Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.106
      1 /*	$NetBSD: fault.c,v 1.106 2018/07/15 05:16:41 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.106 2018/07/15 05:16:41 maxv Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kauth.h>
     91 #include <sys/cpu.h>
     92 #include <sys/intr.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 #include <uvm/uvm_stat.h>
     96 #ifdef UVMHIST
     97 #include <uvm/uvm.h>
     98 #endif
     99 
    100 #include <arm/locore.h>
    101 
    102 #include <machine/pcb.h>
    103 #if defined(DDB) || defined(KGDB)
    104 #include <machine/db_machdep.h>
    105 #ifdef KGDB
    106 #include <sys/kgdb.h>
    107 #endif
    108 #if !defined(DDB)
    109 #define kdb_trap	kgdb_trap
    110 #endif
    111 #endif
    112 
    113 #include <arch/arm/arm/disassem.h>
    114 #include <arm/arm32/machdep.h>
    115 
    116 extern char fusubailout[];
    117 
    118 #ifdef DEBUG
    119 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    120 #endif
    121 
    122 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    123     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    124 /* These CPUs may need data/prefetch abort fixups */
    125 #define	CPU_ABORT_FIXUP_REQUIRED
    126 #endif
    127 
    128 struct data_abort {
    129 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    130 	const char *desc;
    131 };
    132 
    133 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    135 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136 
    137 static const struct data_abort data_aborts[] = {
    138 	{dab_fatal,	"Vector Exception"},
    139 	{dab_align,	"Alignment Fault 1"},
    140 	{dab_fatal,	"Terminal Exception"},
    141 	{dab_align,	"Alignment Fault 3"},
    142 	{dab_buserr,	"External Linefetch Abort (S)"},
    143 	{NULL,		"Translation Fault (S)"},
    144 	{dab_buserr,	"External Linefetch Abort (P)"},
    145 	{NULL,		"Translation Fault (P)"},
    146 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    147 	{NULL,		"Domain Fault (S)"},
    148 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    149 	{NULL,		"Domain Fault (P)"},
    150 	{dab_buserr,	"External Translation Abort (L1)"},
    151 	{NULL,		"Permission Fault (S)"},
    152 	{dab_buserr,	"External Translation Abort (L2)"},
    153 	{NULL,		"Permission Fault (P)"}
    154 };
    155 
    156 /* Determine if 'x' is a permission fault */
    157 #define	IS_PERMISSION_FAULT(x)					\
    158 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    159 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    160 
    161 #if 0
    162 /* maybe one day we'll do emulations */
    163 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    164 #else
    165 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    166 #endif
    167 
    168 static inline void
    169 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
    170 {
    171 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
    172 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
    173 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    174 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
    175 		    ksi->ksi_trap);
    176 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
    177 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    178 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
    179 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    180 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
    181 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    182 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
    183 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
    184 		    tf->tf_spsr);
    185 	}
    186 
    187 	TRAPSIGNAL(l, ksi);
    188 }
    189 
    190 static inline int
    191 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    192 {
    193 #ifdef CPU_ABORT_FIXUP_REQUIRED
    194 	int error;
    195 
    196 	/* Call the CPU specific data abort fixup routine */
    197 	error = cpu_dataabt_fixup(tf);
    198 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    199 		return (error);
    200 
    201 	/*
    202 	 * Oops, couldn't fix up the instruction
    203 	 */
    204 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    205 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    206 #ifdef THUMB_CODE
    207 	if (tf->tf_spsr & PSR_T_bit) {
    208 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    209 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    210 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    211 	}
    212 	else
    213 #endif
    214 	{
    215 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    216 		    *((u_int *)tf->tf_pc));
    217 	}
    218 	disassemble(tf->tf_pc);
    219 
    220 	/* Die now if this happened in kernel mode */
    221 	if (!TRAP_USERMODE(tf))
    222 		dab_fatal(tf, fsr, far, l, NULL);
    223 
    224 	return (error);
    225 #else
    226 	return (ABORT_FIXUP_OK);
    227 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    228 }
    229 
    230 void
    231 data_abort_handler(trapframe_t *tf)
    232 {
    233 	struct vm_map *map;
    234 	struct lwp * const l = curlwp;
    235 	struct cpu_info * const ci = curcpu();
    236 	u_int far, fsr;
    237 	vm_prot_t ftype;
    238 	void *onfault;
    239 	vaddr_t va;
    240 	int error;
    241 	ksiginfo_t ksi;
    242 
    243 	UVMHIST_FUNC(__func__);
    244 	UVMHIST_CALLED(maphist);
    245 
    246 	/* Grab FAR/FSR before enabling interrupts */
    247 	far = cpu_faultaddress();
    248 	fsr = cpu_faultstatus();
    249 
    250 	/* Update vmmeter statistics */
    251 	ci->ci_data.cpu_ntrap++;
    252 
    253 	/* Re-enable interrupts if they were enabled previously */
    254 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    255 #ifdef __NO_FIQ
    256 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    257 		restore_interrupts(tf->tf_spsr & IF32_bits);
    258 #else
    259 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    260 		restore_interrupts(tf->tf_spsr & IF32_bits);
    261 #endif
    262 
    263 	/* Get the current lwp structure */
    264 
    265 	UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
    266 	    (uintptr_t)l, far, fsr, 0);
    267 	UVMHIST_LOG(maphist, "  tf=%#jx, pc=%#jx)",
    268 	    (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
    269 
    270 	/* Data abort came from user mode? */
    271 	bool user = (TRAP_USERMODE(tf) != 0);
    272 	if (user)
    273 		LWP_CACHE_CREDS(l, l->l_proc);
    274 
    275 	/* Grab the current pcb */
    276 	struct pcb * const pcb = lwp_getpcb(l);
    277 
    278 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
    279 
    280 	/* Invoke the appropriate handler, if necessary */
    281 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    282 #ifdef DIAGNOSTIC
    283 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    284 		    __func__, fsr, far);
    285 #endif
    286 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    287 		    l, &ksi))
    288 			goto do_trapsignal;
    289 		goto out;
    290 	}
    291 
    292 	/*
    293 	 * At this point, we're dealing with one of the following data aborts:
    294 	 *
    295 	 *  FAULT_TRANS_S  - Translation -- Section
    296 	 *  FAULT_TRANS_P  - Translation -- Page
    297 	 *  FAULT_DOMAIN_S - Domain -- Section
    298 	 *  FAULT_DOMAIN_P - Domain -- Page
    299 	 *  FAULT_PERM_S   - Permission -- Section
    300 	 *  FAULT_PERM_P   - Permission -- Page
    301 	 *
    302 	 * These are the main virtual memory-related faults signalled by
    303 	 * the MMU.
    304 	 */
    305 
    306 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    307 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    308 		tf->tf_r0 = EFAULT;
    309 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    310 		return;
    311 	}
    312 
    313 	KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
    314 	    lwp_trapframe(l));
    315 
    316 	/*
    317 	 * Make sure the Program Counter is sane. We could fall foul of
    318 	 * someone executing Thumb code, in which case the PC might not
    319 	 * be word-aligned. This would cause a kernel alignment fault
    320 	 * further down if we have to decode the current instruction.
    321 	 */
    322 #ifdef THUMB_CODE
    323 	/*
    324 	 * XXX: It would be nice to be able to support Thumb in the kernel
    325 	 * at some point.
    326 	 */
    327 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    328 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    329 		    __func__);
    330 		dab_fatal(tf, fsr, far, l, NULL);
    331 	}
    332 #else
    333 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    334 		if (user) {
    335 			/*
    336 			 * Give the user an illegal instruction signal.
    337 			 */
    338 			/* Deliver a SIGILL to the process */
    339 			KSI_INIT_TRAP(&ksi);
    340 			ksi.ksi_signo = SIGILL;
    341 			ksi.ksi_code = ILL_ILLOPC;
    342 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    343 			ksi.ksi_trap = fsr;
    344 			goto do_trapsignal;
    345 		}
    346 
    347 		/*
    348 		 * The kernel never executes Thumb code.
    349 		 */
    350 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    351 		    __func__);
    352 		dab_fatal(tf, fsr, far, l, NULL);
    353 	}
    354 #endif
    355 
    356 	/* See if the CPU state needs to be fixed up */
    357 	switch (data_abort_fixup(tf, fsr, far, l)) {
    358 	case ABORT_FIXUP_RETURN:
    359 		return;
    360 	case ABORT_FIXUP_FAILED:
    361 		/* Deliver a SIGILL to the process */
    362 		KSI_INIT_TRAP(&ksi);
    363 		ksi.ksi_signo = SIGILL;
    364 		ksi.ksi_code = ILL_ILLOPC;
    365 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    366 		ksi.ksi_trap = fsr;
    367 		goto do_trapsignal;
    368 	default:
    369 		break;
    370 	}
    371 
    372 	va = trunc_page((vaddr_t)far);
    373 
    374 	/*
    375 	 * It is only a kernel address space fault iff:
    376 	 *	1. user == 0  and
    377 	 *	2. pcb_onfault not set or
    378 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    379 	 */
    380 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    381 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    382 	    __predict_true((pcb->pcb_onfault == NULL ||
    383 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
    384 		map = kernel_map;
    385 
    386 		/* Was the fault due to the FPE ? */
    387 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    388 			KSI_INIT_TRAP(&ksi);
    389 			ksi.ksi_signo = SIGSEGV;
    390 			ksi.ksi_code = SEGV_ACCERR;
    391 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    392 			ksi.ksi_trap = fsr;
    393 
    394 			/*
    395 			 * Force exit via userret()
    396 			 * This is necessary as the FPE is an extension to
    397 			 * userland that actually runs in a priveledged mode
    398 			 * but uses USR mode permissions for its accesses.
    399 			 */
    400 			user = true;
    401 			goto do_trapsignal;
    402 		}
    403 	} else {
    404 		map = &l->l_proc->p_vmspace->vm_map;
    405 	}
    406 
    407 	/*
    408 	 * We need to know whether the page should be mapped as R or R/W.
    409 	 * Before ARMv6, the MMU did not give us the info as to whether the
    410 	 * fault was caused by a read or a write.
    411 	 *
    412 	 * However, we know that a permission fault can only be the result of
    413 	 * a write to a read-only location, so we can deal with those quickly.
    414 	 *
    415 	 * Otherwise we need to disassemble the instruction responsible to
    416 	 * determine if it was a write.
    417 	 */
    418 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
    419 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
    420 	} else if (IS_PERMISSION_FAULT(fsr)) {
    421 		ftype = VM_PROT_WRITE;
    422 	} else {
    423 #ifdef THUMB_CODE
    424 		/* Fast track the ARM case.  */
    425 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    426 			u_int insn = read_thumb_insn(tf->tf_pc, user);
    427 			u_int insn_f8 = insn & 0xf800;
    428 			u_int insn_fe = insn & 0xfe00;
    429 
    430 			if (insn_f8 == 0x6000 || /* STR(1) */
    431 			    insn_f8 == 0x7000 || /* STRB(1) */
    432 			    insn_f8 == 0x8000 || /* STRH(1) */
    433 			    insn_f8 == 0x9000 || /* STR(3) */
    434 			    insn_f8 == 0xc000 || /* STM */
    435 			    insn_fe == 0x5000 || /* STR(2) */
    436 			    insn_fe == 0x5200 || /* STRH(2) */
    437 			    insn_fe == 0x5400)   /* STRB(2) */
    438 				ftype = VM_PROT_WRITE;
    439 			else
    440 				ftype = VM_PROT_READ;
    441 		}
    442 		else
    443 #endif
    444 		{
    445 			u_int insn = read_insn(tf->tf_pc, user);
    446 
    447 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    448 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    449 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    450 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    451 				ftype = VM_PROT_WRITE;
    452 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    453 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    454 			else
    455 				ftype = VM_PROT_READ;
    456 		}
    457 	}
    458 
    459 	/*
    460 	 * See if the fault is as a result of ref/mod emulation,
    461 	 * or domain mismatch.
    462 	 */
    463 #ifdef DEBUG
    464 	last_fault_code = fsr;
    465 #endif
    466 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    467 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    468 		goto out;
    469 	}
    470 
    471 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    472 		if (pcb->pcb_onfault) {
    473 			tf->tf_r0 = EINVAL;
    474 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    475 			return;
    476 		}
    477 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    478 		dab_fatal(tf, fsr, far, l, NULL);
    479 	}
    480 
    481 	onfault = pcb->pcb_onfault;
    482 	pcb->pcb_onfault = NULL;
    483 	error = uvm_fault(map, va, ftype);
    484 	pcb->pcb_onfault = onfault;
    485 
    486 	if (__predict_true(error == 0)) {
    487 		if (user)
    488 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    489 		else
    490 			ucas_ras_check(tf);
    491 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    492 		goto out;
    493 	}
    494 
    495 	if (user == 0) {
    496 		if (pcb->pcb_onfault) {
    497 			tf->tf_r0 = error;
    498 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    499 			return;
    500 		}
    501 
    502 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    503 		    error);
    504 		dab_fatal(tf, fsr, far, l, NULL);
    505 	}
    506 
    507 	KSI_INIT_TRAP(&ksi);
    508 
    509 	switch (error) {
    510 	case ENOMEM:
    511 		printf("UVM: pid %d (%s), uid %d killed: "
    512 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    513 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    514 		ksi.ksi_signo = SIGKILL;
    515 		break;
    516 	case EACCES:
    517 		ksi.ksi_signo = SIGSEGV;
    518 		ksi.ksi_code = SEGV_ACCERR;
    519 		break;
    520 	case EINVAL:
    521 		ksi.ksi_signo = SIGBUS;
    522 		ksi.ksi_code = BUS_ADRERR;
    523 		break;
    524 	default:
    525 		ksi.ksi_signo = SIGSEGV;
    526 		ksi.ksi_code = SEGV_MAPERR;
    527 		break;
    528 	}
    529 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    530 	ksi.ksi_trap = fsr;
    531 	UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
    532 
    533 do_trapsignal:
    534 	call_trapsignal(l, tf, &ksi);
    535 out:
    536 	/* If returning to user mode, make sure to invoke userret() */
    537 	if (user)
    538 		userret(l);
    539 }
    540 
    541 /*
    542  * dab_fatal() handles the following data aborts:
    543  *
    544  *  FAULT_WRTBUF_0 - Vector Exception
    545  *  FAULT_WRTBUF_1 - Terminal Exception
    546  *
    547  * We should never see these on a properly functioning system.
    548  *
    549  * This function is also called by the other handlers if they
    550  * detect a fatal problem.
    551  *
    552  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    553  */
    554 static int
    555 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    556 {
    557 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    558 
    559 	if (l != NULL) {
    560 		printf("Fatal %s mode data abort: '%s'\n", mode,
    561 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    562 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    563 		if ((fsr & FAULT_IMPRECISE) == 0)
    564 			printf("%08x, ", far);
    565 		else
    566 			printf("Invalid,  ");
    567 		printf("spsr=%08x\n", tf->tf_spsr);
    568 	} else {
    569 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    570 		    mode, tf->tf_pc);
    571 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    572 	}
    573 
    574 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    575 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    576 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    577 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    578 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    579 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    580 	printf("r12=%08x, ", tf->tf_r12);
    581 
    582 	if (TRAP_USERMODE(tf))
    583 		printf("usp=%08x, ulr=%08x",
    584 		    tf->tf_usr_sp, tf->tf_usr_lr);
    585 	else
    586 		printf("ssp=%08x, slr=%08x",
    587 		    tf->tf_svc_sp, tf->tf_svc_lr);
    588 	printf(", pc =%08x\n\n", tf->tf_pc);
    589 
    590 #if defined(DDB) || defined(KGDB)
    591 	kdb_trap(T_FAULT, tf);
    592 #endif
    593 	panic("Fatal abort");
    594 	/*NOTREACHED*/
    595 }
    596 
    597 /*
    598  * dab_align() handles the following data aborts:
    599  *
    600  *  FAULT_ALIGN_0 - Alignment fault
    601  *  FAULT_ALIGN_0 - Alignment fault
    602  *
    603  * These faults are fatal if they happen in kernel mode. Otherwise, we
    604  * deliver a bus error to the process.
    605  */
    606 static int
    607 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    608 {
    609 	/* Alignment faults are always fatal if they occur in kernel mode */
    610 	if (!TRAP_USERMODE(tf))
    611 		dab_fatal(tf, fsr, far, l, NULL);
    612 
    613 	/* pcb_onfault *must* be NULL at this point */
    614 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    615 
    616 	/* See if the CPU state needs to be fixed up */
    617 	(void) data_abort_fixup(tf, fsr, far, l);
    618 
    619 	/* Deliver a bus error signal to the process */
    620 	KSI_INIT_TRAP(ksi);
    621 	ksi->ksi_signo = SIGBUS;
    622 	ksi->ksi_code = BUS_ADRALN;
    623 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    624 	ksi->ksi_trap = fsr;
    625 
    626 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    627 
    628 	return (1);
    629 }
    630 
    631 /*
    632  * dab_buserr() handles the following data aborts:
    633  *
    634  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    635  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    636  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    637  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    638  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    639  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    640  *
    641  * If pcb_onfault is set, flag the fault and return to the handler.
    642  * If the fault occurred in user mode, give the process a SIGBUS.
    643  *
    644  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    645  * can be flagged as imprecise in the FSR. This causes a real headache
    646  * since some of the machine state is lost. In this case, tf->tf_pc
    647  * may not actually point to the offending instruction. In fact, if
    648  * we've taken a double abort fault, it generally points somewhere near
    649  * the top of "data_abort_entry" in exception.S.
    650  *
    651  * In all other cases, these data aborts are considered fatal.
    652  */
    653 static int
    654 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    655     ksiginfo_t *ksi)
    656 {
    657 	struct pcb *pcb = lwp_getpcb(l);
    658 
    659 #ifdef __XSCALE__
    660 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    661 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    662 		/*
    663 		 * Oops, an imprecise, double abort fault. We've lost the
    664 		 * r14_abt/spsr_abt values corresponding to the original
    665 		 * abort, and the spsr saved in the trapframe indicates
    666 		 * ABT mode.
    667 		 */
    668 		tf->tf_spsr &= ~PSR_MODE;
    669 
    670 		/*
    671 		 * We use a simple heuristic to determine if the double abort
    672 		 * happened as a result of a kernel or user mode access.
    673 		 * If the current trapframe is at the top of the kernel stack,
    674 		 * the fault _must_ have come from user mode.
    675 		 */
    676 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
    677 			/*
    678 			 * Kernel mode. We're either about to die a
    679 			 * spectacular death, or pcb_onfault will come
    680 			 * to our rescue. Either way, the current value
    681 			 * of tf->tf_pc is irrelevant.
    682 			 */
    683 			tf->tf_spsr |= PSR_SVC32_MODE;
    684 			if (pcb->pcb_onfault == NULL)
    685 				printf("\nKernel mode double abort!\n");
    686 		} else {
    687 			/*
    688 			 * User mode. We've lost the program counter at the
    689 			 * time of the fault (not that it was accurate anyway;
    690 			 * it's not called an imprecise fault for nothing).
    691 			 * About all we can do is copy r14_usr to tf_pc and
    692 			 * hope for the best. The process is about to get a
    693 			 * SIGBUS, so it's probably history anyway.
    694 			 */
    695 			tf->tf_spsr |= PSR_USR32_MODE;
    696 			tf->tf_pc = tf->tf_usr_lr;
    697 #ifdef THUMB_CODE
    698 			tf->tf_spsr &= ~PSR_T_bit;
    699 			if (tf->tf_usr_lr & 1)
    700 				tf->tf_spsr |= PSR_T_bit;
    701 #endif
    702 		}
    703 	}
    704 
    705 	/* FAR is invalid for imprecise exceptions */
    706 	if ((fsr & FAULT_IMPRECISE) != 0)
    707 		far = 0;
    708 #endif /* __XSCALE__ */
    709 
    710 	if (pcb->pcb_onfault) {
    711 		KDASSERT(TRAP_USERMODE(tf) == 0);
    712 		tf->tf_r0 = EFAULT;
    713 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    714 		return (0);
    715 	}
    716 
    717 	/* See if the CPU state needs to be fixed up */
    718 	(void) data_abort_fixup(tf, fsr, far, l);
    719 
    720 	/*
    721 	 * At this point, if the fault happened in kernel mode, we're toast
    722 	 */
    723 	if (!TRAP_USERMODE(tf))
    724 		dab_fatal(tf, fsr, far, l, NULL);
    725 
    726 	/* Deliver a bus error signal to the process */
    727 	KSI_INIT_TRAP(ksi);
    728 	ksi->ksi_signo = SIGBUS;
    729 	ksi->ksi_code = BUS_ADRERR;
    730 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    731 	ksi->ksi_trap = fsr;
    732 
    733 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    734 
    735 	return (1);
    736 }
    737 
    738 static inline int
    739 prefetch_abort_fixup(trapframe_t *tf)
    740 {
    741 #ifdef CPU_ABORT_FIXUP_REQUIRED
    742 	int error;
    743 
    744 	/* Call the CPU specific prefetch abort fixup routine */
    745 	error = cpu_prefetchabt_fixup(tf);
    746 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    747 		return (error);
    748 
    749 	/*
    750 	 * Oops, couldn't fix up the instruction
    751 	 */
    752 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    753 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    754 #ifdef THUMB_CODE
    755 	if (tf->tf_spsr & PSR_T_bit) {
    756 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    757 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    758 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    759 	}
    760 	else
    761 #endif
    762 	{
    763 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    764 		    *((u_int *)tf->tf_pc));
    765 	}
    766 	disassemble(tf->tf_pc);
    767 
    768 	/* Die now if this happened in kernel mode */
    769 	if (!TRAP_USERMODE(tf))
    770 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    771 
    772 	return (error);
    773 #else
    774 	return (ABORT_FIXUP_OK);
    775 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    776 }
    777 
    778 /*
    779  * void prefetch_abort_handler(trapframe_t *tf)
    780  *
    781  * Abort handler called when instruction execution occurs at
    782  * a non existent or restricted (access permissions) memory page.
    783  * If the address is invalid and we were in SVC mode then panic as
    784  * the kernel should never prefetch abort.
    785  * If the address is invalid and the page is mapped then the user process
    786  * does no have read permission so send it a signal.
    787  * Otherwise fault the page in and try again.
    788  */
    789 void
    790 prefetch_abort_handler(trapframe_t *tf)
    791 {
    792 	struct lwp *l;
    793 	struct pcb *pcb __diagused;
    794 	struct vm_map *map;
    795 	vaddr_t fault_pc, va;
    796 	ksiginfo_t ksi;
    797 	int error, user;
    798 
    799 	UVMHIST_FUNC(__func__);
    800 	UVMHIST_CALLED(maphist);
    801 
    802 	/* Update vmmeter statistics */
    803 	curcpu()->ci_data.cpu_ntrap++;
    804 
    805 	l = curlwp;
    806 	pcb = lwp_getpcb(l);
    807 
    808 	if ((user = TRAP_USERMODE(tf)) != 0)
    809 		LWP_CACHE_CREDS(l, l->l_proc);
    810 
    811 	/*
    812 	 * Enable IRQ's (disabled by the abort) This always comes
    813 	 * from user mode so we know interrupts were not disabled.
    814 	 * But we check anyway.
    815 	 */
    816 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    817 #ifdef __NO_FIQ
    818 	if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
    819 		restore_interrupts(tf->tf_spsr & IF32_bits);
    820 #else
    821 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    822 		restore_interrupts(tf->tf_spsr & IF32_bits);
    823 #endif
    824 
    825 	/* See if the CPU state needs to be fixed up */
    826 	switch (prefetch_abort_fixup(tf)) {
    827 	case ABORT_FIXUP_RETURN:
    828 		KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    829 		return;
    830 	case ABORT_FIXUP_FAILED:
    831 		/* Deliver a SIGILL to the process */
    832 		KSI_INIT_TRAP(&ksi);
    833 		ksi.ksi_signo = SIGILL;
    834 		ksi.ksi_code = ILL_ILLOPC;
    835 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
    836 		KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
    837 		    lwp_trapframe(l));
    838 		goto do_trapsignal;
    839 	default:
    840 		break;
    841 	}
    842 
    843 	/* Prefetch aborts cannot happen in kernel mode */
    844 	if (__predict_false(!user))
    845 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    846 
    847 	/* Get fault address */
    848 	fault_pc = tf->tf_pc;
    849 	KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
    850 	UVMHIST_LOG(maphist, " (pc=0x%jx, l=0x%#jx, tf=0x%#jx)",
    851 	    fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
    852 
    853 	/* Ok validate the address, can only execute in USER space */
    854 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    855 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    856 		KSI_INIT_TRAP(&ksi);
    857 		ksi.ksi_signo = SIGSEGV;
    858 		ksi.ksi_code = SEGV_ACCERR;
    859 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    860 		ksi.ksi_trap = fault_pc;
    861 		goto do_trapsignal;
    862 	}
    863 
    864 	map = &l->l_proc->p_vmspace->vm_map;
    865 	va = trunc_page(fault_pc);
    866 
    867 	/*
    868 	 * See if the pmap can handle this fault on its own...
    869 	 */
    870 #ifdef DEBUG
    871 	last_fault_code = -1;
    872 #endif
    873 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
    874 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    875 		goto out;
    876 	}
    877 
    878 #ifdef DIAGNOSTIC
    879 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    880 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    881 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    882 	}
    883 #endif
    884 
    885 	KASSERT(pcb->pcb_onfault == NULL);
    886 	error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
    887 
    888 	if (__predict_true(error == 0)) {
    889 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    890 		goto out;
    891 	}
    892 	KSI_INIT_TRAP(&ksi);
    893 
    894 	UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
    895 
    896 	if (error == ENOMEM) {
    897 		printf("UVM: pid %d (%s), uid %d killed: "
    898 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    899 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    900 		ksi.ksi_signo = SIGKILL;
    901 	} else
    902 		ksi.ksi_signo = SIGSEGV;
    903 
    904 	ksi.ksi_code = SEGV_MAPERR;
    905 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    906 	ksi.ksi_trap = fault_pc;
    907 
    908 do_trapsignal:
    909 	call_trapsignal(l, tf, &ksi);
    910 
    911 out:
    912 	KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
    913 	userret(l);
    914 }
    915 
    916 /*
    917  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    918  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    919  * Else, return EFAULT.
    920  */
    921 int
    922 badaddr_read(void *addr, size_t size, void *rptr)
    923 {
    924 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    925 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    926 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    927 	union {
    928 		uint8_t v1;
    929 		uint16_t v2;
    930 		uint32_t v4;
    931 	} u;
    932 	int rv, s;
    933 
    934 	cpu_drain_writebuf();
    935 
    936 	s = splhigh();
    937 
    938 	/* Read from the test address. */
    939 	switch (size) {
    940 	case sizeof(uint8_t):
    941 		rv = badaddr_read_1(addr, &u.v1);
    942 		if (rv == 0 && rptr)
    943 			*(uint8_t *) rptr = u.v1;
    944 		break;
    945 
    946 	case sizeof(uint16_t):
    947 		rv = badaddr_read_2(addr, &u.v2);
    948 		if (rv == 0 && rptr)
    949 			*(uint16_t *) rptr = u.v2;
    950 		break;
    951 
    952 	case sizeof(uint32_t):
    953 		rv = badaddr_read_4(addr, &u.v4);
    954 		if (rv == 0 && rptr)
    955 			*(uint32_t *) rptr = u.v4;
    956 		break;
    957 
    958 	default:
    959 		panic("%s: invalid size (%zu)", __func__, size);
    960 	}
    961 
    962 	splx(s);
    963 
    964 	/* Return EFAULT if the address was invalid, else zero */
    965 	return (rv);
    966 }
    967