fault.c revision 1.67 1 /* $NetBSD: fault.c,v 1.67 2008/04/27 18:58:44 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.67 2008/04/27 18:58:44 matt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/user.h>
90 #include <sys/kernel.h>
91 #include <sys/kauth.h>
92 #include <sys/cpu.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/cpuconf.h>
101
102 #include <machine/frame.h>
103 #include <arm/arm32/katelib.h>
104 #include <machine/intr.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if a fault came from user mode */
159 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
160
161 /* Determine if 'x' is a permission fault */
162 #define IS_PERMISSION_FAULT(x) \
163 (((1 << ((x) & FAULT_TYPE_MASK)) & \
164 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
165
166 #if 0
167 /* maybe one day we'll do emulations */
168 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
169 #else
170 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
171 #endif
172
173 static inline void
174 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
175 {
176
177 KERNEL_LOCK(1, l);
178 TRAPSIGNAL(l, ksi);
179 KERNEL_UNLOCK_LAST(l);
180 }
181
182 static inline int
183 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
184 {
185 #ifdef CPU_ABORT_FIXUP_REQUIRED
186 int error;
187
188 /* Call the CPU specific data abort fixup routine */
189 error = cpu_dataabt_fixup(tf);
190 if (__predict_true(error != ABORT_FIXUP_FAILED))
191 return (error);
192
193 /*
194 * Oops, couldn't fix up the instruction
195 */
196 printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
197 TRAP_USERMODE(tf) ? "user" : "kernel");
198 #ifdef THUMB_CODE
199 if (tf->tf_spsr & PSR_T_bit) {
200 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
201 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
202 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
203 }
204 else
205 #endif
206 {
207 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
208 *((u_int *)tf->tf_pc));
209 }
210 disassemble(tf->tf_pc);
211
212 /* Die now if this happened in kernel mode */
213 if (!TRAP_USERMODE(tf))
214 dab_fatal(tf, fsr, far, l, NULL);
215
216 return (error);
217 #else
218 return (ABORT_FIXUP_OK);
219 #endif /* CPU_ABORT_FIXUP_REQUIRED */
220 }
221
222 void
223 data_abort_handler(trapframe_t *tf)
224 {
225 struct vm_map *map;
226 struct pcb *pcb;
227 struct lwp *l;
228 u_int user, far, fsr;
229 vm_prot_t ftype;
230 void *onfault;
231 vaddr_t va;
232 int error;
233 ksiginfo_t ksi;
234
235 UVMHIST_FUNC("data_abort_handler");
236
237 /* Grab FAR/FSR before enabling interrupts */
238 far = cpu_faultaddress();
239 fsr = cpu_faultstatus();
240
241 UVMHIST_CALLED(maphist);
242 /* Update vmmeter statistics */
243 uvmexp.traps++;
244
245 /* Re-enable interrupts if they were enabled previously */
246 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
247 enable_interrupts(I32_bit);
248
249 /* Get the current lwp structure */
250 KASSERT(curlwp != NULL);
251 l = curlwp;
252
253 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
254 tf->tf_pc, l, far, fsr);
255
256 /* Data abort came from user mode? */
257 if ((user = TRAP_USERMODE(tf)) != 0)
258 LWP_CACHE_CREDS(l, l->l_proc);
259
260 /* Grab the current pcb */
261 pcb = &l->l_addr->u_pcb;
262
263 /* Invoke the appropriate handler, if necessary */
264 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
265 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
266 l, &ksi))
267 goto do_trapsignal;
268 goto out;
269 }
270
271 /*
272 * At this point, we're dealing with one of the following data aborts:
273 *
274 * FAULT_TRANS_S - Translation -- Section
275 * FAULT_TRANS_P - Translation -- Page
276 * FAULT_DOMAIN_S - Domain -- Section
277 * FAULT_DOMAIN_P - Domain -- Page
278 * FAULT_PERM_S - Permission -- Section
279 * FAULT_PERM_P - Permission -- Page
280 *
281 * These are the main virtual memory-related faults signalled by
282 * the MMU.
283 */
284
285 /* fusubailout is used by [fs]uswintr to avoid page faulting */
286 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
287 tf->tf_r0 = EFAULT;
288 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
289 return;
290 }
291
292 if (user)
293 l->l_addr->u_pcb.pcb_tf = tf;
294
295 /*
296 * Make sure the Program Counter is sane. We could fall foul of
297 * someone executing Thumb code, in which case the PC might not
298 * be word-aligned. This would cause a kernel alignment fault
299 * further down if we have to decode the current instruction.
300 */
301 #ifdef THUMB_CODE
302 /*
303 * XXX: It would be nice to be able to support Thumb in the kernel
304 * at some point.
305 */
306 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
307 printf("\ndata_abort_fault: Misaligned Kernel-mode "
308 "Program Counter\n");
309 dab_fatal(tf, fsr, far, l, NULL);
310 }
311 #else
312 if (__predict_false((tf->tf_pc & 3) != 0)) {
313 if (user) {
314 /*
315 * Give the user an illegal instruction signal.
316 */
317 /* Deliver a SIGILL to the process */
318 KSI_INIT_TRAP(&ksi);
319 ksi.ksi_signo = SIGILL;
320 ksi.ksi_code = ILL_ILLOPC;
321 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
322 ksi.ksi_trap = fsr;
323 goto do_trapsignal;
324 }
325
326 /*
327 * The kernel never executes Thumb code.
328 */
329 printf("\ndata_abort_fault: Misaligned Kernel-mode "
330 "Program Counter\n");
331 dab_fatal(tf, fsr, far, l, NULL);
332 }
333 #endif
334
335 /* See if the CPU state needs to be fixed up */
336 switch (data_abort_fixup(tf, fsr, far, l)) {
337 case ABORT_FIXUP_RETURN:
338 return;
339 case ABORT_FIXUP_FAILED:
340 /* Deliver a SIGILL to the process */
341 KSI_INIT_TRAP(&ksi);
342 ksi.ksi_signo = SIGILL;
343 ksi.ksi_code = ILL_ILLOPC;
344 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
345 ksi.ksi_trap = fsr;
346 goto do_trapsignal;
347 default:
348 break;
349 }
350
351 va = trunc_page((vaddr_t)far);
352
353 /*
354 * It is only a kernel address space fault iff:
355 * 1. user == 0 and
356 * 2. pcb_onfault not set or
357 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
358 */
359 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
360 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
361 __predict_true((pcb->pcb_onfault == NULL ||
362 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
363 map = kernel_map;
364
365 /* Was the fault due to the FPE/IPKDB ? */
366 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
367 KSI_INIT_TRAP(&ksi);
368 ksi.ksi_signo = SIGSEGV;
369 ksi.ksi_code = SEGV_ACCERR;
370 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
371 ksi.ksi_trap = fsr;
372
373 /*
374 * Force exit via userret()
375 * This is necessary as the FPE is an extension to
376 * userland that actually runs in a priveledged mode
377 * but uses USR mode permissions for its accesses.
378 */
379 user = 1;
380 goto do_trapsignal;
381 }
382 } else
383 map = &l->l_proc->p_vmspace->vm_map;
384
385 /*
386 * We need to know whether the page should be mapped
387 * as R or R/W. The MMU does not give us the info as
388 * to whether the fault was caused by a read or a write.
389 *
390 * However, we know that a permission fault can only be
391 * the result of a write to a read-only location, so
392 * we can deal with those quickly.
393 *
394 * Otherwise we need to disassemble the instruction
395 * responsible to determine if it was a write.
396 */
397 if (IS_PERMISSION_FAULT(fsr))
398 ftype = VM_PROT_WRITE;
399 else {
400 #ifdef THUMB_CODE
401 /* Fast track the ARM case. */
402 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
403 u_int insn = fusword((void *)(tf->tf_pc & ~1));
404 u_int insn_f8 = insn & 0xf800;
405 u_int insn_fe = insn & 0xfe00;
406
407 if (insn_f8 == 0x6000 || /* STR(1) */
408 insn_f8 == 0x7000 || /* STRB(1) */
409 insn_f8 == 0x8000 || /* STRH(1) */
410 insn_f8 == 0x9000 || /* STR(3) */
411 insn_f8 == 0xc000 || /* STM */
412 insn_fe == 0x5000 || /* STR(2) */
413 insn_fe == 0x5200 || /* STRH(2) */
414 insn_fe == 0x5400) /* STRB(2) */
415 ftype = VM_PROT_WRITE;
416 else
417 ftype = VM_PROT_READ;
418 }
419 else
420 #endif
421 {
422 u_int insn = ReadWord(tf->tf_pc);
423
424 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
425 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
426 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT*/
427 ftype = VM_PROT_WRITE;
428 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
429 ftype = VM_PROT_READ | VM_PROT_WRITE;
430 else
431 ftype = VM_PROT_READ;
432 }
433 }
434
435 /*
436 * See if the fault is as a result of ref/mod emulation,
437 * or domain mismatch.
438 */
439 #ifdef DEBUG
440 last_fault_code = fsr;
441 #endif
442 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
443 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
444 goto out;
445 }
446
447 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
448 if (pcb->pcb_onfault) {
449 tf->tf_r0 = EINVAL;
450 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
451 return;
452 }
453 printf("\nNon-emulated page fault with intr_depth > 0\n");
454 dab_fatal(tf, fsr, far, l, NULL);
455 }
456
457 onfault = pcb->pcb_onfault;
458 pcb->pcb_onfault = NULL;
459 error = uvm_fault(map, va, ftype);
460 pcb->pcb_onfault = onfault;
461
462 if (__predict_true(error == 0)) {
463 if (user)
464 uvm_grow(l->l_proc, va); /* Record any stack growth */
465 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
466 goto out;
467 }
468
469 if (user == 0) {
470 if (pcb->pcb_onfault) {
471 tf->tf_r0 = error;
472 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
473 return;
474 }
475
476 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
477 error);
478 dab_fatal(tf, fsr, far, l, NULL);
479 }
480
481 KSI_INIT_TRAP(&ksi);
482
483 if (error == ENOMEM) {
484 printf("UVM: pid %d (%s), uid %d killed: "
485 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
486 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
487 ksi.ksi_signo = SIGKILL;
488 } else
489 ksi.ksi_signo = SIGSEGV;
490
491 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
492 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
493 ksi.ksi_trap = fsr;
494 UVMHIST_LOG(maphist, " <- erorr (%d)", error, 0, 0, 0);
495
496 do_trapsignal:
497 call_trapsignal(l, &ksi);
498 out:
499 /* If returning to user mode, make sure to invoke userret() */
500 if (user)
501 userret(l);
502 }
503
504 /*
505 * dab_fatal() handles the following data aborts:
506 *
507 * FAULT_WRTBUF_0 - Vector Exception
508 * FAULT_WRTBUF_1 - Terminal Exception
509 *
510 * We should never see these on a properly functioning system.
511 *
512 * This function is also called by the other handlers if they
513 * detect a fatal problem.
514 *
515 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
516 */
517 static int
518 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
519 {
520 const char *mode;
521
522 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
523
524 if (l != NULL) {
525 printf("Fatal %s mode data abort: '%s'\n", mode,
526 data_aborts[fsr & FAULT_TYPE_MASK].desc);
527 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
528 if ((fsr & FAULT_IMPRECISE) == 0)
529 printf("%08x, ", far);
530 else
531 printf("Invalid, ");
532 printf("spsr=%08x\n", tf->tf_spsr);
533 } else {
534 printf("Fatal %s mode prefetch abort at 0x%08x\n",
535 mode, tf->tf_pc);
536 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
537 }
538
539 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
540 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
541 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
542 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
543 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
544 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
545 printf("r12=%08x, ", tf->tf_r12);
546
547 if (TRAP_USERMODE(tf))
548 printf("usp=%08x, ulr=%08x",
549 tf->tf_usr_sp, tf->tf_usr_lr);
550 else
551 printf("ssp=%08x, slr=%08x",
552 tf->tf_svc_sp, tf->tf_svc_lr);
553 printf(", pc =%08x\n\n", tf->tf_pc);
554
555 #if defined(DDB) || defined(KGDB)
556 kdb_trap(T_FAULT, tf);
557 #endif
558 panic("Fatal abort");
559 /*NOTREACHED*/
560 }
561
562 /*
563 * dab_align() handles the following data aborts:
564 *
565 * FAULT_ALIGN_0 - Alignment fault
566 * FAULT_ALIGN_0 - Alignment fault
567 *
568 * These faults are fatal if they happen in kernel mode. Otherwise, we
569 * deliver a bus error to the process.
570 */
571 static int
572 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
573 {
574
575 /* Alignment faults are always fatal if they occur in kernel mode */
576 if (!TRAP_USERMODE(tf))
577 dab_fatal(tf, fsr, far, l, NULL);
578
579 /* pcb_onfault *must* be NULL at this point */
580 KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
581
582 /* See if the CPU state needs to be fixed up */
583 (void) data_abort_fixup(tf, fsr, far, l);
584
585 /* Deliver a bus error signal to the process */
586 KSI_INIT_TRAP(ksi);
587 ksi->ksi_signo = SIGBUS;
588 ksi->ksi_code = BUS_ADRALN;
589 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
590 ksi->ksi_trap = fsr;
591
592 l->l_addr->u_pcb.pcb_tf = tf;
593
594 return (1);
595 }
596
597 /*
598 * dab_buserr() handles the following data aborts:
599 *
600 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
601 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
602 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
603 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
604 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
605 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
606 *
607 * If pcb_onfault is set, flag the fault and return to the handler.
608 * If the fault occurred in user mode, give the process a SIGBUS.
609 *
610 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
611 * can be flagged as imprecise in the FSR. This causes a real headache
612 * since some of the machine state is lost. In this case, tf->tf_pc
613 * may not actually point to the offending instruction. In fact, if
614 * we've taken a double abort fault, it generally points somewhere near
615 * the top of "data_abort_entry" in exception.S.
616 *
617 * In all other cases, these data aborts are considered fatal.
618 */
619 static int
620 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
621 ksiginfo_t *ksi)
622 {
623 struct pcb *pcb = &l->l_addr->u_pcb;
624
625 #ifdef __XSCALE__
626 if ((fsr & FAULT_IMPRECISE) != 0 &&
627 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
628 /*
629 * Oops, an imprecise, double abort fault. We've lost the
630 * r14_abt/spsr_abt values corresponding to the original
631 * abort, and the spsr saved in the trapframe indicates
632 * ABT mode.
633 */
634 tf->tf_spsr &= ~PSR_MODE;
635
636 /*
637 * We use a simple heuristic to determine if the double abort
638 * happened as a result of a kernel or user mode access.
639 * If the current trapframe is at the top of the kernel stack,
640 * the fault _must_ have come from user mode.
641 */
642 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
643 /*
644 * Kernel mode. We're either about to die a
645 * spectacular death, or pcb_onfault will come
646 * to our rescue. Either way, the current value
647 * of tf->tf_pc is irrelevant.
648 */
649 tf->tf_spsr |= PSR_SVC32_MODE;
650 if (pcb->pcb_onfault == NULL)
651 printf("\nKernel mode double abort!\n");
652 } else {
653 /*
654 * User mode. We've lost the program counter at the
655 * time of the fault (not that it was accurate anyway;
656 * it's not called an imprecise fault for nothing).
657 * About all we can do is copy r14_usr to tf_pc and
658 * hope for the best. The process is about to get a
659 * SIGBUS, so it's probably history anyway.
660 */
661 tf->tf_spsr |= PSR_USR32_MODE;
662 tf->tf_pc = tf->tf_usr_lr;
663 #ifdef THUMB_CODE
664 tf->tf_spsr &= ~PSR_T_bit;
665 if (tf->tf_usr_lr & 1)
666 tf->tf_spsr |= PSR_T_bit;
667 #endif
668 }
669 }
670
671 /* FAR is invalid for imprecise exceptions */
672 if ((fsr & FAULT_IMPRECISE) != 0)
673 far = 0;
674 #endif /* __XSCALE__ */
675
676 if (pcb->pcb_onfault) {
677 KDASSERT(TRAP_USERMODE(tf) == 0);
678 tf->tf_r0 = EFAULT;
679 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
680 return (0);
681 }
682
683 /* See if the CPU state needs to be fixed up */
684 (void) data_abort_fixup(tf, fsr, far, l);
685
686 /*
687 * At this point, if the fault happened in kernel mode, we're toast
688 */
689 if (!TRAP_USERMODE(tf))
690 dab_fatal(tf, fsr, far, l, NULL);
691
692 /* Deliver a bus error signal to the process */
693 KSI_INIT_TRAP(ksi);
694 ksi->ksi_signo = SIGBUS;
695 ksi->ksi_code = BUS_ADRERR;
696 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
697 ksi->ksi_trap = fsr;
698
699 l->l_addr->u_pcb.pcb_tf = tf;
700
701 return (1);
702 }
703
704 static inline int
705 prefetch_abort_fixup(trapframe_t *tf)
706 {
707 #ifdef CPU_ABORT_FIXUP_REQUIRED
708 int error;
709
710 /* Call the CPU specific prefetch abort fixup routine */
711 error = cpu_prefetchabt_fixup(tf);
712 if (__predict_true(error != ABORT_FIXUP_FAILED))
713 return (error);
714
715 /*
716 * Oops, couldn't fix up the instruction
717 */
718 printf(
719 "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
720 TRAP_USERMODE(tf) ? "user" : "kernel");
721 #ifdef THUMB_CODE
722 if (tf->tf_spsr & PSR_T_bit) {
723 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
724 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1),
725 *((u_int16 *)((tf->tf_pc + 2) & ~1));
726 }
727 else
728 #endif
729 {
730 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
731 *((u_int *)tf->tf_pc));
732 }
733 disassemble(tf->tf_pc);
734
735 /* Die now if this happened in kernel mode */
736 if (!TRAP_USERMODE(tf))
737 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
738
739 return (error);
740 #else
741 return (ABORT_FIXUP_OK);
742 #endif /* CPU_ABORT_FIXUP_REQUIRED */
743 }
744
745 /*
746 * void prefetch_abort_handler(trapframe_t *tf)
747 *
748 * Abort handler called when instruction execution occurs at
749 * a non existent or restricted (access permissions) memory page.
750 * If the address is invalid and we were in SVC mode then panic as
751 * the kernel should never prefetch abort.
752 * If the address is invalid and the page is mapped then the user process
753 * does no have read permission so send it a signal.
754 * Otherwise fault the page in and try again.
755 */
756 void
757 prefetch_abort_handler(trapframe_t *tf)
758 {
759 struct lwp *l;
760 struct vm_map *map;
761 vaddr_t fault_pc, va;
762 ksiginfo_t ksi;
763 int error, user;
764
765 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
766
767 /* Update vmmeter statistics */
768 uvmexp.traps++;
769
770 l = curlwp;
771
772 if ((user = TRAP_USERMODE(tf)) != 0)
773 LWP_CACHE_CREDS(l, l->l_proc);
774
775 /*
776 * Enable IRQ's (disabled by the abort) This always comes
777 * from user mode so we know interrupts were not disabled.
778 * But we check anyway.
779 */
780 if (__predict_true((tf->tf_spsr & I32_bit) == 0))
781 enable_interrupts(I32_bit);
782
783 /* See if the CPU state needs to be fixed up */
784 switch (prefetch_abort_fixup(tf)) {
785 case ABORT_FIXUP_RETURN:
786 return;
787 case ABORT_FIXUP_FAILED:
788 /* Deliver a SIGILL to the process */
789 KSI_INIT_TRAP(&ksi);
790 ksi.ksi_signo = SIGILL;
791 ksi.ksi_code = ILL_ILLOPC;
792 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
793 l->l_addr->u_pcb.pcb_tf = tf;
794 goto do_trapsignal;
795 default:
796 break;
797 }
798
799 /* Prefetch aborts cannot happen in kernel mode */
800 if (__predict_false(!user))
801 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
802
803 /* Get fault address */
804 fault_pc = tf->tf_pc;
805 l = curlwp;
806 l->l_addr->u_pcb.pcb_tf = tf;
807 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
808 0);
809
810 /* Ok validate the address, can only execute in USER space */
811 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
812 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
813 KSI_INIT_TRAP(&ksi);
814 ksi.ksi_signo = SIGSEGV;
815 ksi.ksi_code = SEGV_ACCERR;
816 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
817 ksi.ksi_trap = fault_pc;
818 goto do_trapsignal;
819 }
820
821 map = &l->l_proc->p_vmspace->vm_map;
822 va = trunc_page(fault_pc);
823
824 /*
825 * See if the pmap can handle this fault on its own...
826 */
827 #ifdef DEBUG
828 last_fault_code = -1;
829 #endif
830 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
831 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
832 goto out;
833 }
834
835 #ifdef DIAGNOSTIC
836 if (__predict_false(l->l_cpu->ci_intr_depth > 0)) {
837 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
838 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
839 }
840 #endif
841 error = uvm_fault(map, va, VM_PROT_READ);
842
843 if (__predict_true(error == 0)) {
844 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
845 goto out;
846 }
847 KSI_INIT_TRAP(&ksi);
848
849 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
850 if (error == ENOMEM) {
851 printf("UVM: pid %d (%s), uid %d killed: "
852 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
853 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
854 ksi.ksi_signo = SIGKILL;
855 } else
856 ksi.ksi_signo = SIGSEGV;
857
858 ksi.ksi_code = SEGV_MAPERR;
859 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
860 ksi.ksi_trap = fault_pc;
861
862 do_trapsignal:
863 call_trapsignal(l, &ksi);
864
865 out:
866 userret(l);
867 }
868
869 /*
870 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
871 * If the read succeeds, the value is written to 'rptr' and zero is returned.
872 * Else, return EFAULT.
873 */
874 int
875 badaddr_read(void *addr, size_t size, void *rptr)
876 {
877 extern int badaddr_read_1(const uint8_t *, uint8_t *);
878 extern int badaddr_read_2(const uint16_t *, uint16_t *);
879 extern int badaddr_read_4(const uint32_t *, uint32_t *);
880 union {
881 uint8_t v1;
882 uint16_t v2;
883 uint32_t v4;
884 } u;
885 struct pcb *curpcb_save;
886 int rv, s;
887
888 cpu_drain_writebuf();
889
890 /*
891 * We might be called at interrupt time, so arrange to steal
892 * lwp0's PCB temporarily, if required, so that pcb_onfault
893 * handling works correctly.
894 */
895 s = splhigh();
896 if ((curpcb_save = curpcb) == NULL)
897 curpcb = &lwp0.l_addr->u_pcb;
898
899 /* Read from the test address. */
900 switch (size) {
901 case sizeof(uint8_t):
902 rv = badaddr_read_1(addr, &u.v1);
903 if (rv == 0 && rptr)
904 *(uint8_t *) rptr = u.v1;
905 break;
906
907 case sizeof(uint16_t):
908 rv = badaddr_read_2(addr, &u.v2);
909 if (rv == 0 && rptr)
910 *(uint16_t *) rptr = u.v2;
911 break;
912
913 case sizeof(uint32_t):
914 rv = badaddr_read_4(addr, &u.v4);
915 if (rv == 0 && rptr)
916 *(uint32_t *) rptr = u.v4;
917 break;
918
919 default:
920 curpcb = curpcb_save;
921 panic("badaddr: invalid size (%lu)", (u_long) size);
922 }
923
924 /* Restore curpcb */
925 curpcb = curpcb_save;
926 splx(s);
927
928 /* Return EFAULT if the address was invalid, else zero */
929 return (rv);
930 }
931