fault.c revision 1.65 1 /* $NetBSD: fault.c,v 1.65 2008/01/06 03:11:42 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.65 2008/01/06 03:11:42 matt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/user.h>
90 #include <sys/kernel.h>
91 #include <sys/kauth.h>
92 #include <sys/cpu.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/cpuconf.h>
101
102 #include <machine/frame.h>
103 #include <arm/arm32/katelib.h>
104 #include <machine/intr.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if a fault came from user mode */
159 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
160
161 /* Determine if 'x' is a permission fault */
162 #define IS_PERMISSION_FAULT(x) \
163 (((1 << ((x) & FAULT_TYPE_MASK)) & \
164 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
165
166 #if 0
167 /* maybe one day we'll do emulations */
168 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
169 #else
170 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
171 #endif
172
173 static inline void
174 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
175 {
176
177 KERNEL_LOCK(1, l);
178 TRAPSIGNAL(l, ksi);
179 KERNEL_UNLOCK_LAST(l);
180 }
181
182 static inline int
183 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
184 {
185 #ifdef CPU_ABORT_FIXUP_REQUIRED
186 int error;
187
188 /* Call the CPU specific data abort fixup routine */
189 error = cpu_dataabt_fixup(tf);
190 if (__predict_true(error != ABORT_FIXUP_FAILED))
191 return (error);
192
193 /*
194 * Oops, couldn't fix up the instruction
195 */
196 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
197 TRAP_USERMODE(tf) ? "user" : "kernel");
198 #ifdef THUMB_CODE
199 if (tf->tf_spsr & PSR_T_bit) {
200 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
201 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
202 *((u_int16 *)((tf->tf_pc + 2) & ~1));
203 }
204 else
205 #endif
206 {
207 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
208 *((u_int *)tf->tf_pc));
209 }
210 disassemble(tf->tf_pc);
211
212 /* Die now if this happened in kernel mode */
213 if (!TRAP_USERMODE(tf))
214 dab_fatal(tf, fsr, far, l, NULL);
215
216 return (error);
217 #else
218 return (ABORT_FIXUP_OK);
219 #endif /* CPU_ABORT_FIXUP_REQUIRED */
220 }
221
222 void
223 data_abort_handler(trapframe_t *tf)
224 {
225 struct vm_map *map;
226 struct pcb *pcb;
227 struct lwp *l;
228 u_int user, far, fsr;
229 vm_prot_t ftype;
230 void *onfault;
231 vaddr_t va;
232 int error;
233 ksiginfo_t ksi;
234
235 UVMHIST_FUNC("data_abort_handler");
236
237 /* Grab FAR/FSR before enabling interrupts */
238 far = cpu_faultaddress();
239 fsr = cpu_faultstatus();
240
241 UVMHIST_CALLED(maphist);
242 /* Update vmmeter statistics */
243 uvmexp.traps++;
244
245 /* Re-enable interrupts if they were enabled previously */
246 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
247 enable_interrupts(I32_bit);
248
249 /* Get the current lwp structure or lwp0 if there is none */
250 l = (curlwp != NULL) ? curlwp : &lwp0;
251
252 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
253 tf->tf_pc, l, far, fsr);
254
255 /* Data abort came from user mode? */
256 if ((user = TRAP_USERMODE(tf)) != 0)
257 LWP_CACHE_CREDS(l, l->l_proc);
258
259 /* Grab the current pcb */
260 pcb = &l->l_addr->u_pcb;
261
262 /* Invoke the appropriate handler, if necessary */
263 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
264 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
265 l, &ksi))
266 goto do_trapsignal;
267 goto out;
268 }
269
270 /*
271 * At this point, we're dealing with one of the following data aborts:
272 *
273 * FAULT_TRANS_S - Translation -- Section
274 * FAULT_TRANS_P - Translation -- Page
275 * FAULT_DOMAIN_S - Domain -- Section
276 * FAULT_DOMAIN_P - Domain -- Page
277 * FAULT_PERM_S - Permission -- Section
278 * FAULT_PERM_P - Permission -- Page
279 *
280 * These are the main virtual memory-related faults signalled by
281 * the MMU.
282 */
283
284 /* fusubailout is used by [fs]uswintr to avoid page faulting */
285 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
286 tf->tf_r0 = EFAULT;
287 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
288 return;
289 }
290
291 if (user)
292 l->l_addr->u_pcb.pcb_tf = tf;
293
294 /*
295 * Make sure the Program Counter is sane. We could fall foul of
296 * someone executing Thumb code, in which case the PC might not
297 * be word-aligned. This would cause a kernel alignment fault
298 * further down if we have to decode the current instruction.
299 */
300 #ifdef THUMB_CODE
301 /*
302 * XXX: It would be nice to be able to support Thumb in the kernel
303 * at some point.
304 */
305 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
306 printf("\ndata_abort_fault: Misaligned Kernel-mode "
307 "Program Counter\n");
308 dab_fatal(tf, fsr, far, l, NULL);
309 }
310 #else
311 if (__predict_false((tf->tf_pc & 3) != 0)) {
312 if (user) {
313 /*
314 * Give the user an illegal instruction signal.
315 */
316 /* Deliver a SIGILL to the process */
317 KSI_INIT_TRAP(&ksi);
318 ksi.ksi_signo = SIGILL;
319 ksi.ksi_code = ILL_ILLOPC;
320 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
321 ksi.ksi_trap = fsr;
322 goto do_trapsignal;
323 }
324
325 /*
326 * The kernel never executes Thumb code.
327 */
328 printf("\ndata_abort_fault: Misaligned Kernel-mode "
329 "Program Counter\n");
330 dab_fatal(tf, fsr, far, l, NULL);
331 }
332 #endif
333
334 /* See if the CPU state needs to be fixed up */
335 switch (data_abort_fixup(tf, fsr, far, l)) {
336 case ABORT_FIXUP_RETURN:
337 return;
338 case ABORT_FIXUP_FAILED:
339 /* Deliver a SIGILL to the process */
340 KSI_INIT_TRAP(&ksi);
341 ksi.ksi_signo = SIGILL;
342 ksi.ksi_code = ILL_ILLOPC;
343 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
344 ksi.ksi_trap = fsr;
345 goto do_trapsignal;
346 default:
347 break;
348 }
349
350 va = trunc_page((vaddr_t)far);
351
352 /*
353 * It is only a kernel address space fault iff:
354 * 1. user == 0 and
355 * 2. pcb_onfault not set or
356 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
357 */
358 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
359 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
360 __predict_true((pcb->pcb_onfault == NULL ||
361 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
362 map = kernel_map;
363
364 /* Was the fault due to the FPE/IPKDB ? */
365 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
366 KSI_INIT_TRAP(&ksi);
367 ksi.ksi_signo = SIGSEGV;
368 ksi.ksi_code = SEGV_ACCERR;
369 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
370 ksi.ksi_trap = fsr;
371
372 /*
373 * Force exit via userret()
374 * This is necessary as the FPE is an extension to
375 * userland that actually runs in a priveledged mode
376 * but uses USR mode permissions for its accesses.
377 */
378 user = 1;
379 goto do_trapsignal;
380 }
381 } else
382 map = &l->l_proc->p_vmspace->vm_map;
383
384 /*
385 * We need to know whether the page should be mapped
386 * as R or R/W. The MMU does not give us the info as
387 * to whether the fault was caused by a read or a write.
388 *
389 * However, we know that a permission fault can only be
390 * the result of a write to a read-only location, so
391 * we can deal with those quickly.
392 *
393 * Otherwise we need to disassemble the instruction
394 * responsible to determine if it was a write.
395 */
396 if (IS_PERMISSION_FAULT(fsr))
397 ftype = VM_PROT_WRITE;
398 else {
399 #ifdef THUMB_CODE
400 /* Fast track the ARM case. */
401 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
402 u_int insn = fusword((void *)(tf->tf_pc & ~1));
403 u_int insn_f8 = insn & 0xf800;
404 u_int insn_fe = insn & 0xfe00;
405
406 if (insn_f8 == 0x6000 || /* STR(1) */
407 insn_f8 == 0x7000 || /* STRB(1) */
408 insn_f8 == 0x8000 || /* STRH(1) */
409 insn_f8 == 0x9000 || /* STR(3) */
410 insn_f8 == 0xc000 || /* STM */
411 insn_fe == 0x5000 || /* STR(2) */
412 insn_fe == 0x5200 || /* STRH(2) */
413 insn_fe == 0x5400) /* STRB(2) */
414 ftype = VM_PROT_WRITE;
415 else
416 ftype = VM_PROT_READ;
417 }
418 else
419 #endif
420 {
421 u_int insn = ReadWord(tf->tf_pc);
422
423 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
424 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
425 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT*/
426 ftype = VM_PROT_WRITE;
427 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
428 ftype = VM_PROT_READ | VM_PROT_WRITE;
429 else
430 ftype = VM_PROT_READ;
431 }
432 }
433
434 /*
435 * See if the fault is as a result of ref/mod emulation,
436 * or domain mismatch.
437 */
438 #ifdef DEBUG
439 last_fault_code = fsr;
440 #endif
441 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
442 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
443 goto out;
444 }
445
446 if (__predict_false(curcpu()->ci_idepth > 0)) {
447 if (pcb->pcb_onfault) {
448 tf->tf_r0 = EINVAL;
449 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
450 return;
451 }
452 printf("\nNon-emulated page fault with intr_depth > 0\n");
453 dab_fatal(tf, fsr, far, l, NULL);
454 }
455
456 onfault = pcb->pcb_onfault;
457 pcb->pcb_onfault = NULL;
458 error = uvm_fault(map, va, ftype);
459 pcb->pcb_onfault = onfault;
460
461 if (__predict_true(error == 0)) {
462 if (user)
463 uvm_grow(l->l_proc, va); /* Record any stack growth */
464 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
465 goto out;
466 }
467
468 if (user == 0) {
469 if (pcb->pcb_onfault) {
470 tf->tf_r0 = error;
471 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
472 return;
473 }
474
475 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
476 error);
477 dab_fatal(tf, fsr, far, l, NULL);
478 }
479
480 KSI_INIT_TRAP(&ksi);
481
482 if (error == ENOMEM) {
483 printf("UVM: pid %d (%s), uid %d killed: "
484 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
485 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
486 ksi.ksi_signo = SIGKILL;
487 } else
488 ksi.ksi_signo = SIGSEGV;
489
490 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
491 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
492 ksi.ksi_trap = fsr;
493 UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
494
495 do_trapsignal:
496 call_trapsignal(l, &ksi);
497 out:
498 /* If returning to user mode, make sure to invoke userret() */
499 if (user)
500 userret(l);
501 }
502
503 /*
504 * dab_fatal() handles the following data aborts:
505 *
506 * FAULT_WRTBUF_0 - Vector Exception
507 * FAULT_WRTBUF_1 - Terminal Exception
508 *
509 * We should never see these on a properly functioning system.
510 *
511 * This function is also called by the other handlers if they
512 * detect a fatal problem.
513 *
514 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
515 */
516 static int
517 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
518 {
519 const char *mode;
520
521 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
522
523 if (l != NULL) {
524 printf("Fatal %s mode data abort: '%s'\n", mode,
525 data_aborts[fsr & FAULT_TYPE_MASK].desc);
526 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
527 if ((fsr & FAULT_IMPRECISE) == 0)
528 printf("%08x, ", far);
529 else
530 printf("Invalid, ");
531 printf("spsr=%08x\n", tf->tf_spsr);
532 } else {
533 printf("Fatal %s mode prefetch abort at 0x%08x\n",
534 mode, tf->tf_pc);
535 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
536 }
537
538 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
539 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
540 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
541 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
542 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
543 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
544 printf("r12=%08x, ", tf->tf_r12);
545
546 if (TRAP_USERMODE(tf))
547 printf("usp=%08x, ulr=%08x",
548 tf->tf_usr_sp, tf->tf_usr_lr);
549 else
550 printf("ssp=%08x, slr=%08x",
551 tf->tf_svc_sp, tf->tf_svc_lr);
552 printf(", pc =%08x\n\n", tf->tf_pc);
553
554 #if defined(DDB) || defined(KGDB)
555 kdb_trap(T_FAULT, tf);
556 #endif
557 panic("Fatal abort");
558 /*NOTREACHED*/
559 }
560
561 /*
562 * dab_align() handles the following data aborts:
563 *
564 * FAULT_ALIGN_0 - Alignment fault
565 * FAULT_ALIGN_0 - Alignment fault
566 *
567 * These faults are fatal if they happen in kernel mode. Otherwise, we
568 * deliver a bus error to the process.
569 */
570 static int
571 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
572 {
573
574 /* Alignment faults are always fatal if they occur in kernel mode */
575 if (!TRAP_USERMODE(tf))
576 dab_fatal(tf, fsr, far, l, NULL);
577
578 /* pcb_onfault *must* be NULL at this point */
579 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
580
581 /* See if the CPU state needs to be fixed up */
582 (void) data_abort_fixup(tf, fsr, far, l);
583
584 /* Deliver a bus error signal to the process */
585 KSI_INIT_TRAP(ksi);
586 ksi->ksi_signo = SIGBUS;
587 ksi->ksi_code = BUS_ADRALN;
588 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
589 ksi->ksi_trap = fsr;
590
591 l->l_addr->u_pcb.pcb_tf = tf;
592
593 return (1);
594 }
595
596 /*
597 * dab_buserr() handles the following data aborts:
598 *
599 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
600 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
601 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
602 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
603 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
604 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
605 *
606 * If pcb_onfault is set, flag the fault and return to the handler.
607 * If the fault occurred in user mode, give the process a SIGBUS.
608 *
609 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
610 * can be flagged as imprecise in the FSR. This causes a real headache
611 * since some of the machine state is lost. In this case, tf->tf_pc
612 * may not actually point to the offending instruction. In fact, if
613 * we've taken a double abort fault, it generally points somewhere near
614 * the top of "data_abort_entry" in exception.S.
615 *
616 * In all other cases, these data aborts are considered fatal.
617 */
618 static int
619 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
620 ksiginfo_t *ksi)
621 {
622 struct pcb *pcb = &l->l_addr->u_pcb;
623
624 #ifdef __XSCALE__
625 if ((fsr & FAULT_IMPRECISE) != 0 &&
626 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
627 /*
628 * Oops, an imprecise, double abort fault. We've lost the
629 * r14_abt/spsr_abt values corresponding to the original
630 * abort, and the spsr saved in the trapframe indicates
631 * ABT mode.
632 */
633 tf->tf_spsr &= ~PSR_MODE;
634
635 /*
636 * We use a simple heuristic to determine if the double abort
637 * happened as a result of a kernel or user mode access.
638 * If the current trapframe is at the top of the kernel stack,
639 * the fault _must_ have come from user mode.
640 */
641 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
642 /*
643 * Kernel mode. We're either about to die a
644 * spectacular death, or pcb_onfault will come
645 * to our rescue. Either way, the current value
646 * of tf->tf_pc is irrelevant.
647 */
648 tf->tf_spsr |= PSR_SVC32_MODE;
649 if (pcb->pcb_onfault == NULL)
650 printf("\nKernel mode double abort!\n");
651 } else {
652 /*
653 * User mode. We've lost the program counter at the
654 * time of the fault (not that it was accurate anyway;
655 * it's not called an imprecise fault for nothing).
656 * About all we can do is copy r14_usr to tf_pc and
657 * hope for the best. The process is about to get a
658 * SIGBUS, so it's probably history anyway.
659 */
660 tf->tf_spsr |= PSR_USR32_MODE;
661 tf->tf_pc = tf->tf_usr_lr;
662 #ifdef THUMB_CODE
663 tf->tf_spsr &= ~PSR_T_bit;
664 if (tf->tf_usr_lr & 1)
665 tf->tf_spsr |= PSR_T_bit;
666 #endif
667 }
668 }
669
670 /* FAR is invalid for imprecise exceptions */
671 if ((fsr & FAULT_IMPRECISE) != 0)
672 far = 0;
673 #endif /* __XSCALE__ */
674
675 if (pcb->pcb_onfault) {
676 KDASSERT(TRAP_USERMODE(tf) == 0);
677 tf->tf_r0 = EFAULT;
678 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
679 return (0);
680 }
681
682 /* See if the CPU state needs to be fixed up */
683 (void) data_abort_fixup(tf, fsr, far, l);
684
685 /*
686 * At this point, if the fault happened in kernel mode, we're toast
687 */
688 if (!TRAP_USERMODE(tf))
689 dab_fatal(tf, fsr, far, l, NULL);
690
691 /* Deliver a bus error signal to the process */
692 KSI_INIT_TRAP(ksi);
693 ksi->ksi_signo = SIGBUS;
694 ksi->ksi_code = BUS_ADRERR;
695 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
696 ksi->ksi_trap = fsr;
697
698 l->l_addr->u_pcb.pcb_tf = tf;
699
700 return (1);
701 }
702
703 static inline int
704 prefetch_abort_fixup(trapframe_t *tf)
705 {
706 #ifdef CPU_ABORT_FIXUP_REQUIRED
707 int error;
708
709 /* Call the CPU specific prefetch abort fixup routine */
710 error = cpu_prefetchabt_fixup(tf);
711 if (__predict_true(error != ABORT_FIXUP_FAILED))
712 return (error);
713
714 /*
715 * Oops, couldn't fix up the instruction
716 */
717 printf(
718 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
719 TRAP_USERMODE(tf) ? "user" : "kernel");
720 #ifdef THUMB_CODE
721 if (tf->tf_spsr & PSR_T_bit) {
722 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
723 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
724 *((u_int16 *)((tf->tf_pc + 2) & ~1));
725 }
726 else
727 #endif
728 {
729 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
730 *((u_int *)tf->tf_pc));
731 }
732 disassemble(tf->tf_pc);
733
734 /* Die now if this happened in kernel mode */
735 if (!TRAP_USERMODE(tf))
736 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
737
738 return (error);
739 #else
740 return (ABORT_FIXUP_OK);
741 #endif /* CPU_ABORT_FIXUP_REQUIRED */
742 }
743
744 /*
745 * void prefetch_abort_handler(trapframe_t *tf)
746 *
747 * Abort handler called when instruction execution occurs at
748 * a non existent or restricted (access permissions) memory page.
749 * If the address is invalid and we were in SVC mode then panic as
750 * the kernel should never prefetch abort.
751 * If the address is invalid and the page is mapped then the user process
752 * does no have read permission so send it a signal.
753 * Otherwise fault the page in and try again.
754 */
755 void
756 prefetch_abort_handler(trapframe_t *tf)
757 {
758 struct lwp *l;
759 struct vm_map *map;
760 vaddr_t fault_pc, va;
761 ksiginfo_t ksi;
762 int error, user;
763
764 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
765
766 /* Update vmmeter statistics */
767 uvmexp.traps++;
768
769 l = curlwp;
770
771 if ((user = TRAP_USERMODE(tf)) != 0)
772 LWP_CACHE_CREDS(l, l->l_proc);
773
774 /*
775 * Enable IRQ's (disabled by the abort) This always comes
776 * from user mode so we know interrupts were not disabled.
777 * But we check anyway.
778 */
779 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
780 enable_interrupts(I32_bit);
781
782 /* See if the CPU state needs to be fixed up */
783 switch (prefetch_abort_fixup(tf)) {
784 case ABORT_FIXUP_RETURN:
785 return;
786 case ABORT_FIXUP_FAILED:
787 /* Deliver a SIGILL to the process */
788 KSI_INIT_TRAP(&ksi);
789 ksi.ksi_signo = SIGILL;
790 ksi.ksi_code = ILL_ILLOPC;
791 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
792 l->l_addr->u_pcb.pcb_tf = tf;
793 goto do_trapsignal;
794 default:
795 break;
796 }
797
798 /* Prefetch aborts cannot happen in kernel mode */
799 if (__predict_false(!user))
800 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
801
802 /* Get fault address */
803 fault_pc = tf->tf_pc;
804 l = curlwp;
805 l->l_addr->u_pcb.pcb_tf = tf;
806 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
807 0);
808
809 /* Ok validate the address, can only execute in USER space */
810 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
811 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
812 KSI_INIT_TRAP(&ksi);
813 ksi.ksi_signo = SIGSEGV;
814 ksi.ksi_code = SEGV_ACCERR;
815 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
816 ksi.ksi_trap = fault_pc;
817 goto do_trapsignal;
818 }
819
820 map = &l->l_proc->p_vmspace->vm_map;
821 va = trunc_page(fault_pc);
822
823 /*
824 * See if the pmap can handle this fault on its own...
825 */
826 #ifdef DEBUG
827 last_fault_code = -1;
828 #endif
829 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
830 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
831 goto out;
832 }
833
834 #ifdef DIAGNOSTIC
835 if (__predict_false(cpu_intr_p())) {
836 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
837 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
838 }
839 #endif
840 error = uvm_fault(map, va, VM_PROT_READ);
841
842 if (__predict_true(error == 0)) {
843 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
844 goto out;
845 }
846 KSI_INIT_TRAP(&ksi);
847
848 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
849 if (error == ENOMEM) {
850 printf("UVM: pid %d (%s), uid %d killed: "
851 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
852 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
853 ksi.ksi_signo = SIGKILL;
854 } else
855 ksi.ksi_signo = SIGSEGV;
856
857 ksi.ksi_code = SEGV_MAPERR;
858 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
859 ksi.ksi_trap = fault_pc;
860
861 do_trapsignal:
862 call_trapsignal(l, &ksi);
863
864 out:
865 userret(l);
866 }
867
868 /*
869 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
870 * If the read succeeds, the value is written to 'rptr' and zero is returned.
871 * Else, return EFAULT.
872 */
873 int
874 badaddr_read(void *addr, size_t size, void *rptr)
875 {
876 extern int badaddr_read_1(const uint8_t *, uint8_t *);
877 extern int badaddr_read_2(const uint16_t *, uint16_t *);
878 extern int badaddr_read_4(const uint32_t *, uint32_t *);
879 union {
880 uint8_t v1;
881 uint16_t v2;
882 uint32_t v4;
883 } u;
884 struct pcb *curpcb_save;
885 int rv, s;
886
887 cpu_drain_writebuf();
888
889 /*
890 * We might be called at interrupt time, so arrange to steal
891 * lwp0's PCB temporarily, if required, so that pcb_onfault
892 * handling works correctly.
893 */
894 s = splhigh();
895 if ((curpcb_save = curpcb) == NULL)
896 curpcb = &lwp0.l_addr->u_pcb;
897
898 /* Read from the test address. */
899 switch (size) {
900 case sizeof(uint8_t):
901 rv = badaddr_read_1(addr, &u.v1);
902 if (rv == 0 && rptr)
903 *(uint8_t *) rptr = u.v1;
904 break;
905
906 case sizeof(uint16_t):
907 rv = badaddr_read_2(addr, &u.v2);
908 if (rv == 0 && rptr)
909 *(uint16_t *) rptr = u.v2;
910 break;
911
912 case sizeof(uint32_t):
913 rv = badaddr_read_4(addr, &u.v4);
914 if (rv == 0 && rptr)
915 *(uint32_t *) rptr = u.v4;
916 break;
917
918 default:
919 curpcb = curpcb_save;
920 panic("badaddr: invalid size (%lu)", (u_long) size);
921 }
922
923 /* Restore curpcb */
924 curpcb = curpcb_save;
925 splx(s);
926
927 /* Return EFAULT if the address was invalid, else zero */
928 return (rv);
929 }
930