fault.c revision 1.112 1 /* $NetBSD: fault.c,v 1.112 2020/06/20 07:10:36 skrll Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.112 2020/06/20 07:10:36 skrll Exp $");
85
86 #include <sys/param.h>
87
88 #include <sys/cpu.h>
89 #include <sys/intr.h>
90 #include <sys/kauth.h>
91 #include <sys/kernel.h>
92 #include <sys/proc.h>
93 #include <sys/systm.h>
94
95 #include <uvm/uvm_extern.h>
96 #include <uvm/uvm_stat.h>
97 #ifdef UVMHIST
98 #include <uvm/uvm.h>
99 #endif
100
101 #include <arm/locore.h>
102
103 #include <machine/pcb.h>
104 #if defined(DDB) || defined(KGDB)
105 #include <machine/db_machdep.h>
106 #ifdef KGDB
107 #include <sys/kgdb.h>
108 #endif
109 #if !defined(DDB)
110 #define kdb_trap kgdb_trap
111 #endif
112 #endif
113
114 #include <arch/arm/arm/disassem.h>
115 #include <arm/arm32/machdep.h>
116
117 #ifdef DEBUG
118 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
119 #endif
120
121 #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if 'x' is a permission fault */
155 #define IS_PERMISSION_FAULT(x) \
156 (((1 << ((x) & FAULT_TYPE_MASK)) & \
157 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
158
159 #if 0
160 /* maybe one day we'll do emulations */
161 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
162 #else
163 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
164 #endif
165
166 static inline void
167 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
168 {
169 if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
170 printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
171 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
172 ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
173 ksi->ksi_trap);
174 printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
175 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
176 printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
177 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
178 printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
179 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
180 printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
181 tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
182 tf->tf_spsr);
183 }
184
185 TRAPSIGNAL(l, ksi);
186 }
187
188 static inline int
189 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
190 {
191 #ifdef CPU_ABORT_FIXUP_REQUIRED
192 int error;
193
194 /* Call the CPU specific data abort fixup routine */
195 error = cpu_dataabt_fixup(tf);
196 if (__predict_true(error != ABORT_FIXUP_FAILED))
197 return (error);
198
199 /*
200 * Oops, couldn't fix up the instruction
201 */
202 printf("%s: fixup for %s mode data abort failed.\n", __func__,
203 TRAP_USERMODE(tf) ? "user" : "kernel");
204 #ifdef THUMB_CODE
205 if (tf->tf_spsr & PSR_T_bit) {
206 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
207 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
208 *((uint16 *)((tf->tf_pc + 2) & ~1)));
209 }
210 else
211 #endif
212 {
213 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
214 *((u_int *)tf->tf_pc));
215 }
216 disassemble(tf->tf_pc);
217
218 /* Die now if this happened in kernel mode */
219 if (!TRAP_USERMODE(tf))
220 dab_fatal(tf, fsr, far, l, NULL);
221
222 return (error);
223 #else
224 return (ABORT_FIXUP_OK);
225 #endif /* CPU_ABORT_FIXUP_REQUIRED */
226 }
227
228 void
229 data_abort_handler(trapframe_t *tf)
230 {
231 struct vm_map *map;
232 struct lwp * const l = curlwp;
233 struct cpu_info * const ci = curcpu();
234 u_int far, fsr;
235 vm_prot_t ftype;
236 void *onfault;
237 vaddr_t va;
238 int error;
239 ksiginfo_t ksi;
240
241 UVMHIST_FUNC(__func__);
242 UVMHIST_CALLED(maphist);
243
244 /* Grab FAR/FSR before enabling interrupts */
245 far = cpu_faultaddress();
246 fsr = cpu_faultstatus();
247
248 /* Update vmmeter statistics */
249 ci->ci_data.cpu_ntrap++;
250
251 /* Re-enable interrupts if they were enabled previously */
252 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
253 #ifdef __NO_FIQ
254 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
255 restore_interrupts(tf->tf_spsr & IF32_bits);
256 #else
257 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
258 restore_interrupts(tf->tf_spsr & IF32_bits);
259 #endif
260
261 /* Get the current lwp structure */
262
263 UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx",
264 (uintptr_t)l, far, fsr, 0);
265 UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)",
266 (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0);
267
268 /* Data abort came from user mode? */
269 bool user = (TRAP_USERMODE(tf) != 0);
270 if (user)
271 LWP_CACHE_CREDS(l, l->l_proc);
272
273 /* Grab the current pcb */
274 struct pcb * const pcb = lwp_getpcb(l);
275
276 curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
277
278 /* Invoke the appropriate handler, if necessary */
279 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
280 #ifdef DIAGNOSTIC
281 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
282 __func__, fsr, far);
283 #endif
284 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
285 l, &ksi))
286 goto do_trapsignal;
287 goto out;
288 }
289
290 /*
291 * At this point, we're dealing with one of the following data aborts:
292 *
293 * FAULT_TRANS_S - Translation -- Section
294 * FAULT_TRANS_P - Translation -- Page
295 * FAULT_DOMAIN_S - Domain -- Section
296 * FAULT_DOMAIN_P - Domain -- Page
297 * FAULT_PERM_S - Permission -- Section
298 * FAULT_PERM_P - Permission -- Page
299 *
300 * These are the main virtual memory-related faults signalled by
301 * the MMU.
302 */
303
304 KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf,
305 lwp_trapframe(l));
306
307 /*
308 * Make sure the Program Counter is sane. We could fall foul of
309 * someone executing Thumb code, in which case the PC might not
310 * be word-aligned. This would cause a kernel alignment fault
311 * further down if we have to decode the current instruction.
312 */
313 #ifdef THUMB_CODE
314 /*
315 * XXX: It would be nice to be able to support Thumb in the kernel
316 * at some point.
317 */
318 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
319 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
320 __func__);
321 dab_fatal(tf, fsr, far, l, NULL);
322 }
323 #else
324 if (__predict_false((tf->tf_pc & 3) != 0)) {
325 if (user) {
326 /*
327 * Give the user an illegal instruction signal.
328 */
329 /* Deliver a SIGILL to the process */
330 KSI_INIT_TRAP(&ksi);
331 ksi.ksi_signo = SIGILL;
332 ksi.ksi_code = ILL_ILLOPC;
333 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
334 ksi.ksi_trap = fsr;
335 goto do_trapsignal;
336 }
337
338 /*
339 * The kernel never executes Thumb code.
340 */
341 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
342 __func__);
343 dab_fatal(tf, fsr, far, l, NULL);
344 }
345 #endif
346
347 /* See if the CPU state needs to be fixed up */
348 switch (data_abort_fixup(tf, fsr, far, l)) {
349 case ABORT_FIXUP_RETURN:
350 return;
351 case ABORT_FIXUP_FAILED:
352 /* Deliver a SIGILL to the process */
353 KSI_INIT_TRAP(&ksi);
354 ksi.ksi_signo = SIGILL;
355 ksi.ksi_code = ILL_ILLOPC;
356 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
357 ksi.ksi_trap = fsr;
358 goto do_trapsignal;
359 default:
360 break;
361 }
362
363 va = trunc_page((vaddr_t)far);
364
365 /*
366 * It is only a kernel address space fault iff:
367 * 1. user == 0 and
368 * 2. pcb_onfault not set or
369 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
370 */
371 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
372 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
373 __predict_true((pcb->pcb_onfault == NULL ||
374 (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
375 map = kernel_map;
376
377 /* Was the fault due to the FPE ? */
378 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
379 KSI_INIT_TRAP(&ksi);
380 ksi.ksi_signo = SIGSEGV;
381 ksi.ksi_code = SEGV_ACCERR;
382 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
383 ksi.ksi_trap = fsr;
384
385 /*
386 * Force exit via userret()
387 * This is necessary as the FPE is an extension to
388 * userland that actually runs in a priveledged mode
389 * but uses USR mode permissions for its accesses.
390 */
391 user = true;
392 goto do_trapsignal;
393 }
394 } else {
395 map = &l->l_proc->p_vmspace->vm_map;
396 }
397
398 /*
399 * We need to know whether the page should be mapped as R or R/W.
400 * Before ARMv6, the MMU did not give us the info as to whether the
401 * fault was caused by a read or a write.
402 *
403 * However, we know that a permission fault can only be the result of
404 * a write to a read-only location, so we can deal with those quickly.
405 *
406 * Otherwise we need to disassemble the instruction responsible to
407 * determine if it was a write.
408 */
409 if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
410 ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
411 } else if (IS_PERMISSION_FAULT(fsr)) {
412 ftype = VM_PROT_WRITE;
413 } else {
414 #ifdef THUMB_CODE
415 /* Fast track the ARM case. */
416 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
417 u_int insn = read_thumb_insn(tf->tf_pc, user);
418 u_int insn_f8 = insn & 0xf800;
419 u_int insn_fe = insn & 0xfe00;
420
421 if (insn_f8 == 0x6000 || /* STR(1) */
422 insn_f8 == 0x7000 || /* STRB(1) */
423 insn_f8 == 0x8000 || /* STRH(1) */
424 insn_f8 == 0x9000 || /* STR(3) */
425 insn_f8 == 0xc000 || /* STM */
426 insn_fe == 0x5000 || /* STR(2) */
427 insn_fe == 0x5200 || /* STRH(2) */
428 insn_fe == 0x5400) /* STRB(2) */
429 ftype = VM_PROT_WRITE;
430 else
431 ftype = VM_PROT_READ;
432 }
433 else
434 #endif
435 {
436 u_int insn = read_insn(tf->tf_pc, user);
437
438 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
439 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
440 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
441 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
442 ftype = VM_PROT_WRITE;
443 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
444 ftype = VM_PROT_READ | VM_PROT_WRITE;
445 else
446 ftype = VM_PROT_READ;
447 }
448 }
449
450 /*
451 * See if the fault is as a result of ref/mod emulation,
452 * or domain mismatch.
453 */
454 #ifdef DEBUG
455 last_fault_code = fsr;
456 #endif
457 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
458 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
459 goto out;
460 }
461
462 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
463 if (pcb->pcb_onfault) {
464 tf->tf_r0 = EINVAL;
465 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
466 return;
467 }
468 printf("\nNon-emulated page fault with intr_depth > 0\n");
469 dab_fatal(tf, fsr, far, l, NULL);
470 }
471
472 #ifdef PMAP_FAULTINFO
473 struct pcb_faultinfo * const pfi = &pcb->pcb_faultinfo;
474 struct proc * const p = curproc;
475
476 if (p->p_pid == pfi->pfi_lastpid && va == pfi->pfi_faultaddr) {
477 if (++pfi->pfi_repeats > 4) {
478 tlb_asid_t asid = tlb_get_asid();
479 pt_entry_t *ptep = pfi->pfi_faultptep;
480
481 printf("%s: fault #%u (%x/%s) for %#" PRIxVADDR
482 "(%#x) at pc %#" PRIxREGISTER " curpid=%u/%u "
483 "ptep@%p=%#" PRIxPTE ")\n", __func__,
484 pfi->pfi_repeats, fsr & FAULT_TYPE_MASK,
485 data_aborts[fsr & FAULT_TYPE_MASK].desc, va,
486 far, tf->tf_pc, map->pmap->pm_pai[0].pai_asid,
487 asid, ptep, ptep ? *ptep : 0);
488 cpu_Debugger();
489 }
490 } else {
491 pfi->pfi_lastpid = p->p_pid;
492 pfi->pfi_faultaddr = va;
493 pfi->pfi_repeats = 0;
494 pfi->pfi_faultptep = NULL;
495 pfi->pfi_faulttype = fsr & FAULT_TYPE_MASK;
496 }
497 #endif /* PMAP_FAULTINFO */
498
499 onfault = pcb->pcb_onfault;
500 pcb->pcb_onfault = NULL;
501 error = uvm_fault(map, va, ftype);
502 pcb->pcb_onfault = onfault;
503
504 if (__predict_true(error == 0)) {
505 if (user)
506 uvm_grow(l->l_proc, va); /* Record any stack growth */
507 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
508 goto out;
509 }
510
511 if (user == 0) {
512 if (pcb->pcb_onfault) {
513 tf->tf_r0 = error;
514 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
515 return;
516 }
517
518 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
519 error);
520 dab_fatal(tf, fsr, far, l, NULL);
521 }
522
523 KSI_INIT_TRAP(&ksi);
524
525 switch (error) {
526 case ENOMEM:
527 printf("UVM: pid %d (%s), uid %d killed: "
528 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
529 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
530 ksi.ksi_signo = SIGKILL;
531 break;
532 case EACCES:
533 ksi.ksi_signo = SIGSEGV;
534 ksi.ksi_code = SEGV_ACCERR;
535 break;
536 case EINVAL:
537 ksi.ksi_signo = SIGBUS;
538 ksi.ksi_code = BUS_ADRERR;
539 break;
540 default:
541 ksi.ksi_signo = SIGSEGV;
542 ksi.ksi_code = SEGV_MAPERR;
543 break;
544 }
545 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
546 ksi.ksi_trap = fsr;
547 UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0);
548
549 do_trapsignal:
550 call_trapsignal(l, tf, &ksi);
551 out:
552 /* If returning to user mode, make sure to invoke userret() */
553 if (user)
554 userret(l);
555 }
556
557 /*
558 * dab_fatal() handles the following data aborts:
559 *
560 * FAULT_WRTBUF_0 - Vector Exception
561 * FAULT_WRTBUF_1 - Terminal Exception
562 *
563 * We should never see these on a properly functioning system.
564 *
565 * This function is also called by the other handlers if they
566 * detect a fatal problem.
567 *
568 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
569 */
570 static int
571 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
572 {
573 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
574
575 if (l != NULL) {
576 printf("Fatal %s mode data abort: '%s'\n", mode,
577 data_aborts[fsr & FAULT_TYPE_MASK].desc);
578 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
579 if ((fsr & FAULT_IMPRECISE) == 0)
580 printf("%08x, ", far);
581 else
582 printf("Invalid, ");
583 printf("spsr=%08x\n", tf->tf_spsr);
584 } else {
585 printf("Fatal %s mode prefetch abort at 0x%08x\n",
586 mode, tf->tf_pc);
587 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
588 }
589
590 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
591 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
592 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
593 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
594 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
595 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
596 printf("r12=%08x, ", tf->tf_r12);
597
598 if (TRAP_USERMODE(tf))
599 printf("usp=%08x, ulr=%08x",
600 tf->tf_usr_sp, tf->tf_usr_lr);
601 else
602 printf("ssp=%08x, slr=%08x",
603 tf->tf_svc_sp, tf->tf_svc_lr);
604 printf(", pc =%08x\n\n", tf->tf_pc);
605
606 #if defined(DDB) || defined(KGDB)
607 kdb_trap(T_FAULT, tf);
608 #endif
609 panic("Fatal abort");
610 /*NOTREACHED*/
611 }
612
613 /*
614 * dab_align() handles the following data aborts:
615 *
616 * FAULT_ALIGN_0 - Alignment fault
617 * FAULT_ALIGN_0 - Alignment fault
618 *
619 * These faults are fatal if they happen in kernel mode. Otherwise, we
620 * deliver a bus error to the process.
621 */
622 static int
623 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
624 {
625 /* Alignment faults are always fatal if they occur in kernel mode */
626 if (!TRAP_USERMODE(tf))
627 dab_fatal(tf, fsr, far, l, NULL);
628
629 /* pcb_onfault *must* be NULL at this point */
630 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
631
632 /* See if the CPU state needs to be fixed up */
633 (void) data_abort_fixup(tf, fsr, far, l);
634
635 /* Deliver a bus error signal to the process */
636 KSI_INIT_TRAP(ksi);
637 ksi->ksi_signo = SIGBUS;
638 ksi->ksi_code = BUS_ADRALN;
639 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
640 ksi->ksi_trap = fsr;
641
642 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
643
644 return (1);
645 }
646
647 /*
648 * dab_buserr() handles the following data aborts:
649 *
650 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
651 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
652 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
653 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
654 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
655 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
656 *
657 * If pcb_onfault is set, flag the fault and return to the handler.
658 * If the fault occurred in user mode, give the process a SIGBUS.
659 *
660 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
661 * can be flagged as imprecise in the FSR. This causes a real headache
662 * since some of the machine state is lost. In this case, tf->tf_pc
663 * may not actually point to the offending instruction. In fact, if
664 * we've taken a double abort fault, it generally points somewhere near
665 * the top of "data_abort_entry" in exception.S.
666 *
667 * In all other cases, these data aborts are considered fatal.
668 */
669 static int
670 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
671 ksiginfo_t *ksi)
672 {
673 struct pcb *pcb = lwp_getpcb(l);
674
675 #ifdef __XSCALE__
676 if ((fsr & FAULT_IMPRECISE) != 0 &&
677 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
678 /*
679 * Oops, an imprecise, double abort fault. We've lost the
680 * r14_abt/spsr_abt values corresponding to the original
681 * abort, and the spsr saved in the trapframe indicates
682 * ABT mode.
683 */
684 tf->tf_spsr &= ~PSR_MODE;
685
686 /*
687 * We use a simple heuristic to determine if the double abort
688 * happened as a result of a kernel or user mode access.
689 * If the current trapframe is at the top of the kernel stack,
690 * the fault _must_ have come from user mode.
691 */
692 if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
693 /*
694 * Kernel mode. We're either about to die a
695 * spectacular death, or pcb_onfault will come
696 * to our rescue. Either way, the current value
697 * of tf->tf_pc is irrelevant.
698 */
699 tf->tf_spsr |= PSR_SVC32_MODE;
700 if (pcb->pcb_onfault == NULL)
701 printf("\nKernel mode double abort!\n");
702 } else {
703 /*
704 * User mode. We've lost the program counter at the
705 * time of the fault (not that it was accurate anyway;
706 * it's not called an imprecise fault for nothing).
707 * About all we can do is copy r14_usr to tf_pc and
708 * hope for the best. The process is about to get a
709 * SIGBUS, so it's probably history anyway.
710 */
711 tf->tf_spsr |= PSR_USR32_MODE;
712 tf->tf_pc = tf->tf_usr_lr;
713 #ifdef THUMB_CODE
714 tf->tf_spsr &= ~PSR_T_bit;
715 if (tf->tf_usr_lr & 1)
716 tf->tf_spsr |= PSR_T_bit;
717 #endif
718 }
719 }
720
721 /* FAR is invalid for imprecise exceptions */
722 if ((fsr & FAULT_IMPRECISE) != 0)
723 far = 0;
724 #endif /* __XSCALE__ */
725
726 if (pcb->pcb_onfault) {
727 KDASSERT(TRAP_USERMODE(tf) == 0);
728 tf->tf_r0 = EFAULT;
729 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
730 return (0);
731 }
732
733 /* See if the CPU state needs to be fixed up */
734 (void) data_abort_fixup(tf, fsr, far, l);
735
736 /*
737 * At this point, if the fault happened in kernel mode, we're toast
738 */
739 if (!TRAP_USERMODE(tf))
740 dab_fatal(tf, fsr, far, l, NULL);
741
742 /* Deliver a bus error signal to the process */
743 KSI_INIT_TRAP(ksi);
744 ksi->ksi_signo = SIGBUS;
745 ksi->ksi_code = BUS_ADRERR;
746 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
747 ksi->ksi_trap = fsr;
748
749 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
750
751 return (1);
752 }
753
754 static inline int
755 prefetch_abort_fixup(trapframe_t *tf)
756 {
757 #ifdef CPU_ABORT_FIXUP_REQUIRED
758 int error;
759
760 /* Call the CPU specific prefetch abort fixup routine */
761 error = cpu_prefetchabt_fixup(tf);
762 if (__predict_true(error != ABORT_FIXUP_FAILED))
763 return (error);
764
765 /*
766 * Oops, couldn't fix up the instruction
767 */
768 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
769 TRAP_USERMODE(tf) ? "user" : "kernel");
770 #ifdef THUMB_CODE
771 if (tf->tf_spsr & PSR_T_bit) {
772 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
773 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
774 *((uint16 *)((tf->tf_pc + 2) & ~1)));
775 }
776 else
777 #endif
778 {
779 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
780 *((u_int *)tf->tf_pc));
781 }
782 disassemble(tf->tf_pc);
783
784 /* Die now if this happened in kernel mode */
785 if (!TRAP_USERMODE(tf))
786 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
787
788 return (error);
789 #else
790 return (ABORT_FIXUP_OK);
791 #endif /* CPU_ABORT_FIXUP_REQUIRED */
792 }
793
794 /*
795 * void prefetch_abort_handler(trapframe_t *tf)
796 *
797 * Abort handler called when instruction execution occurs at
798 * a non existent or restricted (access permissions) memory page.
799 * If the address is invalid and we were in SVC mode then panic as
800 * the kernel should never prefetch abort.
801 * If the address is invalid and the page is mapped then the user process
802 * does no have read permission so send it a signal.
803 * Otherwise fault the page in and try again.
804 */
805 void
806 prefetch_abort_handler(trapframe_t *tf)
807 {
808 struct lwp *l;
809 struct pcb *pcb __diagused;
810 struct vm_map *map;
811 vaddr_t fault_pc, va;
812 ksiginfo_t ksi;
813 int error, user;
814
815 UVMHIST_FUNC(__func__);
816 UVMHIST_CALLED(maphist);
817
818 /* Update vmmeter statistics */
819 curcpu()->ci_data.cpu_ntrap++;
820
821 l = curlwp;
822 pcb = lwp_getpcb(l);
823
824 if ((user = TRAP_USERMODE(tf)) != 0)
825 LWP_CACHE_CREDS(l, l->l_proc);
826
827 /*
828 * Enable IRQ's (disabled by the abort) This always comes
829 * from user mode so we know interrupts were not disabled.
830 * But we check anyway.
831 */
832 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
833 #ifdef __NO_FIQ
834 if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit))
835 restore_interrupts(tf->tf_spsr & IF32_bits);
836 #else
837 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
838 restore_interrupts(tf->tf_spsr & IF32_bits);
839 #endif
840
841 /* See if the CPU state needs to be fixed up */
842 switch (prefetch_abort_fixup(tf)) {
843 case ABORT_FIXUP_RETURN:
844 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
845 return;
846 case ABORT_FIXUP_FAILED:
847 /* Deliver a SIGILL to the process */
848 KSI_INIT_TRAP(&ksi);
849 ksi.ksi_signo = SIGILL;
850 ksi.ksi_code = ILL_ILLOPC;
851 ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
852 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf,
853 lwp_trapframe(l));
854 goto do_trapsignal;
855 default:
856 break;
857 }
858
859 /* Prefetch aborts cannot happen in kernel mode */
860 if (__predict_false(!user))
861 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
862
863 /* Get fault address */
864 fault_pc = tf->tf_pc;
865 KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l));
866 UVMHIST_LOG(maphist, " (pc=%#jx, l=%#jx, tf=%#jx)",
867 fault_pc, (uintptr_t)l, (uintptr_t)tf, 0);
868
869 #ifdef THUMB_CODE
870 recheck:
871 #endif
872 /* Ok validate the address, can only execute in USER space */
873 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
874 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
875 KSI_INIT_TRAP(&ksi);
876 ksi.ksi_signo = SIGSEGV;
877 ksi.ksi_code = SEGV_ACCERR;
878 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
879 ksi.ksi_trap = fault_pc;
880 goto do_trapsignal;
881 }
882
883 map = &l->l_proc->p_vmspace->vm_map;
884 va = trunc_page(fault_pc);
885
886 /*
887 * See if the pmap can handle this fault on its own...
888 */
889 #ifdef DEBUG
890 last_fault_code = -1;
891 #endif
892 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
893 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
894 goto out;
895 }
896
897 #ifdef DIAGNOSTIC
898 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
899 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
900 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
901 }
902 #endif
903
904 KASSERT(pcb->pcb_onfault == NULL);
905 error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE);
906
907 if (__predict_true(error == 0)) {
908 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
909 goto out;
910 }
911 KSI_INIT_TRAP(&ksi);
912
913 UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0);
914
915 if (error == ENOMEM) {
916 printf("UVM: pid %d (%s), uid %d killed: "
917 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
918 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
919 ksi.ksi_signo = SIGKILL;
920 } else
921 ksi.ksi_signo = SIGSEGV;
922
923 ksi.ksi_code = SEGV_MAPERR;
924 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
925 ksi.ksi_trap = fault_pc;
926
927 do_trapsignal:
928 call_trapsignal(l, tf, &ksi);
929
930 out:
931
932 #ifdef THUMB_CODE
933 #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800))
934 /* thumb-32 instruction was located on page boundary? */
935 if ((tf->tf_spsr & PSR_T_bit) &&
936 ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) &&
937 THUMB_32BIT(*(uint16_t *)tf->tf_pc)) {
938 fault_pc = tf->tf_pc + THUMB_INSN_SIZE;
939 goto recheck;
940 }
941 #endif /* THUMB_CODE */
942
943 KASSERT(!TRAP_USERMODE(tf) || VALID_R15_PSR(tf->tf_pc, tf->tf_spsr));
944 userret(l);
945 }
946
947 /*
948 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
949 * If the read succeeds, the value is written to 'rptr' and zero is returned.
950 * Else, return EFAULT.
951 */
952 int
953 badaddr_read(void *addr, size_t size, void *rptr)
954 {
955 extern int badaddr_read_1(const uint8_t *, uint8_t *);
956 extern int badaddr_read_2(const uint16_t *, uint16_t *);
957 extern int badaddr_read_4(const uint32_t *, uint32_t *);
958 union {
959 uint8_t v1;
960 uint16_t v2;
961 uint32_t v4;
962 } u;
963 int rv, s;
964
965 cpu_drain_writebuf();
966
967 s = splhigh();
968
969 /* Read from the test address. */
970 switch (size) {
971 case sizeof(uint8_t):
972 rv = badaddr_read_1(addr, &u.v1);
973 if (rv == 0 && rptr)
974 *(uint8_t *) rptr = u.v1;
975 break;
976
977 case sizeof(uint16_t):
978 rv = badaddr_read_2(addr, &u.v2);
979 if (rv == 0 && rptr)
980 *(uint16_t *) rptr = u.v2;
981 break;
982
983 case sizeof(uint32_t):
984 rv = badaddr_read_4(addr, &u.v4);
985 if (rv == 0 && rptr)
986 *(uint32_t *) rptr = u.v4;
987 break;
988
989 default:
990 panic("%s: invalid size (%zu)", __func__, size);
991 }
992
993 splx(s);
994
995 /* Return EFAULT if the address was invalid, else zero */
996 return (rv);
997 }
998