fault.c revision 1.50 1 /* $NetBSD: fault.c,v 1.50 2004/08/08 14:21:29 rearnsha Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.50 2004/08/08 14:21:29 rearnsha Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92
93 #include <uvm/uvm_extern.h>
94 #include <uvm/uvm_stat.h>
95 #ifdef UVMHIST
96 #include <uvm/uvm.h>
97 #endif
98
99 #include <arm/cpuconf.h>
100
101 #include <machine/frame.h>
102 #include <arm/arm32/katelib.h>
103 #include <machine/cpu.h>
104 #include <machine/intr.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if a fault came from user mode */
159 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
160
161 /* Determine if 'x' is a permission fault */
162 #define IS_PERMISSION_FAULT(x) \
163 (((1 << ((x) & FAULT_TYPE_MASK)) & \
164 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
165
166 #if 0
167 /* maybe one day we'll do emulations */
168 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
169 #else
170 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
171 #endif
172
173 static __inline void
174 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
175 {
176
177 KERNEL_PROC_LOCK(l->l_proc);
178 TRAPSIGNAL(l, ksi);
179 KERNEL_PROC_UNLOCK(l->l_proc);
180 }
181
182 static __inline int
183 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
184 {
185 #ifdef CPU_ABORT_FIXUP_REQUIRED
186 int error;
187
188 /* Call the CPU specific data abort fixup routine */
189 error = cpu_dataabt_fixup(tf);
190 if (__predict_true(error != ABORT_FIXUP_FAILED))
191 return (error);
192
193 /*
194 * Oops, couldn't fix up the instruction
195 */
196 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
197 TRAP_USERMODE(tf) ? "user" : "kernel");
198 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
199 *((u_int *)tf->tf_pc));
200 disassemble(tf->tf_pc);
201
202 /* Die now if this happened in kernel mode */
203 if (!TRAP_USERMODE(tf))
204 dab_fatal(tf, fsr, far, l, NULL);
205
206 return (error);
207 #else
208 return (ABORT_FIXUP_OK);
209 #endif /* CPU_ABORT_FIXUP_REQUIRED */
210 }
211
212 void
213 data_abort_handler(trapframe_t *tf)
214 {
215 struct vm_map *map;
216 struct pcb *pcb;
217 struct lwp *l;
218 u_int user, far, fsr;
219 vm_prot_t ftype;
220 void *onfault;
221 vaddr_t va;
222 int error;
223 ksiginfo_t ksi;
224
225 UVMHIST_FUNC("data_abort_handler");
226
227 /* Grab FAR/FSR before enabling interrupts */
228 far = cpu_faultaddress();
229 fsr = cpu_faultstatus();
230
231 UVMHIST_CALLED(maphist);
232 /* Update vmmeter statistics */
233 uvmexp.traps++;
234
235 /* Re-enable interrupts if they were enabled previously */
236 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
237 enable_interrupts(I32_bit);
238
239 /* Get the current lwp structure or lwp0 if there is none */
240 l = (curlwp != NULL) ? curlwp : &lwp0;
241
242 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
243 tf->tf_pc, l, far, fsr);
244
245 /* Data abort came from user mode? */
246 user = TRAP_USERMODE(tf);
247
248 /* Grab the current pcb */
249 pcb = &l->l_addr->u_pcb;
250
251 /* Invoke the appropriate handler, if necessary */
252 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
253 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
254 l, &ksi))
255 goto do_trapsignal;
256 goto out;
257 }
258
259 /*
260 * At this point, we're dealing with one of the following data aborts:
261 *
262 * FAULT_TRANS_S - Translation -- Section
263 * FAULT_TRANS_P - Translation -- Page
264 * FAULT_DOMAIN_S - Domain -- Section
265 * FAULT_DOMAIN_P - Domain -- Page
266 * FAULT_PERM_S - Permission -- Section
267 * FAULT_PERM_P - Permission -- Page
268 *
269 * These are the main virtual memory-related faults signalled by
270 * the MMU.
271 */
272
273 /* fusubailout is used by [fs]uswintr to avoid page faulting */
274 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
275 tf->tf_r0 = EFAULT;
276 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
277 return;
278 }
279
280 if (user)
281 l->l_addr->u_pcb.pcb_tf = tf;
282
283 /*
284 * Make sure the Program Counter is sane. We could fall foul of
285 * someone executing Thumb code, in which case the PC might not
286 * be word-aligned. This would cause a kernel alignment fault
287 * further down if we have to decode the current instruction.
288 * XXX: It would be nice to be able to support Thumb at some point.
289 */
290 if (__predict_false((tf->tf_pc & 3) != 0)) {
291 if (user) {
292 /*
293 * Give the user an illegal instruction signal.
294 */
295 /* Deliver a SIGILL to the process */
296 KSI_INIT_TRAP(&ksi);
297 ksi.ksi_signo = SIGILL;
298 ksi.ksi_code = ILL_ILLOPC;
299 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
300 ksi.ksi_trap = fsr;
301 goto do_trapsignal;
302 }
303
304 /*
305 * The kernel never executes Thumb code.
306 */
307 printf("\ndata_abort_fault: Misaligned Kernel-mode "
308 "Program Counter\n");
309 dab_fatal(tf, fsr, far, l, NULL);
310 }
311
312 /* See if the CPU state needs to be fixed up */
313 switch (data_abort_fixup(tf, fsr, far, l)) {
314 case ABORT_FIXUP_RETURN:
315 return;
316 case ABORT_FIXUP_FAILED:
317 /* Deliver a SIGILL to the process */
318 KSI_INIT_TRAP(&ksi);
319 ksi.ksi_signo = SIGILL;
320 ksi.ksi_code = ILL_ILLOPC;
321 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
322 ksi.ksi_trap = fsr;
323 goto do_trapsignal;
324 default:
325 break;
326 }
327
328 va = trunc_page((vaddr_t)far);
329
330 /*
331 * It is only a kernel address space fault iff:
332 * 1. user == 0 and
333 * 2. pcb_onfault not set or
334 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
335 */
336 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
337 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
338 __predict_true((pcb->pcb_onfault == NULL ||
339 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
340 map = kernel_map;
341
342 /* Was the fault due to the FPE/IPKDB ? */
343 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
344 KSI_INIT_TRAP(&ksi);
345 ksi.ksi_signo = SIGSEGV;
346 ksi.ksi_code = SEGV_ACCERR;
347 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
348 ksi.ksi_trap = fsr;
349
350 /*
351 * Force exit via userret()
352 * This is necessary as the FPE is an extension to
353 * userland that actually runs in a priveledged mode
354 * but uses USR mode permissions for its accesses.
355 */
356 user = 1;
357 goto do_trapsignal;
358 }
359 } else {
360 map = &l->l_proc->p_vmspace->vm_map;
361 if (l->l_flag & L_SA) {
362 l->l_savp->savp_faultaddr = (vaddr_t)far;
363 l->l_flag |= L_SA_PAGEFAULT;
364 }
365 }
366
367 /*
368 * We need to know whether the page should be mapped
369 * as R or R/W. The MMU does not give us the info as
370 * to whether the fault was caused by a read or a write.
371 *
372 * However, we know that a permission fault can only be
373 * the result of a write to a read-only location, so
374 * we can deal with those quickly.
375 *
376 * Otherwise we need to disassemble the instruction
377 * responsible to determine if it was a write.
378 */
379 if (IS_PERMISSION_FAULT(fsr))
380 ftype = VM_PROT_WRITE;
381 else {
382 u_int insn = ReadWord(tf->tf_pc);
383
384 if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
385 ((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
386 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
387 ftype = VM_PROT_WRITE;
388 else
389 if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
390 ftype = VM_PROT_READ | VM_PROT_WRITE;
391 else
392 ftype = VM_PROT_READ;
393 }
394
395 /*
396 * See if the fault is as a result of ref/mod emulation,
397 * or domain mismatch.
398 */
399 #ifdef DEBUG
400 last_fault_code = fsr;
401 #endif
402 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
403 if (map != kernel_map)
404 l->l_flag &= ~L_SA_PAGEFAULT;
405 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
406 goto out;
407 }
408
409 if (__predict_false(current_intr_depth > 0)) {
410 if (pcb->pcb_onfault) {
411 tf->tf_r0 = EINVAL;
412 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
413 return;
414 }
415 printf("\nNon-emulated page fault with intr_depth > 0\n");
416 dab_fatal(tf, fsr, far, l, NULL);
417 }
418
419 onfault = pcb->pcb_onfault;
420 pcb->pcb_onfault = NULL;
421 error = uvm_fault(map, va, 0, ftype);
422 pcb->pcb_onfault = onfault;
423
424 if (map != kernel_map)
425 l->l_flag &= ~L_SA_PAGEFAULT;
426
427 if (__predict_true(error == 0)) {
428 if (user)
429 uvm_grow(l->l_proc, va); /* Record any stack growth */
430 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
431 goto out;
432 }
433
434 if (user == 0) {
435 if (pcb->pcb_onfault) {
436 tf->tf_r0 = error;
437 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
438 return;
439 }
440
441 printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
442 error);
443 dab_fatal(tf, fsr, far, l, NULL);
444 }
445
446 KSI_INIT_TRAP(&ksi);
447
448 if (error == ENOMEM) {
449 printf("UVM: pid %d (%s), uid %d killed: "
450 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
451 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
452 l->l_proc->p_ucred->cr_uid : -1);
453 ksi.ksi_signo = SIGKILL;
454 } else
455 ksi.ksi_signo = SIGSEGV;
456
457 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
458 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
459 ksi.ksi_trap = fsr;
460 UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
461
462 do_trapsignal:
463 call_trapsignal(l, &ksi);
464 out:
465 /* If returning to user mode, make sure to invoke userret() */
466 if (user)
467 userret(l);
468 }
469
470 /*
471 * dab_fatal() handles the following data aborts:
472 *
473 * FAULT_WRTBUF_0 - Vector Exception
474 * FAULT_WRTBUF_1 - Terminal Exception
475 *
476 * We should never see these on a properly functioning system.
477 *
478 * This function is also called by the other handlers if they
479 * detect a fatal problem.
480 *
481 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
482 */
483 static int
484 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
485 {
486 const char *mode;
487
488 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
489
490 if (l != NULL) {
491 printf("Fatal %s mode data abort: '%s'\n", mode,
492 data_aborts[fsr & FAULT_TYPE_MASK].desc);
493 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
494 if ((fsr & FAULT_IMPRECISE) == 0)
495 printf("%08x, ", far);
496 else
497 printf("Invalid, ");
498 printf("spsr=%08x\n", tf->tf_spsr);
499 } else {
500 printf("Fatal %s mode prefetch abort at 0x%08x\n",
501 mode, tf->tf_pc);
502 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
503 }
504
505 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
506 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
507 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
508 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
509 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
510 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
511 printf("r12=%08x, ", tf->tf_r12);
512
513 if (TRAP_USERMODE(tf))
514 printf("usp=%08x, ulr=%08x",
515 tf->tf_usr_sp, tf->tf_usr_lr);
516 else
517 printf("ssp=%08x, slr=%08x",
518 tf->tf_svc_sp, tf->tf_svc_lr);
519 printf(", pc =%08x\n\n", tf->tf_pc);
520
521 #if defined(DDB) || defined(KGDB)
522 kdb_trap(T_FAULT, tf);
523 #endif
524 panic("Fatal abort");
525 /*NOTREACHED*/
526 }
527
528 /*
529 * dab_align() handles the following data aborts:
530 *
531 * FAULT_ALIGN_0 - Alignment fault
532 * FAULT_ALIGN_0 - Alignment fault
533 *
534 * These faults are fatal if they happen in kernel mode. Otherwise, we
535 * deliver a bus error to the process.
536 */
537 static int
538 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
539 {
540
541 /* Alignment faults are always fatal if they occur in kernel mode */
542 if (!TRAP_USERMODE(tf))
543 dab_fatal(tf, fsr, far, l, NULL);
544
545 /* pcb_onfault *must* be NULL at this point */
546 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
547
548 /* See if the CPU state needs to be fixed up */
549 (void) data_abort_fixup(tf, fsr, far, l);
550
551 /* Deliver a bus error signal to the process */
552 KSI_INIT_TRAP(ksi);
553 ksi->ksi_signo = SIGBUS;
554 ksi->ksi_code = BUS_ADRALN;
555 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
556 ksi->ksi_trap = fsr;
557
558 l->l_addr->u_pcb.pcb_tf = tf;
559
560 return (1);
561 }
562
563 /*
564 * dab_buserr() handles the following data aborts:
565 *
566 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
567 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
568 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
569 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
570 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
571 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
572 *
573 * If pcb_onfault is set, flag the fault and return to the handler.
574 * If the fault occurred in user mode, give the process a SIGBUS.
575 *
576 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
577 * can be flagged as imprecise in the FSR. This causes a real headache
578 * since some of the machine state is lost. In this case, tf->tf_pc
579 * may not actually point to the offending instruction. In fact, if
580 * we've taken a double abort fault, it generally points somewhere near
581 * the top of "data_abort_entry" in exception.S.
582 *
583 * In all other cases, these data aborts are considered fatal.
584 */
585 static int
586 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
587 ksiginfo_t *ksi)
588 {
589 struct pcb *pcb = &l->l_addr->u_pcb;
590
591 #ifdef __XSCALE__
592 if ((fsr & FAULT_IMPRECISE) != 0 &&
593 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
594 /*
595 * Oops, an imprecise, double abort fault. We've lost the
596 * r14_abt/spsr_abt values corresponding to the original
597 * abort, and the spsr saved in the trapframe indicates
598 * ABT mode.
599 */
600 tf->tf_spsr &= ~PSR_MODE;
601
602 /*
603 * We use a simple heuristic to determine if the double abort
604 * happened as a result of a kernel or user mode access.
605 * If the current trapframe is at the top of the kernel stack,
606 * the fault _must_ have come from user mode.
607 */
608 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
609 /*
610 * Kernel mode. We're either about to die a
611 * spectacular death, or pcb_onfault will come
612 * to our rescue. Either way, the current value
613 * of tf->tf_pc is irrelevant.
614 */
615 tf->tf_spsr |= PSR_SVC32_MODE;
616 if (pcb->pcb_onfault == NULL)
617 printf("\nKernel mode double abort!\n");
618 } else {
619 /*
620 * User mode. We've lost the program counter at the
621 * time of the fault (not that it was accurate anyway;
622 * it's not called an imprecise fault for nothing).
623 * About all we can do is copy r14_usr to tf_pc and
624 * hope for the best. The process is about to get a
625 * SIGBUS, so it's probably history anyway.
626 */
627 tf->tf_spsr |= PSR_USR32_MODE;
628 tf->tf_pc = tf->tf_usr_lr;
629 }
630 }
631
632 /* FAR is invalid for imprecise exceptions */
633 if ((fsr & FAULT_IMPRECISE) != 0)
634 far = 0;
635 #endif /* __XSCALE__ */
636
637 if (pcb->pcb_onfault) {
638 KDASSERT(TRAP_USERMODE(tf) == 0);
639 tf->tf_r0 = EFAULT;
640 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
641 return (0);
642 }
643
644 /* See if the CPU state needs to be fixed up */
645 (void) data_abort_fixup(tf, fsr, far, l);
646
647 /*
648 * At this point, if the fault happened in kernel mode, we're toast
649 */
650 if (!TRAP_USERMODE(tf))
651 dab_fatal(tf, fsr, far, l, NULL);
652
653 /* Deliver a bus error signal to the process */
654 KSI_INIT_TRAP(ksi);
655 ksi->ksi_signo = SIGBUS;
656 ksi->ksi_code = BUS_ADRERR;
657 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
658 ksi->ksi_trap = fsr;
659
660 l->l_addr->u_pcb.pcb_tf = tf;
661
662 return (1);
663 }
664
665 static __inline int
666 prefetch_abort_fixup(trapframe_t *tf)
667 {
668 #ifdef CPU_ABORT_FIXUP_REQUIRED
669 int error;
670
671 /* Call the CPU specific prefetch abort fixup routine */
672 error = cpu_prefetchabt_fixup(tf);
673 if (__predict_true(error != ABORT_FIXUP_FAILED))
674 return (error);
675
676 /*
677 * Oops, couldn't fix up the instruction
678 */
679 printf(
680 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
681 TRAP_USERMODE(tf) ? "user" : "kernel");
682 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
683 *((u_int *)tf->tf_pc));
684 disassemble(tf->tf_pc);
685
686 /* Die now if this happened in kernel mode */
687 if (!TRAP_USERMODE(tf))
688 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
689
690 return (error);
691 #else
692 return (ABORT_FIXUP_OK);
693 #endif /* CPU_ABORT_FIXUP_REQUIRED */
694 }
695
696 /*
697 * void prefetch_abort_handler(trapframe_t *tf)
698 *
699 * Abort handler called when instruction execution occurs at
700 * a non existent or restricted (access permissions) memory page.
701 * If the address is invalid and we were in SVC mode then panic as
702 * the kernel should never prefetch abort.
703 * If the address is invalid and the page is mapped then the user process
704 * does no have read permission so send it a signal.
705 * Otherwise fault the page in and try again.
706 */
707 void
708 prefetch_abort_handler(trapframe_t *tf)
709 {
710 struct lwp *l;
711 struct vm_map *map;
712 vaddr_t fault_pc, va;
713 ksiginfo_t ksi;
714 int error;
715
716 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
717
718 /* Update vmmeter statistics */
719 uvmexp.traps++;
720
721 /*
722 * Enable IRQ's (disabled by the abort) This always comes
723 * from user mode so we know interrupts were not disabled.
724 * But we check anyway.
725 */
726 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
727 enable_interrupts(I32_bit);
728
729 /* See if the CPU state needs to be fixed up */
730 switch (prefetch_abort_fixup(tf)) {
731 case ABORT_FIXUP_RETURN:
732 return;
733 case ABORT_FIXUP_FAILED:
734 /* Deliver a SIGILL to the process */
735 KSI_INIT_TRAP(&ksi);
736 ksi.ksi_signo = SIGILL;
737 ksi.ksi_code = ILL_ILLOPC;
738 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
739 l = curlwp;
740 l->l_addr->u_pcb.pcb_tf = tf;
741 goto do_trapsignal;
742 default:
743 break;
744 }
745
746 /* Prefetch aborts cannot happen in kernel mode */
747 if (__predict_false(!TRAP_USERMODE(tf)))
748 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
749
750 /* Get fault address */
751 fault_pc = tf->tf_pc;
752 l = curlwp;
753 l->l_addr->u_pcb.pcb_tf = tf;
754 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
755 0);
756
757 /* Ok validate the address, can only execute in USER space */
758 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
759 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
760 KSI_INIT_TRAP(&ksi);
761 ksi.ksi_signo = SIGSEGV;
762 ksi.ksi_code = SEGV_ACCERR;
763 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
764 ksi.ksi_trap = fault_pc;
765 goto do_trapsignal;
766 }
767
768 map = &l->l_proc->p_vmspace->vm_map;
769 va = trunc_page(fault_pc);
770
771 /*
772 * See if the pmap can handle this fault on its own...
773 */
774 #ifdef DEBUG
775 last_fault_code = -1;
776 #endif
777 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
778 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
779 goto out;
780 }
781
782 #ifdef DIAGNOSTIC
783 if (__predict_false(current_intr_depth > 0)) {
784 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
785 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
786 }
787 #endif
788
789 error = uvm_fault(map, va, 0, VM_PROT_READ);
790 if (__predict_true(error == 0)) {
791 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
792 goto out;
793 }
794 KSI_INIT_TRAP(&ksi);
795
796 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
797 if (error == ENOMEM) {
798 printf("UVM: pid %d (%s), uid %d killed: "
799 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
800 (l->l_proc->p_cred && l->l_proc->p_ucred) ?
801 l->l_proc->p_ucred->cr_uid : -1);
802 ksi.ksi_signo = SIGKILL;
803 } else
804 ksi.ksi_signo = SIGSEGV;
805
806 ksi.ksi_code = SEGV_MAPERR;
807 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
808 ksi.ksi_trap = fault_pc;
809
810 do_trapsignal:
811 call_trapsignal(l, &ksi);
812
813 out:
814 userret(l);
815 }
816
817 /*
818 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
819 * If the read succeeds, the value is written to 'rptr' and zero is returned.
820 * Else, return EFAULT.
821 */
822 int
823 badaddr_read(void *addr, size_t size, void *rptr)
824 {
825 extern int badaddr_read_1(const uint8_t *, uint8_t *);
826 extern int badaddr_read_2(const uint16_t *, uint16_t *);
827 extern int badaddr_read_4(const uint32_t *, uint32_t *);
828 union {
829 uint8_t v1;
830 uint16_t v2;
831 uint32_t v4;
832 } u;
833 struct pcb *curpcb_save;
834 int rv, s;
835
836 cpu_drain_writebuf();
837
838 /*
839 * We might be called at interrupt time, so arrange to steal
840 * lwp0's PCB temporarily, if required, so that pcb_onfault
841 * handling works correctly.
842 */
843 s = splhigh();
844 if ((curpcb_save = curpcb) == NULL)
845 curpcb = &lwp0.l_addr->u_pcb;
846
847 /* Read from the test address. */
848 switch (size) {
849 case sizeof(uint8_t):
850 rv = badaddr_read_1(addr, &u.v1);
851 if (rv == 0 && rptr)
852 *(uint8_t *) rptr = u.v1;
853 break;
854
855 case sizeof(uint16_t):
856 rv = badaddr_read_2(addr, &u.v2);
857 if (rv == 0 && rptr)
858 *(uint16_t *) rptr = u.v2;
859 break;
860
861 case sizeof(uint32_t):
862 rv = badaddr_read_4(addr, &u.v4);
863 if (rv == 0 && rptr)
864 *(uint32_t *) rptr = u.v4;
865 break;
866
867 default:
868 curpcb = curpcb_save;
869 panic("badaddr: invalid size (%lu)", (u_long) size);
870 }
871
872 /* Restore curpcb */
873 curpcb = curpcb_save;
874 splx(s);
875
876 /* Return EFAULT if the address was invalid, else zero */
877 return (rv);
878 }
879