fault.c revision 1.109.2.1 1 /* $NetBSD: fault.c,v 1.109.2.1 2020/02/29 20:18:17 ad Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.109.2.1 2020/02/29 20:18:17 ad Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/locore.h>
101
102 #include <machine/pcb.h>
103 #if defined(DDB) || defined(KGDB)
104 #include <machine/db_machdep.h>
105 #ifdef KGDB
106 #include <sys/kgdb.h>
107 #endif
108 #if !defined(DDB)
109 #define kdb_trap kgdb_trap
110 #endif
111 #endif
112
113 #include <arch/arm/arm/disassem.h>
114 #include <arm/arm32/machdep.h>
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
121 /* These CPUs may need data/prefetch abort fixups */
122 #define CPU_ABORT_FIXUP_REQUIRED
123 #endif
124
125 struct data_abort {
126 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
127 const char *desc;
128 };
129
130 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
131 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133
134 static const struct data_abort data_aborts[] = {
135 {dab_fatal, "Vector Exception"},
136 {dab_align, "Alignment Fault 1"},
137 {dab_fatal, "Terminal Exception"},
138 {dab_align, "Alignment Fault 3"},
139 {dab_buserr, "External Linefetch Abort (S)"},
140 {NULL, "Translation Fault (S)"},
141 {dab_buserr, "External Linefetch Abort (P)"},
142 {NULL, "Translation Fault (P)"},
143 {dab_buserr, "External Non-Linefetch Abort (S)"},
144 {NULL, "Domain Fault (S)"},
145 {dab_buserr, "External Non-Linefetch Abort (P)"},
146 {NULL, "Domain Fault (P)"},
147 {dab_buserr, "External Translation Abort (L1)"},
148 {NULL, "Permission Fault (S)"},
149 {dab_buserr, "External Translation Abort (L2)"},
150 {NULL, "Permission Fault (P)"}
151 };
152
153 /* Determine if 'x' is a permission fault */
154 #define IS_PERMISSION_FAULT(x) \
155 (((1 << ((x) & FAULT_TYPE_MASK)) & \
156 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
157
158 #if 0
159 /* maybe one day we'll do emulations */
160 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
161 #else
162 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
163 #endif
164
165 static inline void
166 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
167 {
168 if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
169 printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
170 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
171 ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
172 ksi->ksi_trap);
173 printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
174 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
175 printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
176 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
177 printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
178 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
179 printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
180 tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
181 tf->tf_spsr);
182 }
183
184 TRAPSIGNAL(l, ksi);
185 }
186
187 static inline int
188 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
189 {
190 #ifdef CPU_ABORT_FIXUP_REQUIRED
191 int error;
192
193 /* Call the CPU specific data abort fixup routine */
194 error = cpu_dataabt_fixup(tf);
195 if (__predict_true(error != ABORT_FIXUP_FAILED))
196 return (error);
197
198 /*
199 * Oops, couldn't fix up the instruction
200 */
201 printf("%s: fixup for %s mode data abort failed.\n", __func__,
202 TRAP_USERMODE(tf) ? "user" : "kernel");
203 #ifdef THUMB_CODE
204 if (tf->tf_spsr & PSR_T_bit) {
205 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
206 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
207 *((uint16 *)((tf->tf_pc + 2) & ~1)));
208 }
209 else
210 #endif
211 {
212 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
213 *((u_int *)tf->tf_pc));
214 }
215 disassemble(tf->tf_pc);
216
217 /* Die now if this happened in kernel mode */
218 if (!TRAP_USERMODE(tf))
219 dab_fatal(tf, fsr, far, l, NULL);
220
221 return (error);
222 #else
223 return (ABORT_FIXUP_OK);
224 #endif /* CPU_ABORT_FIXUP_REQUIRED */
225 }
226
227 void
228 data_abort_handler(trapframe_t *tf)
229 {
230 struct vm_map *map;
231 struct lwp * const l = curlwp;
232 struct cpu_info * const ci = curcpu();
233 u_int far, fsr;
234 vm_prot_t ftype;
235 void *onfault;
236 vaddr_t va;
237 int error;
238 ksiginfo_t ksi;
239
240 UVMHIST_FUNC(__func__);
241 UVMHIST_CALLED(maphist);
242
243 /* Grab FAR/FSR before enabling interrupts */
244 far = cpu_faultaddress();
245 fsr = cpu_faultstatus();
246
247 /* Update vmmeter statistics */
248 ci->ci_data.cpu_ntrap++;
249
250 /* Re-enable interrupts if they were enabled previously */
251 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
252 #ifdef __NO_FIQ
253 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
254 restore_interrupts(tf->tf_spsr & IF32_bits);
255 #else
256 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
257 restore_interrupts(tf->tf_spsr & IF32_bits);
258 #endif
259
260 /* Get the current lwp structure */
261
262 UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
263 (uintptr_t)l, far, fsr, 0);
264 UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)",
265 (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
266
267 /* Data abort came from user mode? */
268 bool user = (TRAP_USERMODE(tf) != 0);
269 if (user)
270 LWP_CACHE_CREDS(l, l->l_proc);
271
272 /* Grab the current pcb */
273 struct pcb * const pcb = lwp_getpcb(l);
274
275 curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
276
277 /* Invoke the appropriate handler, if necessary */
278 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
279 #ifdef DIAGNOSTIC
280 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
281 __func__, fsr, far);
282 #endif
283 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
284 l, &ksi))
285 goto do_trapsignal;
286 goto out;
287 }
288
289 /*
290 * At this point, we're dealing with one of the following data aborts:
291 *
292 * FAULT_TRANS_S - Translation -- Section
293 * FAULT_TRANS_P - Translation -- Page
294 * FAULT_DOMAIN_S - Domain -- Section
295 * FAULT_DOMAIN_P - Domain -- Page
296 * FAULT_PERM_S - Permission -- Section
297 * FAULT_PERM_P - Permission -- Page
298 *
299 * These are the main virtual memory-related faults signalled by
300 * the MMU.
301 */
302
303 KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
304 lwp_trapframe(l));
305
306 /*
307 * Make sure the Program Counter is sane. We could fall foul of
308 * someone executing Thumb code, in which case the PC might not
309 * be word-aligned. This would cause a kernel alignment fault
310 * further down if we have to decode the current instruction.
311 */
312 #ifdef THUMB_CODE
313 /*
314 * XXX: It would be nice to be able to support Thumb in the kernel
315 * at some point.
316 */
317 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
318 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
319 __func__);
320 dab_fatal(tf, fsr, far, l, NULL);
321 }
322 #else
323 if (__predict_false((tf->tf_pc & 3) != 0)) {
324 if (user) {
325 /*
326 * Give the user an illegal instruction signal.
327 */
328 /* Deliver a SIGILL to the process */
329 KSI_INIT_TRAP(&ksi);
330 ksi.ksi_signo = SIGILL;
331 ksi.ksi_code = ILL_ILLOPC;
332 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
333 ksi.ksi_trap = fsr;
334 goto do_trapsignal;
335 }
336
337 /*
338 * The kernel never executes Thumb code.
339 */
340 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
341 __func__);
342 dab_fatal(tf, fsr, far, l, NULL);
343 }
344 #endif
345
346 /* See if the CPU state needs to be fixed up */
347 switch (data_abort_fixup(tf, fsr, far, l)) {
348 case ABORT_FIXUP_RETURN:
349 return;
350 case ABORT_FIXUP_FAILED:
351 /* Deliver a SIGILL to the process */
352 KSI_INIT_TRAP(&ksi);
353 ksi.ksi_signo = SIGILL;
354 ksi.ksi_code = ILL_ILLOPC;
355 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
356 ksi.ksi_trap = fsr;
357 goto do_trapsignal;
358 default:
359 break;
360 }
361
362 va = trunc_page((vaddr_t)far);
363
364 /*
365 * It is only a kernel address space fault iff:
366 * 1. user == 0 and
367 * 2. pcb_onfault not set or
368 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
369 */
370 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
371 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
372 __predict_true((pcb->pcb_onfault == NULL ||
373 (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
374 map = kernel_map;
375
376 /* Was the fault due to the FPE ? */
377 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
378 KSI_INIT_TRAP(&ksi);
379 ksi.ksi_signo = SIGSEGV;
380 ksi.ksi_code = SEGV_ACCERR;
381 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
382 ksi.ksi_trap = fsr;
383
384 /*
385 * Force exit via userret()
386 * This is necessary as the FPE is an extension to
387 * userland that actually runs in a priveledged mode
388 * but uses USR mode permissions for its accesses.
389 */
390 user = true;
391 goto do_trapsignal;
392 }
393 } else {
394 map = &l->l_proc->p_vmspace->vm_map;
395 }
396
397 /*
398 * We need to know whether the page should be mapped as R or R/W.
399 * Before ARMv6, the MMU did not give us the info as to whether the
400 * fault was caused by a read or a write.
401 *
402 * However, we know that a permission fault can only be the result of
403 * a write to a read-only location, so we can deal with those quickly.
404 *
405 * Otherwise we need to disassemble the instruction responsible to
406 * determine if it was a write.
407 */
408 if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
409 ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
410 } else if (IS_PERMISSION_FAULT(fsr)) {
411 ftype = VM_PROT_WRITE;
412 } else {
413 #ifdef THUMB_CODE
414 /* Fast track the ARM case. */
415 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
416 u_int insn = read_thumb_insn(tf->tf_pc, user);
417 u_int insn_f8 = insn & 0xf800;
418 u_int insn_fe = insn & 0xfe00;
419
420 if (insn_f8 == 0x6000 || /* STR(1) */
421 insn_f8 == 0x7000 || /* STRB(1) */
422 insn_f8 == 0x8000 || /* STRH(1) */
423 insn_f8 == 0x9000 || /* STR(3) */
424 insn_f8 == 0xc000 || /* STM */
425 insn_fe == 0x5000 || /* STR(2) */
426 insn_fe == 0x5200 || /* STRH(2) */
427 insn_fe == 0x5400) /* STRB(2) */
428 ftype = VM_PROT_WRITE;
429 else
430 ftype = VM_PROT_READ;
431 }
432 else
433 #endif
434 {
435 u_int insn = read_insn(tf->tf_pc, user);
436
437 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
438 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
439 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
440 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
441 ftype = VM_PROT_WRITE;
442 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
443 ftype = VM_PROT_READ | VM_PROT_WRITE;
444 else
445 ftype = VM_PROT_READ;
446 }
447 }
448
449 /*
450 * See if the fault is as a result of ref/mod emulation,
451 * or domain mismatch.
452 */
453 #ifdef DEBUG
454 last_fault_code = fsr;
455 #endif
456 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
457 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
458 goto out;
459 }
460
461 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
462 if (pcb->pcb_onfault) {
463 tf->tf_r0 = EINVAL;
464 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
465 return;
466 }
467 printf("\nNon-emulated page fault with intr_depth > 0\n");
468 dab_fatal(tf, fsr, far, l, NULL);
469 }
470
471 onfault = pcb->pcb_onfault;
472 pcb->pcb_onfault = NULL;
473 error = uvm_fault(map, va, ftype);
474 pcb->pcb_onfault = onfault;
475
476 if (__predict_true(error == 0)) {
477 if (user)
478 uvm_grow(l->l_proc, va); /* Record any stack growth */
479 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
480 goto out;
481 }
482
483 if (user == 0) {
484 if (pcb->pcb_onfault) {
485 tf->tf_r0 = error;
486 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
487 return;
488 }
489
490 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
491 error);
492 dab_fatal(tf, fsr, far, l, NULL);
493 }
494
495 KSI_INIT_TRAP(&ksi);
496
497 switch (error) {
498 case ENOMEM:
499 printf("UVM: pid %d (%s), uid %d killed: "
500 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
501 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
502 ksi.ksi_signo = SIGKILL;
503 break;
504 case EACCES:
505 ksi.ksi_signo = SIGSEGV;
506 ksi.ksi_code = SEGV_ACCERR;
507 break;
508 case EINVAL:
509 ksi.ksi_signo = SIGBUS;
510 ksi.ksi_code = BUS_ADRERR;
511 break;
512 default:
513 ksi.ksi_signo = SIGSEGV;
514 ksi.ksi_code = SEGV_MAPERR;
515 break;
516 }
517 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
518 ksi.ksi_trap = fsr;
519 UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
520
521 do_trapsignal:
522 call_trapsignal(l, tf, &ksi);
523 out:
524 /* If returning to user mode, make sure to invoke userret() */
525 if (user)
526 userret(l);
527 }
528
529 /*
530 * dab_fatal() handles the following data aborts:
531 *
532 * FAULT_WRTBUF_0 - Vector Exception
533 * FAULT_WRTBUF_1 - Terminal Exception
534 *
535 * We should never see these on a properly functioning system.
536 *
537 * This function is also called by the other handlers if they
538 * detect a fatal problem.
539 *
540 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
541 */
542 static int
543 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
544 {
545 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
546
547 if (l != NULL) {
548 printf("Fatal %s mode data abort: '%s'\n", mode,
549 data_aborts[fsr & FAULT_TYPE_MASK].desc);
550 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
551 if ((fsr & FAULT_IMPRECISE) == 0)
552 printf("%08x, ", far);
553 else
554 printf("Invalid, ");
555 printf("spsr=%08x\n", tf->tf_spsr);
556 } else {
557 printf("Fatal %s mode prefetch abort at 0x%08x\n",
558 mode, tf->tf_pc);
559 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
560 }
561
562 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
563 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
564 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
565 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
566 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
567 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
568 printf("r12=%08x, ", tf->tf_r12);
569
570 if (TRAP_USERMODE(tf))
571 printf("usp=%08x, ulr=%08x",
572 tf->tf_usr_sp, tf->tf_usr_lr);
573 else
574 printf("ssp=%08x, slr=%08x",
575 tf->tf_svc_sp, tf->tf_svc_lr);
576 printf(", pc =%08x\n\n", tf->tf_pc);
577
578 #if defined(DDB) || defined(KGDB)
579 kdb_trap(T_FAULT, tf);
580 #endif
581 panic("Fatal abort");
582 /*NOTREACHED*/
583 }
584
585 /*
586 * dab_align() handles the following data aborts:
587 *
588 * FAULT_ALIGN_0 - Alignment fault
589 * FAULT_ALIGN_0 - Alignment fault
590 *
591 * These faults are fatal if they happen in kernel mode. Otherwise, we
592 * deliver a bus error to the process.
593 */
594 static int
595 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
596 {
597 /* Alignment faults are always fatal if they occur in kernel mode */
598 if (!TRAP_USERMODE(tf))
599 dab_fatal(tf, fsr, far, l, NULL);
600
601 /* pcb_onfault *must* be NULL at this point */
602 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
603
604 /* See if the CPU state needs to be fixed up */
605 (void) data_abort_fixup(tf, fsr, far, l);
606
607 /* Deliver a bus error signal to the process */
608 KSI_INIT_TRAP(ksi);
609 ksi->ksi_signo = SIGBUS;
610 ksi->ksi_code = BUS_ADRALN;
611 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
612 ksi->ksi_trap = fsr;
613
614 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
615
616 return (1);
617 }
618
619 /*
620 * dab_buserr() handles the following data aborts:
621 *
622 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
623 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
624 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
625 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
626 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
627 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
628 *
629 * If pcb_onfault is set, flag the fault and return to the handler.
630 * If the fault occurred in user mode, give the process a SIGBUS.
631 *
632 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
633 * can be flagged as imprecise in the FSR. This causes a real headache
634 * since some of the machine state is lost. In this case, tf->tf_pc
635 * may not actually point to the offending instruction. In fact, if
636 * we've taken a double abort fault, it generally points somewhere near
637 * the top of "data_abort_entry" in exception.S.
638 *
639 * In all other cases, these data aborts are considered fatal.
640 */
641 static int
642 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
643 ksiginfo_t *ksi)
644 {
645 struct pcb *pcb = lwp_getpcb(l);
646
647 #ifdef __XSCALE__
648 if ((fsr & FAULT_IMPRECISE) != 0 &&
649 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
650 /*
651 * Oops, an imprecise, double abort fault. We've lost the
652 * r14_abt/spsr_abt values corresponding to the original
653 * abort, and the spsr saved in the trapframe indicates
654 * ABT mode.
655 */
656 tf->tf_spsr &= ~PSR_MODE;
657
658 /*
659 * We use a simple heuristic to determine if the double abort
660 * happened as a result of a kernel or user mode access.
661 * If the current trapframe is at the top of the kernel stack,
662 * the fault _must_ have come from user mode.
663 */
664 if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
665 /*
666 * Kernel mode. We're either about to die a
667 * spectacular death, or pcb_onfault will come
668 * to our rescue. Either way, the current value
669 * of tf->tf_pc is irrelevant.
670 */
671 tf->tf_spsr |= PSR_SVC32_MODE;
672 if (pcb->pcb_onfault == NULL)
673 printf("\nKernel mode double abort!\n");
674 } else {
675 /*
676 * User mode. We've lost the program counter at the
677 * time of the fault (not that it was accurate anyway;
678 * it's not called an imprecise fault for nothing).
679 * About all we can do is copy r14_usr to tf_pc and
680 * hope for the best. The process is about to get a
681 * SIGBUS, so it's probably history anyway.
682 */
683 tf->tf_spsr |= PSR_USR32_MODE;
684 tf->tf_pc = tf->tf_usr_lr;
685 #ifdef THUMB_CODE
686 tf->tf_spsr &= ~PSR_T_bit;
687 if (tf->tf_usr_lr & 1)
688 tf->tf_spsr |= PSR_T_bit;
689 #endif
690 }
691 }
692
693 /* FAR is invalid for imprecise exceptions */
694 if ((fsr & FAULT_IMPRECISE) != 0)
695 far = 0;
696 #endif /* __XSCALE__ */
697
698 if (pcb->pcb_onfault) {
699 KDASSERT(TRAP_USERMODE(tf) == 0);
700 tf->tf_r0 = EFAULT;
701 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
702 return (0);
703 }
704
705 /* See if the CPU state needs to be fixed up */
706 (void) data_abort_fixup(tf, fsr, far, l);
707
708 /*
709 * At this point, if the fault happened in kernel mode, we're toast
710 */
711 if (!TRAP_USERMODE(tf))
712 dab_fatal(tf, fsr, far, l, NULL);
713
714 /* Deliver a bus error signal to the process */
715 KSI_INIT_TRAP(ksi);
716 ksi->ksi_signo = SIGBUS;
717 ksi->ksi_code = BUS_ADRERR;
718 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
719 ksi->ksi_trap = fsr;
720
721 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
722
723 return (1);
724 }
725
726 static inline int
727 prefetch_abort_fixup(trapframe_t *tf)
728 {
729 #ifdef CPU_ABORT_FIXUP_REQUIRED
730 int error;
731
732 /* Call the CPU specific prefetch abort fixup routine */
733 error = cpu_prefetchabt_fixup(tf);
734 if (__predict_true(error != ABORT_FIXUP_FAILED))
735 return (error);
736
737 /*
738 * Oops, couldn't fix up the instruction
739 */
740 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
741 TRAP_USERMODE(tf) ? "user" : "kernel");
742 #ifdef THUMB_CODE
743 if (tf->tf_spsr & PSR_T_bit) {
744 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
745 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
746 *((uint16 *)((tf->tf_pc + 2) & ~1)));
747 }
748 else
749 #endif
750 {
751 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
752 *((u_int *)tf->tf_pc));
753 }
754 disassemble(tf->tf_pc);
755
756 /* Die now if this happened in kernel mode */
757 if (!TRAP_USERMODE(tf))
758 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
759
760 return (error);
761 #else
762 return (ABORT_FIXUP_OK);
763 #endif /* CPU_ABORT_FIXUP_REQUIRED */
764 }
765
766 /*
767 * void prefetch_abort_handler(trapframe_t *tf)
768 *
769 * Abort handler called when instruction execution occurs at
770 * a non existent or restricted (access permissions) memory page.
771 * If the address is invalid and we were in SVC mode then panic as
772 * the kernel should never prefetch abort.
773 * If the address is invalid and the page is mapped then the user process
774 * does no have read permission so send it a signal.
775 * Otherwise fault the page in and try again.
776 */
777 void
778 prefetch_abort_handler(trapframe_t *tf)
779 {
780 struct lwp *l;
781 struct pcb *pcb __diagused;
782 struct vm_map *map;
783 vaddr_t fault_pc, va;
784 ksiginfo_t ksi;
785 int error, user;
786
787 UVMHIST_FUNC(__func__);
788 UVMHIST_CALLED(maphist);
789
790 /* Update vmmeter statistics */
791 curcpu()->ci_data.cpu_ntrap++;
792
793 l = curlwp;
794 pcb = lwp_getpcb(l);
795
796 if ((user = TRAP_USERMODE(tf)) != 0)
797 LWP_CACHE_CREDS(l, l->l_proc);
798
799 /*
800 * Enable IRQ's (disabled by the abort) This always comes
801 * from user mode so we know interrupts were not disabled.
802 * But we check anyway.
803 */
804 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
805 #ifdef __NO_FIQ
806 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
807 restore_interrupts(tf->tf_spsr & IF32_bits);
808 #else
809 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
810 restore_interrupts(tf->tf_spsr & IF32_bits);
811 #endif
812
813 /* See if the CPU state needs to be fixed up */
814 switch (prefetch_abort_fixup(tf)) {
815 case ABORT_FIXUP_RETURN:
816 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
817 return;
818 case ABORT_FIXUP_FAILED:
819 /* Deliver a SIGILL to the process */
820 KSI_INIT_TRAP(&ksi);
821 ksi.ksi_signo = SIGILL;
822 ksi.ksi_code = ILL_ILLOPC;
823 ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
824 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
825 lwp_trapframe(l));
826 goto do_trapsignal;
827 default:
828 break;
829 }
830
831 /* Prefetch aborts cannot happen in kernel mode */
832 if (__predict_false(!user))
833 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
834
835 /* Get fault address */
836 fault_pc = tf->tf_pc;
837 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
838 UVMHIST_LOG(maphist, " (pc=%#jx, l=%#jx, tf=%#jx)",
839 fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
840
841 #ifdef THUMB_CODE
842 recheck:
843 #endif
844 /* Ok validate the address, can only execute in USER space */
845 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
846 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
847 KSI_INIT_TRAP(&ksi);
848 ksi.ksi_signo = SIGSEGV;
849 ksi.ksi_code = SEGV_ACCERR;
850 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
851 ksi.ksi_trap = fault_pc;
852 goto do_trapsignal;
853 }
854
855 map = &l->l_proc->p_vmspace->vm_map;
856 va = trunc_page(fault_pc);
857
858 /*
859 * See if the pmap can handle this fault on its own...
860 */
861 #ifdef DEBUG
862 last_fault_code = -1;
863 #endif
864 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
865 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
866 goto out;
867 }
868
869 #ifdef DIAGNOSTIC
870 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
871 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
872 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
873 }
874 #endif
875
876 KASSERT(pcb->pcb_onfault == NULL);
877 error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
878
879 if (__predict_true(error == 0)) {
880 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
881 goto out;
882 }
883 KSI_INIT_TRAP(&ksi);
884
885 UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
886
887 if (error == ENOMEM) {
888 printf("UVM: pid %d (%s), uid %d killed: "
889 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
890 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
891 ksi.ksi_signo = SIGKILL;
892 } else
893 ksi.ksi_signo = SIGSEGV;
894
895 ksi.ksi_code = SEGV_MAPERR;
896 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
897 ksi.ksi_trap = fault_pc;
898
899 do_trapsignal:
900 call_trapsignal(l, tf, &ksi);
901
902 out:
903
904 #ifdef THUMB_CODE
905 #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800))
906 /* thumb-32 instruction was located on page boundary? */
907 if ((tf->tf_spsr & PSR_T_bit) &&
908 ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) &&
909 THUMB_32BIT(*(uint16_t *)tf->tf_pc)) {
910 fault_pc = tf->tf_pc + THUMB_INSN_SIZE;
911 goto recheck;
912 }
913 #endif /* THUMB_CODE */
914
915 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
916 userret(l);
917 }
918
919 /*
920 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
921 * If the read succeeds, the value is written to 'rptr' and zero is returned.
922 * Else, return EFAULT.
923 */
924 int
925 badaddr_read(void *addr, size_t size, void *rptr)
926 {
927 extern int badaddr_read_1(const uint8_t *, uint8_t *);
928 extern int badaddr_read_2(const uint16_t *, uint16_t *);
929 extern int badaddr_read_4(const uint32_t *, uint32_t *);
930 union {
931 uint8_t v1;
932 uint16_t v2;
933 uint32_t v4;
934 } u;
935 int rv, s;
936
937 cpu_drain_writebuf();
938
939 s = splhigh();
940
941 /* Read from the test address. */
942 switch (size) {
943 case sizeof(uint8_t):
944 rv = badaddr_read_1(addr, &u.v1);
945 if (rv == 0 && rptr)
946 *(uint8_t *) rptr = u.v1;
947 break;
948
949 case sizeof(uint16_t):
950 rv = badaddr_read_2(addr, &u.v2);
951 if (rv == 0 && rptr)
952 *(uint16_t *) rptr = u.v2;
953 break;
954
955 case sizeof(uint32_t):
956 rv = badaddr_read_4(addr, &u.v4);
957 if (rv == 0 && rptr)
958 *(uint32_t *) rptr = u.v4;
959 break;
960
961 default:
962 panic("%s: invalid size (%zu)", __func__, size);
963 }
964
965 splx(s);
966
967 /* Return EFAULT if the address was invalid, else zero */
968 return (rv);
969 }
970