Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.41
      1 /*	$NetBSD: fault.c,v 1.41 2003/11/14 19:00:03 scw Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.41 2003/11/14 19:00:03 scw Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/savar.h>
     90 #include <sys/user.h>
     91 #include <sys/kernel.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #include <arm/cpuconf.h>
     96 
     97 #include <machine/frame.h>
     98 #include <arm/arm32/katelib.h>
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #if defined(DDB) || defined(KGDB)
    102 #include <machine/db_machdep.h>
    103 #ifdef KGDB
    104 #include <sys/kgdb.h>
    105 #endif
    106 #if !defined(DDB)
    107 #define kdb_trap	kgdb_trap
    108 #endif
    109 #endif
    110 
    111 #include <arch/arm/arm/disassem.h>
    112 #include <arm/arm32/machdep.h>
    113 
    114 extern char fusubailout[];
    115 
    116 #ifdef DEBUG
    117 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    118 #endif
    119 
    120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    121     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    122 /* These CPUs may need data/prefetch abort fixups */
    123 #define	CPU_ABORT_FIXUP_REQUIRED
    124 #endif
    125 
    126 struct data_abort {
    127 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    128 	const char *desc;
    129 };
    130 
    131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 
    135 static const struct data_abort data_aborts[] = {
    136 	{dab_fatal,	"Vector Exception"},
    137 	{dab_align,	"Alignment Fault 1"},
    138 	{dab_fatal,	"Terminal Exception"},
    139 	{dab_align,	"Alignment Fault 3"},
    140 	{dab_buserr,	"External Linefetch Abort (S)"},
    141 	{NULL,		"Translation Fault (S)"},
    142 	{dab_buserr,	"External Linefetch Abort (P)"},
    143 	{NULL,		"Translation Fault (P)"},
    144 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    145 	{NULL,		"Domain Fault (S)"},
    146 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    147 	{NULL,		"Domain Fault (P)"},
    148 	{dab_buserr,	"External Translation Abort (L1)"},
    149 	{NULL,		"Permission Fault (S)"},
    150 	{dab_buserr,	"External Translation Abort (L2)"},
    151 	{NULL,		"Permission Fault (P)"}
    152 };
    153 
    154 /* Determine if a fault came from user mode */
    155 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    156 
    157 /* Determine if 'x' is a permission fault */
    158 #define	IS_PERMISSION_FAULT(x)					\
    159 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    160 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    161 
    162 #if 0
    163 /* maybe one day we'll do emulations */
    164 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    165 #else
    166 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    167 #endif
    168 
    169 static __inline void
    170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    171 {
    172 
    173 	KERNEL_PROC_LOCK(l->l_proc);
    174 	TRAPSIGNAL(l, ksi);
    175 	KERNEL_PROC_UNLOCK(l->l_proc);
    176 }
    177 
    178 static __inline int
    179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    180 {
    181 #ifdef CPU_ABORT_FIXUP_REQUIRED
    182 	int error;
    183 
    184 	/* Call the cpu specific data abort fixup routine */
    185 	error = cpu_dataabt_fixup(tf);
    186 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    187 		return (error);
    188 
    189 	/*
    190 	 * Oops, couldn't fix up the instruction
    191 	 */
    192 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
    193 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    194 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    195 	    *((u_int *)tf->tf_pc));
    196 	disassemble(tf->tf_pc);
    197 
    198 	/* Die now if this happened in kernel mode */
    199 	if (!TRAP_USERMODE(tf))
    200 		dab_fatal(tf, fsr, far, l, NULL);
    201 
    202 	return (error);
    203 #else
    204 	return (ABORT_FIXUP_OK);
    205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    206 }
    207 
    208 void
    209 data_abort_handler(trapframe_t *tf)
    210 {
    211 	struct vm_map *map;
    212 	struct pcb *pcb;
    213 	struct lwp *l;
    214 	u_int user, far, fsr;
    215 	vm_prot_t ftype;
    216 	void *onfault;
    217 	vaddr_t va;
    218 	int error;
    219 	ksiginfo_t ksi;
    220 
    221 	/* Grab FAR/FSR before enabling interrupts */
    222 	far = cpu_faultaddress();
    223 	fsr = cpu_faultstatus();
    224 
    225 	/* Update vmmeter statistics */
    226 	uvmexp.traps++;
    227 
    228 	/* Re-enable interrupts if they were enabled previously */
    229 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    230 		enable_interrupts(I32_bit);
    231 
    232 	/* Get the current lwp structure or lwp0 if there is none */
    233 	l = (curlwp != NULL) ? curlwp : &lwp0;
    234 
    235 	/* Data abort came from user mode? */
    236 	user = TRAP_USERMODE(tf);
    237 
    238 	/* Grab the current pcb */
    239 	pcb = &l->l_addr->u_pcb;
    240 
    241 	/* Invoke the appropriate handler, if necessary */
    242 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    243 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    244 		    l, &ksi))
    245 			goto do_trapsignal;
    246 		goto out;
    247 	}
    248 
    249 	/*
    250 	 * At this point, we're dealing with one of the following data aborts:
    251 	 *
    252 	 *  FAULT_TRANS_S  - Translation -- Section
    253 	 *  FAULT_TRANS_P  - Translation -- Page
    254 	 *  FAULT_DOMAIN_S - Domain -- Section
    255 	 *  FAULT_DOMAIN_P - Domain -- Page
    256 	 *  FAULT_PERM_S   - Permission -- Section
    257 	 *  FAULT_PERM_P   - Permission -- Page
    258 	 *
    259 	 * These are the main virtual memory-related faults signalled by
    260 	 * the MMU.
    261 	 */
    262 
    263 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    264 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    265 		tf->tf_r0 = EFAULT;
    266 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    267 		return;
    268 	}
    269 
    270 	if (user)
    271 		l->l_addr->u_pcb.pcb_tf = tf;
    272 
    273 	/*
    274 	 * Make sure the Program Counter is sane. We could fall foul of
    275 	 * someone executing Thumb code, in which case the PC might not
    276 	 * be word-aligned. This would cause a kernel alignment fault
    277 	 * further down if we have to decode the current instruction.
    278 	 * XXX: It would be nice to be able to support Thumb at some point.
    279 	 */
    280 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    281 		if (user) {
    282 			/*
    283 			 * Give the user an illegal instruction signal.
    284 			 */
    285 			/* Deliver a SIGILL to the process */
    286 			KSI_INIT_TRAP(&ksi);
    287 			ksi.ksi_signo = SIGILL;
    288 			ksi.ksi_code = ILL_ILLOPC;
    289 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    290 			ksi.ksi_trap = fsr;
    291 			goto do_trapsignal;
    292 		}
    293 
    294 		/*
    295 		 * The kernel never executes Thumb code.
    296 		 */
    297 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    298 		    "Program Counter\n");
    299 		dab_fatal(tf, fsr, far, l, NULL);
    300 	}
    301 
    302 	/* See if the cpu state needs to be fixed up */
    303 	switch (data_abort_fixup(tf, fsr, far, l)) {
    304 	case ABORT_FIXUP_RETURN:
    305 		return;
    306 	case ABORT_FIXUP_FAILED:
    307 		/* Deliver a SIGILL to the process */
    308 		KSI_INIT_TRAP(&ksi);
    309 		ksi.ksi_signo = SIGILL;
    310 		ksi.ksi_code = ILL_ILLOPC;
    311 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    312 		ksi.ksi_trap = fsr;
    313 		goto do_trapsignal;
    314 	default:
    315 		break;
    316 	}
    317 
    318 	va = trunc_page((vaddr_t)far);
    319 
    320 	/*
    321 	 * It is only a kernel address space fault iff:
    322 	 *	1. user == 0  and
    323 	 *	2. pcb_onfault not set or
    324 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    325 	 */
    326 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    327 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    328 	    __predict_true((pcb->pcb_onfault == NULL ||
    329 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    330 		map = kernel_map;
    331 
    332 		/* Was the fault due to the FPE/IPKDB ? */
    333 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    334 			KSI_INIT_TRAP(&ksi);
    335 			ksi.ksi_signo = SIGSEGV;
    336 			ksi.ksi_code = SEGV_ACCERR;
    337 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    338 			ksi.ksi_trap = fsr;
    339 
    340 			/*
    341 			 * Force exit via userret()
    342 			 * This is necessary as the FPE is an extension to
    343 			 * userland that actually runs in a priveledged mode
    344 			 * but uses USR mode permissions for its accesses.
    345 			 */
    346 			user = 1;
    347 			goto do_trapsignal;
    348 		}
    349 	} else {
    350 		map = &l->l_proc->p_vmspace->vm_map;
    351 		if (l->l_flag & L_SA) {
    352 			KDASSERT(l->l_proc->p_sa != NULL);
    353 			l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
    354 			l->l_flag |= L_SA_PAGEFAULT;
    355 		}
    356 	}
    357 
    358 	/*
    359 	 * We need to know whether the page should be mapped
    360 	 * as R or R/W. The MMU does not give us the info as
    361 	 * to whether the fault was caused by a read or a write.
    362 	 *
    363 	 * However, we know that a permission fault can only be
    364 	 * the result of a write to a read-only location, so
    365 	 * we can deal with those quickly.
    366 	 *
    367 	 * Otherwise we need to disassemble the instruction
    368 	 * responsible to determine if it was a write.
    369 	 */
    370 	if (IS_PERMISSION_FAULT(fsr))
    371 		ftype = VM_PROT_WRITE;
    372 	else {
    373 		u_int insn = ReadWord(tf->tf_pc);
    374 
    375 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
    376 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
    377 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
    378 			ftype = VM_PROT_WRITE;
    379 		else
    380 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
    381 			ftype = VM_PROT_READ | VM_PROT_WRITE;
    382 		else
    383 			ftype = VM_PROT_READ;
    384 	}
    385 
    386 	/*
    387 	 * See if the fault is as a result of ref/mod emulation,
    388 	 * or domain mismatch.
    389 	 */
    390 #ifdef DEBUG
    391 	last_fault_code = fsr;
    392 #endif
    393 	if (pmap_fault_fixup(map->pmap, va, ftype, user))
    394 		goto out;
    395 
    396 #ifdef DIAGNOSTIC
    397 	if (__predict_false(current_intr_depth > 0)) {
    398 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    399 		dab_fatal(tf, fsr, far, l, NULL);
    400 	}
    401 #endif
    402 
    403 	onfault = pcb->pcb_onfault;
    404 	pcb->pcb_onfault = NULL;
    405 	error = uvm_fault(map, va, 0, ftype);
    406 	pcb->pcb_onfault = onfault;
    407 
    408 	if (map != kernel_map)
    409 		l->l_flag &= ~L_SA_PAGEFAULT;
    410 
    411 	if (__predict_true(error == 0)) {
    412 		if (user)
    413 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    414 		goto out;
    415 	}
    416 
    417 	if (user == 0) {
    418 		if (pcb->pcb_onfault) {
    419 			tf->tf_r0 = error;
    420 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    421 			return;
    422 		}
    423 
    424 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
    425 		    error);
    426 		dab_fatal(tf, fsr, far, l, NULL);
    427 	}
    428 
    429 	if (error == ENOMEM) {
    430 		printf("UVM: pid %d (%s), uid %d killed: "
    431 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    432 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    433 		     l->l_proc->p_ucred->cr_uid : -1);
    434 	}
    435 
    436 	KSI_INIT_TRAP(&ksi);
    437 	ksi.ksi_signo = SIGSEGV;
    438 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    439 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    440 	ksi.ksi_trap = fsr;
    441 	ksi.ksi_errno = error;
    442 
    443 do_trapsignal:
    444 	call_trapsignal(l, &ksi);
    445 out:
    446 	/* If returning to user mode, make sure to invoke userret() */
    447 	if (user)
    448 		userret(l);
    449 }
    450 
    451 /*
    452  * dab_fatal() handles the following data aborts:
    453  *
    454  *  FAULT_WRTBUF_0 - Vector Exception
    455  *  FAULT_WRTBUF_1 - Terminal Exception
    456  *
    457  * We should never see these on a properly functioning system.
    458  *
    459  * This function is also called by the other handlers if they
    460  * detect a fatal problem.
    461  *
    462  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    463  */
    464 static int
    465 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    466 {
    467 	const char *mode;
    468 
    469 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    470 
    471 	if (l != NULL) {
    472 		printf("Fatal %s mode data abort: '%s'\n", mode,
    473 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    474 		printf("\ttrapframe: %p, PC: 0x%08x, ", tf, tf->tf_pc);
    475 		if ((fsr & FAULT_IMPRECISE) == 0)
    476 			printf("FSR: 0x%x, FAR: 0x%08x\n", fsr, far);
    477 		else
    478 			printf("Imprecise fault. FSR/FAR invalid\n");
    479 	} else {
    480 		printf("Fatal %s mode prefetch abort\n", mode);
    481 		printf("\ttrapframe: %p, PC: 0x%08x\n", tf, tf->tf_pc);
    482 	}
    483 
    484 #if defined(DDB) || defined(KGDB)
    485 	kdb_trap(T_FAULT, tf);
    486 #endif
    487 	panic("Fatal abort");
    488 	/*NOTREACHED*/
    489 }
    490 
    491 /*
    492  * dab_align() handles the following data aborts:
    493  *
    494  *  FAULT_ALIGN_0 - Alignment fault
    495  *  FAULT_ALIGN_0 - Alignment fault
    496  *
    497  * These faults are fatal if they happen in kernel mode. Otherwise, we
    498  * deliver a bus error to the process.
    499  */
    500 static int
    501 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    502 {
    503 
    504 	/* Alignment faults are always fatal if they occur in kernel mode */
    505 	if (!TRAP_USERMODE(tf))
    506 		dab_fatal(tf, fsr, far, l, NULL);
    507 
    508 	/* pcb_onfault *must* be NULL at this point */
    509 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
    510 
    511 	/* See if the cpu state needs to be fixed up */
    512 	(void) data_abort_fixup(tf, fsr, far, l);
    513 
    514 	/* Deliver a bus error signal to the process */
    515 	KSI_INIT_TRAP(ksi);
    516 	ksi->ksi_signo = SIGBUS;
    517 	ksi->ksi_code = BUS_ADRALN;
    518 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    519 	ksi->ksi_trap = fsr;
    520 
    521 	l->l_addr->u_pcb.pcb_tf = tf;
    522 
    523 	return (1);
    524 }
    525 
    526 /*
    527  * dab_buserr() handles the following data aborts:
    528  *
    529  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    530  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    531  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    532  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    533  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    534  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    535  *
    536  * If pcb_onfault is set, flag the fault and return to the handler.
    537  * If the fault occurred in user mode, give the process a SIGBUS.
    538  *
    539  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    540  * can be flagged as imprecise in the FSR. This causes a real headache
    541  * since some of the machine state is lost. In this case, tf->tf_pc
    542  * may not actually point to the offending instruction. In fact, if
    543  * we've taken a double abort fault, it generally points somewhere near
    544  * the top of "data_abort_entry" in exception.S.
    545  *
    546  * In all other cases, these data aborts are considered fatal.
    547  */
    548 static int
    549 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    550     ksiginfo_t *ksi)
    551 {
    552 	struct pcb *pcb = &l->l_addr->u_pcb;
    553 
    554 #ifdef __XSCALE__
    555 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    556 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    557 		/*
    558 		 * Oops, an imprecise, double abort fault. We've lost the
    559 		 * r14_abt/spsr_abt values corresponding to the original
    560 		 * abort, and the spsr saved in the trapframe indicates
    561 		 * ABT mode.
    562 		 */
    563 		tf->tf_spsr &= ~PSR_MODE;
    564 
    565 		/*
    566 		 * We use a simple heuristic to determine if the double abort
    567 		 * happened as a result of a kernel or user mode access.
    568 		 * If the current trapframe is at the top of the kernel stack,
    569 		 * the fault _must_ have come from user mode.
    570 		 */
    571 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    572 			/*
    573 			 * Kernel mode. We're either about to die a
    574 			 * spectacular death, or pcb_onfault will come
    575 			 * to our rescue. Either way, the current value
    576 			 * of tf->tf_pc is irrelevant.
    577 			 */
    578 			tf->tf_spsr |= PSR_SVC32_MODE;
    579 			if (pcb->pcb_onfault == NULL)
    580 				printf("\nKernel mode double abort!\n");
    581 		} else {
    582 			/*
    583 			 * User mode. We've lost the program counter at the
    584 			 * time of the fault (not that it was accurate anyway;
    585 			 * it's not called an imprecise fault for nothing).
    586 			 * About all we can do is copy r14_usr to tf_pc and
    587 			 * hope for the best. The process is about to get a
    588 			 * SIGBUS, so it's probably history anyway.
    589 			 */
    590 			tf->tf_spsr |= PSR_USR32_MODE;
    591 			tf->tf_pc = tf->tf_usr_lr;
    592 		}
    593 	}
    594 
    595 	/* FAR is invalid for imprecise exceptions */
    596 	if ((fsr & FAULT_IMPRECISE) != 0)
    597 		far = 0;
    598 #endif /* __XSCALE__ */
    599 
    600 	if (pcb->pcb_onfault) {
    601 		KDASSERT(TRAP_USERMODE(tf) == 0);
    602 		tf->tf_r0 = EFAULT;
    603 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    604 		return (0);
    605 	}
    606 
    607 	/* See if the cpu state needs to be fixed up */
    608 	(void) data_abort_fixup(tf, fsr, far, l);
    609 
    610 	/*
    611 	 * At this point, if the fault happened in kernel mode, we're toast
    612 	 */
    613 	if (!TRAP_USERMODE(tf))
    614 		dab_fatal(tf, fsr, far, l, NULL);
    615 
    616 	/* Deliver a bus error signal to the process */
    617 	KSI_INIT_TRAP(ksi);
    618 	ksi->ksi_signo = SIGBUS;
    619 	ksi->ksi_code = BUS_ADRERR;
    620 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    621 	ksi->ksi_trap = fsr;
    622 
    623 	l->l_addr->u_pcb.pcb_tf = tf;
    624 
    625 	return (1);
    626 }
    627 
    628 static __inline int
    629 prefetch_abort_fixup(trapframe_t *tf)
    630 {
    631 #ifdef CPU_ABORT_FIXUP_REQUIRED
    632 	int error;
    633 
    634 	/* Call the cpu specific prefetch abort fixup routine */
    635 	error = cpu_prefetchabt_fixup(tf);
    636 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    637 		return (error);
    638 
    639 	/*
    640 	 * Oops, couldn't fix up the instruction
    641 	 */
    642 	printf(
    643 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
    644 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    645 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    646 	    *((u_int *)tf->tf_pc));
    647 	disassemble(tf->tf_pc);
    648 
    649 	/* Die now if this happened in kernel mode */
    650 	if (!TRAP_USERMODE(tf))
    651 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    652 
    653 	return (error);
    654 #else
    655 	return (ABORT_FIXUP_OK);
    656 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    657 }
    658 
    659 /*
    660  * void prefetch_abort_handler(trapframe_t *tf)
    661  *
    662  * Abort handler called when instruction execution occurs at
    663  * a non existent or restricted (access permissions) memory page.
    664  * If the address is invalid and we were in SVC mode then panic as
    665  * the kernel should never prefetch abort.
    666  * If the address is invalid and the page is mapped then the user process
    667  * does no have read permission so send it a signal.
    668  * Otherwise fault the page in and try again.
    669  */
    670 void
    671 prefetch_abort_handler(trapframe_t *tf)
    672 {
    673 	struct lwp *l;
    674 	struct vm_map *map;
    675 	vaddr_t fault_pc, va;
    676 	ksiginfo_t ksi;
    677 	int error;
    678 
    679 	/* Update vmmeter statistics */
    680 	uvmexp.traps++;
    681 
    682 	/*
    683 	 * Enable IRQ's (disabled by the abort) This always comes
    684 	 * from user mode so we know interrupts were not disabled.
    685 	 * But we check anyway.
    686 	 */
    687 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    688 		enable_interrupts(I32_bit);
    689 
    690 	/* See if the cpu state needs to be fixed up */
    691 	switch (prefetch_abort_fixup(tf)) {
    692 	case ABORT_FIXUP_RETURN:
    693 		return;
    694 	case ABORT_FIXUP_FAILED:
    695 		/* Deliver a SIGILL to the process */
    696 		KSI_INIT_TRAP(&ksi);
    697 		ksi.ksi_signo = SIGILL;
    698 		ksi.ksi_code = ILL_ILLOPC;
    699 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    700 		l = curlwp;
    701 		l->l_addr->u_pcb.pcb_tf = tf;
    702 		goto do_trapsignal;
    703 	default:
    704 		break;
    705 	}
    706 
    707 	/* Prefetch aborts cannot happen in kernel mode */
    708 	if (__predict_false(!TRAP_USERMODE(tf)))
    709 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    710 
    711 	/* Get fault address */
    712 	fault_pc = tf->tf_pc;
    713 	l = curlwp;
    714 	l->l_addr->u_pcb.pcb_tf = tf;
    715 
    716 	/* Ok validate the address, can only execute in USER space */
    717 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    718 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    719 		KSI_INIT_TRAP(&ksi);
    720 		ksi.ksi_signo = SIGSEGV;
    721 		ksi.ksi_code = SEGV_ACCERR;
    722 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    723 		ksi.ksi_trap = fault_pc;
    724 		goto do_trapsignal;
    725 	}
    726 
    727 	map = &l->l_proc->p_vmspace->vm_map;
    728 	va = trunc_page(fault_pc);
    729 
    730 	/*
    731 	 * See if the pmap can handle this fault on its own...
    732 	 */
    733 #ifdef DEBUG
    734 	last_fault_code = -1;
    735 #endif
    736 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
    737 		goto out;
    738 
    739 #ifdef DIAGNOSTIC
    740 	if (__predict_false(current_intr_depth > 0)) {
    741 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    742 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    743 	}
    744 #endif
    745 
    746 	error = uvm_fault(map, va, 0, VM_PROT_READ);
    747 	if (__predict_true(error == 0))
    748 		goto out;
    749 
    750 	if (error == ENOMEM) {
    751 		printf("UVM: pid %d (%s), uid %d killed: "
    752 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    753 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    754 		     l->l_proc->p_ucred->cr_uid : -1);
    755 	}
    756 
    757 	KSI_INIT_TRAP(&ksi);
    758 	ksi.ksi_signo = SIGSEGV;
    759 	ksi.ksi_code = SEGV_MAPERR;
    760 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    761 	ksi.ksi_trap = fault_pc;
    762 	ksi.ksi_errno = error;
    763 
    764 do_trapsignal:
    765 	call_trapsignal(l, &ksi);
    766 
    767 out:
    768 	userret(l);
    769 }
    770 
    771 /*
    772  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    773  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    774  * Else, return EFAULT.
    775  */
    776 int
    777 badaddr_read(void *addr, size_t size, void *rptr)
    778 {
    779 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    780 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    781 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    782 	union {
    783 		uint8_t v1;
    784 		uint16_t v2;
    785 		uint32_t v4;
    786 	} u;
    787 	int rv;
    788 
    789 	cpu_drain_writebuf();
    790 
    791 	/* Read from the test address. */
    792 	switch (size) {
    793 	case sizeof(uint8_t):
    794 		rv = badaddr_read_1(addr, &u.v1);
    795 		if (rv == 0 && rptr)
    796 			*(uint8_t *) rptr = u.v1;
    797 		break;
    798 
    799 	case sizeof(uint16_t):
    800 		rv = badaddr_read_2(addr, &u.v2);
    801 		if (rv == 0 && rptr)
    802 			*(uint16_t *) rptr = u.v2;
    803 		break;
    804 
    805 	case sizeof(uint32_t):
    806 		rv = badaddr_read_4(addr, &u.v4);
    807 		if (rv == 0 && rptr)
    808 			*(uint32_t *) rptr = u.v4;
    809 		break;
    810 
    811 	default:
    812 		panic("badaddr: invalid size (%lu)", (u_long) size);
    813 	}
    814 
    815 	/* Return EFAULT if the address was invalid, else zero */
    816 	return (rv);
    817 }
    818