fault.c revision 1.39 1 /* $NetBSD: fault.c,v 1.39 2003/10/31 16:30:15 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.39 2003/10/31 16:30:15 scw Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the cpu specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_false((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /* See if the cpu state needs to be fixed up */
274 switch (data_abort_fixup(tf, fsr, far, l)) {
275 case ABORT_FIXUP_RETURN:
276 return;
277 case ABORT_FIXUP_FAILED:
278 /* Deliver a SIGILL to the process */
279 KSI_INIT_TRAP(&ksi);
280 ksi.ksi_signo = SIGILL;
281 ksi.ksi_code = ILL_ILLOPC;
282 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
283 ksi.ksi_trap = fsr;
284 goto do_trapsignal;
285 default:
286 break;
287 }
288
289 va = trunc_page((vaddr_t)far);
290
291 /*
292 * It is only a kernel address space fault iff:
293 * 1. user == 0 and
294 * 2. pcb_onfault not set or
295 * 3. pcb_onfault set but supervisor space fault
296 * The last can occur during an exec() copyin where the
297 * argument space is lazy-allocated.
298 */
299 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
300 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
301 map = kernel_map;
302
303 /* Was the fault due to the FPE/IPKDB ? */
304 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
305 KSI_INIT_TRAP(&ksi);
306 ksi.ksi_signo = SIGSEGV;
307 ksi.ksi_code = SEGV_ACCERR;
308 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
309 ksi.ksi_trap = fsr;
310
311 /*
312 * Force exit via userret()
313 * This is necessary as the FPE is an extension to
314 * userland that actually runs in a priveledged mode
315 * but uses USR mode permissions for its accesses.
316 */
317 user = 1;
318 goto do_trapsignal;
319 }
320 } else {
321 map = &l->l_proc->p_vmspace->vm_map;
322 if (l->l_flag & L_SA) {
323 KDASSERT(l->l_proc->p_sa != NULL);
324 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
325 l->l_flag |= L_SA_PAGEFAULT;
326 }
327 }
328
329 /*
330 * We need to know whether the page should be mapped
331 * as R or R/W. The MMU does not give us the info as
332 * to whether the fault was caused by a read or a write.
333 *
334 * However, we know that a permission fault can only be
335 * the result of a write to a read-only location, so
336 * we can deal with those quickly.
337 *
338 * Otherwise we need to disassemble the instruction
339 * responsible to determine if it was a write.
340 */
341 if (IS_PERMISSION_FAULT(fsr))
342 ftype = VM_PROT_WRITE;
343 else {
344 u_int insn = ReadWord(tf->tf_pc);
345
346 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
347 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
348 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
349 ftype = VM_PROT_WRITE;
350 else
351 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
352 ftype = VM_PROT_READ | VM_PROT_WRITE;
353 else
354 ftype = VM_PROT_READ;
355 }
356
357 /*
358 * See if the fault is as a result of ref/mod emulation,
359 * or domain mismatch.
360 */
361 #ifdef DEBUG
362 last_fault_code = fsr;
363 #endif
364 if (pmap_fault_fixup(map->pmap, va, ftype, user))
365 goto out;
366
367 #ifdef DIAGNOSTIC
368 if (__predict_false(current_intr_depth > 0)) {
369 printf("\nNon-emulated page fault with intr_depth > 0\n");
370 dab_fatal(tf, fsr, far, l, NULL);
371 }
372 #endif
373
374 onfault = pcb->pcb_onfault;
375 pcb->pcb_onfault = NULL;
376 error = uvm_fault(map, va, 0, ftype);
377 pcb->pcb_onfault = onfault;
378
379 if (map != kernel_map)
380 l->l_flag &= ~L_SA_PAGEFAULT;
381
382 if (__predict_true(error == 0)) {
383 if (user)
384 uvm_grow(l->l_proc, va); /* Record any stack growth */
385 goto out;
386 }
387
388 if (user == 0) {
389 if (pcb->pcb_onfault) {
390 tf->tf_r0 = error;
391 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
392 return;
393 }
394
395 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
396 error);
397 dab_fatal(tf, fsr, far, l, NULL);
398 }
399
400 if (error == ENOMEM) {
401 printf("UVM: pid %d (%s), uid %d killed: "
402 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
403 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
404 l->l_proc->p_ucred->cr_uid : -1);
405 }
406
407 KSI_INIT_TRAP(&ksi);
408 ksi.ksi_signo = SIGSEGV;
409 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
410 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
411 ksi.ksi_trap = fsr;
412 ksi.ksi_errno = error;
413
414 do_trapsignal:
415 call_trapsignal(l, &ksi);
416 out:
417 /* If returning to user mode, make sure to invoke userret() */
418 if (user)
419 userret(l);
420 }
421
422 /*
423 * dab_fatal() handles the following data aborts:
424 *
425 * FAULT_WRTBUF_0 - Vector Exception
426 * FAULT_WRTBUF_1 - Terminal Exception
427 *
428 * We should never see these on a properly functioning system.
429 *
430 * This function is also called by the other handlers if they
431 * detect a fatal problem.
432 *
433 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
434 */
435 static int
436 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
437 {
438 const char *mode;
439
440 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
441
442 if (l != NULL) {
443 printf("Fatal %s mode data abort: '%s'\n", mode,
444 data_aborts[fsr & FAULT_TYPE_MASK].desc);
445 printf("\ttrapframe: %p, PC: 0x%08x, ", tf, tf->tf_pc);
446 if ((fsr & FAULT_IMPRECISE) == 0)
447 printf("FSR: 0x%x, FAR: 0x%08x\n", fsr, far);
448 else
449 printf("Imprecise fault. FSR/FAR invalid\n");
450 } else {
451 printf("Fatal %s mode prefetch abort\n", mode);
452 printf("\ttrapframe: %p, PC: 0x%08x\n", tf, tf->tf_pc);
453 }
454
455 #if defined(DDB) || defined(KGDB)
456 kdb_trap(T_FAULT, tf);
457 #endif
458 panic("Fatal abort");
459 /*NOTREACHED*/
460 }
461
462 /*
463 * dab_align() handles the following data aborts:
464 *
465 * FAULT_ALIGN_0 - Alignment fault
466 * FAULT_ALIGN_0 - Alignment fault
467 *
468 * These faults are fatal if they happen in kernel mode. Otherwise, we
469 * deliver a bus error to the process.
470 */
471 static int
472 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
473 {
474
475 /* Alignment faults are always fatal if they occur in kernel mode */
476 if (!TRAP_USERMODE(tf))
477 dab_fatal(tf, fsr, far, l, NULL);
478
479 /* pcb_onfault *must* be NULL at this point */
480 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
481
482 /* See if the cpu state needs to be fixed up */
483 (void) data_abort_fixup(tf, fsr, far, l);
484
485 /* Deliver a bus error signal to the process */
486 KSI_INIT_TRAP(ksi);
487 ksi->ksi_signo = SIGBUS;
488 ksi->ksi_code = BUS_ADRALN;
489 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
490 ksi->ksi_trap = fsr;
491
492 l->l_addr->u_pcb.pcb_tf = tf;
493
494 return (1);
495 }
496
497 /*
498 * dab_buserr() handles the following data aborts:
499 *
500 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
501 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
502 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
503 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
504 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
505 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
506 *
507 * If pcb_onfault is set, flag the fault and return to the handler.
508 * If the fault occurred in user mode, give the process a SIGBUS.
509 *
510 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
511 * can be flagged as imprecise in the FSR. This causes a real headache
512 * since some of the machine state is lost. In this case, tf->tf_pc
513 * may not actually point to the offending instruction. In fact, if
514 * we've taken a double abort fault, it generally points somewhere near
515 * the top of "data_abort_entry" in exception.S.
516 *
517 * In all other cases, these data aborts are considered fatal.
518 */
519 static int
520 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
521 ksiginfo_t *ksi)
522 {
523 struct pcb *pcb = &l->l_addr->u_pcb;
524
525 #ifdef __XSCALE__
526 if ((fsr & FAULT_IMPRECISE) != 0 &&
527 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
528 /*
529 * Oops, an imprecise, double abort fault. We've lost the
530 * r14_abt/spsr_abt values corresponding to the original
531 * abort, and the spsr saved in the trapframe indicates
532 * ABT mode.
533 */
534 tf->tf_spsr &= ~PSR_MODE;
535
536 /*
537 * We use a simple heuristic to determine if the double abort
538 * happened as a result of a kernel or user mode access.
539 * If the current trapframe is at the top of the kernel stack,
540 * the fault _must_ have come from user mode.
541 */
542 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
543 /*
544 * Kernel mode. We're either about to die a
545 * spectacular death, or pcb_onfault will come
546 * to our rescue. Either way, the current value
547 * of tf->tf_pc is irrelevant.
548 */
549 tf->tf_spsr |= PSR_SVC32_MODE;
550 if (pcb->pcb_onfault == NULL)
551 printf("\nKernel mode double abort!\n");
552 } else {
553 /*
554 * User mode. We've lost the program counter at the
555 * time of the fault (not that it was accurate anyway;
556 * it's not called an imprecise fault for nothing).
557 * About all we can do is copy r14_usr to tf_pc and
558 * hope for the best. The process is about to get a
559 * SIGBUS, so it's probably history anyway.
560 */
561 tf->tf_spsr |= PSR_USR32_MODE;
562 tf->tf_pc = tf->tf_usr_lr;
563 }
564 }
565
566 /* FAR is invalid for imprecise exceptions */
567 if ((fsr & FAULT_IMPRECISE) != 0)
568 far = 0;
569 #endif /* __XSCALE__ */
570
571 if (pcb->pcb_onfault) {
572 KDASSERT(TRAP_USERMODE(tf) == 0);
573 tf->tf_r0 = EFAULT;
574 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
575 return (0);
576 }
577
578 /* See if the cpu state needs to be fixed up */
579 (void) data_abort_fixup(tf, fsr, far, l);
580
581 /*
582 * At this point, if the fault happened in kernel mode, we're toast
583 */
584 if (!TRAP_USERMODE(tf))
585 dab_fatal(tf, fsr, far, l, NULL);
586
587 /* Deliver a bus error signal to the process */
588 KSI_INIT_TRAP(ksi);
589 ksi->ksi_signo = SIGBUS;
590 ksi->ksi_code = BUS_ADRERR;
591 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
592 ksi->ksi_trap = fsr;
593
594 l->l_addr->u_pcb.pcb_tf = tf;
595
596 return (1);
597 }
598
599 static __inline int
600 prefetch_abort_fixup(trapframe_t *tf)
601 {
602 #ifdef CPU_ABORT_FIXUP_REQUIRED
603 int error;
604
605 /* Call the cpu specific prefetch abort fixup routine */
606 error = cpu_prefetchabt_fixup(tf);
607 if (__predict_true(error != ABORT_FIXUP_FAILED))
608 return (error);
609
610 /*
611 * Oops, couldn't fix up the instruction
612 */
613 printf(
614 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
615 TRAP_USERMODE(tf) ? "user" : "kernel");
616 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
617 *((u_int *)tf->tf_pc));
618 disassemble(tf->tf_pc);
619
620 /* Die now if this happened in kernel mode */
621 if (!TRAP_USERMODE(tf))
622 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
623
624 return (error);
625 #else
626 return (ABORT_FIXUP_OK);
627 #endif /* CPU_ABORT_FIXUP_REQUIRED */
628 }
629
630 /*
631 * void prefetch_abort_handler(trapframe_t *tf)
632 *
633 * Abort handler called when instruction execution occurs at
634 * a non existent or restricted (access permissions) memory page.
635 * If the address is invalid and we were in SVC mode then panic as
636 * the kernel should never prefetch abort.
637 * If the address is invalid and the page is mapped then the user process
638 * does no have read permission so send it a signal.
639 * Otherwise fault the page in and try again.
640 */
641 void
642 prefetch_abort_handler(trapframe_t *tf)
643 {
644 struct lwp *l;
645 struct vm_map *map;
646 vaddr_t fault_pc, va;
647 ksiginfo_t ksi;
648 int error;
649
650 /* Update vmmeter statistics */
651 uvmexp.traps++;
652
653 /*
654 * Enable IRQ's (disabled by the abort) This always comes
655 * from user mode so we know interrupts were not disabled.
656 * But we check anyway.
657 */
658 if (__predict_false((tf->tf_spsr & I32_bit) == 0))
659 enable_interrupts(I32_bit);
660
661 /* See if the cpu state needs to be fixed up */
662 switch (prefetch_abort_fixup(tf)) {
663 case ABORT_FIXUP_RETURN:
664 return;
665 case ABORT_FIXUP_FAILED:
666 /* Deliver a SIGILL to the process */
667 KSI_INIT_TRAP(&ksi);
668 ksi.ksi_signo = SIGILL;
669 ksi.ksi_code = ILL_ILLOPC;
670 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
671 l = curlwp;
672 l->l_addr->u_pcb.pcb_tf = tf;
673 goto do_trapsignal;
674 default:
675 break;
676 }
677
678 /* Prefetch aborts cannot happen in kernel mode */
679 if (__predict_false(!TRAP_USERMODE(tf)))
680 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
681
682 /* Get fault address */
683 fault_pc = tf->tf_pc;
684 l = curlwp;
685 l->l_addr->u_pcb.pcb_tf = tf;
686
687 /* Ok validate the address, can only execute in USER space */
688 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
689 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
690 KSI_INIT_TRAP(&ksi);
691 ksi.ksi_signo = SIGSEGV;
692 ksi.ksi_code = SEGV_ACCERR;
693 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
694 ksi.ksi_trap = fault_pc;
695 goto do_trapsignal;
696 }
697
698 map = &l->l_proc->p_vmspace->vm_map;
699 va = trunc_page(fault_pc);
700
701 /*
702 * See if the pmap can handle this fault on its own...
703 */
704 #ifdef DEBUG
705 last_fault_code = -1;
706 #endif
707 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
708 goto out;
709
710 #ifdef DIAGNOSTIC
711 if (__predict_false(current_intr_depth > 0)) {
712 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
713 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
714 }
715 #endif
716
717 error = uvm_fault(map, va, 0, VM_PROT_READ);
718 if (__predict_true(error == 0))
719 goto out;
720
721 if (error == ENOMEM) {
722 printf("UVM: pid %d (%s), uid %d killed: "
723 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
724 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
725 l->l_proc->p_ucred->cr_uid : -1);
726 }
727
728 KSI_INIT_TRAP(&ksi);
729 ksi.ksi_signo = SIGSEGV;
730 ksi.ksi_code = SEGV_MAPERR;
731 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
732 ksi.ksi_trap = fault_pc;
733 ksi.ksi_errno = error;
734
735 do_trapsignal:
736 call_trapsignal(l, &ksi);
737
738 out:
739 userret(l);
740 }
741
742 /*
743 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
744 * If the read succeeds, the value is written to 'rptr' and zero is returned.
745 * Else, return EFAULT.
746 */
747 int
748 badaddr_read(void *addr, size_t size, void *rptr)
749 {
750 extern int badaddr_read_1(const uint8_t *, uint8_t *);
751 extern int badaddr_read_2(const uint16_t *, uint16_t *);
752 extern int badaddr_read_4(const uint32_t *, uint32_t *);
753 union {
754 uint8_t v1;
755 uint16_t v2;
756 uint32_t v4;
757 } u;
758 int rv;
759
760 cpu_drain_writebuf();
761
762 /* Read from the test address. */
763 switch (size) {
764 case sizeof(uint8_t):
765 rv = badaddr_read_1(addr, &u.v1);
766 if (rv == 0 && rptr)
767 *(uint8_t *) rptr = u.v1;
768 break;
769
770 case sizeof(uint16_t):
771 rv = badaddr_read_2(addr, &u.v2);
772 if (rv == 0 && rptr)
773 *(uint16_t *) rptr = u.v2;
774 break;
775
776 case sizeof(uint32_t):
777 rv = badaddr_read_4(addr, &u.v4);
778 if (rv == 0 && rptr)
779 *(uint32_t *) rptr = u.v4;
780 break;
781
782 default:
783 panic("badaddr: invalid size (%lu)", (u_long) size);
784 }
785
786 /* Return EFAULT if the address was invalid, else zero */
787 return (rv);
788 }
789