Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.42
      1 /*	$NetBSD: fault.c,v 1.42 2003/11/14 21:22:08 briggs Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.42 2003/11/14 21:22:08 briggs Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/savar.h>
     90 #include <sys/user.h>
     91 #include <sys/kernel.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #include <arm/cpuconf.h>
     96 
     97 #include <machine/frame.h>
     98 #include <arm/arm32/katelib.h>
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #if defined(DDB) || defined(KGDB)
    102 #include <machine/db_machdep.h>
    103 #ifdef KGDB
    104 #include <sys/kgdb.h>
    105 #endif
    106 #if !defined(DDB)
    107 #define kdb_trap	kgdb_trap
    108 #endif
    109 #endif
    110 
    111 #include <arch/arm/arm/disassem.h>
    112 #include <arm/arm32/machdep.h>
    113 
    114 extern char fusubailout[];
    115 
    116 #ifdef DEBUG
    117 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    118 #endif
    119 
    120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    121     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    122 /* These CPUs may need data/prefetch abort fixups */
    123 #define	CPU_ABORT_FIXUP_REQUIRED
    124 #endif
    125 
    126 struct data_abort {
    127 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    128 	const char *desc;
    129 };
    130 
    131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 
    135 static const struct data_abort data_aborts[] = {
    136 	{dab_fatal,	"Vector Exception"},
    137 	{dab_align,	"Alignment Fault 1"},
    138 	{dab_fatal,	"Terminal Exception"},
    139 	{dab_align,	"Alignment Fault 3"},
    140 	{dab_buserr,	"External Linefetch Abort (S)"},
    141 	{NULL,		"Translation Fault (S)"},
    142 	{dab_buserr,	"External Linefetch Abort (P)"},
    143 	{NULL,		"Translation Fault (P)"},
    144 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    145 	{NULL,		"Domain Fault (S)"},
    146 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    147 	{NULL,		"Domain Fault (P)"},
    148 	{dab_buserr,	"External Translation Abort (L1)"},
    149 	{NULL,		"Permission Fault (S)"},
    150 	{dab_buserr,	"External Translation Abort (L2)"},
    151 	{NULL,		"Permission Fault (P)"}
    152 };
    153 
    154 /* Determine if a fault came from user mode */
    155 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    156 
    157 /* Determine if 'x' is a permission fault */
    158 #define	IS_PERMISSION_FAULT(x)					\
    159 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    160 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    161 
    162 #if 0
    163 /* maybe one day we'll do emulations */
    164 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    165 #else
    166 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    167 #endif
    168 
    169 static __inline void
    170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    171 {
    172 
    173 	KERNEL_PROC_LOCK(l->l_proc);
    174 	TRAPSIGNAL(l, ksi);
    175 	KERNEL_PROC_UNLOCK(l->l_proc);
    176 }
    177 
    178 static __inline int
    179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    180 {
    181 #ifdef CPU_ABORT_FIXUP_REQUIRED
    182 	int error;
    183 
    184 	/* Call the cpu specific data abort fixup routine */
    185 	error = cpu_dataabt_fixup(tf);
    186 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    187 		return (error);
    188 
    189 	/*
    190 	 * Oops, couldn't fix up the instruction
    191 	 */
    192 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
    193 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    194 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    195 	    *((u_int *)tf->tf_pc));
    196 	disassemble(tf->tf_pc);
    197 
    198 	/* Die now if this happened in kernel mode */
    199 	if (!TRAP_USERMODE(tf))
    200 		dab_fatal(tf, fsr, far, l, NULL);
    201 
    202 	return (error);
    203 #else
    204 	return (ABORT_FIXUP_OK);
    205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    206 }
    207 
    208 void
    209 data_abort_handler(trapframe_t *tf)
    210 {
    211 	struct vm_map *map;
    212 	struct pcb *pcb;
    213 	struct lwp *l;
    214 	u_int user, far, fsr;
    215 	vm_prot_t ftype;
    216 	void *onfault;
    217 	vaddr_t va;
    218 	int error;
    219 	ksiginfo_t ksi;
    220 
    221 	/* Grab FAR/FSR before enabling interrupts */
    222 	far = cpu_faultaddress();
    223 	fsr = cpu_faultstatus();
    224 
    225 	/* Update vmmeter statistics */
    226 	uvmexp.traps++;
    227 
    228 	/* Re-enable interrupts if they were enabled previously */
    229 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    230 		enable_interrupts(I32_bit);
    231 
    232 	/* Get the current lwp structure or lwp0 if there is none */
    233 	l = (curlwp != NULL) ? curlwp : &lwp0;
    234 
    235 	/* Data abort came from user mode? */
    236 	user = TRAP_USERMODE(tf);
    237 
    238 	/* Grab the current pcb */
    239 	pcb = &l->l_addr->u_pcb;
    240 
    241 	/* Invoke the appropriate handler, if necessary */
    242 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    243 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    244 		    l, &ksi))
    245 			goto do_trapsignal;
    246 		goto out;
    247 	}
    248 
    249 	/*
    250 	 * At this point, we're dealing with one of the following data aborts:
    251 	 *
    252 	 *  FAULT_TRANS_S  - Translation -- Section
    253 	 *  FAULT_TRANS_P  - Translation -- Page
    254 	 *  FAULT_DOMAIN_S - Domain -- Section
    255 	 *  FAULT_DOMAIN_P - Domain -- Page
    256 	 *  FAULT_PERM_S   - Permission -- Section
    257 	 *  FAULT_PERM_P   - Permission -- Page
    258 	 *
    259 	 * These are the main virtual memory-related faults signalled by
    260 	 * the MMU.
    261 	 */
    262 
    263 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    264 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    265 		tf->tf_r0 = EFAULT;
    266 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    267 		return;
    268 	}
    269 
    270 	if (user)
    271 		l->l_addr->u_pcb.pcb_tf = tf;
    272 
    273 	/*
    274 	 * Make sure the Program Counter is sane. We could fall foul of
    275 	 * someone executing Thumb code, in which case the PC might not
    276 	 * be word-aligned. This would cause a kernel alignment fault
    277 	 * further down if we have to decode the current instruction.
    278 	 * XXX: It would be nice to be able to support Thumb at some point.
    279 	 */
    280 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    281 		if (user) {
    282 			/*
    283 			 * Give the user an illegal instruction signal.
    284 			 */
    285 			/* Deliver a SIGILL to the process */
    286 			KSI_INIT_TRAP(&ksi);
    287 			ksi.ksi_signo = SIGILL;
    288 			ksi.ksi_code = ILL_ILLOPC;
    289 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    290 			ksi.ksi_trap = fsr;
    291 			goto do_trapsignal;
    292 		}
    293 
    294 		/*
    295 		 * The kernel never executes Thumb code.
    296 		 */
    297 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    298 		    "Program Counter\n");
    299 		dab_fatal(tf, fsr, far, l, NULL);
    300 	}
    301 
    302 	/* See if the cpu state needs to be fixed up */
    303 	switch (data_abort_fixup(tf, fsr, far, l)) {
    304 	case ABORT_FIXUP_RETURN:
    305 		return;
    306 	case ABORT_FIXUP_FAILED:
    307 		/* Deliver a SIGILL to the process */
    308 		KSI_INIT_TRAP(&ksi);
    309 		ksi.ksi_signo = SIGILL;
    310 		ksi.ksi_code = ILL_ILLOPC;
    311 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    312 		ksi.ksi_trap = fsr;
    313 		goto do_trapsignal;
    314 	default:
    315 		break;
    316 	}
    317 
    318 	va = trunc_page((vaddr_t)far);
    319 
    320 	/*
    321 	 * It is only a kernel address space fault iff:
    322 	 *	1. user == 0  and
    323 	 *	2. pcb_onfault not set or
    324 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    325 	 */
    326 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    327 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    328 	    __predict_true((pcb->pcb_onfault == NULL ||
    329 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    330 		map = kernel_map;
    331 
    332 		/* Was the fault due to the FPE/IPKDB ? */
    333 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    334 			KSI_INIT_TRAP(&ksi);
    335 			ksi.ksi_signo = SIGSEGV;
    336 			ksi.ksi_code = SEGV_ACCERR;
    337 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    338 			ksi.ksi_trap = fsr;
    339 
    340 			/*
    341 			 * Force exit via userret()
    342 			 * This is necessary as the FPE is an extension to
    343 			 * userland that actually runs in a priveledged mode
    344 			 * but uses USR mode permissions for its accesses.
    345 			 */
    346 			user = 1;
    347 			goto do_trapsignal;
    348 		}
    349 	} else {
    350 		map = &l->l_proc->p_vmspace->vm_map;
    351 		if (l->l_flag & L_SA) {
    352 			KDASSERT(l->l_proc->p_sa != NULL);
    353 			l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
    354 			l->l_flag |= L_SA_PAGEFAULT;
    355 		}
    356 	}
    357 
    358 	/*
    359 	 * We need to know whether the page should be mapped
    360 	 * as R or R/W. The MMU does not give us the info as
    361 	 * to whether the fault was caused by a read or a write.
    362 	 *
    363 	 * However, we know that a permission fault can only be
    364 	 * the result of a write to a read-only location, so
    365 	 * we can deal with those quickly.
    366 	 *
    367 	 * Otherwise we need to disassemble the instruction
    368 	 * responsible to determine if it was a write.
    369 	 */
    370 	if (IS_PERMISSION_FAULT(fsr))
    371 		ftype = VM_PROT_WRITE;
    372 	else {
    373 		u_int insn = ReadWord(tf->tf_pc);
    374 
    375 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
    376 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
    377 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
    378 			ftype = VM_PROT_WRITE;
    379 		else
    380 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
    381 			ftype = VM_PROT_READ | VM_PROT_WRITE;
    382 		else
    383 			ftype = VM_PROT_READ;
    384 	}
    385 
    386 	/*
    387 	 * See if the fault is as a result of ref/mod emulation,
    388 	 * or domain mismatch.
    389 	 */
    390 #ifdef DEBUG
    391 	last_fault_code = fsr;
    392 #endif
    393 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    394 		if (map != kernel_map)
    395 			l->l_flag &= ~L_SA_PAGEFAULT;
    396 		goto out;
    397 	}
    398 
    399 #ifdef DIAGNOSTIC
    400 	if (__predict_false(current_intr_depth > 0)) {
    401 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    402 		dab_fatal(tf, fsr, far, l, NULL);
    403 	}
    404 #endif
    405 
    406 	onfault = pcb->pcb_onfault;
    407 	pcb->pcb_onfault = NULL;
    408 	error = uvm_fault(map, va, 0, ftype);
    409 	pcb->pcb_onfault = onfault;
    410 
    411 	if (map != kernel_map)
    412 		l->l_flag &= ~L_SA_PAGEFAULT;
    413 
    414 	if (__predict_true(error == 0)) {
    415 		if (user)
    416 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    417 		goto out;
    418 	}
    419 
    420 	if (user == 0) {
    421 		if (pcb->pcb_onfault) {
    422 			tf->tf_r0 = error;
    423 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    424 			return;
    425 		}
    426 
    427 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
    428 		    error);
    429 		dab_fatal(tf, fsr, far, l, NULL);
    430 	}
    431 
    432 	if (error == ENOMEM) {
    433 		printf("UVM: pid %d (%s), uid %d killed: "
    434 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    435 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    436 		     l->l_proc->p_ucred->cr_uid : -1);
    437 	}
    438 
    439 	KSI_INIT_TRAP(&ksi);
    440 	ksi.ksi_signo = SIGSEGV;
    441 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    442 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    443 	ksi.ksi_trap = fsr;
    444 	ksi.ksi_errno = error;
    445 
    446 do_trapsignal:
    447 	call_trapsignal(l, &ksi);
    448 out:
    449 	/* If returning to user mode, make sure to invoke userret() */
    450 	if (user)
    451 		userret(l);
    452 }
    453 
    454 /*
    455  * dab_fatal() handles the following data aborts:
    456  *
    457  *  FAULT_WRTBUF_0 - Vector Exception
    458  *  FAULT_WRTBUF_1 - Terminal Exception
    459  *
    460  * We should never see these on a properly functioning system.
    461  *
    462  * This function is also called by the other handlers if they
    463  * detect a fatal problem.
    464  *
    465  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    466  */
    467 static int
    468 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    469 {
    470 	const char *mode;
    471 
    472 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    473 
    474 	if (l != NULL) {
    475 		printf("Fatal %s mode data abort: '%s'\n", mode,
    476 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    477 		printf("\ttrapframe: %p, PC: 0x%08x, ", tf, tf->tf_pc);
    478 		if ((fsr & FAULT_IMPRECISE) == 0)
    479 			printf("FSR: 0x%x, FAR: 0x%08x\n", fsr, far);
    480 		else
    481 			printf("Imprecise fault. FSR/FAR invalid\n");
    482 	} else {
    483 		printf("Fatal %s mode prefetch abort\n", mode);
    484 		printf("\ttrapframe: %p, PC: 0x%08x\n", tf, tf->tf_pc);
    485 	}
    486 
    487 #if defined(DDB) || defined(KGDB)
    488 	kdb_trap(T_FAULT, tf);
    489 #endif
    490 	panic("Fatal abort");
    491 	/*NOTREACHED*/
    492 }
    493 
    494 /*
    495  * dab_align() handles the following data aborts:
    496  *
    497  *  FAULT_ALIGN_0 - Alignment fault
    498  *  FAULT_ALIGN_0 - Alignment fault
    499  *
    500  * These faults are fatal if they happen in kernel mode. Otherwise, we
    501  * deliver a bus error to the process.
    502  */
    503 static int
    504 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    505 {
    506 
    507 	/* Alignment faults are always fatal if they occur in kernel mode */
    508 	if (!TRAP_USERMODE(tf))
    509 		dab_fatal(tf, fsr, far, l, NULL);
    510 
    511 	/* pcb_onfault *must* be NULL at this point */
    512 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
    513 
    514 	/* See if the cpu state needs to be fixed up */
    515 	(void) data_abort_fixup(tf, fsr, far, l);
    516 
    517 	/* Deliver a bus error signal to the process */
    518 	KSI_INIT_TRAP(ksi);
    519 	ksi->ksi_signo = SIGBUS;
    520 	ksi->ksi_code = BUS_ADRALN;
    521 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    522 	ksi->ksi_trap = fsr;
    523 
    524 	l->l_addr->u_pcb.pcb_tf = tf;
    525 
    526 	return (1);
    527 }
    528 
    529 /*
    530  * dab_buserr() handles the following data aborts:
    531  *
    532  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    533  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    534  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    535  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    536  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    537  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    538  *
    539  * If pcb_onfault is set, flag the fault and return to the handler.
    540  * If the fault occurred in user mode, give the process a SIGBUS.
    541  *
    542  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    543  * can be flagged as imprecise in the FSR. This causes a real headache
    544  * since some of the machine state is lost. In this case, tf->tf_pc
    545  * may not actually point to the offending instruction. In fact, if
    546  * we've taken a double abort fault, it generally points somewhere near
    547  * the top of "data_abort_entry" in exception.S.
    548  *
    549  * In all other cases, these data aborts are considered fatal.
    550  */
    551 static int
    552 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    553     ksiginfo_t *ksi)
    554 {
    555 	struct pcb *pcb = &l->l_addr->u_pcb;
    556 
    557 #ifdef __XSCALE__
    558 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    559 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    560 		/*
    561 		 * Oops, an imprecise, double abort fault. We've lost the
    562 		 * r14_abt/spsr_abt values corresponding to the original
    563 		 * abort, and the spsr saved in the trapframe indicates
    564 		 * ABT mode.
    565 		 */
    566 		tf->tf_spsr &= ~PSR_MODE;
    567 
    568 		/*
    569 		 * We use a simple heuristic to determine if the double abort
    570 		 * happened as a result of a kernel or user mode access.
    571 		 * If the current trapframe is at the top of the kernel stack,
    572 		 * the fault _must_ have come from user mode.
    573 		 */
    574 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    575 			/*
    576 			 * Kernel mode. We're either about to die a
    577 			 * spectacular death, or pcb_onfault will come
    578 			 * to our rescue. Either way, the current value
    579 			 * of tf->tf_pc is irrelevant.
    580 			 */
    581 			tf->tf_spsr |= PSR_SVC32_MODE;
    582 			if (pcb->pcb_onfault == NULL)
    583 				printf("\nKernel mode double abort!\n");
    584 		} else {
    585 			/*
    586 			 * User mode. We've lost the program counter at the
    587 			 * time of the fault (not that it was accurate anyway;
    588 			 * it's not called an imprecise fault for nothing).
    589 			 * About all we can do is copy r14_usr to tf_pc and
    590 			 * hope for the best. The process is about to get a
    591 			 * SIGBUS, so it's probably history anyway.
    592 			 */
    593 			tf->tf_spsr |= PSR_USR32_MODE;
    594 			tf->tf_pc = tf->tf_usr_lr;
    595 		}
    596 	}
    597 
    598 	/* FAR is invalid for imprecise exceptions */
    599 	if ((fsr & FAULT_IMPRECISE) != 0)
    600 		far = 0;
    601 #endif /* __XSCALE__ */
    602 
    603 	if (pcb->pcb_onfault) {
    604 		KDASSERT(TRAP_USERMODE(tf) == 0);
    605 		tf->tf_r0 = EFAULT;
    606 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    607 		return (0);
    608 	}
    609 
    610 	/* See if the cpu state needs to be fixed up */
    611 	(void) data_abort_fixup(tf, fsr, far, l);
    612 
    613 	/*
    614 	 * At this point, if the fault happened in kernel mode, we're toast
    615 	 */
    616 	if (!TRAP_USERMODE(tf))
    617 		dab_fatal(tf, fsr, far, l, NULL);
    618 
    619 	/* Deliver a bus error signal to the process */
    620 	KSI_INIT_TRAP(ksi);
    621 	ksi->ksi_signo = SIGBUS;
    622 	ksi->ksi_code = BUS_ADRERR;
    623 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    624 	ksi->ksi_trap = fsr;
    625 
    626 	l->l_addr->u_pcb.pcb_tf = tf;
    627 
    628 	return (1);
    629 }
    630 
    631 static __inline int
    632 prefetch_abort_fixup(trapframe_t *tf)
    633 {
    634 #ifdef CPU_ABORT_FIXUP_REQUIRED
    635 	int error;
    636 
    637 	/* Call the cpu specific prefetch abort fixup routine */
    638 	error = cpu_prefetchabt_fixup(tf);
    639 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    640 		return (error);
    641 
    642 	/*
    643 	 * Oops, couldn't fix up the instruction
    644 	 */
    645 	printf(
    646 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
    647 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    648 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    649 	    *((u_int *)tf->tf_pc));
    650 	disassemble(tf->tf_pc);
    651 
    652 	/* Die now if this happened in kernel mode */
    653 	if (!TRAP_USERMODE(tf))
    654 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    655 
    656 	return (error);
    657 #else
    658 	return (ABORT_FIXUP_OK);
    659 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    660 }
    661 
    662 /*
    663  * void prefetch_abort_handler(trapframe_t *tf)
    664  *
    665  * Abort handler called when instruction execution occurs at
    666  * a non existent or restricted (access permissions) memory page.
    667  * If the address is invalid and we were in SVC mode then panic as
    668  * the kernel should never prefetch abort.
    669  * If the address is invalid and the page is mapped then the user process
    670  * does no have read permission so send it a signal.
    671  * Otherwise fault the page in and try again.
    672  */
    673 void
    674 prefetch_abort_handler(trapframe_t *tf)
    675 {
    676 	struct lwp *l;
    677 	struct vm_map *map;
    678 	vaddr_t fault_pc, va;
    679 	ksiginfo_t ksi;
    680 	int error;
    681 
    682 	/* Update vmmeter statistics */
    683 	uvmexp.traps++;
    684 
    685 	/*
    686 	 * Enable IRQ's (disabled by the abort) This always comes
    687 	 * from user mode so we know interrupts were not disabled.
    688 	 * But we check anyway.
    689 	 */
    690 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    691 		enable_interrupts(I32_bit);
    692 
    693 	/* See if the cpu state needs to be fixed up */
    694 	switch (prefetch_abort_fixup(tf)) {
    695 	case ABORT_FIXUP_RETURN:
    696 		return;
    697 	case ABORT_FIXUP_FAILED:
    698 		/* Deliver a SIGILL to the process */
    699 		KSI_INIT_TRAP(&ksi);
    700 		ksi.ksi_signo = SIGILL;
    701 		ksi.ksi_code = ILL_ILLOPC;
    702 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    703 		l = curlwp;
    704 		l->l_addr->u_pcb.pcb_tf = tf;
    705 		goto do_trapsignal;
    706 	default:
    707 		break;
    708 	}
    709 
    710 	/* Prefetch aborts cannot happen in kernel mode */
    711 	if (__predict_false(!TRAP_USERMODE(tf)))
    712 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    713 
    714 	/* Get fault address */
    715 	fault_pc = tf->tf_pc;
    716 	l = curlwp;
    717 	l->l_addr->u_pcb.pcb_tf = tf;
    718 
    719 	/* Ok validate the address, can only execute in USER space */
    720 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    721 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    722 		KSI_INIT_TRAP(&ksi);
    723 		ksi.ksi_signo = SIGSEGV;
    724 		ksi.ksi_code = SEGV_ACCERR;
    725 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    726 		ksi.ksi_trap = fault_pc;
    727 		goto do_trapsignal;
    728 	}
    729 
    730 	map = &l->l_proc->p_vmspace->vm_map;
    731 	va = trunc_page(fault_pc);
    732 
    733 	/*
    734 	 * See if the pmap can handle this fault on its own...
    735 	 */
    736 #ifdef DEBUG
    737 	last_fault_code = -1;
    738 #endif
    739 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
    740 		goto out;
    741 
    742 #ifdef DIAGNOSTIC
    743 	if (__predict_false(current_intr_depth > 0)) {
    744 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    745 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    746 	}
    747 #endif
    748 
    749 	error = uvm_fault(map, va, 0, VM_PROT_READ);
    750 	if (__predict_true(error == 0))
    751 		goto out;
    752 
    753 	if (error == ENOMEM) {
    754 		printf("UVM: pid %d (%s), uid %d killed: "
    755 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    756 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    757 		     l->l_proc->p_ucred->cr_uid : -1);
    758 	}
    759 
    760 	KSI_INIT_TRAP(&ksi);
    761 	ksi.ksi_signo = SIGSEGV;
    762 	ksi.ksi_code = SEGV_MAPERR;
    763 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    764 	ksi.ksi_trap = fault_pc;
    765 	ksi.ksi_errno = error;
    766 
    767 do_trapsignal:
    768 	call_trapsignal(l, &ksi);
    769 
    770 out:
    771 	userret(l);
    772 }
    773 
    774 /*
    775  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    776  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    777  * Else, return EFAULT.
    778  */
    779 int
    780 badaddr_read(void *addr, size_t size, void *rptr)
    781 {
    782 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    783 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    784 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    785 	union {
    786 		uint8_t v1;
    787 		uint16_t v2;
    788 		uint32_t v4;
    789 	} u;
    790 	int rv;
    791 
    792 	cpu_drain_writebuf();
    793 
    794 	/* Read from the test address. */
    795 	switch (size) {
    796 	case sizeof(uint8_t):
    797 		rv = badaddr_read_1(addr, &u.v1);
    798 		if (rv == 0 && rptr)
    799 			*(uint8_t *) rptr = u.v1;
    800 		break;
    801 
    802 	case sizeof(uint16_t):
    803 		rv = badaddr_read_2(addr, &u.v2);
    804 		if (rv == 0 && rptr)
    805 			*(uint16_t *) rptr = u.v2;
    806 		break;
    807 
    808 	case sizeof(uint32_t):
    809 		rv = badaddr_read_4(addr, &u.v4);
    810 		if (rv == 0 && rptr)
    811 			*(uint32_t *) rptr = u.v4;
    812 		break;
    813 
    814 	default:
    815 		panic("badaddr: invalid size (%lu)", (u_long) size);
    816 	}
    817 
    818 	/* Return EFAULT if the address was invalid, else zero */
    819 	return (rv);
    820 }
    821