Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.105.2.2
      1 /*	$NetBSD: fault.c,v 1.105.2.2 2018/09/06 06:55:25 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.105.2.2 2018/09/06 06:55:25 pgoyette Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kauth.h>
     91 #include <sys/cpu.h>
     92 #include <sys/intr.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 #include <uvm/uvm_stat.h>
     96 #ifdef UVMHIST
     97 #include <uvm/uvm.h>
     98 #endif
     99 
    100 #include <arm/locore.h>
    101 
    102 #include <machine/pcb.h>
    103 #if defined(DDB) || defined(KGDB)
    104 #include <machine/db_machdep.h>
    105 #ifdef KGDB
    106 #include <sys/kgdb.h>
    107 #endif
    108 #if !defined(DDB)
    109 #define kdb_trap	kgdb_trap
    110 #endif
    111 #endif
    112 
    113 #include <arch/arm/arm/disassem.h>
    114 #include <arm/arm32/machdep.h>
    115 
    116 extern char fusubailout[];
    117 
    118 #ifdef DEBUG
    119 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    120 #endif
    121 
    122 #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    123 /* These CPUs may need data/prefetch abort fixups */
    124 #define	CPU_ABORT_FIXUP_REQUIRED
    125 #endif
    126 
    127 struct data_abort {
    128 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    129 	const char *desc;
    130 };
    131 
    132 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    135 
    136 static const struct data_abort data_aborts[] = {
    137 	{dab_fatal,	"Vector Exception"},
    138 	{dab_align,	"Alignment Fault 1"},
    139 	{dab_fatal,	"Terminal Exception"},
    140 	{dab_align,	"Alignment Fault 3"},
    141 	{dab_buserr,	"External Linefetch Abort (S)"},
    142 	{NULL,		"Translation Fault (S)"},
    143 	{dab_buserr,	"External Linefetch Abort (P)"},
    144 	{NULL,		"Translation Fault (P)"},
    145 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    146 	{NULL,		"Domain Fault (S)"},
    147 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    148 	{NULL,		"Domain Fault (P)"},
    149 	{dab_buserr,	"External Translation Abort (L1)"},
    150 	{NULL,		"Permission Fault (S)"},
    151 	{dab_buserr,	"External Translation Abort (L2)"},
    152 	{NULL,		"Permission Fault (P)"}
    153 };
    154 
    155 /* Determine if 'x' is a permission fault */
    156 #define	IS_PERMISSION_FAULT(x)					\
    157 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    158 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    159 
    160 #if 0
    161 /* maybe one day we'll do emulations */
    162 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    163 #else
    164 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    165 #endif
    166 
    167 static inline void
    168 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
    169 {
    170 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
    171 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
    172 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    173 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
    174 		    ksi->ksi_trap);
    175 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
    176 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    177 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
    178 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    179 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
    180 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    181 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
    182 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
    183 		    tf->tf_spsr);
    184 	}
    185 
    186 	TRAPSIGNAL(l, ksi);
    187 }
    188 
    189 static inline int
    190 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    191 {
    192 #ifdef CPU_ABORT_FIXUP_REQUIRED
    193 	int error;
    194 
    195 	/* Call the CPU specific data abort fixup routine */
    196 	error = cpu_dataabt_fixup(tf);
    197 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    198 		return (error);
    199 
    200 	/*
    201 	 * Oops, couldn't fix up the instruction
    202 	 */
    203 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    204 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    205 #ifdef THUMB_CODE
    206 	if (tf->tf_spsr & PSR_T_bit) {
    207 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    208 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    209 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    210 	}
    211 	else
    212 #endif
    213 	{
    214 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    215 		    *((u_int *)tf->tf_pc));
    216 	}
    217 	disassemble(tf->tf_pc);
    218 
    219 	/* Die now if this happened in kernel mode */
    220 	if (!TRAP_USERMODE(tf))
    221 		dab_fatal(tf, fsr, far, l, NULL);
    222 
    223 	return (error);
    224 #else
    225 	return (ABORT_FIXUP_OK);
    226 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    227 }
    228 
    229 void
    230 data_abort_handler(trapframe_t *tf)
    231 {
    232 	struct vm_map *map;
    233 	struct lwp * const l = curlwp;
    234 	struct cpu_info * const ci = curcpu();
    235 	u_int far, fsr;
    236 	vm_prot_t ftype;
    237 	void *onfault;
    238 	vaddr_t va;
    239 	int error;
    240 	ksiginfo_t ksi;
    241 
    242 	UVMHIST_FUNC(__func__);
    243 	UVMHIST_CALLED(maphist);
    244 
    245 	/* Grab FAR/FSR before enabling interrupts */
    246 	far = cpu_faultaddress();
    247 	fsr = cpu_faultstatus();
    248 
    249 	/* Update vmmeter statistics */
    250 	ci->ci_data.cpu_ntrap++;
    251 
    252 	/* Re-enable interrupts if they were enabled previously */
    253 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    254 #ifdef __NO_FIQ
    255 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    256 		restore_interrupts(tf->tf_spsr & IF32_bits);
    257 #else
    258 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    259 		restore_interrupts(tf->tf_spsr & IF32_bits);
    260 #endif
    261 
    262 	/* Get the current lwp structure */
    263 
    264 	UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
    265 	    (uintptr_t)l, far, fsr, 0);
    266 	UVMHIST_LOG(maphist, "  tf=%#jx, pc=%#jx)",
    267 	    (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
    268 
    269 	/* Data abort came from user mode? */
    270 	bool user = (TRAP_USERMODE(tf) != 0);
    271 	if (user)
    272 		LWP_CACHE_CREDS(l, l->l_proc);
    273 
    274 	/* Grab the current pcb */
    275 	struct pcb * const pcb = lwp_getpcb(l);
    276 
    277 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
    278 
    279 	/* Invoke the appropriate handler, if necessary */
    280 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    281 #ifdef DIAGNOSTIC
    282 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    283 		    __func__, fsr, far);
    284 #endif
    285 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    286 		    l, &ksi))
    287 			goto do_trapsignal;
    288 		goto out;
    289 	}
    290 
    291 	/*
    292 	 * At this point, we're dealing with one of the following data aborts:
    293 	 *
    294 	 *  FAULT_TRANS_S  - Translation -- Section
    295 	 *  FAULT_TRANS_P  - Translation -- Page
    296 	 *  FAULT_DOMAIN_S - Domain -- Section
    297 	 *  FAULT_DOMAIN_P - Domain -- Page
    298 	 *  FAULT_PERM_S   - Permission -- Section
    299 	 *  FAULT_PERM_P   - Permission -- Page
    300 	 *
    301 	 * These are the main virtual memory-related faults signalled by
    302 	 * the MMU.
    303 	 */
    304 
    305 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    306 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    307 		tf->tf_r0 = EFAULT;
    308 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    309 		return;
    310 	}
    311 
    312 	KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
    313 	    lwp_trapframe(l));
    314 
    315 	/*
    316 	 * Make sure the Program Counter is sane. We could fall foul of
    317 	 * someone executing Thumb code, in which case the PC might not
    318 	 * be word-aligned. This would cause a kernel alignment fault
    319 	 * further down if we have to decode the current instruction.
    320 	 */
    321 #ifdef THUMB_CODE
    322 	/*
    323 	 * XXX: It would be nice to be able to support Thumb in the kernel
    324 	 * at some point.
    325 	 */
    326 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    327 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    328 		    __func__);
    329 		dab_fatal(tf, fsr, far, l, NULL);
    330 	}
    331 #else
    332 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    333 		if (user) {
    334 			/*
    335 			 * Give the user an illegal instruction signal.
    336 			 */
    337 			/* Deliver a SIGILL to the process */
    338 			KSI_INIT_TRAP(&ksi);
    339 			ksi.ksi_signo = SIGILL;
    340 			ksi.ksi_code = ILL_ILLOPC;
    341 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    342 			ksi.ksi_trap = fsr;
    343 			goto do_trapsignal;
    344 		}
    345 
    346 		/*
    347 		 * The kernel never executes Thumb code.
    348 		 */
    349 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    350 		    __func__);
    351 		dab_fatal(tf, fsr, far, l, NULL);
    352 	}
    353 #endif
    354 
    355 	/* See if the CPU state needs to be fixed up */
    356 	switch (data_abort_fixup(tf, fsr, far, l)) {
    357 	case ABORT_FIXUP_RETURN:
    358 		return;
    359 	case ABORT_FIXUP_FAILED:
    360 		/* Deliver a SIGILL to the process */
    361 		KSI_INIT_TRAP(&ksi);
    362 		ksi.ksi_signo = SIGILL;
    363 		ksi.ksi_code = ILL_ILLOPC;
    364 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    365 		ksi.ksi_trap = fsr;
    366 		goto do_trapsignal;
    367 	default:
    368 		break;
    369 	}
    370 
    371 	va = trunc_page((vaddr_t)far);
    372 
    373 	/*
    374 	 * It is only a kernel address space fault iff:
    375 	 *	1. user == 0  and
    376 	 *	2. pcb_onfault not set or
    377 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    378 	 */
    379 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    380 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    381 	    __predict_true((pcb->pcb_onfault == NULL ||
    382 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
    383 		map = kernel_map;
    384 
    385 		/* Was the fault due to the FPE ? */
    386 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    387 			KSI_INIT_TRAP(&ksi);
    388 			ksi.ksi_signo = SIGSEGV;
    389 			ksi.ksi_code = SEGV_ACCERR;
    390 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    391 			ksi.ksi_trap = fsr;
    392 
    393 			/*
    394 			 * Force exit via userret()
    395 			 * This is necessary as the FPE is an extension to
    396 			 * userland that actually runs in a priveledged mode
    397 			 * but uses USR mode permissions for its accesses.
    398 			 */
    399 			user = true;
    400 			goto do_trapsignal;
    401 		}
    402 	} else {
    403 		map = &l->l_proc->p_vmspace->vm_map;
    404 	}
    405 
    406 	/*
    407 	 * We need to know whether the page should be mapped as R or R/W.
    408 	 * Before ARMv6, the MMU did not give us the info as to whether the
    409 	 * fault was caused by a read or a write.
    410 	 *
    411 	 * However, we know that a permission fault can only be the result of
    412 	 * a write to a read-only location, so we can deal with those quickly.
    413 	 *
    414 	 * Otherwise we need to disassemble the instruction responsible to
    415 	 * determine if it was a write.
    416 	 */
    417 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
    418 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
    419 	} else if (IS_PERMISSION_FAULT(fsr)) {
    420 		ftype = VM_PROT_WRITE;
    421 	} else {
    422 #ifdef THUMB_CODE
    423 		/* Fast track the ARM case.  */
    424 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    425 			u_int insn = read_thumb_insn(tf->tf_pc, user);
    426 			u_int insn_f8 = insn & 0xf800;
    427 			u_int insn_fe = insn & 0xfe00;
    428 
    429 			if (insn_f8 == 0x6000 || /* STR(1) */
    430 			    insn_f8 == 0x7000 || /* STRB(1) */
    431 			    insn_f8 == 0x8000 || /* STRH(1) */
    432 			    insn_f8 == 0x9000 || /* STR(3) */
    433 			    insn_f8 == 0xc000 || /* STM */
    434 			    insn_fe == 0x5000 || /* STR(2) */
    435 			    insn_fe == 0x5200 || /* STRH(2) */
    436 			    insn_fe == 0x5400)   /* STRB(2) */
    437 				ftype = VM_PROT_WRITE;
    438 			else
    439 				ftype = VM_PROT_READ;
    440 		}
    441 		else
    442 #endif
    443 		{
    444 			u_int insn = read_insn(tf->tf_pc, user);
    445 
    446 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    447 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    448 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    449 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    450 				ftype = VM_PROT_WRITE;
    451 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    452 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    453 			else
    454 				ftype = VM_PROT_READ;
    455 		}
    456 	}
    457 
    458 	/*
    459 	 * See if the fault is as a result of ref/mod emulation,
    460 	 * or domain mismatch.
    461 	 */
    462 #ifdef DEBUG
    463 	last_fault_code = fsr;
    464 #endif
    465 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    466 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    467 		goto out;
    468 	}
    469 
    470 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    471 		if (pcb->pcb_onfault) {
    472 			tf->tf_r0 = EINVAL;
    473 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    474 			return;
    475 		}
    476 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    477 		dab_fatal(tf, fsr, far, l, NULL);
    478 	}
    479 
    480 	onfault = pcb->pcb_onfault;
    481 	pcb->pcb_onfault = NULL;
    482 	error = uvm_fault(map, va, ftype);
    483 	pcb->pcb_onfault = onfault;
    484 
    485 	if (__predict_true(error == 0)) {
    486 		if (user)
    487 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    488 		else
    489 			ucas_ras_check(tf);
    490 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    491 		goto out;
    492 	}
    493 
    494 	if (user == 0) {
    495 		if (pcb->pcb_onfault) {
    496 			tf->tf_r0 = error;
    497 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    498 			return;
    499 		}
    500 
    501 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    502 		    error);
    503 		dab_fatal(tf, fsr, far, l, NULL);
    504 	}
    505 
    506 	KSI_INIT_TRAP(&ksi);
    507 
    508 	switch (error) {
    509 	case ENOMEM:
    510 		printf("UVM: pid %d (%s), uid %d killed: "
    511 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    512 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    513 		ksi.ksi_signo = SIGKILL;
    514 		break;
    515 	case EACCES:
    516 		ksi.ksi_signo = SIGSEGV;
    517 		ksi.ksi_code = SEGV_ACCERR;
    518 		break;
    519 	case EINVAL:
    520 		ksi.ksi_signo = SIGBUS;
    521 		ksi.ksi_code = BUS_ADRERR;
    522 		break;
    523 	default:
    524 		ksi.ksi_signo = SIGSEGV;
    525 		ksi.ksi_code = SEGV_MAPERR;
    526 		break;
    527 	}
    528 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    529 	ksi.ksi_trap = fsr;
    530 	UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
    531 
    532 do_trapsignal:
    533 	call_trapsignal(l, tf, &ksi);
    534 out:
    535 	/* If returning to user mode, make sure to invoke userret() */
    536 	if (user)
    537 		userret(l);
    538 }
    539 
    540 /*
    541  * dab_fatal() handles the following data aborts:
    542  *
    543  *  FAULT_WRTBUF_0 - Vector Exception
    544  *  FAULT_WRTBUF_1 - Terminal Exception
    545  *
    546  * We should never see these on a properly functioning system.
    547  *
    548  * This function is also called by the other handlers if they
    549  * detect a fatal problem.
    550  *
    551  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    552  */
    553 static int
    554 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    555 {
    556 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    557 
    558 	if (l != NULL) {
    559 		printf("Fatal %s mode data abort: '%s'\n", mode,
    560 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    561 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    562 		if ((fsr & FAULT_IMPRECISE) == 0)
    563 			printf("%08x, ", far);
    564 		else
    565 			printf("Invalid,  ");
    566 		printf("spsr=%08x\n", tf->tf_spsr);
    567 	} else {
    568 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    569 		    mode, tf->tf_pc);
    570 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    571 	}
    572 
    573 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    574 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    575 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    576 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    577 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    578 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    579 	printf("r12=%08x, ", tf->tf_r12);
    580 
    581 	if (TRAP_USERMODE(tf))
    582 		printf("usp=%08x, ulr=%08x",
    583 		    tf->tf_usr_sp, tf->tf_usr_lr);
    584 	else
    585 		printf("ssp=%08x, slr=%08x",
    586 		    tf->tf_svc_sp, tf->tf_svc_lr);
    587 	printf(", pc =%08x\n\n", tf->tf_pc);
    588 
    589 #if defined(DDB) || defined(KGDB)
    590 	kdb_trap(T_FAULT, tf);
    591 #endif
    592 	panic("Fatal abort");
    593 	/*NOTREACHED*/
    594 }
    595 
    596 /*
    597  * dab_align() handles the following data aborts:
    598  *
    599  *  FAULT_ALIGN_0 - Alignment fault
    600  *  FAULT_ALIGN_0 - Alignment fault
    601  *
    602  * These faults are fatal if they happen in kernel mode. Otherwise, we
    603  * deliver a bus error to the process.
    604  */
    605 static int
    606 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    607 {
    608 	/* Alignment faults are always fatal if they occur in kernel mode */
    609 	if (!TRAP_USERMODE(tf))
    610 		dab_fatal(tf, fsr, far, l, NULL);
    611 
    612 	/* pcb_onfault *must* be NULL at this point */
    613 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    614 
    615 	/* See if the CPU state needs to be fixed up */
    616 	(void) data_abort_fixup(tf, fsr, far, l);
    617 
    618 	/* Deliver a bus error signal to the process */
    619 	KSI_INIT_TRAP(ksi);
    620 	ksi->ksi_signo = SIGBUS;
    621 	ksi->ksi_code = BUS_ADRALN;
    622 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    623 	ksi->ksi_trap = fsr;
    624 
    625 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    626 
    627 	return (1);
    628 }
    629 
    630 /*
    631  * dab_buserr() handles the following data aborts:
    632  *
    633  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    634  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    635  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    636  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    637  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    638  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    639  *
    640  * If pcb_onfault is set, flag the fault and return to the handler.
    641  * If the fault occurred in user mode, give the process a SIGBUS.
    642  *
    643  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    644  * can be flagged as imprecise in the FSR. This causes a real headache
    645  * since some of the machine state is lost. In this case, tf->tf_pc
    646  * may not actually point to the offending instruction. In fact, if
    647  * we've taken a double abort fault, it generally points somewhere near
    648  * the top of "data_abort_entry" in exception.S.
    649  *
    650  * In all other cases, these data aborts are considered fatal.
    651  */
    652 static int
    653 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    654     ksiginfo_t *ksi)
    655 {
    656 	struct pcb *pcb = lwp_getpcb(l);
    657 
    658 #ifdef __XSCALE__
    659 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    660 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    661 		/*
    662 		 * Oops, an imprecise, double abort fault. We've lost the
    663 		 * r14_abt/spsr_abt values corresponding to the original
    664 		 * abort, and the spsr saved in the trapframe indicates
    665 		 * ABT mode.
    666 		 */
    667 		tf->tf_spsr &= ~PSR_MODE;
    668 
    669 		/*
    670 		 * We use a simple heuristic to determine if the double abort
    671 		 * happened as a result of a kernel or user mode access.
    672 		 * If the current trapframe is at the top of the kernel stack,
    673 		 * the fault _must_ have come from user mode.
    674 		 */
    675 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
    676 			/*
    677 			 * Kernel mode. We're either about to die a
    678 			 * spectacular death, or pcb_onfault will come
    679 			 * to our rescue. Either way, the current value
    680 			 * of tf->tf_pc is irrelevant.
    681 			 */
    682 			tf->tf_spsr |= PSR_SVC32_MODE;
    683 			if (pcb->pcb_onfault == NULL)
    684 				printf("\nKernel mode double abort!\n");
    685 		} else {
    686 			/*
    687 			 * User mode. We've lost the program counter at the
    688 			 * time of the fault (not that it was accurate anyway;
    689 			 * it's not called an imprecise fault for nothing).
    690 			 * About all we can do is copy r14_usr to tf_pc and
    691 			 * hope for the best. The process is about to get a
    692 			 * SIGBUS, so it's probably history anyway.
    693 			 */
    694 			tf->tf_spsr |= PSR_USR32_MODE;
    695 			tf->tf_pc = tf->tf_usr_lr;
    696 #ifdef THUMB_CODE
    697 			tf->tf_spsr &= ~PSR_T_bit;
    698 			if (tf->tf_usr_lr & 1)
    699 				tf->tf_spsr |= PSR_T_bit;
    700 #endif
    701 		}
    702 	}
    703 
    704 	/* FAR is invalid for imprecise exceptions */
    705 	if ((fsr & FAULT_IMPRECISE) != 0)
    706 		far = 0;
    707 #endif /* __XSCALE__ */
    708 
    709 	if (pcb->pcb_onfault) {
    710 		KDASSERT(TRAP_USERMODE(tf) == 0);
    711 		tf->tf_r0 = EFAULT;
    712 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    713 		return (0);
    714 	}
    715 
    716 	/* See if the CPU state needs to be fixed up */
    717 	(void) data_abort_fixup(tf, fsr, far, l);
    718 
    719 	/*
    720 	 * At this point, if the fault happened in kernel mode, we're toast
    721 	 */
    722 	if (!TRAP_USERMODE(tf))
    723 		dab_fatal(tf, fsr, far, l, NULL);
    724 
    725 	/* Deliver a bus error signal to the process */
    726 	KSI_INIT_TRAP(ksi);
    727 	ksi->ksi_signo = SIGBUS;
    728 	ksi->ksi_code = BUS_ADRERR;
    729 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    730 	ksi->ksi_trap = fsr;
    731 
    732 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    733 
    734 	return (1);
    735 }
    736 
    737 static inline int
    738 prefetch_abort_fixup(trapframe_t *tf)
    739 {
    740 #ifdef CPU_ABORT_FIXUP_REQUIRED
    741 	int error;
    742 
    743 	/* Call the CPU specific prefetch abort fixup routine */
    744 	error = cpu_prefetchabt_fixup(tf);
    745 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    746 		return (error);
    747 
    748 	/*
    749 	 * Oops, couldn't fix up the instruction
    750 	 */
    751 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    752 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    753 #ifdef THUMB_CODE
    754 	if (tf->tf_spsr & PSR_T_bit) {
    755 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    756 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    757 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    758 	}
    759 	else
    760 #endif
    761 	{
    762 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    763 		    *((u_int *)tf->tf_pc));
    764 	}
    765 	disassemble(tf->tf_pc);
    766 
    767 	/* Die now if this happened in kernel mode */
    768 	if (!TRAP_USERMODE(tf))
    769 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    770 
    771 	return (error);
    772 #else
    773 	return (ABORT_FIXUP_OK);
    774 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    775 }
    776 
    777 /*
    778  * void prefetch_abort_handler(trapframe_t *tf)
    779  *
    780  * Abort handler called when instruction execution occurs at
    781  * a non existent or restricted (access permissions) memory page.
    782  * If the address is invalid and we were in SVC mode then panic as
    783  * the kernel should never prefetch abort.
    784  * If the address is invalid and the page is mapped then the user process
    785  * does no have read permission so send it a signal.
    786  * Otherwise fault the page in and try again.
    787  */
    788 void
    789 prefetch_abort_handler(trapframe_t *tf)
    790 {
    791 	struct lwp *l;
    792 	struct pcb *pcb __diagused;
    793 	struct vm_map *map;
    794 	vaddr_t fault_pc, va;
    795 	ksiginfo_t ksi;
    796 	int error, user;
    797 
    798 	UVMHIST_FUNC(__func__);
    799 	UVMHIST_CALLED(maphist);
    800 
    801 	/* Update vmmeter statistics */
    802 	curcpu()->ci_data.cpu_ntrap++;
    803 
    804 	l = curlwp;
    805 	pcb = lwp_getpcb(l);
    806 
    807 	if ((user = TRAP_USERMODE(tf)) != 0)
    808 		LWP_CACHE_CREDS(l, l->l_proc);
    809 
    810 	/*
    811 	 * Enable IRQ's (disabled by the abort) This always comes
    812 	 * from user mode so we know interrupts were not disabled.
    813 	 * But we check anyway.
    814 	 */
    815 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    816 #ifdef __NO_FIQ
    817 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    818 		restore_interrupts(tf->tf_spsr & IF32_bits);
    819 #else
    820 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    821 		restore_interrupts(tf->tf_spsr & IF32_bits);
    822 #endif
    823 
    824 	/* See if the CPU state needs to be fixed up */
    825 	switch (prefetch_abort_fixup(tf)) {
    826 	case ABORT_FIXUP_RETURN:
    827 		KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    828 		return;
    829 	case ABORT_FIXUP_FAILED:
    830 		/* Deliver a SIGILL to the process */
    831 		KSI_INIT_TRAP(&ksi);
    832 		ksi.ksi_signo = SIGILL;
    833 		ksi.ksi_code = ILL_ILLOPC;
    834 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
    835 		KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
    836 		    lwp_trapframe(l));
    837 		goto do_trapsignal;
    838 	default:
    839 		break;
    840 	}
    841 
    842 	/* Prefetch aborts cannot happen in kernel mode */
    843 	if (__predict_false(!user))
    844 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    845 
    846 	/* Get fault address */
    847 	fault_pc = tf->tf_pc;
    848 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    849 	UVMHIST_LOG(maphist, " (pc=0x%jx, l=0x%#jx, tf=0x%#jx)",
    850 	    fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
    851 
    852 	/* Ok validate the address, can only execute in USER space */
    853 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    854 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    855 		KSI_INIT_TRAP(&ksi);
    856 		ksi.ksi_signo = SIGSEGV;
    857 		ksi.ksi_code = SEGV_ACCERR;
    858 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    859 		ksi.ksi_trap = fault_pc;
    860 		goto do_trapsignal;
    861 	}
    862 
    863 	map = &l->l_proc->p_vmspace->vm_map;
    864 	va = trunc_page(fault_pc);
    865 
    866 	/*
    867 	 * See if the pmap can handle this fault on its own...
    868 	 */
    869 #ifdef DEBUG
    870 	last_fault_code = -1;
    871 #endif
    872 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
    873 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    874 		goto out;
    875 	}
    876 
    877 #ifdef DIAGNOSTIC
    878 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    879 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    880 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    881 	}
    882 #endif
    883 
    884 	KASSERT(pcb->pcb_onfault == NULL);
    885 	error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
    886 
    887 	if (__predict_true(error == 0)) {
    888 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    889 		goto out;
    890 	}
    891 	KSI_INIT_TRAP(&ksi);
    892 
    893 	UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
    894 
    895 	if (error == ENOMEM) {
    896 		printf("UVM: pid %d (%s), uid %d killed: "
    897 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    898 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    899 		ksi.ksi_signo = SIGKILL;
    900 	} else
    901 		ksi.ksi_signo = SIGSEGV;
    902 
    903 	ksi.ksi_code = SEGV_MAPERR;
    904 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    905 	ksi.ksi_trap = fault_pc;
    906 
    907 do_trapsignal:
    908 	call_trapsignal(l, tf, &ksi);
    909 
    910 out:
    911 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    912 	userret(l);
    913 }
    914 
    915 /*
    916  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    917  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    918  * Else, return EFAULT.
    919  */
    920 int
    921 badaddr_read(void *addr, size_t size, void *rptr)
    922 {
    923 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    924 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    925 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    926 	union {
    927 		uint8_t v1;
    928 		uint16_t v2;
    929 		uint32_t v4;
    930 	} u;
    931 	int rv, s;
    932 
    933 	cpu_drain_writebuf();
    934 
    935 	s = splhigh();
    936 
    937 	/* Read from the test address. */
    938 	switch (size) {
    939 	case sizeof(uint8_t):
    940 		rv = badaddr_read_1(addr, &u.v1);
    941 		if (rv == 0 && rptr)
    942 			*(uint8_t *) rptr = u.v1;
    943 		break;
    944 
    945 	case sizeof(uint16_t):
    946 		rv = badaddr_read_2(addr, &u.v2);
    947 		if (rv == 0 && rptr)
    948 			*(uint16_t *) rptr = u.v2;
    949 		break;
    950 
    951 	case sizeof(uint32_t):
    952 		rv = badaddr_read_4(addr, &u.v4);
    953 		if (rv == 0 && rptr)
    954 			*(uint32_t *) rptr = u.v4;
    955 		break;
    956 
    957 	default:
    958 		panic("%s: invalid size (%zu)", __func__, size);
    959 	}
    960 
    961 	splx(s);
    962 
    963 	/* Return EFAULT if the address was invalid, else zero */
    964 	return (rv);
    965 }
    966