fault.c revision 1.42 1 /* $NetBSD: fault.c,v 1.42 2003/11/14 21:22:08 briggs Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.42 2003/11/14 21:22:08 briggs Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the cpu specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /*
274 * Make sure the Program Counter is sane. We could fall foul of
275 * someone executing Thumb code, in which case the PC might not
276 * be word-aligned. This would cause a kernel alignment fault
277 * further down if we have to decode the current instruction.
278 * XXX: It would be nice to be able to support Thumb at some point.
279 */
280 if (__predict_false((tf->tf_pc & 3) != 0)) {
281 if (user) {
282 /*
283 * Give the user an illegal instruction signal.
284 */
285 /* Deliver a SIGILL to the process */
286 KSI_INIT_TRAP(&ksi);
287 ksi.ksi_signo = SIGILL;
288 ksi.ksi_code = ILL_ILLOPC;
289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 ksi.ksi_trap = fsr;
291 goto do_trapsignal;
292 }
293
294 /*
295 * The kernel never executes Thumb code.
296 */
297 printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 "Program Counter\n");
299 dab_fatal(tf, fsr, far, l, NULL);
300 }
301
302 /* See if the cpu state needs to be fixed up */
303 switch (data_abort_fixup(tf, fsr, far, l)) {
304 case ABORT_FIXUP_RETURN:
305 return;
306 case ABORT_FIXUP_FAILED:
307 /* Deliver a SIGILL to the process */
308 KSI_INIT_TRAP(&ksi);
309 ksi.ksi_signo = SIGILL;
310 ksi.ksi_code = ILL_ILLOPC;
311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 ksi.ksi_trap = fsr;
313 goto do_trapsignal;
314 default:
315 break;
316 }
317
318 va = trunc_page((vaddr_t)far);
319
320 /*
321 * It is only a kernel address space fault iff:
322 * 1. user == 0 and
323 * 2. pcb_onfault not set or
324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 */
326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 __predict_true((pcb->pcb_onfault == NULL ||
329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 map = kernel_map;
331
332 /* Was the fault due to the FPE/IPKDB ? */
333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGSEGV;
336 ksi.ksi_code = SEGV_ACCERR;
337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339
340 /*
341 * Force exit via userret()
342 * This is necessary as the FPE is an extension to
343 * userland that actually runs in a priveledged mode
344 * but uses USR mode permissions for its accesses.
345 */
346 user = 1;
347 goto do_trapsignal;
348 }
349 } else {
350 map = &l->l_proc->p_vmspace->vm_map;
351 if (l->l_flag & L_SA) {
352 KDASSERT(l->l_proc->p_sa != NULL);
353 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
354 l->l_flag |= L_SA_PAGEFAULT;
355 }
356 }
357
358 /*
359 * We need to know whether the page should be mapped
360 * as R or R/W. The MMU does not give us the info as
361 * to whether the fault was caused by a read or a write.
362 *
363 * However, we know that a permission fault can only be
364 * the result of a write to a read-only location, so
365 * we can deal with those quickly.
366 *
367 * Otherwise we need to disassemble the instruction
368 * responsible to determine if it was a write.
369 */
370 if (IS_PERMISSION_FAULT(fsr))
371 ftype = VM_PROT_WRITE;
372 else {
373 u_int insn = ReadWord(tf->tf_pc);
374
375 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
376 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
377 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
378 ftype = VM_PROT_WRITE;
379 else
380 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
381 ftype = VM_PROT_READ | VM_PROT_WRITE;
382 else
383 ftype = VM_PROT_READ;
384 }
385
386 /*
387 * See if the fault is as a result of ref/mod emulation,
388 * or domain mismatch.
389 */
390 #ifdef DEBUG
391 last_fault_code = fsr;
392 #endif
393 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
394 if (map != kernel_map)
395 l->l_flag &= ~L_SA_PAGEFAULT;
396 goto out;
397 }
398
399 #ifdef DIAGNOSTIC
400 if (__predict_false(current_intr_depth > 0)) {
401 printf("\nNon-emulated page fault with intr_depth > 0\n");
402 dab_fatal(tf, fsr, far, l, NULL);
403 }
404 #endif
405
406 onfault = pcb->pcb_onfault;
407 pcb->pcb_onfault = NULL;
408 error = uvm_fault(map, va, 0, ftype);
409 pcb->pcb_onfault = onfault;
410
411 if (map != kernel_map)
412 l->l_flag &= ~L_SA_PAGEFAULT;
413
414 if (__predict_true(error == 0)) {
415 if (user)
416 uvm_grow(l->l_proc, va); /* Record any stack growth */
417 goto out;
418 }
419
420 if (user == 0) {
421 if (pcb->pcb_onfault) {
422 tf->tf_r0 = error;
423 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
424 return;
425 }
426
427 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
428 error);
429 dab_fatal(tf, fsr, far, l, NULL);
430 }
431
432 if (error == ENOMEM) {
433 printf("UVM: pid %d (%s), uid %d killed: "
434 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
435 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
436 l->l_proc->p_ucred->cr_uid : -1);
437 }
438
439 KSI_INIT_TRAP(&ksi);
440 ksi.ksi_signo = SIGSEGV;
441 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
442 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
443 ksi.ksi_trap = fsr;
444 ksi.ksi_errno = error;
445
446 do_trapsignal:
447 call_trapsignal(l, &ksi);
448 out:
449 /* If returning to user mode, make sure to invoke userret() */
450 if (user)
451 userret(l);
452 }
453
454 /*
455 * dab_fatal() handles the following data aborts:
456 *
457 * FAULT_WRTBUF_0 - Vector Exception
458 * FAULT_WRTBUF_1 - Terminal Exception
459 *
460 * We should never see these on a properly functioning system.
461 *
462 * This function is also called by the other handlers if they
463 * detect a fatal problem.
464 *
465 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
466 */
467 static int
468 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
469 {
470 const char *mode;
471
472 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
473
474 if (l != NULL) {
475 printf("Fatal %s mode data abort: '%s'\n", mode,
476 data_aborts[fsr & FAULT_TYPE_MASK].desc);
477 printf("\ttrapframe: %p, PC: 0x%08x, ", tf, tf->tf_pc);
478 if ((fsr & FAULT_IMPRECISE) == 0)
479 printf("FSR: 0x%x, FAR: 0x%08x\n", fsr, far);
480 else
481 printf("Imprecise fault. FSR/FAR invalid\n");
482 } else {
483 printf("Fatal %s mode prefetch abort\n", mode);
484 printf("\ttrapframe: %p, PC: 0x%08x\n", tf, tf->tf_pc);
485 }
486
487 #if defined(DDB) || defined(KGDB)
488 kdb_trap(T_FAULT, tf);
489 #endif
490 panic("Fatal abort");
491 /*NOTREACHED*/
492 }
493
494 /*
495 * dab_align() handles the following data aborts:
496 *
497 * FAULT_ALIGN_0 - Alignment fault
498 * FAULT_ALIGN_0 - Alignment fault
499 *
500 * These faults are fatal if they happen in kernel mode. Otherwise, we
501 * deliver a bus error to the process.
502 */
503 static int
504 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
505 {
506
507 /* Alignment faults are always fatal if they occur in kernel mode */
508 if (!TRAP_USERMODE(tf))
509 dab_fatal(tf, fsr, far, l, NULL);
510
511 /* pcb_onfault *must* be NULL at this point */
512 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
513
514 /* See if the cpu state needs to be fixed up */
515 (void) data_abort_fixup(tf, fsr, far, l);
516
517 /* Deliver a bus error signal to the process */
518 KSI_INIT_TRAP(ksi);
519 ksi->ksi_signo = SIGBUS;
520 ksi->ksi_code = BUS_ADRALN;
521 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
522 ksi->ksi_trap = fsr;
523
524 l->l_addr->u_pcb.pcb_tf = tf;
525
526 return (1);
527 }
528
529 /*
530 * dab_buserr() handles the following data aborts:
531 *
532 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
533 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
534 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
535 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
536 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
537 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
538 *
539 * If pcb_onfault is set, flag the fault and return to the handler.
540 * If the fault occurred in user mode, give the process a SIGBUS.
541 *
542 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
543 * can be flagged as imprecise in the FSR. This causes a real headache
544 * since some of the machine state is lost. In this case, tf->tf_pc
545 * may not actually point to the offending instruction. In fact, if
546 * we've taken a double abort fault, it generally points somewhere near
547 * the top of "data_abort_entry" in exception.S.
548 *
549 * In all other cases, these data aborts are considered fatal.
550 */
551 static int
552 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
553 ksiginfo_t *ksi)
554 {
555 struct pcb *pcb = &l->l_addr->u_pcb;
556
557 #ifdef __XSCALE__
558 if ((fsr & FAULT_IMPRECISE) != 0 &&
559 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
560 /*
561 * Oops, an imprecise, double abort fault. We've lost the
562 * r14_abt/spsr_abt values corresponding to the original
563 * abort, and the spsr saved in the trapframe indicates
564 * ABT mode.
565 */
566 tf->tf_spsr &= ~PSR_MODE;
567
568 /*
569 * We use a simple heuristic to determine if the double abort
570 * happened as a result of a kernel or user mode access.
571 * If the current trapframe is at the top of the kernel stack,
572 * the fault _must_ have come from user mode.
573 */
574 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
575 /*
576 * Kernel mode. We're either about to die a
577 * spectacular death, or pcb_onfault will come
578 * to our rescue. Either way, the current value
579 * of tf->tf_pc is irrelevant.
580 */
581 tf->tf_spsr |= PSR_SVC32_MODE;
582 if (pcb->pcb_onfault == NULL)
583 printf("\nKernel mode double abort!\n");
584 } else {
585 /*
586 * User mode. We've lost the program counter at the
587 * time of the fault (not that it was accurate anyway;
588 * it's not called an imprecise fault for nothing).
589 * About all we can do is copy r14_usr to tf_pc and
590 * hope for the best. The process is about to get a
591 * SIGBUS, so it's probably history anyway.
592 */
593 tf->tf_spsr |= PSR_USR32_MODE;
594 tf->tf_pc = tf->tf_usr_lr;
595 }
596 }
597
598 /* FAR is invalid for imprecise exceptions */
599 if ((fsr & FAULT_IMPRECISE) != 0)
600 far = 0;
601 #endif /* __XSCALE__ */
602
603 if (pcb->pcb_onfault) {
604 KDASSERT(TRAP_USERMODE(tf) == 0);
605 tf->tf_r0 = EFAULT;
606 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
607 return (0);
608 }
609
610 /* See if the cpu state needs to be fixed up */
611 (void) data_abort_fixup(tf, fsr, far, l);
612
613 /*
614 * At this point, if the fault happened in kernel mode, we're toast
615 */
616 if (!TRAP_USERMODE(tf))
617 dab_fatal(tf, fsr, far, l, NULL);
618
619 /* Deliver a bus error signal to the process */
620 KSI_INIT_TRAP(ksi);
621 ksi->ksi_signo = SIGBUS;
622 ksi->ksi_code = BUS_ADRERR;
623 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
624 ksi->ksi_trap = fsr;
625
626 l->l_addr->u_pcb.pcb_tf = tf;
627
628 return (1);
629 }
630
631 static __inline int
632 prefetch_abort_fixup(trapframe_t *tf)
633 {
634 #ifdef CPU_ABORT_FIXUP_REQUIRED
635 int error;
636
637 /* Call the cpu specific prefetch abort fixup routine */
638 error = cpu_prefetchabt_fixup(tf);
639 if (__predict_true(error != ABORT_FIXUP_FAILED))
640 return (error);
641
642 /*
643 * Oops, couldn't fix up the instruction
644 */
645 printf(
646 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
647 TRAP_USERMODE(tf) ? "user" : "kernel");
648 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
649 *((u_int *)tf->tf_pc));
650 disassemble(tf->tf_pc);
651
652 /* Die now if this happened in kernel mode */
653 if (!TRAP_USERMODE(tf))
654 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
655
656 return (error);
657 #else
658 return (ABORT_FIXUP_OK);
659 #endif /* CPU_ABORT_FIXUP_REQUIRED */
660 }
661
662 /*
663 * void prefetch_abort_handler(trapframe_t *tf)
664 *
665 * Abort handler called when instruction execution occurs at
666 * a non existent or restricted (access permissions) memory page.
667 * If the address is invalid and we were in SVC mode then panic as
668 * the kernel should never prefetch abort.
669 * If the address is invalid and the page is mapped then the user process
670 * does no have read permission so send it a signal.
671 * Otherwise fault the page in and try again.
672 */
673 void
674 prefetch_abort_handler(trapframe_t *tf)
675 {
676 struct lwp *l;
677 struct vm_map *map;
678 vaddr_t fault_pc, va;
679 ksiginfo_t ksi;
680 int error;
681
682 /* Update vmmeter statistics */
683 uvmexp.traps++;
684
685 /*
686 * Enable IRQ's (disabled by the abort) This always comes
687 * from user mode so we know interrupts were not disabled.
688 * But we check anyway.
689 */
690 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
691 enable_interrupts(I32_bit);
692
693 /* See if the cpu state needs to be fixed up */
694 switch (prefetch_abort_fixup(tf)) {
695 case ABORT_FIXUP_RETURN:
696 return;
697 case ABORT_FIXUP_FAILED:
698 /* Deliver a SIGILL to the process */
699 KSI_INIT_TRAP(&ksi);
700 ksi.ksi_signo = SIGILL;
701 ksi.ksi_code = ILL_ILLOPC;
702 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
703 l = curlwp;
704 l->l_addr->u_pcb.pcb_tf = tf;
705 goto do_trapsignal;
706 default:
707 break;
708 }
709
710 /* Prefetch aborts cannot happen in kernel mode */
711 if (__predict_false(!TRAP_USERMODE(tf)))
712 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
713
714 /* Get fault address */
715 fault_pc = tf->tf_pc;
716 l = curlwp;
717 l->l_addr->u_pcb.pcb_tf = tf;
718
719 /* Ok validate the address, can only execute in USER space */
720 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
721 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
722 KSI_INIT_TRAP(&ksi);
723 ksi.ksi_signo = SIGSEGV;
724 ksi.ksi_code = SEGV_ACCERR;
725 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
726 ksi.ksi_trap = fault_pc;
727 goto do_trapsignal;
728 }
729
730 map = &l->l_proc->p_vmspace->vm_map;
731 va = trunc_page(fault_pc);
732
733 /*
734 * See if the pmap can handle this fault on its own...
735 */
736 #ifdef DEBUG
737 last_fault_code = -1;
738 #endif
739 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
740 goto out;
741
742 #ifdef DIAGNOSTIC
743 if (__predict_false(current_intr_depth > 0)) {
744 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
745 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
746 }
747 #endif
748
749 error = uvm_fault(map, va, 0, VM_PROT_READ);
750 if (__predict_true(error == 0))
751 goto out;
752
753 if (error == ENOMEM) {
754 printf("UVM: pid %d (%s), uid %d killed: "
755 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
756 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
757 l->l_proc->p_ucred->cr_uid : -1);
758 }
759
760 KSI_INIT_TRAP(&ksi);
761 ksi.ksi_signo = SIGSEGV;
762 ksi.ksi_code = SEGV_MAPERR;
763 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
764 ksi.ksi_trap = fault_pc;
765 ksi.ksi_errno = error;
766
767 do_trapsignal:
768 call_trapsignal(l, &ksi);
769
770 out:
771 userret(l);
772 }
773
774 /*
775 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
776 * If the read succeeds, the value is written to 'rptr' and zero is returned.
777 * Else, return EFAULT.
778 */
779 int
780 badaddr_read(void *addr, size_t size, void *rptr)
781 {
782 extern int badaddr_read_1(const uint8_t *, uint8_t *);
783 extern int badaddr_read_2(const uint16_t *, uint16_t *);
784 extern int badaddr_read_4(const uint32_t *, uint32_t *);
785 union {
786 uint8_t v1;
787 uint16_t v2;
788 uint32_t v4;
789 } u;
790 int rv;
791
792 cpu_drain_writebuf();
793
794 /* Read from the test address. */
795 switch (size) {
796 case sizeof(uint8_t):
797 rv = badaddr_read_1(addr, &u.v1);
798 if (rv == 0 && rptr)
799 *(uint8_t *) rptr = u.v1;
800 break;
801
802 case sizeof(uint16_t):
803 rv = badaddr_read_2(addr, &u.v2);
804 if (rv == 0 && rptr)
805 *(uint16_t *) rptr = u.v2;
806 break;
807
808 case sizeof(uint32_t):
809 rv = badaddr_read_4(addr, &u.v4);
810 if (rv == 0 && rptr)
811 *(uint32_t *) rptr = u.v4;
812 break;
813
814 default:
815 panic("badaddr: invalid size (%lu)", (u_long) size);
816 }
817
818 /* Return EFAULT if the address was invalid, else zero */
819 return (rv);
820 }
821