fault.c revision 1.49 1 /* $NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <arm/cpuconf.h>
96
97 #include <machine/frame.h>
98 #include <arm/arm32/katelib.h>
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #if defined(DDB) || defined(KGDB)
102 #include <machine/db_machdep.h>
103 #ifdef KGDB
104 #include <sys/kgdb.h>
105 #endif
106 #if !defined(DDB)
107 #define kdb_trap kgdb_trap
108 #endif
109 #endif
110
111 #include <arch/arm/arm/disassem.h>
112 #include <arm/arm32/machdep.h>
113
114 extern char fusubailout[];
115
116 #ifdef DEBUG
117 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
118 #endif
119
120 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
121 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
122 /* These CPUs may need data/prefetch abort fixups */
123 #define CPU_ABORT_FIXUP_REQUIRED
124 #endif
125
126 struct data_abort {
127 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
128 const char *desc;
129 };
130
131 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134
135 static const struct data_abort data_aborts[] = {
136 {dab_fatal, "Vector Exception"},
137 {dab_align, "Alignment Fault 1"},
138 {dab_fatal, "Terminal Exception"},
139 {dab_align, "Alignment Fault 3"},
140 {dab_buserr, "External Linefetch Abort (S)"},
141 {NULL, "Translation Fault (S)"},
142 {dab_buserr, "External Linefetch Abort (P)"},
143 {NULL, "Translation Fault (P)"},
144 {dab_buserr, "External Non-Linefetch Abort (S)"},
145 {NULL, "Domain Fault (S)"},
146 {dab_buserr, "External Non-Linefetch Abort (P)"},
147 {NULL, "Domain Fault (P)"},
148 {dab_buserr, "External Translation Abort (L1)"},
149 {NULL, "Permission Fault (S)"},
150 {dab_buserr, "External Translation Abort (L2)"},
151 {NULL, "Permission Fault (P)"}
152 };
153
154 /* Determine if a fault came from user mode */
155 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
156
157 /* Determine if 'x' is a permission fault */
158 #define IS_PERMISSION_FAULT(x) \
159 (((1 << ((x) & FAULT_TYPE_MASK)) & \
160 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
161
162 #if 0
163 /* maybe one day we'll do emulations */
164 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
165 #else
166 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
167 #endif
168
169 static __inline void
170 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
171 {
172
173 KERNEL_PROC_LOCK(l->l_proc);
174 TRAPSIGNAL(l, ksi);
175 KERNEL_PROC_UNLOCK(l->l_proc);
176 }
177
178 static __inline int
179 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
180 {
181 #ifdef CPU_ABORT_FIXUP_REQUIRED
182 int error;
183
184 /* Call the CPU specific data abort fixup routine */
185 error = cpu_dataabt_fixup(tf);
186 if (__predict_true(error != ABORT_FIXUP_FAILED))
187 return (error);
188
189 /*
190 * Oops, couldn't fix up the instruction
191 */
192 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
193 TRAP_USERMODE(tf) ? "user" : "kernel");
194 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
195 *((u_int *)tf->tf_pc));
196 disassemble(tf->tf_pc);
197
198 /* Die now if this happened in kernel mode */
199 if (!TRAP_USERMODE(tf))
200 dab_fatal(tf, fsr, far, l, NULL);
201
202 return (error);
203 #else
204 return (ABORT_FIXUP_OK);
205 #endif /* CPU_ABORT_FIXUP_REQUIRED */
206 }
207
208 void
209 data_abort_handler(trapframe_t *tf)
210 {
211 struct vm_map *map;
212 struct pcb *pcb;
213 struct lwp *l;
214 u_int user, far, fsr;
215 vm_prot_t ftype;
216 void *onfault;
217 vaddr_t va;
218 int error;
219 ksiginfo_t ksi;
220
221 /* Grab FAR/FSR before enabling interrupts */
222 far = cpu_faultaddress();
223 fsr = cpu_faultstatus();
224
225 /* Update vmmeter statistics */
226 uvmexp.traps++;
227
228 /* Re-enable interrupts if they were enabled previously */
229 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
230 enable_interrupts(I32_bit);
231
232 /* Get the current lwp structure or lwp0 if there is none */
233 l = (curlwp != NULL) ? curlwp : &lwp0;
234
235 /* Data abort came from user mode? */
236 user = TRAP_USERMODE(tf);
237
238 /* Grab the current pcb */
239 pcb = &l->l_addr->u_pcb;
240
241 /* Invoke the appropriate handler, if necessary */
242 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
243 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
244 l, &ksi))
245 goto do_trapsignal;
246 goto out;
247 }
248
249 /*
250 * At this point, we're dealing with one of the following data aborts:
251 *
252 * FAULT_TRANS_S - Translation -- Section
253 * FAULT_TRANS_P - Translation -- Page
254 * FAULT_DOMAIN_S - Domain -- Section
255 * FAULT_DOMAIN_P - Domain -- Page
256 * FAULT_PERM_S - Permission -- Section
257 * FAULT_PERM_P - Permission -- Page
258 *
259 * These are the main virtual memory-related faults signalled by
260 * the MMU.
261 */
262
263 /* fusubailout is used by [fs]uswintr to avoid page faulting */
264 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
265 tf->tf_r0 = EFAULT;
266 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
267 return;
268 }
269
270 if (user)
271 l->l_addr->u_pcb.pcb_tf = tf;
272
273 /*
274 * Make sure the Program Counter is sane. We could fall foul of
275 * someone executing Thumb code, in which case the PC might not
276 * be word-aligned. This would cause a kernel alignment fault
277 * further down if we have to decode the current instruction.
278 * XXX: It would be nice to be able to support Thumb at some point.
279 */
280 if (__predict_false((tf->tf_pc & 3) != 0)) {
281 if (user) {
282 /*
283 * Give the user an illegal instruction signal.
284 */
285 /* Deliver a SIGILL to the process */
286 KSI_INIT_TRAP(&ksi);
287 ksi.ksi_signo = SIGILL;
288 ksi.ksi_code = ILL_ILLOPC;
289 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
290 ksi.ksi_trap = fsr;
291 goto do_trapsignal;
292 }
293
294 /*
295 * The kernel never executes Thumb code.
296 */
297 printf("\ndata_abort_fault: Misaligned Kernel-mode "
298 "Program Counter\n");
299 dab_fatal(tf, fsr, far, l, NULL);
300 }
301
302 /* See if the CPU state needs to be fixed up */
303 switch (data_abort_fixup(tf, fsr, far, l)) {
304 case ABORT_FIXUP_RETURN:
305 return;
306 case ABORT_FIXUP_FAILED:
307 /* Deliver a SIGILL to the process */
308 KSI_INIT_TRAP(&ksi);
309 ksi.ksi_signo = SIGILL;
310 ksi.ksi_code = ILL_ILLOPC;
311 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
312 ksi.ksi_trap = fsr;
313 goto do_trapsignal;
314 default:
315 break;
316 }
317
318 va = trunc_page((vaddr_t)far);
319
320 /*
321 * It is only a kernel address space fault iff:
322 * 1. user == 0 and
323 * 2. pcb_onfault not set or
324 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
325 */
326 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
327 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
328 __predict_true((pcb->pcb_onfault == NULL ||
329 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
330 map = kernel_map;
331
332 /* Was the fault due to the FPE/IPKDB ? */
333 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGSEGV;
336 ksi.ksi_code = SEGV_ACCERR;
337 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339
340 /*
341 * Force exit via userret()
342 * This is necessary as the FPE is an extension to
343 * userland that actually runs in a priveledged mode
344 * but uses USR mode permissions for its accesses.
345 */
346 user = 1;
347 goto do_trapsignal;
348 }
349 } else {
350 map = &l->l_proc->p_vmspace->vm_map;
351 if (l->l_flag & L_SA) {
352 l->l_savp->savp_faultaddr = (vaddr_t)far;
353 l->l_flag |= L_SA_PAGEFAULT;
354 }
355 }
356
357 /*
358 * We need to know whether the page should be mapped
359 * as R or R/W. The MMU does not give us the info as
360 * to whether the fault was caused by a read or a write.
361 *
362 * However, we know that a permission fault can only be
363 * the result of a write to a read-only location, so
364 * we can deal with those quickly.
365 *
366 * Otherwise we need to disassemble the instruction
367 * responsible to determine if it was a write.
368 */
369 if (IS_PERMISSION_FAULT(fsr))
370 ftype = VM_PROT_WRITE;
371 else {
372 u_int insn = ReadWord(tf->tf_pc);
373
374 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
375 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
376 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
377 ftype = VM_PROT_WRITE;
378 else
379 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
380 ftype = VM_PROT_READ | VM_PROT_WRITE;
381 else
382 ftype = VM_PROT_READ;
383 }
384
385 /*
386 * See if the fault is as a result of ref/mod emulation,
387 * or domain mismatch.
388 */
389 #ifdef DEBUG
390 last_fault_code = fsr;
391 #endif
392 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
393 if (map != kernel_map)
394 l->l_flag &= ~L_SA_PAGEFAULT;
395 goto out;
396 }
397
398 if (__predict_false(current_intr_depth > 0)) {
399 if (pcb->pcb_onfault) {
400 tf->tf_r0 = EINVAL;
401 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
402 return;
403 }
404 printf("\nNon-emulated page fault with intr_depth > 0\n");
405 dab_fatal(tf, fsr, far, l, NULL);
406 }
407
408 onfault = pcb->pcb_onfault;
409 pcb->pcb_onfault = NULL;
410 error = uvm_fault(map, va, 0, ftype);
411 pcb->pcb_onfault = onfault;
412
413 if (map != kernel_map)
414 l->l_flag &= ~L_SA_PAGEFAULT;
415
416 if (__predict_true(error == 0)) {
417 if (user)
418 uvm_grow(l->l_proc, va); /* Record any stack growth */
419 goto out;
420 }
421
422 if (user == 0) {
423 if (pcb->pcb_onfault) {
424 tf->tf_r0 = error;
425 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
426 return;
427 }
428
429 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
430 error);
431 dab_fatal(tf, fsr, far, l, NULL);
432 }
433
434 KSI_INIT_TRAP(&ksi);
435
436 if (error == ENOMEM) {
437 printf("UVM: pid %d (%s), uid %d killed: "
438 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
439 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
440 l->l_proc->p_ucred->cr_uid : -1);
441 ksi.ksi_signo = SIGKILL;
442 } else
443 ksi.ksi_signo = SIGSEGV;
444
445 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
446 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
447 ksi.ksi_trap = fsr;
448
449 do_trapsignal:
450 call_trapsignal(l, &ksi);
451 out:
452 /* If returning to user mode, make sure to invoke userret() */
453 if (user)
454 userret(l);
455 }
456
457 /*
458 * dab_fatal() handles the following data aborts:
459 *
460 * FAULT_WRTBUF_0 - Vector Exception
461 * FAULT_WRTBUF_1 - Terminal Exception
462 *
463 * We should never see these on a properly functioning system.
464 *
465 * This function is also called by the other handlers if they
466 * detect a fatal problem.
467 *
468 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
469 */
470 static int
471 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
472 {
473 const char *mode;
474
475 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
476
477 if (l != NULL) {
478 printf("Fatal %s mode data abort: '%s'\n", mode,
479 data_aborts[fsr & FAULT_TYPE_MASK].desc);
480 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
481 if ((fsr & FAULT_IMPRECISE) == 0)
482 printf("%08x, ", far);
483 else
484 printf("Invalid, ");
485 printf("spsr=%08x\n", tf->tf_spsr);
486 } else {
487 printf("Fatal %s mode prefetch abort at 0x%08x\n",
488 mode, tf->tf_pc);
489 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
490 }
491
492 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
493 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
494 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
495 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
496 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
497 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
498 printf("r12=%08x, ", tf->tf_r12);
499
500 if (TRAP_USERMODE(tf))
501 printf("usp=%08x, ulr=%08x",
502 tf->tf_usr_sp, tf->tf_usr_lr);
503 else
504 printf("ssp=%08x, slr=%08x",
505 tf->tf_svc_sp, tf->tf_svc_lr);
506 printf(", pc =%08x\n\n", tf->tf_pc);
507
508 #if defined(DDB) || defined(KGDB)
509 kdb_trap(T_FAULT, tf);
510 #endif
511 panic("Fatal abort");
512 /*NOTREACHED*/
513 }
514
515 /*
516 * dab_align() handles the following data aborts:
517 *
518 * FAULT_ALIGN_0 - Alignment fault
519 * FAULT_ALIGN_0 - Alignment fault
520 *
521 * These faults are fatal if they happen in kernel mode. Otherwise, we
522 * deliver a bus error to the process.
523 */
524 static int
525 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
526 {
527
528 /* Alignment faults are always fatal if they occur in kernel mode */
529 if (!TRAP_USERMODE(tf))
530 dab_fatal(tf, fsr, far, l, NULL);
531
532 /* pcb_onfault *must* be NULL at this point */
533 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
534
535 /* See if the CPU state needs to be fixed up */
536 (void) data_abort_fixup(tf, fsr, far, l);
537
538 /* Deliver a bus error signal to the process */
539 KSI_INIT_TRAP(ksi);
540 ksi->ksi_signo = SIGBUS;
541 ksi->ksi_code = BUS_ADRALN;
542 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
543 ksi->ksi_trap = fsr;
544
545 l->l_addr->u_pcb.pcb_tf = tf;
546
547 return (1);
548 }
549
550 /*
551 * dab_buserr() handles the following data aborts:
552 *
553 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
554 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
555 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
556 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
557 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
558 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
559 *
560 * If pcb_onfault is set, flag the fault and return to the handler.
561 * If the fault occurred in user mode, give the process a SIGBUS.
562 *
563 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
564 * can be flagged as imprecise in the FSR. This causes a real headache
565 * since some of the machine state is lost. In this case, tf->tf_pc
566 * may not actually point to the offending instruction. In fact, if
567 * we've taken a double abort fault, it generally points somewhere near
568 * the top of "data_abort_entry" in exception.S.
569 *
570 * In all other cases, these data aborts are considered fatal.
571 */
572 static int
573 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
574 ksiginfo_t *ksi)
575 {
576 struct pcb *pcb = &l->l_addr->u_pcb;
577
578 #ifdef __XSCALE__
579 if ((fsr & FAULT_IMPRECISE) != 0 &&
580 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
581 /*
582 * Oops, an imprecise, double abort fault. We've lost the
583 * r14_abt/spsr_abt values corresponding to the original
584 * abort, and the spsr saved in the trapframe indicates
585 * ABT mode.
586 */
587 tf->tf_spsr &= ~PSR_MODE;
588
589 /*
590 * We use a simple heuristic to determine if the double abort
591 * happened as a result of a kernel or user mode access.
592 * If the current trapframe is at the top of the kernel stack,
593 * the fault _must_ have come from user mode.
594 */
595 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
596 /*
597 * Kernel mode. We're either about to die a
598 * spectacular death, or pcb_onfault will come
599 * to our rescue. Either way, the current value
600 * of tf->tf_pc is irrelevant.
601 */
602 tf->tf_spsr |= PSR_SVC32_MODE;
603 if (pcb->pcb_onfault == NULL)
604 printf("\nKernel mode double abort!\n");
605 } else {
606 /*
607 * User mode. We've lost the program counter at the
608 * time of the fault (not that it was accurate anyway;
609 * it's not called an imprecise fault for nothing).
610 * About all we can do is copy r14_usr to tf_pc and
611 * hope for the best. The process is about to get a
612 * SIGBUS, so it's probably history anyway.
613 */
614 tf->tf_spsr |= PSR_USR32_MODE;
615 tf->tf_pc = tf->tf_usr_lr;
616 }
617 }
618
619 /* FAR is invalid for imprecise exceptions */
620 if ((fsr & FAULT_IMPRECISE) != 0)
621 far = 0;
622 #endif /* __XSCALE__ */
623
624 if (pcb->pcb_onfault) {
625 KDASSERT(TRAP_USERMODE(tf) == 0);
626 tf->tf_r0 = EFAULT;
627 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
628 return (0);
629 }
630
631 /* See if the CPU state needs to be fixed up */
632 (void) data_abort_fixup(tf, fsr, far, l);
633
634 /*
635 * At this point, if the fault happened in kernel mode, we're toast
636 */
637 if (!TRAP_USERMODE(tf))
638 dab_fatal(tf, fsr, far, l, NULL);
639
640 /* Deliver a bus error signal to the process */
641 KSI_INIT_TRAP(ksi);
642 ksi->ksi_signo = SIGBUS;
643 ksi->ksi_code = BUS_ADRERR;
644 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
645 ksi->ksi_trap = fsr;
646
647 l->l_addr->u_pcb.pcb_tf = tf;
648
649 return (1);
650 }
651
652 static __inline int
653 prefetch_abort_fixup(trapframe_t *tf)
654 {
655 #ifdef CPU_ABORT_FIXUP_REQUIRED
656 int error;
657
658 /* Call the CPU specific prefetch abort fixup routine */
659 error = cpu_prefetchabt_fixup(tf);
660 if (__predict_true(error != ABORT_FIXUP_FAILED))
661 return (error);
662
663 /*
664 * Oops, couldn't fix up the instruction
665 */
666 printf(
667 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
668 TRAP_USERMODE(tf) ? "user" : "kernel");
669 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
670 *((u_int *)tf->tf_pc));
671 disassemble(tf->tf_pc);
672
673 /* Die now if this happened in kernel mode */
674 if (!TRAP_USERMODE(tf))
675 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
676
677 return (error);
678 #else
679 return (ABORT_FIXUP_OK);
680 #endif /* CPU_ABORT_FIXUP_REQUIRED */
681 }
682
683 /*
684 * void prefetch_abort_handler(trapframe_t *tf)
685 *
686 * Abort handler called when instruction execution occurs at
687 * a non existent or restricted (access permissions) memory page.
688 * If the address is invalid and we were in SVC mode then panic as
689 * the kernel should never prefetch abort.
690 * If the address is invalid and the page is mapped then the user process
691 * does no have read permission so send it a signal.
692 * Otherwise fault the page in and try again.
693 */
694 void
695 prefetch_abort_handler(trapframe_t *tf)
696 {
697 struct lwp *l;
698 struct vm_map *map;
699 vaddr_t fault_pc, va;
700 ksiginfo_t ksi;
701 int error;
702
703 /* Update vmmeter statistics */
704 uvmexp.traps++;
705
706 /*
707 * Enable IRQ's (disabled by the abort) This always comes
708 * from user mode so we know interrupts were not disabled.
709 * But we check anyway.
710 */
711 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
712 enable_interrupts(I32_bit);
713
714 /* See if the CPU state needs to be fixed up */
715 switch (prefetch_abort_fixup(tf)) {
716 case ABORT_FIXUP_RETURN:
717 return;
718 case ABORT_FIXUP_FAILED:
719 /* Deliver a SIGILL to the process */
720 KSI_INIT_TRAP(&ksi);
721 ksi.ksi_signo = SIGILL;
722 ksi.ksi_code = ILL_ILLOPC;
723 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
724 l = curlwp;
725 l->l_addr->u_pcb.pcb_tf = tf;
726 goto do_trapsignal;
727 default:
728 break;
729 }
730
731 /* Prefetch aborts cannot happen in kernel mode */
732 if (__predict_false(!TRAP_USERMODE(tf)))
733 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
734
735 /* Get fault address */
736 fault_pc = tf->tf_pc;
737 l = curlwp;
738 l->l_addr->u_pcb.pcb_tf = tf;
739
740 /* Ok validate the address, can only execute in USER space */
741 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
742 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
743 KSI_INIT_TRAP(&ksi);
744 ksi.ksi_signo = SIGSEGV;
745 ksi.ksi_code = SEGV_ACCERR;
746 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
747 ksi.ksi_trap = fault_pc;
748 goto do_trapsignal;
749 }
750
751 map = &l->l_proc->p_vmspace->vm_map;
752 va = trunc_page(fault_pc);
753
754 /*
755 * See if the pmap can handle this fault on its own...
756 */
757 #ifdef DEBUG
758 last_fault_code = -1;
759 #endif
760 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
761 goto out;
762
763 #ifdef DIAGNOSTIC
764 if (__predict_false(current_intr_depth > 0)) {
765 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
766 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
767 }
768 #endif
769
770 error = uvm_fault(map, va, 0, VM_PROT_READ);
771 if (__predict_true(error == 0))
772 goto out;
773
774 KSI_INIT_TRAP(&ksi);
775
776 if (error == ENOMEM) {
777 printf("UVM: pid %d (%s), uid %d killed: "
778 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
779 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
780 l->l_proc->p_ucred->cr_uid : -1);
781 ksi.ksi_signo = SIGKILL;
782 } else
783 ksi.ksi_signo = SIGSEGV;
784
785 ksi.ksi_code = SEGV_MAPERR;
786 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
787 ksi.ksi_trap = fault_pc;
788
789 do_trapsignal:
790 call_trapsignal(l, &ksi);
791
792 out:
793 userret(l);
794 }
795
796 /*
797 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
798 * If the read succeeds, the value is written to 'rptr' and zero is returned.
799 * Else, return EFAULT.
800 */
801 int
802 badaddr_read(void *addr, size_t size, void *rptr)
803 {
804 extern int badaddr_read_1(const uint8_t *, uint8_t *);
805 extern int badaddr_read_2(const uint16_t *, uint16_t *);
806 extern int badaddr_read_4(const uint32_t *, uint32_t *);
807 union {
808 uint8_t v1;
809 uint16_t v2;
810 uint32_t v4;
811 } u;
812 struct pcb *curpcb_save;
813 int rv, s;
814
815 cpu_drain_writebuf();
816
817 /*
818 * We might be called at interrupt time, so arrange to steal
819 * lwp0's PCB temporarily, if required, so that pcb_onfault
820 * handling works correctly.
821 */
822 s = splhigh();
823 if ((curpcb_save = curpcb) == NULL)
824 curpcb = &lwp0.l_addr->u_pcb;
825
826 /* Read from the test address. */
827 switch (size) {
828 case sizeof(uint8_t):
829 rv = badaddr_read_1(addr, &u.v1);
830 if (rv == 0 && rptr)
831 *(uint8_t *) rptr = u.v1;
832 break;
833
834 case sizeof(uint16_t):
835 rv = badaddr_read_2(addr, &u.v2);
836 if (rv == 0 && rptr)
837 *(uint16_t *) rptr = u.v2;
838 break;
839
840 case sizeof(uint32_t):
841 rv = badaddr_read_4(addr, &u.v4);
842 if (rv == 0 && rptr)
843 *(uint32_t *) rptr = u.v4;
844 break;
845
846 default:
847 curpcb = curpcb_save;
848 panic("badaddr: invalid size (%lu)", (u_long) size);
849 }
850
851 /* Restore curpcb */
852 curpcb = curpcb_save;
853 splx(s);
854
855 /* Return EFAULT if the address was invalid, else zero */
856 return (rv);
857 }
858