fault.c revision 1.45 1 /* $NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the cpu specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /*
274 * Make sure the Program Counter is sane. We could fall foul of
275 * someone executing Thumb code, in which case the PC might not
276 * be word-aligned. This would cause a kernel alignment fault
277 * further down if we have to decode the current instruction.
278 * XXX: It would be nice to be able to support Thumb at some point.
279 */
280 if (__predict_false((tf->tf_pc & 3) != 0)) {
281 if (user) {
282 /*
283 * Give the user an illegal instruction signal.
284 */
285 /* Deliver a SIGILL to the process */
286 KSI_INIT_TRAP(&ksi);
287 ksi.ksi_signo = SIGILL;
288 ksi.ksi_code = ILL_ILLOPC;
289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 ksi.ksi_trap = fsr;
291 goto do_trapsignal;
292 }
293
294 /*
295 * The kernel never executes Thumb code.
296 */
297 printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 "Program Counter\n");
299 dab_fatal(tf, fsr, far, l, NULL);
300 }
301
302 /* See if the cpu state needs to be fixed up */
303 switch (data_abort_fixup(tf, fsr, far, l)) {
304 case ABORT_FIXUP_RETURN:
305 return;
306 case ABORT_FIXUP_FAILED:
307 /* Deliver a SIGILL to the process */
308 KSI_INIT_TRAP(&ksi);
309 ksi.ksi_signo = SIGILL;
310 ksi.ksi_code = ILL_ILLOPC;
311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 ksi.ksi_trap = fsr;
313 goto do_trapsignal;
314 default:
315 break;
316 }
317
318 va = trunc_page((vaddr_t)far);
319
320 /*
321 * It is only a kernel address space fault iff:
322 * 1. user == 0 and
323 * 2. pcb_onfault not set or
324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 */
326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 __predict_true((pcb->pcb_onfault == NULL ||
329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 map = kernel_map;
331
332 /* Was the fault due to the FPE/IPKDB ? */
333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGSEGV;
336 ksi.ksi_code = SEGV_ACCERR;
337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339
340 /*
341 * Force exit via userret()
342 * This is necessary as the FPE is an extension to
343 * userland that actually runs in a priveledged mode
344 * but uses USR mode permissions for its accesses.
345 */
346 user = 1;
347 goto do_trapsignal;
348 }
349 } else {
350 map = &l->l_proc->p_vmspace->vm_map;
351 if (l->l_flag & L_SA) {
352 KDASSERT(l->l_proc->p_sa != NULL);
353 l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
354 l->l_flag |= L_SA_PAGEFAULT;
355 }
356 }
357
358 /*
359 * We need to know whether the page should be mapped
360 * as R or R/W. The MMU does not give us the info as
361 * to whether the fault was caused by a read or a write.
362 *
363 * However, we know that a permission fault can only be
364 * the result of a write to a read-only location, so
365 * we can deal with those quickly.
366 *
367 * Otherwise we need to disassemble the instruction
368 * responsible to determine if it was a write.
369 */
370 if (IS_PERMISSION_FAULT(fsr))
371 ftype = VM_PROT_WRITE;
372 else {
373 u_int insn = ReadWord(tf->tf_pc);
374
375 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
376 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
377 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
378 ftype = VM_PROT_WRITE;
379 else
380 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
381 ftype = VM_PROT_READ | VM_PROT_WRITE;
382 else
383 ftype = VM_PROT_READ;
384 }
385
386 /*
387 * See if the fault is as a result of ref/mod emulation,
388 * or domain mismatch.
389 */
390 #ifdef DEBUG
391 last_fault_code = fsr;
392 #endif
393 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
394 if (map != kernel_map)
395 l->l_flag &= ~L_SA_PAGEFAULT;
396 goto out;
397 }
398
399 if (__predict_false(current_intr_depth > 0)) {
400 if (pcb->pcb_onfault) {
401 tf->tf_r0 = EINVAL;
402 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
403 return;
404 }
405 printf("\nNon-emulated page fault with intr_depth > 0\n");
406 dab_fatal(tf, fsr, far, l, NULL);
407 }
408
409 onfault = pcb->pcb_onfault;
410 pcb->pcb_onfault = NULL;
411 error = uvm_fault(map, va, 0, ftype);
412 pcb->pcb_onfault = onfault;
413
414 if (map != kernel_map)
415 l->l_flag &= ~L_SA_PAGEFAULT;
416
417 if (__predict_true(error == 0)) {
418 if (user)
419 uvm_grow(l->l_proc, va); /* Record any stack growth */
420 goto out;
421 }
422
423 if (user == 0) {
424 if (pcb->pcb_onfault) {
425 tf->tf_r0 = error;
426 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
427 return;
428 }
429
430 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
431 error);
432 dab_fatal(tf, fsr, far, l, NULL);
433 }
434
435 KSI_INIT_TRAP(&ksi);
436
437 if (error == ENOMEM) {
438 printf("UVM: pid %d (%s), uid %d killed: "
439 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
440 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
441 l->l_proc->p_ucred->cr_uid : -1);
442 ksi.ksi_signo = SIGKILL;
443 } else
444 ksi.ksi_signo = SIGSEGV;
445
446 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
447 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
448 ksi.ksi_trap = fsr;
449 ksi.ksi_errno = error;
450
451 do_trapsignal:
452 call_trapsignal(l, &ksi);
453 out:
454 /* If returning to user mode, make sure to invoke userret() */
455 if (user)
456 userret(l);
457 }
458
459 /*
460 * dab_fatal() handles the following data aborts:
461 *
462 * FAULT_WRTBUF_0 - Vector Exception
463 * FAULT_WRTBUF_1 - Terminal Exception
464 *
465 * We should never see these on a properly functioning system.
466 *
467 * This function is also called by the other handlers if they
468 * detect a fatal problem.
469 *
470 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
471 */
472 static int
473 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
474 {
475 const char *mode;
476
477 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
478
479 if (l != NULL) {
480 printf("Fatal %s mode data abort: '%s'\n", mode,
481 data_aborts[fsr & FAULT_TYPE_MASK].desc);
482 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
483 if ((fsr & FAULT_IMPRECISE) == 0)
484 printf("%08x, ", far);
485 else
486 printf("Invalid, ");
487 printf("spsr=%08x\n", tf->tf_spsr);
488 } else {
489 printf("Fatal %s mode prefetch abort at 0x%08x\n",
490 mode, tf->tf_pc);
491 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
492 }
493
494 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
495 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
496 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
497 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
498 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
499 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
500 printf("r12=%08x, ", tf->tf_r12);
501
502 if (TRAP_USERMODE(tf))
503 printf("usp=%08x, ulr=%08x",
504 tf->tf_usr_sp, tf->tf_usr_lr);
505 else
506 printf("ssp=%08x, slr=%08x",
507 tf->tf_svc_sp, tf->tf_svc_lr);
508 printf(", pc =%08x\n\n", tf->tf_pc);
509
510 #if defined(DDB) || defined(KGDB)
511 kdb_trap(T_FAULT, tf);
512 #endif
513 panic("Fatal abort");
514 /*NOTREACHED*/
515 }
516
517 /*
518 * dab_align() handles the following data aborts:
519 *
520 * FAULT_ALIGN_0 - Alignment fault
521 * FAULT_ALIGN_0 - Alignment fault
522 *
523 * These faults are fatal if they happen in kernel mode. Otherwise, we
524 * deliver a bus error to the process.
525 */
526 static int
527 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
528 {
529
530 /* Alignment faults are always fatal if they occur in kernel mode */
531 if (!TRAP_USERMODE(tf))
532 dab_fatal(tf, fsr, far, l, NULL);
533
534 /* pcb_onfault *must* be NULL at this point */
535 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
536
537 /* See if the cpu state needs to be fixed up */
538 (void) data_abort_fixup(tf, fsr, far, l);
539
540 /* Deliver a bus error signal to the process */
541 KSI_INIT_TRAP(ksi);
542 ksi->ksi_signo = SIGBUS;
543 ksi->ksi_code = BUS_ADRALN;
544 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
545 ksi->ksi_trap = fsr;
546
547 l->l_addr->u_pcb.pcb_tf = tf;
548
549 return (1);
550 }
551
552 /*
553 * dab_buserr() handles the following data aborts:
554 *
555 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
556 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
557 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
558 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
559 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
560 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
561 *
562 * If pcb_onfault is set, flag the fault and return to the handler.
563 * If the fault occurred in user mode, give the process a SIGBUS.
564 *
565 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
566 * can be flagged as imprecise in the FSR. This causes a real headache
567 * since some of the machine state is lost. In this case, tf->tf_pc
568 * may not actually point to the offending instruction. In fact, if
569 * we've taken a double abort fault, it generally points somewhere near
570 * the top of "data_abort_entry" in exception.S.
571 *
572 * In all other cases, these data aborts are considered fatal.
573 */
574 static int
575 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
576 ksiginfo_t *ksi)
577 {
578 struct pcb *pcb = &l->l_addr->u_pcb;
579
580 #ifdef __XSCALE__
581 if ((fsr & FAULT_IMPRECISE) != 0 &&
582 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
583 /*
584 * Oops, an imprecise, double abort fault. We've lost the
585 * r14_abt/spsr_abt values corresponding to the original
586 * abort, and the spsr saved in the trapframe indicates
587 * ABT mode.
588 */
589 tf->tf_spsr &= ~PSR_MODE;
590
591 /*
592 * We use a simple heuristic to determine if the double abort
593 * happened as a result of a kernel or user mode access.
594 * If the current trapframe is at the top of the kernel stack,
595 * the fault _must_ have come from user mode.
596 */
597 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
598 /*
599 * Kernel mode. We're either about to die a
600 * spectacular death, or pcb_onfault will come
601 * to our rescue. Either way, the current value
602 * of tf->tf_pc is irrelevant.
603 */
604 tf->tf_spsr |= PSR_SVC32_MODE;
605 if (pcb->pcb_onfault == NULL)
606 printf("\nKernel mode double abort!\n");
607 } else {
608 /*
609 * User mode. We've lost the program counter at the
610 * time of the fault (not that it was accurate anyway;
611 * it's not called an imprecise fault for nothing).
612 * About all we can do is copy r14_usr to tf_pc and
613 * hope for the best. The process is about to get a
614 * SIGBUS, so it's probably history anyway.
615 */
616 tf->tf_spsr |= PSR_USR32_MODE;
617 tf->tf_pc = tf->tf_usr_lr;
618 }
619 }
620
621 /* FAR is invalid for imprecise exceptions */
622 if ((fsr & FAULT_IMPRECISE) != 0)
623 far = 0;
624 #endif /* __XSCALE__ */
625
626 if (pcb->pcb_onfault) {
627 KDASSERT(TRAP_USERMODE(tf) == 0);
628 tf->tf_r0 = EFAULT;
629 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
630 return (0);
631 }
632
633 /* See if the cpu state needs to be fixed up */
634 (void) data_abort_fixup(tf, fsr, far, l);
635
636 /*
637 * At this point, if the fault happened in kernel mode, we're toast
638 */
639 if (!TRAP_USERMODE(tf))
640 dab_fatal(tf, fsr, far, l, NULL);
641
642 /* Deliver a bus error signal to the process */
643 KSI_INIT_TRAP(ksi);
644 ksi->ksi_signo = SIGBUS;
645 ksi->ksi_code = BUS_ADRERR;
646 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
647 ksi->ksi_trap = fsr;
648
649 l->l_addr->u_pcb.pcb_tf = tf;
650
651 return (1);
652 }
653
654 static __inline int
655 prefetch_abort_fixup(trapframe_t *tf)
656 {
657 #ifdef CPU_ABORT_FIXUP_REQUIRED
658 int error;
659
660 /* Call the cpu specific prefetch abort fixup routine */
661 error = cpu_prefetchabt_fixup(tf);
662 if (__predict_true(error != ABORT_FIXUP_FAILED))
663 return (error);
664
665 /*
666 * Oops, couldn't fix up the instruction
667 */
668 printf(
669 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
670 TRAP_USERMODE(tf) ? "user" : "kernel");
671 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
672 *((u_int *)tf->tf_pc));
673 disassemble(tf->tf_pc);
674
675 /* Die now if this happened in kernel mode */
676 if (!TRAP_USERMODE(tf))
677 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
678
679 return (error);
680 #else
681 return (ABORT_FIXUP_OK);
682 #endif /* CPU_ABORT_FIXUP_REQUIRED */
683 }
684
685 /*
686 * void prefetch_abort_handler(trapframe_t *tf)
687 *
688 * Abort handler called when instruction execution occurs at
689 * a non existent or restricted (access permissions) memory page.
690 * If the address is invalid and we were in SVC mode then panic as
691 * the kernel should never prefetch abort.
692 * If the address is invalid and the page is mapped then the user process
693 * does no have read permission so send it a signal.
694 * Otherwise fault the page in and try again.
695 */
696 void
697 prefetch_abort_handler(trapframe_t *tf)
698 {
699 struct lwp *l;
700 struct vm_map *map;
701 vaddr_t fault_pc, va;
702 ksiginfo_t ksi;
703 int error;
704
705 /* Update vmmeter statistics */
706 uvmexp.traps++;
707
708 /*
709 * Enable IRQ's (disabled by the abort) This always comes
710 * from user mode so we know interrupts were not disabled.
711 * But we check anyway.
712 */
713 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
714 enable_interrupts(I32_bit);
715
716 /* See if the cpu state needs to be fixed up */
717 switch (prefetch_abort_fixup(tf)) {
718 case ABORT_FIXUP_RETURN:
719 return;
720 case ABORT_FIXUP_FAILED:
721 /* Deliver a SIGILL to the process */
722 KSI_INIT_TRAP(&ksi);
723 ksi.ksi_signo = SIGILL;
724 ksi.ksi_code = ILL_ILLOPC;
725 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
726 l = curlwp;
727 l->l_addr->u_pcb.pcb_tf = tf;
728 goto do_trapsignal;
729 default:
730 break;
731 }
732
733 /* Prefetch aborts cannot happen in kernel mode */
734 if (__predict_false(!TRAP_USERMODE(tf)))
735 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
736
737 /* Get fault address */
738 fault_pc = tf->tf_pc;
739 l = curlwp;
740 l->l_addr->u_pcb.pcb_tf = tf;
741
742 /* Ok validate the address, can only execute in USER space */
743 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
744 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
745 KSI_INIT_TRAP(&ksi);
746 ksi.ksi_signo = SIGSEGV;
747 ksi.ksi_code = SEGV_ACCERR;
748 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
749 ksi.ksi_trap = fault_pc;
750 goto do_trapsignal;
751 }
752
753 map = &l->l_proc->p_vmspace->vm_map;
754 va = trunc_page(fault_pc);
755
756 /*
757 * See if the pmap can handle this fault on its own...
758 */
759 #ifdef DEBUG
760 last_fault_code = -1;
761 #endif
762 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
763 goto out;
764
765 #ifdef DIAGNOSTIC
766 if (__predict_false(current_intr_depth > 0)) {
767 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
768 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
769 }
770 #endif
771
772 error = uvm_fault(map, va, 0, VM_PROT_READ);
773 if (__predict_true(error == 0))
774 goto out;
775
776 KSI_INIT_TRAP(&ksi);
777
778 if (error == ENOMEM) {
779 printf("UVM: pid %d (%s), uid %d killed: "
780 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
781 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
782 l->l_proc->p_ucred->cr_uid : -1);
783 ksi.ksi_signo = SIGKILL;
784 } else
785 ksi.ksi_signo = SIGSEGV;
786
787 ksi.ksi_code = SEGV_MAPERR;
788 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
789 ksi.ksi_trap = fault_pc;
790 ksi.ksi_errno = error;
791
792 do_trapsignal:
793 call_trapsignal(l, &ksi);
794
795 out:
796 userret(l);
797 }
798
799 /*
800 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
801 * If the read succeeds, the value is written to 'rptr' and zero is returned.
802 * Else, return EFAULT.
803 */
804 int
805 badaddr_read(void *addr, size_t size, void *rptr)
806 {
807 extern int badaddr_read_1(const uint8_t *, uint8_t *);
808 extern int badaddr_read_2(const uint16_t *, uint16_t *);
809 extern int badaddr_read_4(const uint32_t *, uint32_t *);
810 union {
811 uint8_t v1;
812 uint16_t v2;
813 uint32_t v4;
814 } u;
815 int rv;
816
817 cpu_drain_writebuf();
818
819 /* Read from the test address. */
820 switch (size) {
821 case sizeof(uint8_t):
822 rv = badaddr_read_1(addr, &u.v1);
823 if (rv == 0 && rptr)
824 *(uint8_t *) rptr = u.v1;
825 break;
826
827 case sizeof(uint16_t):
828 rv = badaddr_read_2(addr, &u.v2);
829 if (rv == 0 && rptr)
830 *(uint16_t *) rptr = u.v2;
831 break;
832
833 case sizeof(uint32_t):
834 rv = badaddr_read_4(addr, &u.v4);
835 if (rv == 0 && rptr)
836 *(uint32_t *) rptr = u.v4;
837 break;
838
839 default:
840 panic("badaddr: invalid size (%lu)", (u_long) size);
841 }
842
843 /* Return EFAULT if the address was invalid, else zero */
844 return (rv);
845 }
846