Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.62
      1 /*	$NetBSD: fault.c,v 1.62 2006/07/23 22:06:04 ad Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.62 2006/07/23 22:06:04 ad Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/savar.h>
     90 #include <sys/user.h>
     91 #include <sys/kernel.h>
     92 #include <sys/kauth.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 #include <uvm/uvm_stat.h>
     96 #ifdef UVMHIST
     97 #include <uvm/uvm.h>
     98 #endif
     99 
    100 #include <arm/cpuconf.h>
    101 
    102 #include <machine/frame.h>
    103 #include <arm/arm32/katelib.h>
    104 #include <machine/cpu.h>
    105 #include <machine/intr.h>
    106 #if defined(DDB) || defined(KGDB)
    107 #include <machine/db_machdep.h>
    108 #ifdef KGDB
    109 #include <sys/kgdb.h>
    110 #endif
    111 #if !defined(DDB)
    112 #define kdb_trap	kgdb_trap
    113 #endif
    114 #endif
    115 
    116 #include <arch/arm/arm/disassem.h>
    117 #include <arm/arm32/machdep.h>
    118 
    119 extern char fusubailout[];
    120 
    121 #ifdef DEBUG
    122 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    123 #endif
    124 
    125 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    126     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    127 /* These CPUs may need data/prefetch abort fixups */
    128 #define	CPU_ABORT_FIXUP_REQUIRED
    129 #endif
    130 
    131 struct data_abort {
    132 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    133 	const char *desc;
    134 };
    135 
    136 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    137 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    138 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    139 
    140 static const struct data_abort data_aborts[] = {
    141 	{dab_fatal,	"Vector Exception"},
    142 	{dab_align,	"Alignment Fault 1"},
    143 	{dab_fatal,	"Terminal Exception"},
    144 	{dab_align,	"Alignment Fault 3"},
    145 	{dab_buserr,	"External Linefetch Abort (S)"},
    146 	{NULL,		"Translation Fault (S)"},
    147 	{dab_buserr,	"External Linefetch Abort (P)"},
    148 	{NULL,		"Translation Fault (P)"},
    149 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    150 	{NULL,		"Domain Fault (S)"},
    151 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    152 	{NULL,		"Domain Fault (P)"},
    153 	{dab_buserr,	"External Translation Abort (L1)"},
    154 	{NULL,		"Permission Fault (S)"},
    155 	{dab_buserr,	"External Translation Abort (L2)"},
    156 	{NULL,		"Permission Fault (P)"}
    157 };
    158 
    159 /* Determine if a fault came from user mode */
    160 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    161 
    162 /* Determine if 'x' is a permission fault */
    163 #define	IS_PERMISSION_FAULT(x)					\
    164 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    165 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    166 
    167 #if 0
    168 /* maybe one day we'll do emulations */
    169 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    170 #else
    171 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    172 #endif
    173 
    174 static inline void
    175 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    176 {
    177 
    178 	KERNEL_PROC_LOCK(l);
    179 	TRAPSIGNAL(l, ksi);
    180 	KERNEL_PROC_UNLOCK(l);
    181 }
    182 
    183 static inline int
    184 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    185 {
    186 #ifdef CPU_ABORT_FIXUP_REQUIRED
    187 	int error;
    188 
    189 	/* Call the CPU specific data abort fixup routine */
    190 	error = cpu_dataabt_fixup(tf);
    191 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    192 		return (error);
    193 
    194 	/*
    195 	 * Oops, couldn't fix up the instruction
    196 	 */
    197 	printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
    198 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    199 #ifdef THUMB_CODE
    200 	if (tf->tf_spsr & PSR_T_bit) {
    201 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    202 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
    203 		    *((u_int16 *)((tf->tf_pc + 2) & ~1));
    204 	}
    205 	else
    206 #endif
    207 	{
    208 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    209 		    *((u_int *)tf->tf_pc));
    210 	}
    211 	disassemble(tf->tf_pc);
    212 
    213 	/* Die now if this happened in kernel mode */
    214 	if (!TRAP_USERMODE(tf))
    215 		dab_fatal(tf, fsr, far, l, NULL);
    216 
    217 	return (error);
    218 #else
    219 	return (ABORT_FIXUP_OK);
    220 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    221 }
    222 
    223 void
    224 data_abort_handler(trapframe_t *tf)
    225 {
    226 	struct vm_map *map;
    227 	struct pcb *pcb;
    228 	struct lwp *l;
    229 	u_int user, far, fsr;
    230 	vm_prot_t ftype;
    231 	void *onfault;
    232 	vaddr_t va;
    233 	int error;
    234 	ksiginfo_t ksi;
    235 
    236 	UVMHIST_FUNC("data_abort_handler");
    237 
    238 	/* Grab FAR/FSR before enabling interrupts */
    239 	far = cpu_faultaddress();
    240 	fsr = cpu_faultstatus();
    241 
    242 	UVMHIST_CALLED(maphist);
    243 	/* Update vmmeter statistics */
    244 	uvmexp.traps++;
    245 
    246 	/* Re-enable interrupts if they were enabled previously */
    247 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    248 		enable_interrupts(I32_bit);
    249 
    250 	/* Get the current lwp structure or lwp0 if there is none */
    251 	l = (curlwp != NULL) ? curlwp : &lwp0;
    252 
    253 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
    254 	    tf->tf_pc, l, far, fsr);
    255 
    256 	/* Data abort came from user mode? */
    257 	if ((user = TRAP_USERMODE(tf)) != 0)
    258 		LWP_CACHE_CREDS(l, l->l_proc);
    259 
    260 	/* Grab the current pcb */
    261 	pcb = &l->l_addr->u_pcb;
    262 
    263 	/* Invoke the appropriate handler, if necessary */
    264 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    265 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    266 		    l, &ksi))
    267 			goto do_trapsignal;
    268 		goto out;
    269 	}
    270 
    271 	/*
    272 	 * At this point, we're dealing with one of the following data aborts:
    273 	 *
    274 	 *  FAULT_TRANS_S  - Translation -- Section
    275 	 *  FAULT_TRANS_P  - Translation -- Page
    276 	 *  FAULT_DOMAIN_S - Domain -- Section
    277 	 *  FAULT_DOMAIN_P - Domain -- Page
    278 	 *  FAULT_PERM_S   - Permission -- Section
    279 	 *  FAULT_PERM_P   - Permission -- Page
    280 	 *
    281 	 * These are the main virtual memory-related faults signalled by
    282 	 * the MMU.
    283 	 */
    284 
    285 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    286 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    287 		tf->tf_r0 = EFAULT;
    288 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    289 		return;
    290 	}
    291 
    292 	if (user)
    293 		l->l_addr->u_pcb.pcb_tf = tf;
    294 
    295 	/*
    296 	 * Make sure the Program Counter is sane. We could fall foul of
    297 	 * someone executing Thumb code, in which case the PC might not
    298 	 * be word-aligned. This would cause a kernel alignment fault
    299 	 * further down if we have to decode the current instruction.
    300 	 */
    301 #ifdef THUMB_CODE
    302 	/*
    303 	 * XXX: It would be nice to be able to support Thumb in the kernel
    304 	 * at some point.
    305 	 */
    306 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    307 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    308 		    "Program Counter\n");
    309 		dab_fatal(tf, fsr, far, l, NULL);
    310 	}
    311 #else
    312 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    313 		if (user) {
    314 			/*
    315 			 * Give the user an illegal instruction signal.
    316 			 */
    317 			/* Deliver a SIGILL to the process */
    318 			KSI_INIT_TRAP(&ksi);
    319 			ksi.ksi_signo = SIGILL;
    320 			ksi.ksi_code = ILL_ILLOPC;
    321 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    322 			ksi.ksi_trap = fsr;
    323 			goto do_trapsignal;
    324 		}
    325 
    326 		/*
    327 		 * The kernel never executes Thumb code.
    328 		 */
    329 		printf("\ndata_abort_fault: Misaligned Kernel-mode "
    330 		    "Program Counter\n");
    331 		dab_fatal(tf, fsr, far, l, NULL);
    332 	}
    333 #endif
    334 
    335 	/* See if the CPU state needs to be fixed up */
    336 	switch (data_abort_fixup(tf, fsr, far, l)) {
    337 	case ABORT_FIXUP_RETURN:
    338 		return;
    339 	case ABORT_FIXUP_FAILED:
    340 		/* Deliver a SIGILL to the process */
    341 		KSI_INIT_TRAP(&ksi);
    342 		ksi.ksi_signo = SIGILL;
    343 		ksi.ksi_code = ILL_ILLOPC;
    344 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    345 		ksi.ksi_trap = fsr;
    346 		goto do_trapsignal;
    347 	default:
    348 		break;
    349 	}
    350 
    351 	va = trunc_page((vaddr_t)far);
    352 
    353 	/*
    354 	 * It is only a kernel address space fault iff:
    355 	 *	1. user == 0  and
    356 	 *	2. pcb_onfault not set or
    357 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    358 	 */
    359 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    360 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    361 	    __predict_true((pcb->pcb_onfault == NULL ||
    362 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    363 		map = kernel_map;
    364 
    365 		/* Was the fault due to the FPE/IPKDB ? */
    366 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    367 			KSI_INIT_TRAP(&ksi);
    368 			ksi.ksi_signo = SIGSEGV;
    369 			ksi.ksi_code = SEGV_ACCERR;
    370 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    371 			ksi.ksi_trap = fsr;
    372 
    373 			/*
    374 			 * Force exit via userret()
    375 			 * This is necessary as the FPE is an extension to
    376 			 * userland that actually runs in a priveledged mode
    377 			 * but uses USR mode permissions for its accesses.
    378 			 */
    379 			user = 1;
    380 			goto do_trapsignal;
    381 		}
    382 	} else {
    383 		map = &l->l_proc->p_vmspace->vm_map;
    384 		if (l->l_flag & L_SA) {
    385 			l->l_savp->savp_faultaddr = (vaddr_t)far;
    386 			l->l_flag |= L_SA_PAGEFAULT;
    387 		}
    388 	}
    389 
    390 	/*
    391 	 * We need to know whether the page should be mapped
    392 	 * as R or R/W. The MMU does not give us the info as
    393 	 * to whether the fault was caused by a read or a write.
    394 	 *
    395 	 * However, we know that a permission fault can only be
    396 	 * the result of a write to a read-only location, so
    397 	 * we can deal with those quickly.
    398 	 *
    399 	 * Otherwise we need to disassemble the instruction
    400 	 * responsible to determine if it was a write.
    401 	 */
    402 	if (IS_PERMISSION_FAULT(fsr))
    403 		ftype = VM_PROT_WRITE;
    404 	else {
    405 #ifdef THUMB_CODE
    406 		/* Fast track the ARM case.  */
    407 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    408 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
    409 			u_int insn_f8 = insn & 0xf800;
    410 			u_int insn_fe = insn & 0xfe00;
    411 
    412 			if (insn_f8 == 0x6000 || /* STR(1) */
    413 			    insn_f8 == 0x7000 || /* STRB(1) */
    414 			    insn_f8 == 0x8000 || /* STRH(1) */
    415 			    insn_f8 == 0x9000 || /* STR(3) */
    416 			    insn_f8 == 0xc000 || /* STM */
    417 			    insn_fe == 0x5000 || /* STR(2) */
    418 			    insn_fe == 0x5200 || /* STRH(2) */
    419 			    insn_fe == 0x5400)   /* STRB(2) */
    420 				ftype = VM_PROT_WRITE;
    421 			else
    422 				ftype = VM_PROT_READ;
    423 		}
    424 		else
    425 #endif
    426 		{
    427 			u_int insn = ReadWord(tf->tf_pc);
    428 
    429 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    430 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    431 			    ((insn & 0x0a100000) == 0x08000000))   /* STM/CDT*/
    432 				ftype = VM_PROT_WRITE;
    433 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    434 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    435 			else
    436 				ftype = VM_PROT_READ;
    437 		}
    438 	}
    439 
    440 	/*
    441 	 * See if the fault is as a result of ref/mod emulation,
    442 	 * or domain mismatch.
    443 	 */
    444 #ifdef DEBUG
    445 	last_fault_code = fsr;
    446 #endif
    447 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    448 		if (map != kernel_map)
    449 			l->l_flag &= ~L_SA_PAGEFAULT;
    450 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    451 		goto out;
    452 	}
    453 
    454 	if (__predict_false(current_intr_depth > 0)) {
    455 		if (pcb->pcb_onfault) {
    456 			tf->tf_r0 = EINVAL;
    457 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    458 			return;
    459 		}
    460 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    461 		dab_fatal(tf, fsr, far, l, NULL);
    462 	}
    463 
    464 	onfault = pcb->pcb_onfault;
    465 	pcb->pcb_onfault = NULL;
    466 	error = uvm_fault(map, va, ftype);
    467 	pcb->pcb_onfault = onfault;
    468 
    469 	if (map != kernel_map)
    470 		l->l_flag &= ~L_SA_PAGEFAULT;
    471 
    472 	if (__predict_true(error == 0)) {
    473 		if (user)
    474 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    475 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    476 		goto out;
    477 	}
    478 
    479 	if (user == 0) {
    480 		if (pcb->pcb_onfault) {
    481 			tf->tf_r0 = error;
    482 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    483 			return;
    484 		}
    485 
    486 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    487 		    error);
    488 		dab_fatal(tf, fsr, far, l, NULL);
    489 	}
    490 
    491 	KSI_INIT_TRAP(&ksi);
    492 
    493 	if (error == ENOMEM) {
    494 		printf("UVM: pid %d (%s), uid %d killed: "
    495 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    496 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    497 		ksi.ksi_signo = SIGKILL;
    498 	} else
    499 		ksi.ksi_signo = SIGSEGV;
    500 
    501 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    502 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    503 	ksi.ksi_trap = fsr;
    504 	UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
    505 
    506 do_trapsignal:
    507 	call_trapsignal(l, &ksi);
    508 out:
    509 	/* If returning to user mode, make sure to invoke userret() */
    510 	if (user)
    511 		userret(l);
    512 }
    513 
    514 /*
    515  * dab_fatal() handles the following data aborts:
    516  *
    517  *  FAULT_WRTBUF_0 - Vector Exception
    518  *  FAULT_WRTBUF_1 - Terminal Exception
    519  *
    520  * We should never see these on a properly functioning system.
    521  *
    522  * This function is also called by the other handlers if they
    523  * detect a fatal problem.
    524  *
    525  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    526  */
    527 static int
    528 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    529 {
    530 	const char *mode;
    531 
    532 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    533 
    534 	if (l != NULL) {
    535 		printf("Fatal %s mode data abort: '%s'\n", mode,
    536 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    537 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    538 		if ((fsr & FAULT_IMPRECISE) == 0)
    539 			printf("%08x, ", far);
    540 		else
    541 			printf("Invalid,  ");
    542 		printf("spsr=%08x\n", tf->tf_spsr);
    543 	} else {
    544 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    545 		    mode, tf->tf_pc);
    546 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    547 	}
    548 
    549 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    550 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    551 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    552 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    553 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    554 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    555 	printf("r12=%08x, ", tf->tf_r12);
    556 
    557 	if (TRAP_USERMODE(tf))
    558 		printf("usp=%08x, ulr=%08x",
    559 		    tf->tf_usr_sp, tf->tf_usr_lr);
    560 	else
    561 		printf("ssp=%08x, slr=%08x",
    562 		    tf->tf_svc_sp, tf->tf_svc_lr);
    563 	printf(", pc =%08x\n\n", tf->tf_pc);
    564 
    565 #if defined(DDB) || defined(KGDB)
    566 	kdb_trap(T_FAULT, tf);
    567 #endif
    568 	panic("Fatal abort");
    569 	/*NOTREACHED*/
    570 }
    571 
    572 /*
    573  * dab_align() handles the following data aborts:
    574  *
    575  *  FAULT_ALIGN_0 - Alignment fault
    576  *  FAULT_ALIGN_0 - Alignment fault
    577  *
    578  * These faults are fatal if they happen in kernel mode. Otherwise, we
    579  * deliver a bus error to the process.
    580  */
    581 static int
    582 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    583 {
    584 
    585 	/* Alignment faults are always fatal if they occur in kernel mode */
    586 	if (!TRAP_USERMODE(tf))
    587 		dab_fatal(tf, fsr, far, l, NULL);
    588 
    589 	/* pcb_onfault *must* be NULL at this point */
    590 	KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
    591 
    592 	/* See if the CPU state needs to be fixed up */
    593 	(void) data_abort_fixup(tf, fsr, far, l);
    594 
    595 	/* Deliver a bus error signal to the process */
    596 	KSI_INIT_TRAP(ksi);
    597 	ksi->ksi_signo = SIGBUS;
    598 	ksi->ksi_code = BUS_ADRALN;
    599 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    600 	ksi->ksi_trap = fsr;
    601 
    602 	l->l_addr->u_pcb.pcb_tf = tf;
    603 
    604 	return (1);
    605 }
    606 
    607 /*
    608  * dab_buserr() handles the following data aborts:
    609  *
    610  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    611  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    612  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    613  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    614  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    615  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    616  *
    617  * If pcb_onfault is set, flag the fault and return to the handler.
    618  * If the fault occurred in user mode, give the process a SIGBUS.
    619  *
    620  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    621  * can be flagged as imprecise in the FSR. This causes a real headache
    622  * since some of the machine state is lost. In this case, tf->tf_pc
    623  * may not actually point to the offending instruction. In fact, if
    624  * we've taken a double abort fault, it generally points somewhere near
    625  * the top of "data_abort_entry" in exception.S.
    626  *
    627  * In all other cases, these data aborts are considered fatal.
    628  */
    629 static int
    630 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    631     ksiginfo_t *ksi)
    632 {
    633 	struct pcb *pcb = &l->l_addr->u_pcb;
    634 
    635 #ifdef __XSCALE__
    636 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    637 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    638 		/*
    639 		 * Oops, an imprecise, double abort fault. We've lost the
    640 		 * r14_abt/spsr_abt values corresponding to the original
    641 		 * abort, and the spsr saved in the trapframe indicates
    642 		 * ABT mode.
    643 		 */
    644 		tf->tf_spsr &= ~PSR_MODE;
    645 
    646 		/*
    647 		 * We use a simple heuristic to determine if the double abort
    648 		 * happened as a result of a kernel or user mode access.
    649 		 * If the current trapframe is at the top of the kernel stack,
    650 		 * the fault _must_ have come from user mode.
    651 		 */
    652 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    653 			/*
    654 			 * Kernel mode. We're either about to die a
    655 			 * spectacular death, or pcb_onfault will come
    656 			 * to our rescue. Either way, the current value
    657 			 * of tf->tf_pc is irrelevant.
    658 			 */
    659 			tf->tf_spsr |= PSR_SVC32_MODE;
    660 			if (pcb->pcb_onfault == NULL)
    661 				printf("\nKernel mode double abort!\n");
    662 		} else {
    663 			/*
    664 			 * User mode. We've lost the program counter at the
    665 			 * time of the fault (not that it was accurate anyway;
    666 			 * it's not called an imprecise fault for nothing).
    667 			 * About all we can do is copy r14_usr to tf_pc and
    668 			 * hope for the best. The process is about to get a
    669 			 * SIGBUS, so it's probably history anyway.
    670 			 */
    671 			tf->tf_spsr |= PSR_USR32_MODE;
    672 			tf->tf_pc = tf->tf_usr_lr;
    673 #ifdef THUMB_CODE
    674 			tf->tf_spsr &= ~PSR_T_bit;
    675 			if (tf->tf_usr_lr & 1)
    676 				tf->tf_spsr |= PSR_T_bit;
    677 #endif
    678 		}
    679 	}
    680 
    681 	/* FAR is invalid for imprecise exceptions */
    682 	if ((fsr & FAULT_IMPRECISE) != 0)
    683 		far = 0;
    684 #endif /* __XSCALE__ */
    685 
    686 	if (pcb->pcb_onfault) {
    687 		KDASSERT(TRAP_USERMODE(tf) == 0);
    688 		tf->tf_r0 = EFAULT;
    689 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    690 		return (0);
    691 	}
    692 
    693 	/* See if the CPU state needs to be fixed up */
    694 	(void) data_abort_fixup(tf, fsr, far, l);
    695 
    696 	/*
    697 	 * At this point, if the fault happened in kernel mode, we're toast
    698 	 */
    699 	if (!TRAP_USERMODE(tf))
    700 		dab_fatal(tf, fsr, far, l, NULL);
    701 
    702 	/* Deliver a bus error signal to the process */
    703 	KSI_INIT_TRAP(ksi);
    704 	ksi->ksi_signo = SIGBUS;
    705 	ksi->ksi_code = BUS_ADRERR;
    706 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    707 	ksi->ksi_trap = fsr;
    708 
    709 	l->l_addr->u_pcb.pcb_tf = tf;
    710 
    711 	return (1);
    712 }
    713 
    714 static inline int
    715 prefetch_abort_fixup(trapframe_t *tf)
    716 {
    717 #ifdef CPU_ABORT_FIXUP_REQUIRED
    718 	int error;
    719 
    720 	/* Call the CPU specific prefetch abort fixup routine */
    721 	error = cpu_prefetchabt_fixup(tf);
    722 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    723 		return (error);
    724 
    725 	/*
    726 	 * Oops, couldn't fix up the instruction
    727 	 */
    728 	printf(
    729 	    "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
    730 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    731 #ifdef THUMB_CODE
    732 	if (tf->tf_spsr & PSR_T_bit) {
    733 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    734 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
    735 		    *((u_int16 *)((tf->tf_pc + 2) & ~1));
    736 	}
    737 	else
    738 #endif
    739 	{
    740 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    741 		    *((u_int *)tf->tf_pc));
    742 	}
    743 	disassemble(tf->tf_pc);
    744 
    745 	/* Die now if this happened in kernel mode */
    746 	if (!TRAP_USERMODE(tf))
    747 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    748 
    749 	return (error);
    750 #else
    751 	return (ABORT_FIXUP_OK);
    752 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    753 }
    754 
    755 /*
    756  * void prefetch_abort_handler(trapframe_t *tf)
    757  *
    758  * Abort handler called when instruction execution occurs at
    759  * a non existent or restricted (access permissions) memory page.
    760  * If the address is invalid and we were in SVC mode then panic as
    761  * the kernel should never prefetch abort.
    762  * If the address is invalid and the page is mapped then the user process
    763  * does no have read permission so send it a signal.
    764  * Otherwise fault the page in and try again.
    765  */
    766 void
    767 prefetch_abort_handler(trapframe_t *tf)
    768 {
    769 	struct lwp *l;
    770 	struct vm_map *map;
    771 	vaddr_t fault_pc, va;
    772 	ksiginfo_t ksi;
    773 	int error, user;
    774 
    775 	UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
    776 
    777 	/* Update vmmeter statistics */
    778 	uvmexp.traps++;
    779 
    780 	l = curlwp;
    781 
    782 	if ((user = TRAP_USERMODE(tf)) != 0)
    783 		LWP_CACHE_CREDS(l, l->l_proc);
    784 
    785 	/*
    786 	 * Enable IRQ's (disabled by the abort) This always comes
    787 	 * from user mode so we know interrupts were not disabled.
    788 	 * But we check anyway.
    789 	 */
    790 	if (__predict_true((tf->tf_spsr & I32_bit) == 0))
    791 		enable_interrupts(I32_bit);
    792 
    793 	/* See if the CPU state needs to be fixed up */
    794 	switch (prefetch_abort_fixup(tf)) {
    795 	case ABORT_FIXUP_RETURN:
    796 		return;
    797 	case ABORT_FIXUP_FAILED:
    798 		/* Deliver a SIGILL to the process */
    799 		KSI_INIT_TRAP(&ksi);
    800 		ksi.ksi_signo = SIGILL;
    801 		ksi.ksi_code = ILL_ILLOPC;
    802 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    803 		l->l_addr->u_pcb.pcb_tf = tf;
    804 		goto do_trapsignal;
    805 	default:
    806 		break;
    807 	}
    808 
    809 	/* Prefetch aborts cannot happen in kernel mode */
    810 	if (__predict_false(!user))
    811 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    812 
    813 	/* Get fault address */
    814 	fault_pc = tf->tf_pc;
    815 	l = curlwp;
    816 	l->l_addr->u_pcb.pcb_tf = tf;
    817 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
    818 	    0);
    819 
    820 	/* Ok validate the address, can only execute in USER space */
    821 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    822 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    823 		KSI_INIT_TRAP(&ksi);
    824 		ksi.ksi_signo = SIGSEGV;
    825 		ksi.ksi_code = SEGV_ACCERR;
    826 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    827 		ksi.ksi_trap = fault_pc;
    828 		goto do_trapsignal;
    829 	}
    830 
    831 	map = &l->l_proc->p_vmspace->vm_map;
    832 	va = trunc_page(fault_pc);
    833 
    834 	/*
    835 	 * See if the pmap can handle this fault on its own...
    836 	 */
    837 #ifdef DEBUG
    838 	last_fault_code = -1;
    839 #endif
    840 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
    841 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    842 		goto out;
    843 	}
    844 
    845 #ifdef DIAGNOSTIC
    846 	if (__predict_false(current_intr_depth > 0)) {
    847 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    848 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    849 	}
    850 #endif
    851 	if (map != kernel_map && l->l_flag & L_SA) {
    852 		l->l_savp->savp_faultaddr = fault_pc;
    853 		l->l_flag |= L_SA_PAGEFAULT;
    854 	}
    855 
    856 	error = uvm_fault(map, va, VM_PROT_READ);
    857 
    858 	if (map != kernel_map)
    859 		l->l_flag &= ~L_SA_PAGEFAULT;
    860 
    861 	if (__predict_true(error == 0)) {
    862 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    863 		goto out;
    864 	}
    865 	KSI_INIT_TRAP(&ksi);
    866 
    867 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    868 	if (error == ENOMEM) {
    869 		printf("UVM: pid %d (%s), uid %d killed: "
    870 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    871 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    872 		ksi.ksi_signo = SIGKILL;
    873 	} else
    874 		ksi.ksi_signo = SIGSEGV;
    875 
    876 	ksi.ksi_code = SEGV_MAPERR;
    877 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    878 	ksi.ksi_trap = fault_pc;
    879 
    880 do_trapsignal:
    881 	call_trapsignal(l, &ksi);
    882 
    883 out:
    884 	userret(l);
    885 }
    886 
    887 /*
    888  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    889  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    890  * Else, return EFAULT.
    891  */
    892 int
    893 badaddr_read(void *addr, size_t size, void *rptr)
    894 {
    895 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    896 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    897 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    898 	union {
    899 		uint8_t v1;
    900 		uint16_t v2;
    901 		uint32_t v4;
    902 	} u;
    903 	struct pcb *curpcb_save;
    904 	int rv, s;
    905 
    906 	cpu_drain_writebuf();
    907 
    908 	/*
    909 	 * We might be called at interrupt time, so arrange to steal
    910 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
    911 	 * handling works correctly.
    912 	 */
    913 	s = splhigh();
    914 	if ((curpcb_save = curpcb) == NULL)
    915 		curpcb = &lwp0.l_addr->u_pcb;
    916 
    917 	/* Read from the test address. */
    918 	switch (size) {
    919 	case sizeof(uint8_t):
    920 		rv = badaddr_read_1(addr, &u.v1);
    921 		if (rv == 0 && rptr)
    922 			*(uint8_t *) rptr = u.v1;
    923 		break;
    924 
    925 	case sizeof(uint16_t):
    926 		rv = badaddr_read_2(addr, &u.v2);
    927 		if (rv == 0 && rptr)
    928 			*(uint16_t *) rptr = u.v2;
    929 		break;
    930 
    931 	case sizeof(uint32_t):
    932 		rv = badaddr_read_4(addr, &u.v4);
    933 		if (rv == 0 && rptr)
    934 			*(uint32_t *) rptr = u.v4;
    935 		break;
    936 
    937 	default:
    938 		curpcb = curpcb_save;
    939 		panic("badaddr: invalid size (%lu)", (u_long) size);
    940 	}
    941 
    942 	/* Restore curpcb */
    943 	curpcb = curpcb_save;
    944 	splx(s);
    945 
    946 	/* Return EFAULT if the address was invalid, else zero */
    947 	return (rv);
    948 }
    949