Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.47
      1 /*	$NetBSD: fault.c,v 1.47 2004/01/26 10:45:24 scw Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.47 2004/01/26 10:45:24 scw Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/savar.h>
     90 #include <sys/user.h>
     91 #include <sys/kernel.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #include <arm/cpuconf.h>
     96 
     97 #include <machine/frame.h>
     98 #include <arm/arm32/katelib.h>
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #if defined(DDB) || defined(KGDB)
    102 #include <machine/db_machdep.h>
    103 #ifdef KGDB
    104 #include <sys/kgdb.h>
    105 #endif
    106 #if !defined(DDB)
    107 #define kdb_trap	kgdb_trap
    108 #endif
    109 #endif
    110 
    111 #include <arch/arm/arm/disassem.h>
    112 #include <arm/arm32/machdep.h>
    113 
    114 extern char fusubailout[];
    115 
    116 #ifdef DEBUG
    117 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    118 #endif
    119 
    120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    121     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    122 /* These CPUs may need data/prefetch abort fixups */
    123 #define	CPU_ABORT_FIXUP_REQUIRED
    124 #endif
    125 
    126 struct data_abort {
    127 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    128 	const char *desc;
    129 };
    130 
    131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    134 
    135 static const struct data_abort data_aborts[] = {
    136 	{dab_fatal,	"Vector Exception"},
    137 	{dab_align,	"Alignment Fault 1"},
    138 	{dab_fatal,	"Terminal Exception"},
    139 	{dab_align,	"Alignment Fault 3"},
    140 	{dab_buserr,	"External Linefetch Abort (S)"},
    141 	{NULL,		"Translation Fault (S)"},
    142 	{dab_buserr,	"External Linefetch Abort (P)"},
    143 	{NULL,		"Translation Fault (P)"},
    144 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    145 	{NULL,		"Domain Fault (S)"},
    146 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    147 	{NULL,		"Domain Fault (P)"},
    148 	{dab_buserr,	"External Translation Abort (L1)"},
    149 	{NULL,		"Permission Fault (S)"},
    150 	{dab_buserr,	"External Translation Abort (L2)"},
    151 	{NULL,		"Permission Fault (P)"}
    152 };
    153 
    154 /* Determine if a fault came from user mode */
    155 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    156 
    157 /* Determine if 'x' is a permission fault */
    158 #define	IS_PERMISSION_FAULT(x)					\
    159 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    160 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    161 
    162 #if 0
    163 /* maybe one day we'll do emulations */
    164 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    165 #else
    166 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    167 #endif
    168 
    169 static __inline void
    170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    171 {
    172 
    173 	KERNEL_PROC_LOCK(l->l_proc);
    174 	TRAPSIGNAL(l, ksi);
    175 	KERNEL_PROC_UNLOCK(l->l_proc);
    176 }
    177 
    178 static __inline int
    179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    180 {
    181 #ifdef CPU_ABORT_FIXUP_REQUIRED
    182 	int error;
    183 
    184 	/* Call the cpu specific data abort fixup routine */
    185 	error = cpu_dataabt_fixup(tf);
    186 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    187 		return (error);
    188 
    189 	/*
    190 	 * Oops, couldn't fix up the instruction
    191 	 */
    192 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
    193 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    194 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    195 	    *((u_int *)tf->tf_pc));
    196 	disassemble(tf->tf_pc);
    197 
    198 	/* Die now if this happened in kernel mode */
    199 	if (!TRAP_USERMODE(tf))
    200 		dab_fatal(tf, fsr, far, l, NULL);
    201 
    202 	return (error);
    203 #else
    204 	return (ABORT_FIXUP_OK);
    205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    206 }
    207 
    208 void
    209 data_abort_handler(trapframe_t *tf)
    210 {
    211 	struct vm_map *map;
    212 	struct pcb *pcb;
    213 	struct lwp *l;
    214 	u_int user, far, fsr;
    215 	vm_prot_t ftype;
    216 	void *onfault;
    217 	vaddr_t va;
    218 	int error;
    219 	ksiginfo_t ksi;
    220 
    221 	/* Grab FAR/FSR before enabling interrupts */
    222 	far = cpu_faultaddress();
    223 	fsr = cpu_faultstatus();
    224 
    225 	/* Update vmmeter statistics */
    226 	uvmexp.traps++;
    227 
    228 	/* Re-enable interrupts if they were enabled previously */
    229 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    230 		enable_interrupts(I32_bit);
    231 
    232 	/* Get the current lwp structure or lwp0 if there is none */
    233 	l = (curlwp != NULL) ? curlwp : &lwp0;
    234 
    235 	/* Data abort came from user mode? */
    236 	user = TRAP_USERMODE(tf);
    237 
    238 	/* Grab the current pcb */
    239 	pcb = &l->l_addr->u_pcb;
    240 
    241 	/* Invoke the appropriate handler, if necessary */
    242 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    243 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    244 		    l, &ksi))
    245 			goto do_trapsignal;
    246 		goto out;
    247 	}
    248 
    249 	/*
    250 	 * At this point, we're dealing with one of the following data aborts:
    251 	 *
    252 	 *  FAULT_TRANS_S  - Translation -- Section
    253 	 *  FAULT_TRANS_P  - Translation -- Page
    254 	 *  FAULT_DOMAIN_S - Domain -- Section
    255 	 *  FAULT_DOMAIN_P - Domain -- Page
    256 	 *  FAULT_PERM_S   - Permission -- Section
    257 	 *  FAULT_PERM_P   - Permission -- Page
    258 	 *
    259 	 * These are the main virtual memory-related faults signalled by
    260 	 * the MMU.
    261 	 */
    262 
    263 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    264 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    265 		tf->tf_r0 = EFAULT;
    266 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    267 		return;
    268 	}
    269 
    270 	if (user)
    271 		l->l_addr->u_pcb.pcb_tf = tf;
    272 
    273 	/*
    274 	 * Make sure the Program Counter is sane. We could fall foul of
    275 	 * someone executing Thumb code, in which case the PC might not
    276 	 * be word-aligned. This would cause a kernel alignment fault
    277 	 * further down if we have to decode the current instruction.
    278 	 * XXX: It would be nice to be able to support Thumb at some point.
    279 	 */
    280 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    281 		if (user) {
    282 			/*
    283 			 * Give the user an illegal instruction signal.
    284 			 */
    285 			/* Deliver a SIGILL to the process */
    286 			KSI_INIT_TRAP(&ksi);
    287 			ksi.ksi_signo = SIGILL;
    288 			ksi.ksi_code = ILL_ILLOPC;
    289 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    290 			ksi.ksi_trap = fsr;
    291 			goto do_trapsignal;
    292 		}
    293 
    294 		/*
    295 		 * The kernel never executes Thumb code.
    296 		 */
    297 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    298 		    "Program Counter\n");
    299 		dab_fatal(tf, fsr, far, l, NULL);
    300 	}
    301 
    302 	/* See if the cpu state needs to be fixed up */
    303 	switch (data_abort_fixup(tf, fsr, far, l)) {
    304 	case ABORT_FIXUP_RETURN:
    305 		return;
    306 	case ABORT_FIXUP_FAILED:
    307 		/* Deliver a SIGILL to the process */
    308 		KSI_INIT_TRAP(&ksi);
    309 		ksi.ksi_signo = SIGILL;
    310 		ksi.ksi_code = ILL_ILLOPC;
    311 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    312 		ksi.ksi_trap = fsr;
    313 		goto do_trapsignal;
    314 	default:
    315 		break;
    316 	}
    317 
    318 	va = trunc_page((vaddr_t)far);
    319 
    320 	/*
    321 	 * It is only a kernel address space fault iff:
    322 	 *	1. user == 0  and
    323 	 *	2. pcb_onfault not set or
    324 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    325 	 */
    326 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    327 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    328 	    __predict_true((pcb->pcb_onfault == NULL ||
    329 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    330 		map = kernel_map;
    331 
    332 		/* Was the fault due to the FPE/IPKDB ? */
    333 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    334 			KSI_INIT_TRAP(&ksi);
    335 			ksi.ksi_signo = SIGSEGV;
    336 			ksi.ksi_code = SEGV_ACCERR;
    337 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    338 			ksi.ksi_trap = fsr;
    339 
    340 			/*
    341 			 * Force exit via userret()
    342 			 * This is necessary as the FPE is an extension to
    343 			 * userland that actually runs in a priveledged mode
    344 			 * but uses USR mode permissions for its accesses.
    345 			 */
    346 			user = 1;
    347 			goto do_trapsignal;
    348 		}
    349 	} else {
    350 		map = &l->l_proc->p_vmspace->vm_map;
    351 		if (l->l_flag & L_SA) {
    352 			KDASSERT(l->l_proc->p_sa != NULL);
    353 			l->l_proc->p_sa->sa_vp_faultaddr = (vaddr_t)far;
    354 			l->l_flag |= L_SA_PAGEFAULT;
    355 		}
    356 	}
    357 
    358 	/*
    359 	 * We need to know whether the page should be mapped
    360 	 * as R or R/W. The MMU does not give us the info as
    361 	 * to whether the fault was caused by a read or a write.
    362 	 *
    363 	 * However, we know that a permission fault can only be
    364 	 * the result of a write to a read-only location, so
    365 	 * we can deal with those quickly.
    366 	 *
    367 	 * Otherwise we need to disassemble the instruction
    368 	 * responsible to determine if it was a write.
    369 	 */
    370 	if (IS_PERMISSION_FAULT(fsr))
    371 		ftype = VM_PROT_WRITE;
    372 	else {
    373 		u_int insn = ReadWord(tf->tf_pc);
    374 
    375 		if (((insn & 0x0c100000) == 0x04000000) ||	/* STR/STRB */
    376 		    ((insn & 0x0e1000b0) == 0x000000b0) ||	/* STRH/STRD */
    377 		    ((insn & 0x0a100000) == 0x08000000))	/* STM/CDT */
    378 			ftype = VM_PROT_WRITE;
    379 		else
    380 		if ((insn & 0x0fb00ff0) == 0x01000090)		/* SWP */
    381 			ftype = VM_PROT_READ | VM_PROT_WRITE;
    382 		else
    383 			ftype = VM_PROT_READ;
    384 	}
    385 
    386 	/*
    387 	 * See if the fault is as a result of ref/mod emulation,
    388 	 * or domain mismatch.
    389 	 */
    390 #ifdef DEBUG
    391 	last_fault_code = fsr;
    392 #endif
    393 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    394 		if (map != kernel_map)
    395 			l->l_flag &= ~L_SA_PAGEFAULT;
    396 		goto out;
    397 	}
    398 
    399 	if (__predict_false(current_intr_depth > 0)) {
    400 		if (pcb->pcb_onfault) {
    401 			tf->tf_r0 = EINVAL;
    402 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    403 			return;
    404 		}
    405 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    406 		dab_fatal(tf, fsr, far, l, NULL);
    407 	}
    408 
    409 	onfault = pcb->pcb_onfault;
    410 	pcb->pcb_onfault = NULL;
    411 	error = uvm_fault(map, va, 0, ftype);
    412 	pcb->pcb_onfault = onfault;
    413 
    414 	if (map != kernel_map)
    415 		l->l_flag &= ~L_SA_PAGEFAULT;
    416 
    417 	if (__predict_true(error == 0)) {
    418 		if (user)
    419 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    420 		goto out;
    421 	}
    422 
    423 	if (user == 0) {
    424 		if (pcb->pcb_onfault) {
    425 			tf->tf_r0 = error;
    426 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    427 			return;
    428 		}
    429 
    430 		printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
    431 		    error);
    432 		dab_fatal(tf, fsr, far, l, NULL);
    433 	}
    434 
    435 	KSI_INIT_TRAP(&ksi);
    436 
    437 	if (error == ENOMEM) {
    438 		printf("UVM: pid %d (%s), uid %d killed: "
    439 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    440 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    441 		     l->l_proc->p_ucred->cr_uid : -1);
    442 		ksi.ksi_signo = SIGKILL;
    443 	} else
    444 		ksi.ksi_signo = SIGSEGV;
    445 
    446 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    447 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    448 	ksi.ksi_trap = fsr;
    449 
    450 do_trapsignal:
    451 	call_trapsignal(l, &ksi);
    452 out:
    453 	/* If returning to user mode, make sure to invoke userret() */
    454 	if (user)
    455 		userret(l);
    456 }
    457 
    458 /*
    459  * dab_fatal() handles the following data aborts:
    460  *
    461  *  FAULT_WRTBUF_0 - Vector Exception
    462  *  FAULT_WRTBUF_1 - Terminal Exception
    463  *
    464  * We should never see these on a properly functioning system.
    465  *
    466  * This function is also called by the other handlers if they
    467  * detect a fatal problem.
    468  *
    469  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    470  */
    471 static int
    472 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    473 {
    474 	const char *mode;
    475 
    476 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    477 
    478 	if (l != NULL) {
    479 		printf("Fatal %s mode data abort: '%s'\n", mode,
    480 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    481 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    482 		if ((fsr & FAULT_IMPRECISE) == 0)
    483 			printf("%08x, ", far);
    484 		else
    485 			printf("Invalid,  ");
    486 		printf("spsr=%08x\n", tf->tf_spsr);
    487 	} else {
    488 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    489 		    mode, tf->tf_pc);
    490 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    491 	}
    492 
    493 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    494 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    495 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    496 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    497 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    498 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    499 	printf("r12=%08x, ", tf->tf_r12);
    500 
    501 	if (TRAP_USERMODE(tf))
    502 		printf("usp=%08x, ulr=%08x",
    503 		    tf->tf_usr_sp, tf->tf_usr_lr);
    504 	else
    505 		printf("ssp=%08x, slr=%08x",
    506 		    tf->tf_svc_sp, tf->tf_svc_lr);
    507 	printf(", pc =%08x\n\n", tf->tf_pc);
    508 
    509 #if defined(DDB) || defined(KGDB)
    510 	kdb_trap(T_FAULT, tf);
    511 #endif
    512 	panic("Fatal abort");
    513 	/*NOTREACHED*/
    514 }
    515 
    516 /*
    517  * dab_align() handles the following data aborts:
    518  *
    519  *  FAULT_ALIGN_0 - Alignment fault
    520  *  FAULT_ALIGN_0 - Alignment fault
    521  *
    522  * These faults are fatal if they happen in kernel mode. Otherwise, we
    523  * deliver a bus error to the process.
    524  */
    525 static int
    526 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    527 {
    528 
    529 	/* Alignment faults are always fatal if they occur in kernel mode */
    530 	if (!TRAP_USERMODE(tf))
    531 		dab_fatal(tf, fsr, far, l, NULL);
    532 
    533 	/* pcb_onfault *must* be NULL at this point */
    534 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
    535 
    536 	/* See if the cpu state needs to be fixed up */
    537 	(void) data_abort_fixup(tf, fsr, far, l);
    538 
    539 	/* Deliver a bus error signal to the process */
    540 	KSI_INIT_TRAP(ksi);
    541 	ksi->ksi_signo = SIGBUS;
    542 	ksi->ksi_code = BUS_ADRALN;
    543 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    544 	ksi->ksi_trap = fsr;
    545 
    546 	l->l_addr->u_pcb.pcb_tf = tf;
    547 
    548 	return (1);
    549 }
    550 
    551 /*
    552  * dab_buserr() handles the following data aborts:
    553  *
    554  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    555  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    556  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    557  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    558  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    559  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    560  *
    561  * If pcb_onfault is set, flag the fault and return to the handler.
    562  * If the fault occurred in user mode, give the process a SIGBUS.
    563  *
    564  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    565  * can be flagged as imprecise in the FSR. This causes a real headache
    566  * since some of the machine state is lost. In this case, tf->tf_pc
    567  * may not actually point to the offending instruction. In fact, if
    568  * we've taken a double abort fault, it generally points somewhere near
    569  * the top of "data_abort_entry" in exception.S.
    570  *
    571  * In all other cases, these data aborts are considered fatal.
    572  */
    573 static int
    574 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    575     ksiginfo_t *ksi)
    576 {
    577 	struct pcb *pcb = &l->l_addr->u_pcb;
    578 
    579 #ifdef __XSCALE__
    580 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    581 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    582 		/*
    583 		 * Oops, an imprecise, double abort fault. We've lost the
    584 		 * r14_abt/spsr_abt values corresponding to the original
    585 		 * abort, and the spsr saved in the trapframe indicates
    586 		 * ABT mode.
    587 		 */
    588 		tf->tf_spsr &= ~PSR_MODE;
    589 
    590 		/*
    591 		 * We use a simple heuristic to determine if the double abort
    592 		 * happened as a result of a kernel or user mode access.
    593 		 * If the current trapframe is at the top of the kernel stack,
    594 		 * the fault _must_ have come from user mode.
    595 		 */
    596 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    597 			/*
    598 			 * Kernel mode. We're either about to die a
    599 			 * spectacular death, or pcb_onfault will come
    600 			 * to our rescue. Either way, the current value
    601 			 * of tf->tf_pc is irrelevant.
    602 			 */
    603 			tf->tf_spsr |= PSR_SVC32_MODE;
    604 			if (pcb->pcb_onfault == NULL)
    605 				printf("\nKernel mode double abort!\n");
    606 		} else {
    607 			/*
    608 			 * User mode. We've lost the program counter at the
    609 			 * time of the fault (not that it was accurate anyway;
    610 			 * it's not called an imprecise fault for nothing).
    611 			 * About all we can do is copy r14_usr to tf_pc and
    612 			 * hope for the best. The process is about to get a
    613 			 * SIGBUS, so it's probably history anyway.
    614 			 */
    615 			tf->tf_spsr |= PSR_USR32_MODE;
    616 			tf->tf_pc = tf->tf_usr_lr;
    617 		}
    618 	}
    619 
    620 	/* FAR is invalid for imprecise exceptions */
    621 	if ((fsr & FAULT_IMPRECISE) != 0)
    622 		far = 0;
    623 #endif /* __XSCALE__ */
    624 
    625 	if (pcb->pcb_onfault) {
    626 		KDASSERT(TRAP_USERMODE(tf) == 0);
    627 		tf->tf_r0 = EFAULT;
    628 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    629 		return (0);
    630 	}
    631 
    632 	/* See if the cpu state needs to be fixed up */
    633 	(void) data_abort_fixup(tf, fsr, far, l);
    634 
    635 	/*
    636 	 * At this point, if the fault happened in kernel mode, we're toast
    637 	 */
    638 	if (!TRAP_USERMODE(tf))
    639 		dab_fatal(tf, fsr, far, l, NULL);
    640 
    641 	/* Deliver a bus error signal to the process */
    642 	KSI_INIT_TRAP(ksi);
    643 	ksi->ksi_signo = SIGBUS;
    644 	ksi->ksi_code = BUS_ADRERR;
    645 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    646 	ksi->ksi_trap = fsr;
    647 
    648 	l->l_addr->u_pcb.pcb_tf = tf;
    649 
    650 	return (1);
    651 }
    652 
    653 static __inline int
    654 prefetch_abort_fixup(trapframe_t *tf)
    655 {
    656 #ifdef CPU_ABORT_FIXUP_REQUIRED
    657 	int error;
    658 
    659 	/* Call the cpu specific prefetch abort fixup routine */
    660 	error = cpu_prefetchabt_fixup(tf);
    661 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    662 		return (error);
    663 
    664 	/*
    665 	 * Oops, couldn't fix up the instruction
    666 	 */
    667 	printf(
    668 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
    669 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    670 	printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    671 	    *((u_int *)tf->tf_pc));
    672 	disassemble(tf->tf_pc);
    673 
    674 	/* Die now if this happened in kernel mode */
    675 	if (!TRAP_USERMODE(tf))
    676 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    677 
    678 	return (error);
    679 #else
    680 	return (ABORT_FIXUP_OK);
    681 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    682 }
    683 
    684 /*
    685  * void prefetch_abort_handler(trapframe_t *tf)
    686  *
    687  * Abort handler called when instruction execution occurs at
    688  * a non existent or restricted (access permissions) memory page.
    689  * If the address is invalid and we were in SVC mode then panic as
    690  * the kernel should never prefetch abort.
    691  * If the address is invalid and the page is mapped then the user process
    692  * does no have read permission so send it a signal.
    693  * Otherwise fault the page in and try again.
    694  */
    695 void
    696 prefetch_abort_handler(trapframe_t *tf)
    697 {
    698 	struct lwp *l;
    699 	struct vm_map *map;
    700 	vaddr_t fault_pc, va;
    701 	ksiginfo_t ksi;
    702 	int error;
    703 
    704 	/* Update vmmeter statistics */
    705 	uvmexp.traps++;
    706 
    707 	/*
    708 	 * Enable IRQ's (disabled by the abort) This always comes
    709 	 * from user mode so we know interrupts were not disabled.
    710 	 * But we check anyway.
    711 	 */
    712 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    713 		enable_interrupts(I32_bit);
    714 
    715 	/* See if the cpu state needs to be fixed up */
    716 	switch (prefetch_abort_fixup(tf)) {
    717 	case ABORT_FIXUP_RETURN:
    718 		return;
    719 	case ABORT_FIXUP_FAILED:
    720 		/* Deliver a SIGILL to the process */
    721 		KSI_INIT_TRAP(&ksi);
    722 		ksi.ksi_signo = SIGILL;
    723 		ksi.ksi_code = ILL_ILLOPC;
    724 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    725 		l = curlwp;
    726 		l->l_addr->u_pcb.pcb_tf = tf;
    727 		goto do_trapsignal;
    728 	default:
    729 		break;
    730 	}
    731 
    732 	/* Prefetch aborts cannot happen in kernel mode */
    733 	if (__predict_false(!TRAP_USERMODE(tf)))
    734 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    735 
    736 	/* Get fault address */
    737 	fault_pc = tf->tf_pc;
    738 	l = curlwp;
    739 	l->l_addr->u_pcb.pcb_tf = tf;
    740 
    741 	/* Ok validate the address, can only execute in USER space */
    742 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    743 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    744 		KSI_INIT_TRAP(&ksi);
    745 		ksi.ksi_signo = SIGSEGV;
    746 		ksi.ksi_code = SEGV_ACCERR;
    747 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    748 		ksi.ksi_trap = fault_pc;
    749 		goto do_trapsignal;
    750 	}
    751 
    752 	map = &l->l_proc->p_vmspace->vm_map;
    753 	va = trunc_page(fault_pc);
    754 
    755 	/*
    756 	 * See if the pmap can handle this fault on its own...
    757 	 */
    758 #ifdef DEBUG
    759 	last_fault_code = -1;
    760 #endif
    761 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
    762 		goto out;
    763 
    764 #ifdef DIAGNOSTIC
    765 	if (__predict_false(current_intr_depth > 0)) {
    766 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    767 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    768 	}
    769 #endif
    770 
    771 	error = uvm_fault(map, va, 0, VM_PROT_READ);
    772 	if (__predict_true(error == 0))
    773 		goto out;
    774 
    775 	KSI_INIT_TRAP(&ksi);
    776 
    777 	if (error == ENOMEM) {
    778 		printf("UVM: pid %d (%s), uid %d killed: "
    779 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    780 		    (l->l_proc->p_cred && l->l_proc->p_ucred) ?
    781 		     l->l_proc->p_ucred->cr_uid : -1);
    782 		ksi.ksi_signo = SIGKILL;
    783 	} else
    784 		ksi.ksi_signo = SIGSEGV;
    785 
    786 	ksi.ksi_code = SEGV_MAPERR;
    787 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    788 	ksi.ksi_trap = fault_pc;
    789 
    790 do_trapsignal:
    791 	call_trapsignal(l, &ksi);
    792 
    793 out:
    794 	userret(l);
    795 }
    796 
    797 /*
    798  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    799  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    800  * Else, return EFAULT.
    801  */
    802 int
    803 badaddr_read(void *addr, size_t size, void *rptr)
    804 {
    805 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    806 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    807 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    808 	union {
    809 		uint8_t v1;
    810 		uint16_t v2;
    811 		uint32_t v4;
    812 	} u;
    813 	struct pcb *curpcb_save;
    814 	int rv, s;
    815 
    816 	cpu_drain_writebuf();
    817 
    818 	/*
    819 	 * We might be called at interrupt time, so arrange to steal
    820 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
    821 	 * handling works correctly.
    822 	 */
    823 	s = splhigh();
    824 	if ((curpcb_save = curpcb) == NULL)
    825 		curpcb = &lwp0.l_addr->u_pcb;
    826 
    827 	/* Read from the test address. */
    828 	switch (size) {
    829 	case sizeof(uint8_t):
    830 		rv = badaddr_read_1(addr, &u.v1);
    831 		if (rv == 0 && rptr)
    832 			*(uint8_t *) rptr = u.v1;
    833 		break;
    834 
    835 	case sizeof(uint16_t):
    836 		rv = badaddr_read_2(addr, &u.v2);
    837 		if (rv == 0 && rptr)
    838 			*(uint16_t *) rptr = u.v2;
    839 		break;
    840 
    841 	case sizeof(uint32_t):
    842 		rv = badaddr_read_4(addr, &u.v4);
    843 		if (rv == 0 && rptr)
    844 			*(uint32_t *) rptr = u.v4;
    845 		break;
    846 
    847 	default:
    848 		curpcb = curpcb_save;
    849 		panic("badaddr: invalid size (%lu)", (u_long) size);
    850 	}
    851 
    852 	/* Restore curpcb */
    853 	curpcb = curpcb_save;
    854 	splx(s);
    855 
    856 	/* Return EFAULT if the address was invalid, else zero */
    857 	return (rv);
    858 }
    859