fault.c revision 1.44 1 /* $NetBSD: fault.c,v 1.44 2003/11/18 22:39:05 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.44 2003/11/18 22:39:05 scw Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the cpu specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /*
274 * Make sure the Program Counter is sane. We could fall foul of
275 * someone executing Thumb code, in which case the PC might not
276 * be word-aligned. This would cause a kernel alignment fault
277 * further down if we have to decode the current instruction.
278 * XXX: It would be nice to be able to support Thumb at some point.
279 */
280 if (__predict_false((tf->tf_pc & 3) != 0)) {
281 if (user) {
282 /*
283 * Give the user an illegal instruction signal.
284 */
285 /* Deliver a SIGILL to the process */
286 KSI_INIT_TRAP(&ksi);
287 ksi.ksi_signo = SIGILL;
288 ksi.ksi_code = ILL_ILLOPC;
289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 ksi.ksi_trap = fsr;
291 goto do_trapsignal;
292 }
293
294 /*
295 * The kernel never executes Thumb code.
296 */
297 printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 "Program Counter\n");
299 dab_fatal(tf, fsr, far, l, NULL);
300 }
301
302 /* See if the cpu state needs to be fixed up */
303 switch (data_abort_fixup(tf, fsr, far, l)) {
304 case ABORT_FIXUP_RETURN:
305 return;
306 case ABORT_FIXUP_FAILED:
307 /* Deliver a SIGILL to the process */
308 KSI_INIT_TRAP(&ksi);
309 ksi.ksi_signo = SIGILL;
310 ksi.ksi_code = ILL_ILLOPC;
311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 ksi.ksi_trap = fsr;
313 goto do_trapsignal;
314 default:
315 break;
316 }
317
318 va = trunc_page((vaddr_t)far);
319
320 /*
321 * It is only a kernel address space fault iff:
322 * 1. user == 0 and
323 * 2. pcb_onfault not set or
324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 */
326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 __predict_true((pcb->pcb_onfault == NULL ||
329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 map = kernel_map;
331
332 /* Was the fault due to the FPE/IPKDB ? */
333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGSEGV;
336 ksi.ksi_code = SEGV_ACCERR;
337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339
340 /*
341 * Force exit via userret()
342 * This is necessary as the FPE is an extension to
343 * userland that actually runs in a priveledged mode
344 * but uses USR mode permissions for its accesses.
345 */
346 user = 1;
347 goto do_trapsignal;
348 }
349 } else {
350 map = &l->l_proc->p_vmspace->vm_map;
351 if (l->l_flag & L_SA) {
352 KDASSERT(l->l_proc->p_sa != NULL);
353 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
354 l->l_flag |= L_SA_PAGEFAULT;
355 }
356 }
357
358 /*
359 * We need to know whether the page should be mapped
360 * as R or R/W. The MMU does not give us the info as
361 * to whether the fault was caused by a read or a write.
362 *
363 * However, we know that a permission fault can only be
364 * the result of a write to a read-only location, so
365 * we can deal with those quickly.
366 *
367 * Otherwise we need to disassemble the instruction
368 * responsible to determine if it was a write.
369 */
370 if (IS_PERMISSION_FAULT(fsr))
371 ftype = VM_PROT_WRITE;
372 else {
373 u_int insn = ReadWord(tf->tf_pc);
374
375 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
376 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
377 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
378 ftype = VM_PROT_WRITE;
379 else
380 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
381 ftype = VM_PROT_READ | VM_PROT_WRITE;
382 else
383 ftype = VM_PROT_READ;
384 }
385
386 /*
387 * See if the fault is as a result of ref/mod emulation,
388 * or domain mismatch.
389 */
390 #ifdef DEBUG
391 last_fault_code = fsr;
392 #endif
393 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
394 if (map != kernel_map)
395 l->l_flag &= ~L_SA_PAGEFAULT;
396 goto out;
397 }
398
399 #ifdef DIAGNOSTIC
400 if (__predict_false(current_intr_depth > 0)) {
401 printf("\nNon-emulated page fault with intr_depth > 0\n");
402 dab_fatal(tf, fsr, far, l, NULL);
403 }
404 #endif
405
406 onfault = pcb->pcb_onfault;
407 pcb->pcb_onfault = NULL;
408 error = uvm_fault(map, va, 0, ftype);
409 pcb->pcb_onfault = onfault;
410
411 if (map != kernel_map)
412 l->l_flag &= ~L_SA_PAGEFAULT;
413
414 if (__predict_true(error == 0)) {
415 if (user)
416 uvm_grow(l->l_proc, va); /* Record any stack growth */
417 goto out;
418 }
419
420 if (user == 0) {
421 if (pcb->pcb_onfault) {
422 tf->tf_r0 = error;
423 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
424 return;
425 }
426
427 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
428 error);
429 dab_fatal(tf, fsr, far, l, NULL);
430 }
431
432 KSI_INIT_TRAP(&ksi);
433
434 if (error == ENOMEM) {
435 printf("UVM: pid %d (%s), uid %d killed: "
436 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
437 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
438 l->l_proc->p_ucred->cr_uid : -1);
439 ksi.ksi_signo = SIGKILL;
440 } else
441 ksi.ksi_signo = SIGSEGV;
442
443 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
444 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
445 ksi.ksi_trap = fsr;
446 ksi.ksi_errno = error;
447
448 do_trapsignal:
449 call_trapsignal(l, &ksi);
450 out:
451 /* If returning to user mode, make sure to invoke userret() */
452 if (user)
453 userret(l);
454 }
455
456 /*
457 * dab_fatal() handles the following data aborts:
458 *
459 * FAULT_WRTBUF_0 - Vector Exception
460 * FAULT_WRTBUF_1 - Terminal Exception
461 *
462 * We should never see these on a properly functioning system.
463 *
464 * This function is also called by the other handlers if they
465 * detect a fatal problem.
466 *
467 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
468 */
469 static int
470 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
471 {
472 const char *mode;
473
474 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
475
476 if (l != NULL) {
477 printf("Fatal %s mode data abort: '%s'\n", mode,
478 data_aborts[fsr & FAULT_TYPE_MASK].desc);
479 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
480 if ((fsr & FAULT_IMPRECISE) == 0)
481 printf("%08x, ", far);
482 else
483 printf("Invalid, ");
484 printf("spsr=%08x\n", tf->tf_spsr);
485 } else {
486 printf("Fatal %s mode prefetch abort at 0x%08x\n",
487 mode, tf->tf_pc);
488 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
489 }
490
491 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
492 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
493 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
494 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
495 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
496 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
497 printf("r12=%08x, ", tf->tf_r12);
498
499 if (TRAP_USERMODE(tf))
500 printf("usp=%08x, ulr=%08x",
501 tf->tf_usr_sp, tf->tf_usr_lr);
502 else
503 printf("ssp=%08x, slr=%08x",
504 tf->tf_svc_sp, tf->tf_svc_lr);
505 printf(", pc =%08x\n\n", tf->tf_pc);
506
507 #if defined(DDB) || defined(KGDB)
508 kdb_trap(T_FAULT, tf);
509 #endif
510 panic("Fatal abort");
511 /*NOTREACHED*/
512 }
513
514 /*
515 * dab_align() handles the following data aborts:
516 *
517 * FAULT_ALIGN_0 - Alignment fault
518 * FAULT_ALIGN_0 - Alignment fault
519 *
520 * These faults are fatal if they happen in kernel mode. Otherwise, we
521 * deliver a bus error to the process.
522 */
523 static int
524 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
525 {
526
527 /* Alignment faults are always fatal if they occur in kernel mode */
528 if (!TRAP_USERMODE(tf))
529 dab_fatal(tf, fsr, far, l, NULL);
530
531 /* pcb_onfault *must* be NULL at this point */
532 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
533
534 /* See if the cpu state needs to be fixed up */
535 (void) data_abort_fixup(tf, fsr, far, l);
536
537 /* Deliver a bus error signal to the process */
538 KSI_INIT_TRAP(ksi);
539 ksi->ksi_signo = SIGBUS;
540 ksi->ksi_code = BUS_ADRALN;
541 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
542 ksi->ksi_trap = fsr;
543
544 l->l_addr->u_pcb.pcb_tf = tf;
545
546 return (1);
547 }
548
549 /*
550 * dab_buserr() handles the following data aborts:
551 *
552 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
553 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
554 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
555 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
556 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
557 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
558 *
559 * If pcb_onfault is set, flag the fault and return to the handler.
560 * If the fault occurred in user mode, give the process a SIGBUS.
561 *
562 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
563 * can be flagged as imprecise in the FSR. This causes a real headache
564 * since some of the machine state is lost. In this case, tf->tf_pc
565 * may not actually point to the offending instruction. In fact, if
566 * we've taken a double abort fault, it generally points somewhere near
567 * the top of "data_abort_entry" in exception.S.
568 *
569 * In all other cases, these data aborts are considered fatal.
570 */
571 static int
572 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
573 ksiginfo_t *ksi)
574 {
575 struct pcb *pcb = &l->l_addr->u_pcb;
576
577 #ifdef __XSCALE__
578 if ((fsr & FAULT_IMPRECISE) != 0 &&
579 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
580 /*
581 * Oops, an imprecise, double abort fault. We've lost the
582 * r14_abt/spsr_abt values corresponding to the original
583 * abort, and the spsr saved in the trapframe indicates
584 * ABT mode.
585 */
586 tf->tf_spsr &= ~PSR_MODE;
587
588 /*
589 * We use a simple heuristic to determine if the double abort
590 * happened as a result of a kernel or user mode access.
591 * If the current trapframe is at the top of the kernel stack,
592 * the fault _must_ have come from user mode.
593 */
594 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
595 /*
596 * Kernel mode. We're either about to die a
597 * spectacular death, or pcb_onfault will come
598 * to our rescue. Either way, the current value
599 * of tf->tf_pc is irrelevant.
600 */
601 tf->tf_spsr |= PSR_SVC32_MODE;
602 if (pcb->pcb_onfault == NULL)
603 printf("\nKernel mode double abort!\n");
604 } else {
605 /*
606 * User mode. We've lost the program counter at the
607 * time of the fault (not that it was accurate anyway;
608 * it's not called an imprecise fault for nothing).
609 * About all we can do is copy r14_usr to tf_pc and
610 * hope for the best. The process is about to get a
611 * SIGBUS, so it's probably history anyway.
612 */
613 tf->tf_spsr |= PSR_USR32_MODE;
614 tf->tf_pc = tf->tf_usr_lr;
615 }
616 }
617
618 /* FAR is invalid for imprecise exceptions */
619 if ((fsr & FAULT_IMPRECISE) != 0)
620 far = 0;
621 #endif /* __XSCALE__ */
622
623 if (pcb->pcb_onfault) {
624 KDASSERT(TRAP_USERMODE(tf) == 0);
625 tf->tf_r0 = EFAULT;
626 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
627 return (0);
628 }
629
630 /* See if the cpu state needs to be fixed up */
631 (void) data_abort_fixup(tf, fsr, far, l);
632
633 /*
634 * At this point, if the fault happened in kernel mode, we're toast
635 */
636 if (!TRAP_USERMODE(tf))
637 dab_fatal(tf, fsr, far, l, NULL);
638
639 /* Deliver a bus error signal to the process */
640 KSI_INIT_TRAP(ksi);
641 ksi->ksi_signo = SIGBUS;
642 ksi->ksi_code = BUS_ADRERR;
643 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
644 ksi->ksi_trap = fsr;
645
646 l->l_addr->u_pcb.pcb_tf = tf;
647
648 return (1);
649 }
650
651 static __inline int
652 prefetch_abort_fixup(trapframe_t *tf)
653 {
654 #ifdef CPU_ABORT_FIXUP_REQUIRED
655 int error;
656
657 /* Call the cpu specific prefetch abort fixup routine */
658 error = cpu_prefetchabt_fixup(tf);
659 if (__predict_true(error != ABORT_FIXUP_FAILED))
660 return (error);
661
662 /*
663 * Oops, couldn't fix up the instruction
664 */
665 printf(
666 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
667 TRAP_USERMODE(tf) ? "user" : "kernel");
668 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
669 *((u_int *)tf->tf_pc));
670 disassemble(tf->tf_pc);
671
672 /* Die now if this happened in kernel mode */
673 if (!TRAP_USERMODE(tf))
674 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
675
676 return (error);
677 #else
678 return (ABORT_FIXUP_OK);
679 #endif /* CPU_ABORT_FIXUP_REQUIRED */
680 }
681
682 /*
683 * void prefetch_abort_handler(trapframe_t *tf)
684 *
685 * Abort handler called when instruction execution occurs at
686 * a non existent or restricted (access permissions) memory page.
687 * If the address is invalid and we were in SVC mode then panic as
688 * the kernel should never prefetch abort.
689 * If the address is invalid and the page is mapped then the user process
690 * does no have read permission so send it a signal.
691 * Otherwise fault the page in and try again.
692 */
693 void
694 prefetch_abort_handler(trapframe_t *tf)
695 {
696 struct lwp *l;
697 struct vm_map *map;
698 vaddr_t fault_pc, va;
699 ksiginfo_t ksi;
700 int error;
701
702 /* Update vmmeter statistics */
703 uvmexp.traps++;
704
705 /*
706 * Enable IRQ's (disabled by the abort) This always comes
707 * from user mode so we know interrupts were not disabled.
708 * But we check anyway.
709 */
710 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
711 enable_interrupts(I32_bit);
712
713 /* See if the cpu state needs to be fixed up */
714 switch (prefetch_abort_fixup(tf)) {
715 case ABORT_FIXUP_RETURN:
716 return;
717 case ABORT_FIXUP_FAILED:
718 /* Deliver a SIGILL to the process */
719 KSI_INIT_TRAP(&ksi);
720 ksi.ksi_signo = SIGILL;
721 ksi.ksi_code = ILL_ILLOPC;
722 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
723 l = curlwp;
724 l->l_addr->u_pcb.pcb_tf = tf;
725 goto do_trapsignal;
726 default:
727 break;
728 }
729
730 /* Prefetch aborts cannot happen in kernel mode */
731 if (__predict_false(!TRAP_USERMODE(tf)))
732 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
733
734 /* Get fault address */
735 fault_pc = tf->tf_pc;
736 l = curlwp;
737 l->l_addr->u_pcb.pcb_tf = tf;
738
739 /* Ok validate the address, can only execute in USER space */
740 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
741 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
742 KSI_INIT_TRAP(&ksi);
743 ksi.ksi_signo = SIGSEGV;
744 ksi.ksi_code = SEGV_ACCERR;
745 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
746 ksi.ksi_trap = fault_pc;
747 goto do_trapsignal;
748 }
749
750 map = &l->l_proc->p_vmspace->vm_map;
751 va = trunc_page(fault_pc);
752
753 /*
754 * See if the pmap can handle this fault on its own...
755 */
756 #ifdef DEBUG
757 last_fault_code = -1;
758 #endif
759 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
760 goto out;
761
762 #ifdef DIAGNOSTIC
763 if (__predict_false(current_intr_depth > 0)) {
764 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
765 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
766 }
767 #endif
768
769 error = uvm_fault(map, va, 0, VM_PROT_READ);
770 if (__predict_true(error == 0))
771 goto out;
772
773 KSI_INIT_TRAP(&ksi);
774
775 if (error == ENOMEM) {
776 printf("UVM: pid %d (%s), uid %d killed: "
777 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
778 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
779 l->l_proc->p_ucred->cr_uid : -1);
780 ksi.ksi_signo = SIGKILL;
781 } else
782 ksi.ksi_signo = SIGSEGV;
783
784 ksi.ksi_code = SEGV_MAPERR;
785 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
786 ksi.ksi_trap = fault_pc;
787 ksi.ksi_errno = error;
788
789 do_trapsignal:
790 call_trapsignal(l, &ksi);
791
792 out:
793 userret(l);
794 }
795
796 /*
797 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
798 * If the read succeeds, the value is written to 'rptr' and zero is returned.
799 * Else, return EFAULT.
800 */
801 int
802 badaddr_read(void *addr, size_t size, void *rptr)
803 {
804 extern int badaddr_read_1(const uint8_t *, uint8_t *);
805 extern int badaddr_read_2(const uint16_t *, uint16_t *);
806 extern int badaddr_read_4(const uint32_t *, uint32_t *);
807 union {
808 uint8_t v1;
809 uint16_t v2;
810 uint32_t v4;
811 } u;
812 int rv;
813
814 cpu_drain_writebuf();
815
816 /* Read from the test address. */
817 switch (size) {
818 case sizeof(uint8_t):
819 rv = badaddr_read_1(addr, &u.v1);
820 if (rv == 0 && rptr)
821 *(uint8_t *) rptr = u.v1;
822 break;
823
824 case sizeof(uint16_t):
825 rv = badaddr_read_2(addr, &u.v2);
826 if (rv == 0 && rptr)
827 *(uint16_t *) rptr = u.v2;
828 break;
829
830 case sizeof(uint32_t):
831 rv = badaddr_read_4(addr, &u.v4);
832 if (rv == 0 && rptr)
833 *(uint32_t *) rptr = u.v4;
834 break;
835
836 default:
837 panic("badaddr: invalid size (%lu)", (u_long) size);
838 }
839
840 /* Return EFAULT if the address was invalid, else zero */
841 return (rv);
842 }
843