restore_interrupts(tf->tf_spsr & IF32_bits);
824 #endif
825
826 /* See if the CPU state needs to be fixed up */
827 switch (prefetch_abort_fixup(tf)) {
828 case ABORT_FIXUP_RETURN:
829 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
830 return;
831 case ABORT_FIXUP_FAILED:
832 /* Deliver a SIGILL to the process */
833 KSI_INIT_TRAP(&ksi);
834 ksi.ksi_signo = SIGILL;
835 ksi.ksi_code = ILL_ILLOPC;
836 ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
837 lwp_settrapframe(l, tf);
838 goto do_trapsignal;
839 default:
840 break;
841 }
842
843 /* Prefetch aborts cannot happen in kernel mode */
844 if (__predict_false(!user))
845 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
846
847 /* Get fault address */
848 fault_pc = tf->tf_pc;
849 lwp_settrapframe(l, tf);
850 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)",
851 fault_pc, l, tf, 0);
852
853 /* Ok validate the address, can only execute in USER space */
854 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
855 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
856 KSI_INIT_TRAP(&ksi);
857 ksi.ksi_signo = SIGSEGV;
858 ksi.ksi_code = SEGV_ACCERR;
859 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
860 ksi.ksi_trap = fault_pc;
861 goto do_trapsignal;
862 }
863
864 map = &l->l_proc->p_vmspace->vm_map;
865 va = trunc_page(fault_pc);
866
867 /*
868 * See if the pmap can handle this fault on its own...
869 */
870 #ifdef DEBUG
871 last_fault_code = -1;
872 #endif
873 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
874 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
875 goto out;
876 }
877
878 #ifdef DIAGNOSTIC
879 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
880 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
881 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
882 }
883 #endif
884
885 KASSERT(pcb->pcb_onfault == NULL);
886 error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
887
888 if (__predict_true(error == 0)) {
889 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
890 goto out;
891 }
892 KSI_INIT_TRAP(&ksi);
893
894 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
895
896 if (error == ENOMEM) {
897 printf("UVM: pid %d (%s), uid %d killed: "
898 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
899 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
900 ksi.ksi_signo = SIGKILL;
901 } else
902 ksi.ksi_signo = SIGSEGV;
903
904 ksi.ksi_code = SEGV_MAPERR;
905 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
906 ksi.ksi_trap = fault_pc;
907
908 do_trapsignal:
909 call_trapsignal(l, tf, &ksi);
910
911 out:
912 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
913 userret(l);
914 }
915
916 /*
917 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
918 * If the read succeeds, the value is written to 'rptr' and zero is returned.
919 * Else, return EFAULT.
920 */
921 int
922 badaddr_read(void *addr, size_t size, void *rptr)
923 {
924 extern int badaddr_read_1(const uint8_t *, uint8_t *);
925 extern int badaddr_read_2(const uint16_t *, uint16_t *);
926 extern int badaddr_read_4(const uint32_t *, uint32_t *);
927 union {
928 uint8_t v1;
929 uint16_t v2;
930 uint32_t v4;
931 } u;
932 int rv, s;
933
934 cpu_drain_writebuf();
935
936 s = splhigh();
937
938 /* Read from the test address. */
939 switch (size) {
940 case sizeof(uint8_t):
941 rv = badaddr_read_1(addr, &u.v1);
942 if (rv == 0 && rptr)
943 *(uint8_t *) rptr = u.v1;
944 break;
945
946 case sizeof(uint16_t):
947 rv = badaddr_read_2(addr, &u.v2);
948 if (rv == 0 && rptr)
949 *(uint16_t *) rptr = u.v2;
950 break;
951
952 case sizeof(uint32_t):
953 rv = badaddr_read_4(addr, &u.v4);
954 if (rv == 0 && rptr)
955 *(uint32_t *) rptr = u.v4;
956 break;
957
958 default:
959 panic("%s: invalid size (%zu)", __func__, size);
960 }
961
962 splx(s);
963
964 /* Return EFAULT if the address was invalid, else zero */
965 return (rv);
966 }
967