fault.c revision 1.58.2.1 1 /* $NetBSD: fault.c,v 1.58.2.1 2006/05/24 15:47:51 tron Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.58.2.1 2006/05/24 15:47:51 tron Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/savar.h>
90 #include <sys/user.h>
91 #include <sys/kernel.h>
92 #include <sys/kauth.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/cpuconf.h>
101
102 #include <machine/frame.h>
103 #include <arm/arm32/katelib.h>
104 #include <machine/cpu.h>
105 #include <machine/intr.h>
106 #if defined(DDB) || defined(KGDB)
107 #include <machine/db_machdep.h>
108 #ifdef KGDB
109 #include <sys/kgdb.h>
110 #endif
111 #if !defined(DDB)
112 #define kdb_trap kgdb_trap
113 #endif
114 #endif
115
116 #include <arch/arm/arm/disassem.h>
117 #include <arm/arm32/machdep.h>
118
119 extern char fusubailout[];
120
121 #ifdef DEBUG
122 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
123 #endif
124
125 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
126 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
127 /* These CPUs may need data/prefetch abort fixups */
128 #define CPU_ABORT_FIXUP_REQUIRED
129 #endif
130
131 struct data_abort {
132 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
133 const char *desc;
134 };
135
136 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
139
140 static const struct data_abort data_aborts[] = {
141 {dab_fatal, "Vector Exception"},
142 {dab_align, "Alignment Fault 1"},
143 {dab_fatal, "Terminal Exception"},
144 {dab_align, "Alignment Fault 3"},
145 {dab_buserr, "External Linefetch Abort (S)"},
146 {NULL, "Translation Fault (S)"},
147 {dab_buserr, "External Linefetch Abort (P)"},
148 {NULL, "Translation Fault (P)"},
149 {dab_buserr, "External Non-Linefetch Abort (S)"},
150 {NULL, "Domain Fault (S)"},
151 {dab_buserr, "External Non-Linefetch Abort (P)"},
152 {NULL, "Domain Fault (P)"},
153 {dab_buserr, "External Translation Abort (L1)"},
154 {NULL, "Permission Fault (S)"},
155 {dab_buserr, "External Translation Abort (L2)"},
156 {NULL, "Permission Fault (P)"}
157 };
158
159 /* Determine if a fault came from user mode */
160 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
161
162 /* Determine if 'x' is a permission fault */
163 #define IS_PERMISSION_FAULT(x) \
164 (((1 << ((x) & FAULT_TYPE_MASK)) & \
165 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
166
167 #if 0
168 /* maybe one day we'll do emulations */
169 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
170 #else
171 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
172 #endif
173
174 static inline void
175 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
176 {
177
178 KERNEL_PROC_LOCK(l);
179 TRAPSIGNAL(l, ksi);
180 KERNEL_PROC_UNLOCK(l);
181 }
182
183 static inline int
184 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
185 {
186 #ifdef CPU_ABORT_FIXUP_REQUIRED
187 int error;
188
189 /* Call the CPU specific data abort fixup routine */
190 error = cpu_dataabt_fixup(tf);
191 if (__predict_true(error != ABORT_FIXUP_FAILED))
192 return (error);
193
194 /*
195 * Oops, couldn't fix up the instruction
196 */
197 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
198 TRAP_USERMODE(tf) ? "user" : "kernel");
199 #ifdef THUMB_CODE
200 if (tf->tf_spsr & PSR_T_bit) {
201 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
202 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
203 *((u_int16 *)((tf->tf_pc + 2) & ~1));
204 }
205 else
206 #endif
207 {
208 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
209 *((u_int *)tf->tf_pc));
210 }
211 disassemble(tf->tf_pc);
212
213 /* Die now if this happened in kernel mode */
214 if (!TRAP_USERMODE(tf))
215 dab_fatal(tf, fsr, far, l, NULL);
216
217 return (error);
218 #else
219 return (ABORT_FIXUP_OK);
220 #endif /* CPU_ABORT_FIXUP_REQUIRED */
221 }
222
223 void
224 data_abort_handler(trapframe_t *tf)
225 {
226 struct vm_map *map;
227 struct pcb *pcb;
228 struct lwp *l;
229 u_int user, far, fsr;
230 vm_prot_t ftype;
231 void *onfault;
232 vaddr_t va;
233 int error;
234 ksiginfo_t ksi;
235
236 UVMHIST_FUNC("data_abort_handler");
237
238 /* Grab FAR/FSR before enabling interrupts */
239 far = cpu_faultaddress();
240 fsr = cpu_faultstatus();
241
242 UVMHIST_CALLED(maphist);
243 /* Update vmmeter statistics */
244 uvmexp.traps++;
245
246 /* Re-enable interrupts if they were enabled previously */
247 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
248 enable_interrupts(I32_bit);
249
250 /* Get the current lwp structure or lwp0 if there is none */
251 l = (curlwp != NULL) ? curlwp : &lwp0;
252
253 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
254 tf->tf_pc, l, far, fsr);
255
256 /* Data abort came from user mode? */
257 user = TRAP_USERMODE(tf);
258
259 /* Grab the current pcb */
260 pcb = &l->l_addr->u_pcb;
261
262 /* Invoke the appropriate handler, if necessary */
263 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
264 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
265 l, &ksi))
266 goto do_trapsignal;
267 goto out;
268 }
269
270 /*
271 * At this point, we're dealing with one of the following data aborts:
272 *
273 * FAULT_TRANS_S - Translation -- Section
274 * FAULT_TRANS_P - Translation -- Page
275 * FAULT_DOMAIN_S - Domain -- Section
276 * FAULT_DOMAIN_P - Domain -- Page
277 * FAULT_PERM_S - Permission -- Section
278 * FAULT_PERM_P - Permission -- Page
279 *
280 * These are the main virtual memory-related faults signalled by
281 * the MMU.
282 */
283
284 /* fusubailout is used by [fs]uswintr to avoid page faulting */
285 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
286 tf->tf_r0 = EFAULT;
287 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
288 return;
289 }
290
291 if (user)
292 l->l_addr->u_pcb.pcb_tf = tf;
293
294 /*
295 * Make sure the Program Counter is sane. We could fall foul of
296 * someone executing Thumb code, in which case the PC might not
297 * be word-aligned. This would cause a kernel alignment fault
298 * further down if we have to decode the current instruction.
299 */
300 #ifdef THUMB_CODE
301 /*
302 * XXX: It would be nice to be able to support Thumb in the kernel
303 * at some point.
304 */
305 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
306 printf("\ndata_abort_fault: Misaligned Kernel-mode "
307 "Program Counter\n");
308 dab_fatal(tf, fsr, far, l, NULL);
309 }
310 #else
311 if (__predict_false((tf->tf_pc & 3) != 0)) {
312 if (user) {
313 /*
314 * Give the user an illegal instruction signal.
315 */
316 /* Deliver a SIGILL to the process */
317 KSI_INIT_TRAP(&ksi);
318 ksi.ksi_signo = SIGILL;
319 ksi.ksi_code = ILL_ILLOPC;
320 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
321 ksi.ksi_trap = fsr;
322 goto do_trapsignal;
323 }
324
325 /*
326 * The kernel never executes Thumb code.
327 */
328 printf("\ndata_abort_fault: Misaligned Kernel-mode "
329 "Program Counter\n");
330 dab_fatal(tf, fsr, far, l, NULL);
331 }
332 #endif
333
334 /* See if the CPU state needs to be fixed up */
335 switch (data_abort_fixup(tf, fsr, far, l)) {
336 case ABORT_FIXUP_RETURN:
337 return;
338 case ABORT_FIXUP_FAILED:
339 /* Deliver a SIGILL to the process */
340 KSI_INIT_TRAP(&ksi);
341 ksi.ksi_signo = SIGILL;
342 ksi.ksi_code = ILL_ILLOPC;
343 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
344 ksi.ksi_trap = fsr;
345 goto do_trapsignal;
346 default:
347 break;
348 }
349
350 va = trunc_page((vaddr_t)far);
351
352 /*
353 * It is only a kernel address space fault iff:
354 * 1. user == 0 and
355 * 2. pcb_onfault not set or
356 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
357 */
358 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
359 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
360 __predict_true((pcb->pcb_onfault == NULL ||
361 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
362 map = kernel_map;
363
364 /* Was the fault due to the FPE/IPKDB ? */
365 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
366 KSI_INIT_TRAP(&ksi);
367 ksi.ksi_signo = SIGSEGV;
368 ksi.ksi_code = SEGV_ACCERR;
369 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
370 ksi.ksi_trap = fsr;
371
372 /*
373 * Force exit via userret()
374 * This is necessary as the FPE is an extension to
375 * userland that actually runs in a priveledged mode
376 * but uses USR mode permissions for its accesses.
377 */
378 user = 1;
379 goto do_trapsignal;
380 }
381 } else {
382 map = &l->l_proc->p_vmspace->vm_map;
383 if (l->l_flag & L_SA) {
384 l->l_savp->savp_faultaddr = (vaddr_t)far;
385 l->l_flag |= L_SA_PAGEFAULT;
386 }
387 }
388
389 /*
390 * We need to know whether the page should be mapped
391 * as R or R/W. The MMU does not give us the info as
392 * to whether the fault was caused by a read or a write.
393 *
394 * However, we know that a permission fault can only be
395 * the result of a write to a read-only location, so
396 * we can deal with those quickly.
397 *
398 * Otherwise we need to disassemble the instruction
399 * responsible to determine if it was a write.
400 */
401 if (IS_PERMISSION_FAULT(fsr))
402 ftype = VM_PROT_WRITE;
403 else {
404 #ifdef THUMB_CODE
405 /* Fast track the ARM case. */
406 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
407 u_int insn = fusword((void *)(tf->tf_pc & ~1));
408 u_int insn_f8 = insn & 0xf800;
409 u_int insn_fe = insn & 0xfe00;
410
411 if (insn_f8 == 0x6000 || /* STR(1) */
412 insn_f8 == 0x7000 || /* STRB(1) */
413 insn_f8 == 0x8000 || /* STRH(1) */
414 insn_f8 == 0x9000 || /* STR(3) */
415 insn_f8 == 0xc000 || /* STM */
416 insn_fe == 0x5000 || /* STR(2) */
417 insn_fe == 0x5200 || /* STRH(2) */
418 insn_fe == 0x5400) /* STRB(2) */
419 ftype = VM_PROT_WRITE;
420 else
421 ftype = VM_PROT_READ;
422 }
423 else
424 #endif
425 {
426 u_int insn = ReadWord(tf->tf_pc);
427
428 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
429 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
430 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT*/
431 ftype = VM_PROT_WRITE;
432 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
433 ftype = VM_PROT_READ | VM_PROT_WRITE;
434 else
435 ftype = VM_PROT_READ;
436 }
437 }
438
439 /*
440 * See if the fault is as a result of ref/mod emulation,
441 * or domain mismatch.
442 */
443 #ifdef DEBUG
444 last_fault_code = fsr;
445 #endif
446 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
447 if (map != kernel_map)
448 l->l_flag &= ~L_SA_PAGEFAULT;
449 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
450 goto out;
451 }
452
453 if (__predict_false(current_intr_depth > 0)) {
454 if (pcb->pcb_onfault) {
455 tf->tf_r0 = EINVAL;
456 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
457 return;
458 }
459 printf("\nNon-emulated page fault with intr_depth > 0\n");
460 dab_fatal(tf, fsr, far, l, NULL);
461 }
462
463 onfault = pcb->pcb_onfault;
464 pcb->pcb_onfault = NULL;
465 error = uvm_fault(map, va, ftype);
466 pcb->pcb_onfault = onfault;
467
468 if (map != kernel_map)
469 l->l_flag &= ~L_SA_PAGEFAULT;
470
471 if (__predict_true(error == 0)) {
472 if (user)
473 uvm_grow(l->l_proc, va); /* Record any stack growth */
474 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
475 goto out;
476 }
477
478 if (user == 0) {
479 if (pcb->pcb_onfault) {
480 tf->tf_r0 = error;
481 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
482 return;
483 }
484
485 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
486 error);
487 dab_fatal(tf, fsr, far, l, NULL);
488 }
489
490 KSI_INIT_TRAP(&ksi);
491
492 if (error == ENOMEM) {
493 printf("UVM: pid %d (%s), uid %d killed: "
494 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
495 l->l_proc->p_cred ? kauth_cred_geteuid(l->l_proc->p_cred) : -1);
496 ksi.ksi_signo = SIGKILL;
497 } else
498 ksi.ksi_signo = SIGSEGV;
499
500 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
501 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
502 ksi.ksi_trap = fsr;
503 UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
504
505 do_trapsignal:
506 call_trapsignal(l, &ksi);
507 out:
508 /* If returning to user mode, make sure to invoke userret() */
509 if (user)
510 userret(l);
511 }
512
513 /*
514 * dab_fatal() handles the following data aborts:
515 *
516 * FAULT_WRTBUF_0 - Vector Exception
517 * FAULT_WRTBUF_1 - Terminal Exception
518 *
519 * We should never see these on a properly functioning system.
520 *
521 * This function is also called by the other handlers if they
522 * detect a fatal problem.
523 *
524 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
525 */
526 static int
527 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
528 {
529 const char *mode;
530
531 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
532
533 if (l != NULL) {
534 printf("Fatal %s mode data abort: '%s'\n", mode,
535 data_aborts[fsr & FAULT_TYPE_MASK].desc);
536 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
537 if ((fsr & FAULT_IMPRECISE) == 0)
538 printf("%08x, ", far);
539 else
540 printf("Invalid, ");
541 printf("spsr=%08x\n", tf->tf_spsr);
542 } else {
543 printf("Fatal %s mode prefetch abort at 0x%08x\n",
544 mode, tf->tf_pc);
545 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
546 }
547
548 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
549 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
550 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
551 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
552 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
553 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
554 printf("r12=%08x, ", tf->tf_r12);
555
556 if (TRAP_USERMODE(tf))
557 printf("usp=%08x, ulr=%08x",
558 tf->tf_usr_sp, tf->tf_usr_lr);
559 else
560 printf("ssp=%08x, slr=%08x",
561 tf->tf_svc_sp, tf->tf_svc_lr);
562 printf(", pc =%08x\n\n", tf->tf_pc);
563
564 #if defined(DDB) || defined(KGDB)
565 kdb_trap(T_FAULT, tf);
566 #endif
567 panic("Fatal abort");
568 /*NOTREACHED*/
569 }
570
571 /*
572 * dab_align() handles the following data aborts:
573 *
574 * FAULT_ALIGN_0 - Alignment fault
575 * FAULT_ALIGN_0 - Alignment fault
576 *
577 * These faults are fatal if they happen in kernel mode. Otherwise, we
578 * deliver a bus error to the process.
579 */
580 static int
581 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
582 {
583
584 /* Alignment faults are always fatal if they occur in kernel mode */
585 if (!TRAP_USERMODE(tf))
586 dab_fatal(tf, fsr, far, l, NULL);
587
588 /* pcb_onfault *must* be NULL at this point */
589 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
590
591 /* See if the CPU state needs to be fixed up */
592 (void) data_abort_fixup(tf, fsr, far, l);
593
594 /* Deliver a bus error signal to the process */
595 KSI_INIT_TRAP(ksi);
596 ksi->ksi_signo = SIGBUS;
597 ksi->ksi_code = BUS_ADRALN;
598 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
599 ksi->ksi_trap = fsr;
600
601 l->l_addr->u_pcb.pcb_tf = tf;
602
603 return (1);
604 }
605
606 /*
607 * dab_buserr() handles the following data aborts:
608 *
609 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
610 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
611 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
612 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
613 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
614 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
615 *
616 * If pcb_onfault is set, flag the fault and return to the handler.
617 * If the fault occurred in user mode, give the process a SIGBUS.
618 *
619 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
620 * can be flagged as imprecise in the FSR. This causes a real headache
621 * since some of the machine state is lost. In this case, tf->tf_pc
622 * may not actually point to the offending instruction. In fact, if
623 * we've taken a double abort fault, it generally points somewhere near
624 * the top of "data_abort_entry" in exception.S.
625 *
626 * In all other cases, these data aborts are considered fatal.
627 */
628 static int
629 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
630 ksiginfo_t *ksi)
631 {
632 struct pcb *pcb = &l->l_addr->u_pcb;
633
634 #ifdef __XSCALE__
635 if ((fsr & FAULT_IMPRECISE) != 0 &&
636 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
637 /*
638 * Oops, an imprecise, double abort fault. We've lost the
639 * r14_abt/spsr_abt values corresponding to the original
640 * abort, and the spsr saved in the trapframe indicates
641 * ABT mode.
642 */
643 tf->tf_spsr &= ~PSR_MODE;
644
645 /*
646 * We use a simple heuristic to determine if the double abort
647 * happened as a result of a kernel or user mode access.
648 * If the current trapframe is at the top of the kernel stack,
649 * the fault _must_ have come from user mode.
650 */
651 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
652 /*
653 * Kernel mode. We're either about to die a
654 * spectacular death, or pcb_onfault will come
655 * to our rescue. Either way, the current value
656 * of tf->tf_pc is irrelevant.
657 */
658 tf->tf_spsr |= PSR_SVC32_MODE;
659 if (pcb->pcb_onfault == NULL)
660 printf("\nKernel mode double abort!\n");
661 } else {
662 /*
663 * User mode. We've lost the program counter at the
664 * time of the fault (not that it was accurate anyway;
665 * it's not called an imprecise fault for nothing).
666 * About all we can do is copy r14_usr to tf_pc and
667 * hope for the best. The process is about to get a
668 * SIGBUS, so it's probably history anyway.
669 */
670 tf->tf_spsr |= PSR_USR32_MODE;
671 tf->tf_pc = tf->tf_usr_lr;
672 #ifdef THUMB_CODE
673 tf->tf_spsr &= ~PSR_T_bit;
674 if (tf->tf_usr_lr & 1)
675 tf->tf_spsr |= PSR_T_bit;
676 #endif
677 }
678 }
679
680 /* FAR is invalid for imprecise exceptions */
681 if ((fsr & FAULT_IMPRECISE) != 0)
682 far = 0;
683 #endif /* __XSCALE__ */
684
685 if (pcb->pcb_onfault) {
686 KDASSERT(TRAP_USERMODE(tf) == 0);
687 tf->tf_r0 = EFAULT;
688 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
689 return (0);
690 }
691
692 /* See if the CPU state needs to be fixed up */
693 (void) data_abort_fixup(tf, fsr, far, l);
694
695 /*
696 * At this point, if the fault happened in kernel mode, we're toast
697 */
698 if (!TRAP_USERMODE(tf))
699 dab_fatal(tf, fsr, far, l, NULL);
700
701 /* Deliver a bus error signal to the process */
702 KSI_INIT_TRAP(ksi);
703 ksi->ksi_signo = SIGBUS;
704 ksi->ksi_code = BUS_ADRERR;
705 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
706 ksi->ksi_trap = fsr;
707
708 l->l_addr->u_pcb.pcb_tf = tf;
709
710 return (1);
711 }
712
713 static inline int
714 prefetch_abort_fixup(trapframe_t *tf)
715 {
716 #ifdef CPU_ABORT_FIXUP_REQUIRED
717 int error;
718
719 /* Call the CPU specific prefetch abort fixup routine */
720 error = cpu_prefetchabt_fixup(tf);
721 if (__predict_true(error != ABORT_FIXUP_FAILED))
722 return (error);
723
724 /*
725 * Oops, couldn't fix up the instruction
726 */
727 printf(
728 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
729 TRAP_USERMODE(tf) ? "user" : "kernel");
730 #ifdef THUMB_CODE
731 if (tf->tf_spsr & PSR_T_bit) {
732 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
733 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
734 *((u_int16 *)((tf->tf_pc + 2) & ~1));
735 }
736 else
737 #endif
738 {
739 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
740 *((u_int *)tf->tf_pc));
741 }
742 disassemble(tf->tf_pc);
743
744 /* Die now if this happened in kernel mode */
745 if (!TRAP_USERMODE(tf))
746 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
747
748 return (error);
749 #else
750 return (ABORT_FIXUP_OK);
751 #endif /* CPU_ABORT_FIXUP_REQUIRED */
752 }
753
754 /*
755 * void prefetch_abort_handler(trapframe_t *tf)
756 *
757 * Abort handler called when instruction execution occurs at
758 * a non existent or restricted (access permissions) memory page.
759 * If the address is invalid and we were in SVC mode then panic as
760 * the kernel should never prefetch abort.
761 * If the address is invalid and the page is mapped then the user process
762 * does no have read permission so send it a signal.
763 * Otherwise fault the page in and try again.
764 */
765 void
766 prefetch_abort_handler(trapframe_t *tf)
767 {
768 struct lwp *l;
769 struct vm_map *map;
770 vaddr_t fault_pc, va;
771 ksiginfo_t ksi;
772 int error;
773
774 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
775
776 /* Update vmmeter statistics */
777 uvmexp.traps++;
778
779 /*
780 * Enable IRQ's (disabled by the abort) This always comes
781 * from user mode so we know interrupts were not disabled.
782 * But we check anyway.
783 */
784 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
785 enable_interrupts(I32_bit);
786
787 /* See if the CPU state needs to be fixed up */
788 switch (prefetch_abort_fixup(tf)) {
789 case ABORT_FIXUP_RETURN:
790 return;
791 case ABORT_FIXUP_FAILED:
792 /* Deliver a SIGILL to the process */
793 KSI_INIT_TRAP(&ksi);
794 ksi.ksi_signo = SIGILL;
795 ksi.ksi_code = ILL_ILLOPC;
796 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
797 l = curlwp;
798 l->l_addr->u_pcb.pcb_tf = tf;
799 goto do_trapsignal;
800 default:
801 break;
802 }
803
804 /* Prefetch aborts cannot happen in kernel mode */
805 if (__predict_false(!TRAP_USERMODE(tf)))
806 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
807
808 /* Get fault address */
809 fault_pc = tf->tf_pc;
810 l = curlwp;
811 l->l_addr->u_pcb.pcb_tf = tf;
812 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
813 0);
814
815 /* Ok validate the address, can only execute in USER space */
816 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
817 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
818 KSI_INIT_TRAP(&ksi);
819 ksi.ksi_signo = SIGSEGV;
820 ksi.ksi_code = SEGV_ACCERR;
821 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
822 ksi.ksi_trap = fault_pc;
823 goto do_trapsignal;
824 }
825
826 map = &l->l_proc->p_vmspace->vm_map;
827 va = trunc_page(fault_pc);
828
829 /*
830 * See if the pmap can handle this fault on its own...
831 */
832 #ifdef DEBUG
833 last_fault_code = -1;
834 #endif
835 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
836 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
837 goto out;
838 }
839
840 #ifdef DIAGNOSTIC
841 if (__predict_false(current_intr_depth > 0)) {
842 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
843 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
844 }
845 #endif
846 if (map != kernel_map && l->l_flag & L_SA) {
847 l->l_savp->savp_faultaddr = fault_pc;
848 l->l_flag |= L_SA_PAGEFAULT;
849 }
850
851 error = uvm_fault(map, va, VM_PROT_READ);
852
853 if (map != kernel_map)
854 l->l_flag &= ~L_SA_PAGEFAULT;
855
856 if (__predict_true(error == 0)) {
857 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
858 goto out;
859 }
860 KSI_INIT_TRAP(&ksi);
861
862 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
863 if (error == ENOMEM) {
864 printf("UVM: pid %d (%s), uid %d killed: "
865 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
866 l->l_proc->p_cred ? kauth_cred_geteuid(l->l_proc->p_cred) : -1);
867 ksi.ksi_signo = SIGKILL;
868 } else
869 ksi.ksi_signo = SIGSEGV;
870
871 ksi.ksi_code = SEGV_MAPERR;
872 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
873 ksi.ksi_trap = fault_pc;
874
875 do_trapsignal:
876 call_trapsignal(l, &ksi);
877
878 out:
879 userret(l);
880 }
881
882 /*
883 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
884 * If the read succeeds, the value is written to 'rptr' and zero is returned.
885 * Else, return EFAULT.
886 */
887 int
888 badaddr_read(void *addr, size_t size, void *rptr)
889 {
890 extern int badaddr_read_1(const uint8_t *, uint8_t *);
891 extern int badaddr_read_2(const uint16_t *, uint16_t *);
892 extern int badaddr_read_4(const uint32_t *, uint32_t *);
893 union {
894 uint8_t v1;
895 uint16_t v2;
896 uint32_t v4;
897 } u;
898 struct pcb *curpcb_save;
899 int rv, s;
900
901 cpu_drain_writebuf();
902
903 /*
904 * We might be called at interrupt time, so arrange to steal
905 * lwp0's PCB temporarily, if required, so that pcb_onfault
906 * handling works correctly.
907 */
908 s = splhigh();
909 if ((curpcb_save = curpcb) == NULL)
910 curpcb = &lwp0.l_addr->u_pcb;
911
912 /* Read from the test address. */
913 switch (size) {
914 case sizeof(uint8_t):
915 rv = badaddr_read_1(addr, &u.v1);
916 if (rv == 0 && rptr)
917 *(uint8_t *) rptr = u.v1;
918 break;
919
920 case sizeof(uint16_t):
921 rv = badaddr_read_2(addr, &u.v2);
922 if (rv == 0 && rptr)
923 *(uint16_t *) rptr = u.v2;
924 break;
925
926 case sizeof(uint32_t):
927 rv = badaddr_read_4(addr, &u.v4);
928 if (rv == 0 && rptr)
929 *(uint32_t *) rptr = u.v4;
930 break;
931
932 default:
933 curpcb = curpcb_save;
934 panic("badaddr: invalid size (%lu)", (u_long) size);
935 }
936
937 /* Restore curpcb */
938 curpcb = curpcb_save;
939 splx(s);
940
941 /* Return EFAULT if the address was invalid, else zero */
942 return (rv);
943 }
944