fault.c revision 1.41 1 /* $NetBSD: fault.c,v 1.41 2003/11/14 19:00:03 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.41 2003/11/14 19:00:03 scw Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the cpu specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /*
274 * Make sure the Program Counter is sane. We could fall foul of
275 * someone executing Thumb code, in which case the PC might not
276 * be word-aligned. This would cause a kernel alignment fault
277 * further down if we have to decode the current instruction.
278 * XXX: It would be nice to be able to support Thumb at some point.
279 */
280 if (__predict_false((tf->tf_pc & 3) != 0)) {
281 if (user) {
282 /*
283 * Give the user an illegal instruction signal.
284 */
285 /* Deliver a SIGILL to the process */
286 KSI_INIT_TRAP(&ksi);
287 ksi.ksi_signo = SIGILL;
288 ksi.ksi_code = ILL_ILLOPC;
289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 ksi.ksi_trap = fsr;
291 goto do_trapsignal;
292 }
293
294 /*
295 * The kernel never executes Thumb code.
296 */
297 printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 "Program Counter\n");
299 dab_fatal(tf, fsr, far, l, NULL);
300 }
301
302 /* See if the cpu state needs to be fixed up */
303 switch (data_abort_fixup(tf, fsr, far, l)) {
304 case ABORT_FIXUP_RETURN:
305 return;
306 case ABORT_FIXUP_FAILED:
307 /* Deliver a SIGILL to the process */
308 KSI_INIT_TRAP(&ksi);
309 ksi.ksi_signo = SIGILL;
310 ksi.ksi_code = ILL_ILLOPC;
311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 ksi.ksi_trap = fsr;
313 goto do_trapsignal;
314 default:
315 break;
316 }
317
318 va = trunc_page((vaddr_t)far);
319
320 /*
321 * It is only a kernel address space fault iff:
322 * 1. user == 0 and
323 * 2. pcb_onfault not set or
324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 */
326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 __predict_true((pcb->pcb_onfault == NULL ||
329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 map = kernel_map;
331
332 /* Was the fault due to the FPE/IPKDB ? */
333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGSEGV;
336 ksi.ksi_code = SEGV_ACCERR;
337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339
340 /*
341 * Force exit via userret()
342 * This is necessary as the FPE is an extension to
343 * userland that actually runs in a priveledged mode
344 * but uses USR mode permissions for its accesses.
345 */
346 user = 1;
347 goto do_trapsignal;
348 }
349 } else {
350 map = &l->l_proc->p_vmspace->vm_map;
351 if (l->l_flag & L_SA) {
352 KDASSERT(l->l_proc->p_sa != NULL);
353 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
354 l->l_flag |= L_SA_PAGEFAULT;
355 }
356 }
357
358 /*
359 * We need to know whether the page should be mapped
360 * as R or R/W. The MMU does not give us the info as
361 * to whether the fault was caused by a read or a write.
362 *
363 * However, we know that a permission fault can only be
364 * the result of a write to a read-only location, so
365 * we can deal with those quickly.
366 *
367 * Otherwise we need to disassemble the instruction
368 * responsible to determine if it was a write.
369 */
370 if (IS_PERMISSION_FAULT(fsr))
371 ftype = VM_PROT_WRITE;
372 else {
373 u_int insn = ReadWord(tf->tf_pc);
374
375 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
376 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
377 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
378 ftype = VM_PROT_WRITE;
379 else
380 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
381 ftype = VM_PROT_READ | VM_PROT_WRITE;
382 else
383 ftype = VM_PROT_READ;
384 }
385
386 /*
387 * See if the fault is as a result of ref/mod emulation,
388 * or domain mismatch.
389 */
390 #ifdef DEBUG
391 last_fault_code = fsr;
392 #endif
393 if (pmap_fault_fixup(map->pmap, va, ftype, user))
394 goto out;
395
396 #ifdef DIAGNOSTIC
397 if (__predict_false(current_intr_depth > 0)) {
398 printf("\nNon-emulated page fault with intr_depth > 0\n");
399 dab_fatal(tf, fsr, far, l, NULL);
400 }
401 #endif
402
403 onfault = pcb->pcb_onfault;
404 pcb->pcb_onfault = NULL;
405 error = uvm_fault(map, va, 0, ftype);
406 pcb->pcb_onfault = onfault;
407
408 if (map != kernel_map)
409 l->l_flag &= ~L_SA_PAGEFAULT;
410
411 if (__predict_true(error == 0)) {
412 if (user)
413 uvm_grow(l->l_proc, va); /* Record any stack growth */
414 goto out;
415 }
416
417 if (user == 0) {
418 if (pcb->pcb_onfault) {
419 tf->tf_r0 = error;
420 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
421 return;
422 }
423
424 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
425 error);
426 dab_fatal(tf, fsr, far, l, NULL);
427 }
428
429 if (error == ENOMEM) {
430 printf("UVM: pid %d (%s), uid %d killed: "
431 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
432 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
433 l->l_proc->p_ucred->cr_uid : -1);
434 }
435
436 KSI_INIT_TRAP(&ksi);
437 ksi.ksi_signo = SIGSEGV;
438 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
439 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
440 ksi.ksi_trap = fsr;
441 ksi.ksi_errno = error;
442
443 do_trapsignal:
444 call_trapsignal(l, &ksi);
445 out:
446 /* If returning to user mode, make sure to invoke userret() */
447 if (user)
448 userret(l);
449 }
450
451 /*
452 * dab_fatal() handles the following data aborts:
453 *
454 * FAULT_WRTBUF_0 - Vector Exception
455 * FAULT_WRTBUF_1 - Terminal Exception
456 *
457 * We should never see these on a properly functioning system.
458 *
459 * This function is also called by the other handlers if they
460 * detect a fatal problem.
461 *
462 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
463 */
464 static int
465 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
466 {
467 const char *mode;
468
469 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
470
471 if (l != NULL) {
472 printf("Fatal %s mode data abort: '%s'\n", mode,
473 data_aborts[fsr & FAULT_TYPE_MASK].desc);
474 printf("\ttrapframe: %p, PC: 0x%08x, ", tf, tf->tf_pc);
475 if ((fsr & FAULT_IMPRECISE) == 0)
476 printf("FSR: 0x%x, FAR: 0x%08x\n", fsr, far);
477 else
478 printf("Imprecise fault. FSR/FAR invalid\n");
479 } else {
480 printf("Fatal %s mode prefetch abort\n", mode);
481 printf("\ttrapframe: %p, PC: 0x%08x\n", tf, tf->tf_pc);
482 }
483
484 #if defined(DDB) || defined(KGDB)
485 kdb_trap(T_FAULT, tf);
486 #endif
487 panic("Fatal abort");
488 /*NOTREACHED*/
489 }
490
491 /*
492 * dab_align() handles the following data aborts:
493 *
494 * FAULT_ALIGN_0 - Alignment fault
495 * FAULT_ALIGN_0 - Alignment fault
496 *
497 * These faults are fatal if they happen in kernel mode. Otherwise, we
498 * deliver a bus error to the process.
499 */
500 static int
501 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
502 {
503
504 /* Alignment faults are always fatal if they occur in kernel mode */
505 if (!TRAP_USERMODE(tf))
506 dab_fatal(tf, fsr, far, l, NULL);
507
508 /* pcb_onfault *must* be NULL at this point */
509 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
510
511 /* See if the cpu state needs to be fixed up */
512 (void) data_abort_fixup(tf, fsr, far, l);
513
514 /* Deliver a bus error signal to the process */
515 KSI_INIT_TRAP(ksi);
516 ksi->ksi_signo = SIGBUS;
517 ksi->ksi_code = BUS_ADRALN;
518 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
519 ksi->ksi_trap = fsr;
520
521 l->l_addr->u_pcb.pcb_tf = tf;
522
523 return (1);
524 }
525
526 /*
527 * dab_buserr() handles the following data aborts:
528 *
529 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
530 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
531 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
532 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
533 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
534 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
535 *
536 * If pcb_onfault is set, flag the fault and return to the handler.
537 * If the fault occurred in user mode, give the process a SIGBUS.
538 *
539 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
540 * can be flagged as imprecise in the FSR. This causes a real headache
541 * since some of the machine state is lost. In this case, tf->tf_pc
542 * may not actually point to the offending instruction. In fact, if
543 * we've taken a double abort fault, it generally points somewhere near
544 * the top of "data_abort_entry" in exception.S.
545 *
546 * In all other cases, these data aborts are considered fatal.
547 */
548 static int
549 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
550 ksiginfo_t *ksi)
551 {
552 struct pcb *pcb = &l->l_addr->u_pcb;
553
554 #ifdef __XSCALE__
555 if ((fsr & FAULT_IMPRECISE) != 0 &&
556 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
557 /*
558 * Oops, an imprecise, double abort fault. We've lost the
559 * r14_abt/spsr_abt values corresponding to the original
560 * abort, and the spsr saved in the trapframe indicates
561 * ABT mode.
562 */
563 tf->tf_spsr &= ~PSR_MODE;
564
565 /*
566 * We use a simple heuristic to determine if the double abort
567 * happened as a result of a kernel or user mode access.
568 * If the current trapframe is at the top of the kernel stack,
569 * the fault _must_ have come from user mode.
570 */
571 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
572 /*
573 * Kernel mode. We're either about to die a
574 * spectacular death, or pcb_onfault will come
575 * to our rescue. Either way, the current value
576 * of tf->tf_pc is irrelevant.
577 */
578 tf->tf_spsr |= PSR_SVC32_MODE;
579 if (pcb->pcb_onfault == NULL)
580 printf("\nKernel mode double abort!\n");
581 } else {
582 /*
583 * User mode. We've lost the program counter at the
584 * time of the fault (not that it was accurate anyway;
585 * it's not called an imprecise fault for nothing).
586 * About all we can do is copy r14_usr to tf_pc and
587 * hope for the best. The process is about to get a
588 * SIGBUS, so it's probably history anyway.
589 */
590 tf->tf_spsr |= PSR_USR32_MODE;
591 tf->tf_pc = tf->tf_usr_lr;
592 }
593 }
594
595 /* FAR is invalid for imprecise exceptions */
596 if ((fsr & FAULT_IMPRECISE) != 0)
597 far = 0;
598 #endif /* __XSCALE__ */
599
600 if (pcb->pcb_onfault) {
601 KDASSERT(TRAP_USERMODE(tf) == 0);
602 tf->tf_r0 = EFAULT;
603 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
604 return (0);
605 }
606
607 /* See if the cpu state needs to be fixed up */
608 (void) data_abort_fixup(tf, fsr, far, l);
609
610 /*
611 * At this point, if the fault happened in kernel mode, we're toast
612 */
613 if (!TRAP_USERMODE(tf))
614 dab_fatal(tf, fsr, far, l, NULL);
615
616 /* Deliver a bus error signal to the process */
617 KSI_INIT_TRAP(ksi);
618 ksi->ksi_signo = SIGBUS;
619 ksi->ksi_code = BUS_ADRERR;
620 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
621 ksi->ksi_trap = fsr;
622
623 l->l_addr->u_pcb.pcb_tf = tf;
624
625 return (1);
626 }
627
628 static __inline int
629 prefetch_abort_fixup(trapframe_t *tf)
630 {
631 #ifdef CPU_ABORT_FIXUP_REQUIRED
632 int error;
633
634 /* Call the cpu specific prefetch abort fixup routine */
635 error = cpu_prefetchabt_fixup(tf);
636 if (__predict_true(error != ABORT_FIXUP_FAILED))
637 return (error);
638
639 /*
640 * Oops, couldn't fix up the instruction
641 */
642 printf(
643 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
644 TRAP_USERMODE(tf) ? "user" : "kernel");
645 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
646 *((u_int *)tf->tf_pc));
647 disassemble(tf->tf_pc);
648
649 /* Die now if this happened in kernel mode */
650 if (!TRAP_USERMODE(tf))
651 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
652
653 return (error);
654 #else
655 return (ABORT_FIXUP_OK);
656 #endif /* CPU_ABORT_FIXUP_REQUIRED */
657 }
658
659 /*
660 * void prefetch_abort_handler(trapframe_t *tf)
661 *
662 * Abort handler called when instruction execution occurs at
663 * a non existent or restricted (access permissions) memory page.
664 * If the address is invalid and we were in SVC mode then panic as
665 * the kernel should never prefetch abort.
666 * If the address is invalid and the page is mapped then the user process
667 * does no have read permission so send it a signal.
668 * Otherwise fault the page in and try again.
669 */
670 void
671 prefetch_abort_handler(trapframe_t *tf)
672 {
673 struct lwp *l;
674 struct vm_map *map;
675 vaddr_t fault_pc, va;
676 ksiginfo_t ksi;
677 int error;
678
679 /* Update vmmeter statistics */
680 uvmexp.traps++;
681
682 /*
683 * Enable IRQ's (disabled by the abort) This always comes
684 * from user mode so we know interrupts were not disabled.
685 * But we check anyway.
686 */
687 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
688 enable_interrupts(I32_bit);
689
690 /* See if the cpu state needs to be fixed up */
691 switch (prefetch_abort_fixup(tf)) {
692 case ABORT_FIXUP_RETURN:
693 return;
694 case ABORT_FIXUP_FAILED:
695 /* Deliver a SIGILL to the process */
696 KSI_INIT_TRAP(&ksi);
697 ksi.ksi_signo = SIGILL;
698 ksi.ksi_code = ILL_ILLOPC;
699 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
700 l = curlwp;
701 l->l_addr->u_pcb.pcb_tf = tf;
702 goto do_trapsignal;
703 default:
704 break;
705 }
706
707 /* Prefetch aborts cannot happen in kernel mode */
708 if (__predict_false(!TRAP_USERMODE(tf)))
709 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
710
711 /* Get fault address */
712 fault_pc = tf->tf_pc;
713 l = curlwp;
714 l->l_addr->u_pcb.pcb_tf = tf;
715
716 /* Ok validate the address, can only execute in USER space */
717 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
718 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
719 KSI_INIT_TRAP(&ksi);
720 ksi.ksi_signo = SIGSEGV;
721 ksi.ksi_code = SEGV_ACCERR;
722 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
723 ksi.ksi_trap = fault_pc;
724 goto do_trapsignal;
725 }
726
727 map = &l->l_proc->p_vmspace->vm_map;
728 va = trunc_page(fault_pc);
729
730 /*
731 * See if the pmap can handle this fault on its own...
732 */
733 #ifdef DEBUG
734 last_fault_code = -1;
735 #endif
736 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
737 goto out;
738
739 #ifdef DIAGNOSTIC
740 if (__predict_false(current_intr_depth > 0)) {
741 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
742 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
743 }
744 #endif
745
746 error = uvm_fault(map, va, 0, VM_PROT_READ);
747 if (__predict_true(error == 0))
748 goto out;
749
750 if (error == ENOMEM) {
751 printf("UVM: pid %d (%s), uid %d killed: "
752 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
753 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
754 l->l_proc->p_ucred->cr_uid : -1);
755 }
756
757 KSI_INIT_TRAP(&ksi);
758 ksi.ksi_signo = SIGSEGV;
759 ksi.ksi_code = SEGV_MAPERR;
760 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
761 ksi.ksi_trap = fault_pc;
762 ksi.ksi_errno = error;
763
764 do_trapsignal:
765 call_trapsignal(l, &ksi);
766
767 out:
768 userret(l);
769 }
770
771 /*
772 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
773 * If the read succeeds, the value is written to 'rptr' and zero is returned.
774 * Else, return EFAULT.
775 */
776 int
777 badaddr_read(void *addr, size_t size, void *rptr)
778 {
779 extern int badaddr_read_1(const uint8_t *, uint8_t *);
780 extern int badaddr_read_2(const uint16_t *, uint16_t *);
781 extern int badaddr_read_4(const uint32_t *, uint32_t *);
782 union {
783 uint8_t v1;
784 uint16_t v2;
785 uint32_t v4;
786 } u;
787 int rv;
788
789 cpu_drain_writebuf();
790
791 /* Read from the test address. */
792 switch (size) {
793 case sizeof(uint8_t):
794 rv = badaddr_read_1(addr, &u.v1);
795 if (rv == 0 && rptr)
796 *(uint8_t *) rptr = u.v1;
797 break;
798
799 case sizeof(uint16_t):
800 rv = badaddr_read_2(addr, &u.v2);
801 if (rv == 0 && rptr)
802 *(uint16_t *) rptr = u.v2;
803 break;
804
805 case sizeof(uint32_t):
806 rv = badaddr_read_4(addr, &u.v4);
807 if (rv == 0 && rptr)
808 *(uint32_t *) rptr = u.v4;
809 break;
810
811 default:
812 panic("badaddr: invalid size (%lu)", (u_long) size);
813 }
814
815 /* Return EFAULT if the address was invalid, else zero */
816 return (rv);
817 }
818