fault.c revision 1.78.12.1 1 /* $NetBSD: fault.c,v 1.78.12.1 2012/02/18 07:31:23 mrg Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82 #include "opt_sa.h"
83
84 #include <sys/types.h>
85 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.78.12.1 2012/02/18 07:31:23 mrg Exp $");
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #include <sys/kauth.h>
92
93 #include <sys/savar.h>
94 #include <sys/cpu.h>
95
96 #include <uvm/uvm_extern.h>
97 #include <uvm/uvm_stat.h>
98 #ifdef UVMHIST
99 #include <uvm/uvm.h>
100 #endif
101
102 #include <arm/cpuconf.h>
103
104 #include <machine/frame.h>
105 #include <arm/arm32/katelib.h>
106 #include <machine/intr.h>
107 #if defined(DDB) || defined(KGDB)
108 #include <machine/db_machdep.h>
109 #ifdef KGDB
110 #include <sys/kgdb.h>
111 #endif
112 #if !defined(DDB)
113 #define kdb_trap kgdb_trap
114 #endif
115 #endif
116
117 #include <arch/arm/arm/disassem.h>
118 #include <arm/arm32/machdep.h>
119
120 extern char fusubailout[];
121
122 #ifdef DEBUG
123 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
124 #endif
125
126 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
127 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
128 /* These CPUs may need data/prefetch abort fixups */
129 #define CPU_ABORT_FIXUP_REQUIRED
130 #endif
131
132 struct data_abort {
133 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
134 const char *desc;
135 };
136
137 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
139 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
140
141 static const struct data_abort data_aborts[] = {
142 {dab_fatal, "Vector Exception"},
143 {dab_align, "Alignment Fault 1"},
144 {dab_fatal, "Terminal Exception"},
145 {dab_align, "Alignment Fault 3"},
146 {dab_buserr, "External Linefetch Abort (S)"},
147 {NULL, "Translation Fault (S)"},
148 {dab_buserr, "External Linefetch Abort (P)"},
149 {NULL, "Translation Fault (P)"},
150 {dab_buserr, "External Non-Linefetch Abort (S)"},
151 {NULL, "Domain Fault (S)"},
152 {dab_buserr, "External Non-Linefetch Abort (P)"},
153 {NULL, "Domain Fault (P)"},
154 {dab_buserr, "External Translation Abort (L1)"},
155 {NULL, "Permission Fault (S)"},
156 {dab_buserr, "External Translation Abort (L2)"},
157 {NULL, "Permission Fault (P)"}
158 };
159
160 /* Determine if a fault came from user mode */
161 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
162
163 /* Determine if 'x' is a permission fault */
164 #define IS_PERMISSION_FAULT(x) \
165 (((1 << ((x) & FAULT_TYPE_MASK)) & \
166 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
167
168 #if 0
169 /* maybe one day we'll do emulations */
170 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
171 #else
172 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
173 #endif
174
175 static inline void
176 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
177 {
178
179 TRAPSIGNAL(l, ksi);
180 }
181
182 static inline int
183 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
184 {
185 #ifdef CPU_ABORT_FIXUP_REQUIRED
186 int error;
187
188 /* Call the CPU specific data abort fixup routine */
189 error = cpu_dataabt_fixup(tf);
190 if (__predict_true(error != ABORT_FIXUP_FAILED))
191 return (error);
192
193 /*
194 * Oops, couldn't fix up the instruction
195 */
196 printf("%s: fixup for %s mode data abort failed.\n", __func__,
197 TRAP_USERMODE(tf) ? "user" : "kernel");
198 #ifdef THUMB_CODE
199 if (tf->tf_spsr & PSR_T_bit) {
200 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
201 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
202 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
203 }
204 else
205 #endif
206 {
207 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
208 *((u_int *)tf->tf_pc));
209 }
210 disassemble(tf->tf_pc);
211
212 /* Die now if this happened in kernel mode */
213 if (!TRAP_USERMODE(tf))
214 dab_fatal(tf, fsr, far, l, NULL);
215
216 return (error);
217 #else
218 return (ABORT_FIXUP_OK);
219 #endif /* CPU_ABORT_FIXUP_REQUIRED */
220 }
221
222 void
223 data_abort_handler(trapframe_t *tf)
224 {
225 struct vm_map *map;
226 struct pcb *pcb;
227 struct lwp *l;
228 u_int user, far, fsr;
229 vm_prot_t ftype;
230 void *onfault;
231 vaddr_t va;
232 int error;
233 ksiginfo_t ksi;
234
235 UVMHIST_FUNC("data_abort_handler");
236
237 /* Grab FAR/FSR before enabling interrupts */
238 far = cpu_faultaddress();
239 fsr = cpu_faultstatus();
240
241 UVMHIST_CALLED(maphist);
242 /* Update vmmeter statistics */
243 curcpu()->ci_data.cpu_ntrap++;
244
245 /* Re-enable interrupts if they were enabled previously */
246 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
247 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
248 restore_interrupts(tf->tf_spsr & IF32_bits);
249
250 /* Get the current lwp structure */
251 KASSERT(curlwp != NULL);
252 l = curlwp;
253
254 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
255 tf->tf_pc, l, far, fsr);
256
257 /* Data abort came from user mode? */
258 if ((user = TRAP_USERMODE(tf)) != 0)
259 LWP_CACHE_CREDS(l, l->l_proc);
260
261 /* Grab the current pcb */
262 pcb = lwp_getpcb(l);
263
264 /* Invoke the appropriate handler, if necessary */
265 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
266 #ifdef DIAGNOSTIC
267 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
268 __func__, fsr, far);
269 #endif
270 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
271 l, &ksi))
272 goto do_trapsignal;
273 goto out;
274 }
275
276 /*
277 * At this point, we're dealing with one of the following data aborts:
278 *
279 * FAULT_TRANS_S - Translation -- Section
280 * FAULT_TRANS_P - Translation -- Page
281 * FAULT_DOMAIN_S - Domain -- Section
282 * FAULT_DOMAIN_P - Domain -- Page
283 * FAULT_PERM_S - Permission -- Section
284 * FAULT_PERM_P - Permission -- Page
285 *
286 * These are the main virtual memory-related faults signalled by
287 * the MMU.
288 */
289
290 /* fusubailout is used by [fs]uswintr to avoid page faulting */
291 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
292 tf->tf_r0 = EFAULT;
293 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
294 return;
295 }
296
297 if (user) {
298 pcb->pcb_tf = tf;
299 }
300
301 /*
302 * Make sure the Program Counter is sane. We could fall foul of
303 * someone executing Thumb code, in which case the PC might not
304 * be word-aligned. This would cause a kernel alignment fault
305 * further down if we have to decode the current instruction.
306 */
307 #ifdef THUMB_CODE
308 /*
309 * XXX: It would be nice to be able to support Thumb in the kernel
310 * at some point.
311 */
312 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
313 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
314 __func__);
315 dab_fatal(tf, fsr, far, l, NULL);
316 }
317 #else
318 if (__predict_false((tf->tf_pc & 3) != 0)) {
319 if (user) {
320 /*
321 * Give the user an illegal instruction signal.
322 */
323 /* Deliver a SIGILL to the process */
324 KSI_INIT_TRAP(&ksi);
325 ksi.ksi_signo = SIGILL;
326 ksi.ksi_code = ILL_ILLOPC;
327 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
328 ksi.ksi_trap = fsr;
329 goto do_trapsignal;
330 }
331
332 /*
333 * The kernel never executes Thumb code.
334 */
335 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
336 __func__);
337 dab_fatal(tf, fsr, far, l, NULL);
338 }
339 #endif
340
341 /* See if the CPU state needs to be fixed up */
342 switch (data_abort_fixup(tf, fsr, far, l)) {
343 case ABORT_FIXUP_RETURN:
344 return;
345 case ABORT_FIXUP_FAILED:
346 /* Deliver a SIGILL to the process */
347 KSI_INIT_TRAP(&ksi);
348 ksi.ksi_signo = SIGILL;
349 ksi.ksi_code = ILL_ILLOPC;
350 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
351 ksi.ksi_trap = fsr;
352 goto do_trapsignal;
353 default:
354 break;
355 }
356
357 va = trunc_page((vaddr_t)far);
358
359 /*
360 * It is only a kernel address space fault iff:
361 * 1. user == 0 and
362 * 2. pcb_onfault not set or
363 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
364 */
365 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
366 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
367 __predict_true((pcb->pcb_onfault == NULL ||
368 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
369 map = kernel_map;
370
371 /* Was the fault due to the FPE/IPKDB ? */
372 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
373 KSI_INIT_TRAP(&ksi);
374 ksi.ksi_signo = SIGSEGV;
375 ksi.ksi_code = SEGV_ACCERR;
376 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
377 ksi.ksi_trap = fsr;
378
379 /*
380 * Force exit via userret()
381 * This is necessary as the FPE is an extension to
382 * userland that actually runs in a priveledged mode
383 * but uses USR mode permissions for its accesses.
384 */
385 user = 1;
386 goto do_trapsignal;
387 }
388 } else {
389 map = &l->l_proc->p_vmspace->vm_map;
390 #ifdef KERN_SA
391 if ((l->l_flag & LW_SA) && (~l->l_pflag & LP_SA_NOBLOCK)) {
392 l->l_savp->savp_faultaddr = (vaddr_t)far;
393 l->l_pflag |= LP_SA_PAGEFAULT;
394 }
395 #endif
396 }
397
398 /*
399 * We need to know whether the page should be mapped
400 * as R or R/W. The MMU does not give us the info as
401 * to whether the fault was caused by a read or a write.
402 *
403 * However, we know that a permission fault can only be
404 * the result of a write to a read-only location, so
405 * we can deal with those quickly.
406 *
407 * Otherwise we need to disassemble the instruction
408 * responsible to determine if it was a write.
409 */
410 if (IS_PERMISSION_FAULT(fsr))
411 ftype = VM_PROT_WRITE;
412 else {
413 #ifdef THUMB_CODE
414 /* Fast track the ARM case. */
415 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
416 u_int insn = fusword((void *)(tf->tf_pc & ~1));
417 u_int insn_f8 = insn & 0xf800;
418 u_int insn_fe = insn & 0xfe00;
419
420 if (insn_f8 == 0x6000 || /* STR(1) */
421 insn_f8 == 0x7000 || /* STRB(1) */
422 insn_f8 == 0x8000 || /* STRH(1) */
423 insn_f8 == 0x9000 || /* STR(3) */
424 insn_f8 == 0xc000 || /* STM */
425 insn_fe == 0x5000 || /* STR(2) */
426 insn_fe == 0x5200 || /* STRH(2) */
427 insn_fe == 0x5400) /* STRB(2) */
428 ftype = VM_PROT_WRITE;
429 else
430 ftype = VM_PROT_READ;
431 }
432 else
433 #endif
434 {
435 u_int insn = ReadWord(tf->tf_pc);
436
437 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
438 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
439 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT*/
440 ftype = VM_PROT_WRITE;
441 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
442 ftype = VM_PROT_READ | VM_PROT_WRITE;
443 else
444 ftype = VM_PROT_READ;
445 }
446 }
447
448 /*
449 * See if the fault is as a result of ref/mod emulation,
450 * or domain mismatch.
451 */
452 #ifdef DEBUG
453 last_fault_code = fsr;
454 #endif
455 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
456 #ifdef KERN_SA
457 if (map != kernel_map)
458 l->l_pflag &= ~LP_SA_PAGEFAULT;
459 #endif
460 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
461 goto out;
462 }
463
464 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
465 if (pcb->pcb_onfault) {
466 tf->tf_r0 = EINVAL;
467 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
468 return;
469 }
470 printf("\nNon-emulated page fault with intr_depth > 0\n");
471 dab_fatal(tf, fsr, far, l, NULL);
472 }
473
474 onfault = pcb->pcb_onfault;
475 pcb->pcb_onfault = NULL;
476 error = uvm_fault(map, va, ftype);
477 pcb->pcb_onfault = onfault;
478
479 #ifdef KERN_SA
480 if (map != kernel_map)
481 l->l_pflag &= ~LP_SA_PAGEFAULT;
482 #endif
483
484 if (__predict_true(error == 0)) {
485 if (user)
486 uvm_grow(l->l_proc, va); /* Record any stack growth */
487 else
488 ucas_ras_check(tf);
489 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
490 goto out;
491 }
492
493 if (user == 0) {
494 if (pcb->pcb_onfault) {
495 tf->tf_r0 = error;
496 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
497 return;
498 }
499
500 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
501 error);
502 dab_fatal(tf, fsr, far, l, NULL);
503 }
504
505 KSI_INIT_TRAP(&ksi);
506
507 if (error == ENOMEM) {
508 printf("UVM: pid %d (%s), uid %d killed: "
509 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
510 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
511 ksi.ksi_signo = SIGKILL;
512 } else
513 ksi.ksi_signo = SIGSEGV;
514
515 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
516 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
517 ksi.ksi_trap = fsr;
518 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
519
520 do_trapsignal:
521 call_trapsignal(l, &ksi);
522 out:
523 /* If returning to user mode, make sure to invoke userret() */
524 if (user)
525 userret(l);
526 }
527
528 /*
529 * dab_fatal() handles the following data aborts:
530 *
531 * FAULT_WRTBUF_0 - Vector Exception
532 * FAULT_WRTBUF_1 - Terminal Exception
533 *
534 * We should never see these on a properly functioning system.
535 *
536 * This function is also called by the other handlers if they
537 * detect a fatal problem.
538 *
539 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
540 */
541 static int
542 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
543 {
544 const char *mode;
545
546 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
547
548 if (l != NULL) {
549 printf("Fatal %s mode data abort: '%s'\n", mode,
550 data_aborts[fsr & FAULT_TYPE_MASK].desc);
551 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
552 if ((fsr & FAULT_IMPRECISE) == 0)
553 printf("%08x, ", far);
554 else
555 printf("Invalid, ");
556 printf("spsr=%08x\n", tf->tf_spsr);
557 } else {
558 printf("Fatal %s mode prefetch abort at 0x%08x\n",
559 mode, tf->tf_pc);
560 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
561 }
562
563 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
564 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
565 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
566 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
567 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
568 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
569 printf("r12=%08x, ", tf->tf_r12);
570
571 if (TRAP_USERMODE(tf))
572 printf("usp=%08x, ulr=%08x",
573 tf->tf_usr_sp, tf->tf_usr_lr);
574 else
575 printf("ssp=%08x, slr=%08x",
576 tf->tf_svc_sp, tf->tf_svc_lr);
577 printf(", pc =%08x\n\n", tf->tf_pc);
578
579 #if defined(DDB) || defined(KGDB)
580 kdb_trap(T_FAULT, tf);
581 #endif
582 panic("Fatal abort");
583 /*NOTREACHED*/
584 }
585
586 /*
587 * dab_align() handles the following data aborts:
588 *
589 * FAULT_ALIGN_0 - Alignment fault
590 * FAULT_ALIGN_0 - Alignment fault
591 *
592 * These faults are fatal if they happen in kernel mode. Otherwise, we
593 * deliver a bus error to the process.
594 */
595 static int
596 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
597 {
598 struct pcb *pcb = lwp_getpcb(l);
599
600 /* Alignment faults are always fatal if they occur in kernel mode */
601 if (!TRAP_USERMODE(tf))
602 dab_fatal(tf, fsr, far, l, NULL);
603
604 /* pcb_onfault *must* be NULL at this point */
605 KDASSERT(pcb->pcb_onfault == NULL);
606
607 /* See if the CPU state needs to be fixed up */
608 (void) data_abort_fixup(tf, fsr, far, l);
609
610 /* Deliver a bus error signal to the process */
611 KSI_INIT_TRAP(ksi);
612 ksi->ksi_signo = SIGBUS;
613 ksi->ksi_code = BUS_ADRALN;
614 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
615 ksi->ksi_trap = fsr;
616
617 pcb->pcb_tf = tf;
618
619 return (1);
620 }
621
622 /*
623 * dab_buserr() handles the following data aborts:
624 *
625 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
626 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
627 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
628 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
629 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
630 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
631 *
632 * If pcb_onfault is set, flag the fault and return to the handler.
633 * If the fault occurred in user mode, give the process a SIGBUS.
634 *
635 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
636 * can be flagged as imprecise in the FSR. This causes a real headache
637 * since some of the machine state is lost. In this case, tf->tf_pc
638 * may not actually point to the offending instruction. In fact, if
639 * we've taken a double abort fault, it generally points somewhere near
640 * the top of "data_abort_entry" in exception.S.
641 *
642 * In all other cases, these data aborts are considered fatal.
643 */
644 static int
645 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
646 ksiginfo_t *ksi)
647 {
648 struct pcb *pcb = lwp_getpcb(l);
649
650 #ifdef __XSCALE__
651 if ((fsr & FAULT_IMPRECISE) != 0 &&
652 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
653 /*
654 * Oops, an imprecise, double abort fault. We've lost the
655 * r14_abt/spsr_abt values corresponding to the original
656 * abort, and the spsr saved in the trapframe indicates
657 * ABT mode.
658 */
659 tf->tf_spsr &= ~PSR_MODE;
660
661 /*
662 * We use a simple heuristic to determine if the double abort
663 * happened as a result of a kernel or user mode access.
664 * If the current trapframe is at the top of the kernel stack,
665 * the fault _must_ have come from user mode.
666 */
667 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
668 /*
669 * Kernel mode. We're either about to die a
670 * spectacular death, or pcb_onfault will come
671 * to our rescue. Either way, the current value
672 * of tf->tf_pc is irrelevant.
673 */
674 tf->tf_spsr |= PSR_SVC32_MODE;
675 if (pcb->pcb_onfault == NULL)
676 printf("\nKernel mode double abort!\n");
677 } else {
678 /*
679 * User mode. We've lost the program counter at the
680 * time of the fault (not that it was accurate anyway;
681 * it's not called an imprecise fault for nothing).
682 * About all we can do is copy r14_usr to tf_pc and
683 * hope for the best. The process is about to get a
684 * SIGBUS, so it's probably history anyway.
685 */
686 tf->tf_spsr |= PSR_USR32_MODE;
687 tf->tf_pc = tf->tf_usr_lr;
688 #ifdef THUMB_CODE
689 tf->tf_spsr &= ~PSR_T_bit;
690 if (tf->tf_usr_lr & 1)
691 tf->tf_spsr |= PSR_T_bit;
692 #endif
693 }
694 }
695
696 /* FAR is invalid for imprecise exceptions */
697 if ((fsr & FAULT_IMPRECISE) != 0)
698 far = 0;
699 #endif /* __XSCALE__ */
700
701 if (pcb->pcb_onfault) {
702 KDASSERT(TRAP_USERMODE(tf) == 0);
703 tf->tf_r0 = EFAULT;
704 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
705 return (0);
706 }
707
708 /* See if the CPU state needs to be fixed up */
709 (void) data_abort_fixup(tf, fsr, far, l);
710
711 /*
712 * At this point, if the fault happened in kernel mode, we're toast
713 */
714 if (!TRAP_USERMODE(tf))
715 dab_fatal(tf, fsr, far, l, NULL);
716
717 /* Deliver a bus error signal to the process */
718 KSI_INIT_TRAP(ksi);
719 ksi->ksi_signo = SIGBUS;
720 ksi->ksi_code = BUS_ADRERR;
721 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
722 ksi->ksi_trap = fsr;
723
724 pcb->pcb_tf = tf;
725
726 return (1);
727 }
728
729 static inline int
730 prefetch_abort_fixup(trapframe_t *tf)
731 {
732 #ifdef CPU_ABORT_FIXUP_REQUIRED
733 int error;
734
735 /* Call the CPU specific prefetch abort fixup routine */
736 error = cpu_prefetchabt_fixup(tf);
737 if (__predict_true(error != ABORT_FIXUP_FAILED))
738 return (error);
739
740 /*
741 * Oops, couldn't fix up the instruction
742 */
743 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
744 TRAP_USERMODE(tf) ? "user" : "kernel");
745 #ifdef THUMB_CODE
746 if (tf->tf_spsr & PSR_T_bit) {
747 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
748 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
749 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
750 }
751 else
752 #endif
753 {
754 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
755 *((u_int *)tf->tf_pc));
756 }
757 disassemble(tf->tf_pc);
758
759 /* Die now if this happened in kernel mode */
760 if (!TRAP_USERMODE(tf))
761 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
762
763 return (error);
764 #else
765 return (ABORT_FIXUP_OK);
766 #endif /* CPU_ABORT_FIXUP_REQUIRED */
767 }
768
769 /*
770 * void prefetch_abort_handler(trapframe_t *tf)
771 *
772 * Abort handler called when instruction execution occurs at
773 * a non existent or restricted (access permissions) memory page.
774 * If the address is invalid and we were in SVC mode then panic as
775 * the kernel should never prefetch abort.
776 * If the address is invalid and the page is mapped then the user process
777 * does no have read permission so send it a signal.
778 * Otherwise fault the page in and try again.
779 */
780 void
781 prefetch_abort_handler(trapframe_t *tf)
782 {
783 struct lwp *l;
784 struct pcb *pcb;
785 struct vm_map *map;
786 vaddr_t fault_pc, va;
787 ksiginfo_t ksi;
788 int error, user;
789
790 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
791
792 /* Update vmmeter statistics */
793 curcpu()->ci_data.cpu_ntrap++;
794
795 l = curlwp;
796 pcb = lwp_getpcb(l);
797
798 if ((user = TRAP_USERMODE(tf)) != 0)
799 LWP_CACHE_CREDS(l, l->l_proc);
800
801 /*
802 * Enable IRQ's (disabled by the abort) This always comes
803 * from user mode so we know interrupts were not disabled.
804 * But we check anyway.
805 */
806 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
807 if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
808 restore_interrupts(tf->tf_spsr & IF32_bits);
809
810 /* See if the CPU state needs to be fixed up */
811 switch (prefetch_abort_fixup(tf)) {
812 case ABORT_FIXUP_RETURN:
813 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
814 return;
815 case ABORT_FIXUP_FAILED:
816 /* Deliver a SIGILL to the process */
817 KSI_INIT_TRAP(&ksi);
818 ksi.ksi_signo = SIGILL;
819 ksi.ksi_code = ILL_ILLOPC;
820 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
821 pcb->pcb_tf = tf;
822 goto do_trapsignal;
823 default:
824 break;
825 }
826
827 /* Prefetch aborts cannot happen in kernel mode */
828 if (__predict_false(!user))
829 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
830
831 /* Get fault address */
832 fault_pc = tf->tf_pc;
833 pcb->pcb_tf = tf;
834 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
835 0);
836
837 /* Ok validate the address, can only execute in USER space */
838 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
839 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
840 KSI_INIT_TRAP(&ksi);
841 ksi.ksi_signo = SIGSEGV;
842 ksi.ksi_code = SEGV_ACCERR;
843 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
844 ksi.ksi_trap = fault_pc;
845 goto do_trapsignal;
846 }
847
848 map = &l->l_proc->p_vmspace->vm_map;
849 va = trunc_page(fault_pc);
850
851 /*
852 * See if the pmap can handle this fault on its own...
853 */
854 #ifdef DEBUG
855 last_fault_code = -1;
856 #endif
857 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
858 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
859 goto out;
860 }
861
862 #ifdef DIAGNOSTIC
863 if (__predict_false(l->l_cpu->ci_intr_depth > 0)) {
864 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
865 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
866 }
867 #endif
868
869 #ifdef KERN_SA
870 if (map != kernel_map && (l->l_flag & LW_SA)) {
871 l->l_savp->savp_faultaddr = fault_pc;
872 l->l_pflag |= LP_SA_PAGEFAULT;
873 }
874 #endif
875
876 KASSERT(pcb->pcb_onfault == NULL);
877 error = uvm_fault(map, va, VM_PROT_READ);
878
879 #ifdef KERN_SA
880 if (map != kernel_map)
881 l->l_pflag &= ~LP_SA_PAGEFAULT;
882 #endif
883
884 if (__predict_true(error == 0)) {
885 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
886 goto out;
887 }
888 KSI_INIT_TRAP(&ksi);
889
890 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
891 if (error == ENOMEM) {
892 printf("UVM: pid %d (%s), uid %d killed: "
893 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
894 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
895 ksi.ksi_signo = SIGKILL;
896 } else
897 ksi.ksi_signo = SIGSEGV;
898
899 ksi.ksi_code = SEGV_MAPERR;
900 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
901 ksi.ksi_trap = fault_pc;
902
903 do_trapsignal:
904 call_trapsignal(l, &ksi);
905
906 out:
907 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
908 userret(l);
909 }
910
911 /*
912 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
913 * If the read succeeds, the value is written to 'rptr' and zero is returned.
914 * Else, return EFAULT.
915 */
916 int
917 badaddr_read(void *addr, size_t size, void *rptr)
918 {
919 extern int badaddr_read_1(const uint8_t *, uint8_t *);
920 extern int badaddr_read_2(const uint16_t *, uint16_t *);
921 extern int badaddr_read_4(const uint32_t *, uint32_t *);
922 union {
923 uint8_t v1;
924 uint16_t v2;
925 uint32_t v4;
926 } u;
927 struct pcb *curpcb_save;
928 int rv, s;
929
930 cpu_drain_writebuf();
931
932 /*
933 * We might be called at interrupt time, so arrange to steal
934 * lwp0's PCB temporarily, if required, so that pcb_onfault
935 * handling works correctly.
936 */
937 s = splhigh();
938 if ((curpcb_save = curpcb) == NULL)
939 curpcb = lwp_getpcb(&lwp0);
940
941 /* Read from the test address. */
942 switch (size) {
943 case sizeof(uint8_t):
944 rv = badaddr_read_1(addr, &u.v1);
945 if (rv == 0 && rptr)
946 *(uint8_t *) rptr = u.v1;
947 break;
948
949 case sizeof(uint16_t):
950 rv = badaddr_read_2(addr, &u.v2);
951 if (rv == 0 && rptr)
952 *(uint16_t *) rptr = u.v2;
953 break;
954
955 case sizeof(uint32_t):
956 rv = badaddr_read_4(addr, &u.v4);
957 if (rv == 0 && rptr)
958 *(uint32_t *) rptr = u.v4;
959 break;
960
961 default:
962 curpcb = curpcb_save;
963 panic("%s: invalid size (%lu)", __func__, (u_long)size);
964 }
965
966 /* Restore curpcb */
967 curpcb = curpcb_save;
968 splx(s);
969
970 /* Return EFAULT if the address was invalid, else zero */
971 return (rv);
972 }
973