Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.78.8.1
      1 /*	$NetBSD: fault.c,v 1.78.8.1 2012/04/17 00:06:04 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.78.8.1 2012/04/17 00:06:04 yamt Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kauth.h>
     91 #include <sys/cpu.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 #include <uvm/uvm_stat.h>
     95 #ifdef UVMHIST
     96 #include <uvm/uvm.h>
     97 #endif
     98 
     99 #include <arm/cpuconf.h>
    100 
    101 #include <machine/frame.h>
    102 #include <arm/arm32/katelib.h>
    103 #include <machine/intr.h>
    104 #if defined(DDB) || defined(KGDB)
    105 #include <machine/db_machdep.h>
    106 #ifdef KGDB
    107 #include <sys/kgdb.h>
    108 #endif
    109 #if !defined(DDB)
    110 #define kdb_trap	kgdb_trap
    111 #endif
    112 #endif
    113 
    114 #include <arch/arm/arm/disassem.h>
    115 #include <arm/arm32/machdep.h>
    116 
    117 extern char fusubailout[];
    118 
    119 #ifdef DEBUG
    120 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    121 #endif
    122 
    123 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    124     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    125 /* These CPUs may need data/prefetch abort fixups */
    126 #define	CPU_ABORT_FIXUP_REQUIRED
    127 #endif
    128 
    129 struct data_abort {
    130 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    131 	const char *desc;
    132 };
    133 
    134 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    135 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    137 
    138 static const struct data_abort data_aborts[] = {
    139 	{dab_fatal,	"Vector Exception"},
    140 	{dab_align,	"Alignment Fault 1"},
    141 	{dab_fatal,	"Terminal Exception"},
    142 	{dab_align,	"Alignment Fault 3"},
    143 	{dab_buserr,	"External Linefetch Abort (S)"},
    144 	{NULL,		"Translation Fault (S)"},
    145 	{dab_buserr,	"External Linefetch Abort (P)"},
    146 	{NULL,		"Translation Fault (P)"},
    147 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    148 	{NULL,		"Domain Fault (S)"},
    149 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    150 	{NULL,		"Domain Fault (P)"},
    151 	{dab_buserr,	"External Translation Abort (L1)"},
    152 	{NULL,		"Permission Fault (S)"},
    153 	{dab_buserr,	"External Translation Abort (L2)"},
    154 	{NULL,		"Permission Fault (P)"}
    155 };
    156 
    157 /* Determine if a fault came from user mode */
    158 #define	TRAP_USERMODE(tf)	((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
    159 
    160 /* Determine if 'x' is a permission fault */
    161 #define	IS_PERMISSION_FAULT(x)					\
    162 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    163 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    164 
    165 #if 0
    166 /* maybe one day we'll do emulations */
    167 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    168 #else
    169 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    170 #endif
    171 
    172 static inline void
    173 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
    174 {
    175 
    176 	TRAPSIGNAL(l, ksi);
    177 }
    178 
    179 static inline int
    180 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    181 {
    182 #ifdef CPU_ABORT_FIXUP_REQUIRED
    183 	int error;
    184 
    185 	/* Call the CPU specific data abort fixup routine */
    186 	error = cpu_dataabt_fixup(tf);
    187 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    188 		return (error);
    189 
    190 	/*
    191 	 * Oops, couldn't fix up the instruction
    192 	 */
    193 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    194 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    195 #ifdef THUMB_CODE
    196 	if (tf->tf_spsr & PSR_T_bit) {
    197 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    198 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
    199 		    *((u_int16 *)((tf->tf_pc + 2) & ~1)));
    200 	}
    201 	else
    202 #endif
    203 	{
    204 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    205 		    *((u_int *)tf->tf_pc));
    206 	}
    207 	disassemble(tf->tf_pc);
    208 
    209 	/* Die now if this happened in kernel mode */
    210 	if (!TRAP_USERMODE(tf))
    211 		dab_fatal(tf, fsr, far, l, NULL);
    212 
    213 	return (error);
    214 #else
    215 	return (ABORT_FIXUP_OK);
    216 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    217 }
    218 
    219 void
    220 data_abort_handler(trapframe_t *tf)
    221 {
    222 	struct vm_map *map;
    223 	struct pcb *pcb;
    224 	struct lwp *l;
    225 	u_int user, far, fsr;
    226 	vm_prot_t ftype;
    227 	void *onfault;
    228 	vaddr_t va;
    229 	int error;
    230 	ksiginfo_t ksi;
    231 
    232 	UVMHIST_FUNC("data_abort_handler");
    233 
    234 	/* Grab FAR/FSR before enabling interrupts */
    235 	far = cpu_faultaddress();
    236 	fsr = cpu_faultstatus();
    237 
    238 	UVMHIST_CALLED(maphist);
    239 	/* Update vmmeter statistics */
    240 	curcpu()->ci_data.cpu_ntrap++;
    241 
    242 	/* Re-enable interrupts if they were enabled previously */
    243 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    244 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    245 		restore_interrupts(tf->tf_spsr & IF32_bits);
    246 
    247 	/* Get the current lwp structure */
    248 	KASSERT(curlwp != NULL);
    249 	l = curlwp;
    250 
    251 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
    252 	    tf->tf_pc, l, far, fsr);
    253 
    254 	/* Data abort came from user mode? */
    255 	if ((user = TRAP_USERMODE(tf)) != 0)
    256 		LWP_CACHE_CREDS(l, l->l_proc);
    257 
    258 	/* Grab the current pcb */
    259 	pcb = lwp_getpcb(l);
    260 
    261 	/* Invoke the appropriate handler, if necessary */
    262 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    263 #ifdef DIAGNOSTIC
    264 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    265 		    __func__, fsr, far);
    266 #endif
    267 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    268 		    l, &ksi))
    269 			goto do_trapsignal;
    270 		goto out;
    271 	}
    272 
    273 	/*
    274 	 * At this point, we're dealing with one of the following data aborts:
    275 	 *
    276 	 *  FAULT_TRANS_S  - Translation -- Section
    277 	 *  FAULT_TRANS_P  - Translation -- Page
    278 	 *  FAULT_DOMAIN_S - Domain -- Section
    279 	 *  FAULT_DOMAIN_P - Domain -- Page
    280 	 *  FAULT_PERM_S   - Permission -- Section
    281 	 *  FAULT_PERM_P   - Permission -- Page
    282 	 *
    283 	 * These are the main virtual memory-related faults signalled by
    284 	 * the MMU.
    285 	 */
    286 
    287 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    288 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    289 		tf->tf_r0 = EFAULT;
    290 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    291 		return;
    292 	}
    293 
    294 	if (user) {
    295 		pcb->pcb_tf = tf;
    296 	}
    297 
    298 	/*
    299 	 * Make sure the Program Counter is sane. We could fall foul of
    300 	 * someone executing Thumb code, in which case the PC might not
    301 	 * be word-aligned. This would cause a kernel alignment fault
    302 	 * further down if we have to decode the current instruction.
    303 	 */
    304 #ifdef THUMB_CODE
    305 	/*
    306 	 * XXX: It would be nice to be able to support Thumb in the kernel
    307 	 * at some point.
    308 	 */
    309 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    310 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    311 		    __func__);
    312 		dab_fatal(tf, fsr, far, l, NULL);
    313 	}
    314 #else
    315 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    316 		if (user) {
    317 			/*
    318 			 * Give the user an illegal instruction signal.
    319 			 */
    320 			/* Deliver a SIGILL to the process */
    321 			KSI_INIT_TRAP(&ksi);
    322 			ksi.ksi_signo = SIGILL;
    323 			ksi.ksi_code = ILL_ILLOPC;
    324 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    325 			ksi.ksi_trap = fsr;
    326 			goto do_trapsignal;
    327 		}
    328 
    329 		/*
    330 		 * The kernel never executes Thumb code.
    331 		 */
    332 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    333 		    __func__);
    334 		dab_fatal(tf, fsr, far, l, NULL);
    335 	}
    336 #endif
    337 
    338 	/* See if the CPU state needs to be fixed up */
    339 	switch (data_abort_fixup(tf, fsr, far, l)) {
    340 	case ABORT_FIXUP_RETURN:
    341 		return;
    342 	case ABORT_FIXUP_FAILED:
    343 		/* Deliver a SIGILL to the process */
    344 		KSI_INIT_TRAP(&ksi);
    345 		ksi.ksi_signo = SIGILL;
    346 		ksi.ksi_code = ILL_ILLOPC;
    347 		ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    348 		ksi.ksi_trap = fsr;
    349 		goto do_trapsignal;
    350 	default:
    351 		break;
    352 	}
    353 
    354 	va = trunc_page((vaddr_t)far);
    355 
    356 	/*
    357 	 * It is only a kernel address space fault iff:
    358 	 *	1. user == 0  and
    359 	 *	2. pcb_onfault not set or
    360 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    361 	 */
    362 	if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
    363 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    364 	    __predict_true((pcb->pcb_onfault == NULL ||
    365 	     (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
    366 		map = kernel_map;
    367 
    368 		/* Was the fault due to the FPE/IPKDB ? */
    369 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    370 			KSI_INIT_TRAP(&ksi);
    371 			ksi.ksi_signo = SIGSEGV;
    372 			ksi.ksi_code = SEGV_ACCERR;
    373 			ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    374 			ksi.ksi_trap = fsr;
    375 
    376 			/*
    377 			 * Force exit via userret()
    378 			 * This is necessary as the FPE is an extension to
    379 			 * userland that actually runs in a priveledged mode
    380 			 * but uses USR mode permissions for its accesses.
    381 			 */
    382 			user = 1;
    383 			goto do_trapsignal;
    384 		}
    385 	} else {
    386 		map = &l->l_proc->p_vmspace->vm_map;
    387 	}
    388 
    389 	/*
    390 	 * We need to know whether the page should be mapped
    391 	 * as R or R/W. The MMU does not give us the info as
    392 	 * to whether the fault was caused by a read or a write.
    393 	 *
    394 	 * However, we know that a permission fault can only be
    395 	 * the result of a write to a read-only location, so
    396 	 * we can deal with those quickly.
    397 	 *
    398 	 * Otherwise we need to disassemble the instruction
    399 	 * responsible to determine if it was a write.
    400 	 */
    401 	if (IS_PERMISSION_FAULT(fsr))
    402 		ftype = VM_PROT_WRITE;
    403 	else {
    404 #ifdef THUMB_CODE
    405 		/* Fast track the ARM case.  */
    406 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    407 			u_int insn = fusword((void *)(tf->tf_pc & ~1));
    408 			u_int insn_f8 = insn & 0xf800;
    409 			u_int insn_fe = insn & 0xfe00;
    410 
    411 			if (insn_f8 == 0x6000 || /* STR(1) */
    412 			    insn_f8 == 0x7000 || /* STRB(1) */
    413 			    insn_f8 == 0x8000 || /* STRH(1) */
    414 			    insn_f8 == 0x9000 || /* STR(3) */
    415 			    insn_f8 == 0xc000 || /* STM */
    416 			    insn_fe == 0x5000 || /* STR(2) */
    417 			    insn_fe == 0x5200 || /* STRH(2) */
    418 			    insn_fe == 0x5400)   /* STRB(2) */
    419 				ftype = VM_PROT_WRITE;
    420 			else
    421 				ftype = VM_PROT_READ;
    422 		}
    423 		else
    424 #endif
    425 		{
    426 			u_int insn = ReadWord(tf->tf_pc);
    427 
    428 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    429 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    430 			    ((insn & 0x0a100000) == 0x08000000))   /* STM/CDT*/
    431 				ftype = VM_PROT_WRITE;
    432 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    433 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    434 			else
    435 				ftype = VM_PROT_READ;
    436 		}
    437 	}
    438 
    439 	/*
    440 	 * See if the fault is as a result of ref/mod emulation,
    441 	 * or domain mismatch.
    442 	 */
    443 #ifdef DEBUG
    444 	last_fault_code = fsr;
    445 #endif
    446 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    447 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    448 		goto out;
    449 	}
    450 
    451 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    452 		if (pcb->pcb_onfault) {
    453 			tf->tf_r0 = EINVAL;
    454 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    455 			return;
    456 		}
    457 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    458 		dab_fatal(tf, fsr, far, l, NULL);
    459 	}
    460 
    461 	onfault = pcb->pcb_onfault;
    462 	pcb->pcb_onfault = NULL;
    463 	error = uvm_fault(map, va, ftype);
    464 	pcb->pcb_onfault = onfault;
    465 
    466 	if (__predict_true(error == 0)) {
    467 		if (user)
    468 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    469 		else
    470 			ucas_ras_check(tf);
    471 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    472 		goto out;
    473 	}
    474 
    475 	if (user == 0) {
    476 		if (pcb->pcb_onfault) {
    477 			tf->tf_r0 = error;
    478 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    479 			return;
    480 		}
    481 
    482 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    483 		    error);
    484 		dab_fatal(tf, fsr, far, l, NULL);
    485 	}
    486 
    487 	KSI_INIT_TRAP(&ksi);
    488 
    489 	if (error == ENOMEM) {
    490 		printf("UVM: pid %d (%s), uid %d killed: "
    491 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    492 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    493 		ksi.ksi_signo = SIGKILL;
    494 	} else
    495 		ksi.ksi_signo = SIGSEGV;
    496 
    497 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    498 	ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
    499 	ksi.ksi_trap = fsr;
    500 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
    501 
    502 do_trapsignal:
    503 	call_trapsignal(l, &ksi);
    504 out:
    505 	/* If returning to user mode, make sure to invoke userret() */
    506 	if (user)
    507 		userret(l);
    508 }
    509 
    510 /*
    511  * dab_fatal() handles the following data aborts:
    512  *
    513  *  FAULT_WRTBUF_0 - Vector Exception
    514  *  FAULT_WRTBUF_1 - Terminal Exception
    515  *
    516  * We should never see these on a properly functioning system.
    517  *
    518  * This function is also called by the other handlers if they
    519  * detect a fatal problem.
    520  *
    521  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    522  */
    523 static int
    524 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    525 {
    526 	const char *mode;
    527 
    528 	mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    529 
    530 	if (l != NULL) {
    531 		printf("Fatal %s mode data abort: '%s'\n", mode,
    532 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    533 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    534 		if ((fsr & FAULT_IMPRECISE) == 0)
    535 			printf("%08x, ", far);
    536 		else
    537 			printf("Invalid,  ");
    538 		printf("spsr=%08x\n", tf->tf_spsr);
    539 	} else {
    540 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    541 		    mode, tf->tf_pc);
    542 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    543 	}
    544 
    545 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    546 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    547 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    548 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    549 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    550 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    551 	printf("r12=%08x, ", tf->tf_r12);
    552 
    553 	if (TRAP_USERMODE(tf))
    554 		printf("usp=%08x, ulr=%08x",
    555 		    tf->tf_usr_sp, tf->tf_usr_lr);
    556 	else
    557 		printf("ssp=%08x, slr=%08x",
    558 		    tf->tf_svc_sp, tf->tf_svc_lr);
    559 	printf(", pc =%08x\n\n", tf->tf_pc);
    560 
    561 #if defined(DDB) || defined(KGDB)
    562 	kdb_trap(T_FAULT, tf);
    563 #endif
    564 	panic("Fatal abort");
    565 	/*NOTREACHED*/
    566 }
    567 
    568 /*
    569  * dab_align() handles the following data aborts:
    570  *
    571  *  FAULT_ALIGN_0 - Alignment fault
    572  *  FAULT_ALIGN_0 - Alignment fault
    573  *
    574  * These faults are fatal if they happen in kernel mode. Otherwise, we
    575  * deliver a bus error to the process.
    576  */
    577 static int
    578 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    579 {
    580 	struct pcb *pcb = lwp_getpcb(l);
    581 
    582 	/* Alignment faults are always fatal if they occur in kernel mode */
    583 	if (!TRAP_USERMODE(tf))
    584 		dab_fatal(tf, fsr, far, l, NULL);
    585 
    586 	/* pcb_onfault *must* be NULL at this point */
    587 	KDASSERT(pcb->pcb_onfault == NULL);
    588 
    589 	/* See if the CPU state needs to be fixed up */
    590 	(void) data_abort_fixup(tf, fsr, far, l);
    591 
    592 	/* Deliver a bus error signal to the process */
    593 	KSI_INIT_TRAP(ksi);
    594 	ksi->ksi_signo = SIGBUS;
    595 	ksi->ksi_code = BUS_ADRALN;
    596 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    597 	ksi->ksi_trap = fsr;
    598 
    599 	pcb->pcb_tf = tf;
    600 
    601 	return (1);
    602 }
    603 
    604 /*
    605  * dab_buserr() handles the following data aborts:
    606  *
    607  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    608  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    609  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    610  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    611  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    612  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    613  *
    614  * If pcb_onfault is set, flag the fault and return to the handler.
    615  * If the fault occurred in user mode, give the process a SIGBUS.
    616  *
    617  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    618  * can be flagged as imprecise in the FSR. This causes a real headache
    619  * since some of the machine state is lost. In this case, tf->tf_pc
    620  * may not actually point to the offending instruction. In fact, if
    621  * we've taken a double abort fault, it generally points somewhere near
    622  * the top of "data_abort_entry" in exception.S.
    623  *
    624  * In all other cases, these data aborts are considered fatal.
    625  */
    626 static int
    627 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    628     ksiginfo_t *ksi)
    629 {
    630 	struct pcb *pcb = lwp_getpcb(l);
    631 
    632 #ifdef __XSCALE__
    633 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    634 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    635 		/*
    636 		 * Oops, an imprecise, double abort fault. We've lost the
    637 		 * r14_abt/spsr_abt values corresponding to the original
    638 		 * abort, and the spsr saved in the trapframe indicates
    639 		 * ABT mode.
    640 		 */
    641 		tf->tf_spsr &= ~PSR_MODE;
    642 
    643 		/*
    644 		 * We use a simple heuristic to determine if the double abort
    645 		 * happened as a result of a kernel or user mode access.
    646 		 * If the current trapframe is at the top of the kernel stack,
    647 		 * the fault _must_ have come from user mode.
    648 		 */
    649 		if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
    650 			/*
    651 			 * Kernel mode. We're either about to die a
    652 			 * spectacular death, or pcb_onfault will come
    653 			 * to our rescue. Either way, the current value
    654 			 * of tf->tf_pc is irrelevant.
    655 			 */
    656 			tf->tf_spsr |= PSR_SVC32_MODE;
    657 			if (pcb->pcb_onfault == NULL)
    658 				printf("\nKernel mode double abort!\n");
    659 		} else {
    660 			/*
    661 			 * User mode. We've lost the program counter at the
    662 			 * time of the fault (not that it was accurate anyway;
    663 			 * it's not called an imprecise fault for nothing).
    664 			 * About all we can do is copy r14_usr to tf_pc and
    665 			 * hope for the best. The process is about to get a
    666 			 * SIGBUS, so it's probably history anyway.
    667 			 */
    668 			tf->tf_spsr |= PSR_USR32_MODE;
    669 			tf->tf_pc = tf->tf_usr_lr;
    670 #ifdef THUMB_CODE
    671 			tf->tf_spsr &= ~PSR_T_bit;
    672 			if (tf->tf_usr_lr & 1)
    673 				tf->tf_spsr |= PSR_T_bit;
    674 #endif
    675 		}
    676 	}
    677 
    678 	/* FAR is invalid for imprecise exceptions */
    679 	if ((fsr & FAULT_IMPRECISE) != 0)
    680 		far = 0;
    681 #endif /* __XSCALE__ */
    682 
    683 	if (pcb->pcb_onfault) {
    684 		KDASSERT(TRAP_USERMODE(tf) == 0);
    685 		tf->tf_r0 = EFAULT;
    686 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    687 		return (0);
    688 	}
    689 
    690 	/* See if the CPU state needs to be fixed up */
    691 	(void) data_abort_fixup(tf, fsr, far, l);
    692 
    693 	/*
    694 	 * At this point, if the fault happened in kernel mode, we're toast
    695 	 */
    696 	if (!TRAP_USERMODE(tf))
    697 		dab_fatal(tf, fsr, far, l, NULL);
    698 
    699 	/* Deliver a bus error signal to the process */
    700 	KSI_INIT_TRAP(ksi);
    701 	ksi->ksi_signo = SIGBUS;
    702 	ksi->ksi_code = BUS_ADRERR;
    703 	ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
    704 	ksi->ksi_trap = fsr;
    705 
    706 	pcb->pcb_tf = tf;
    707 
    708 	return (1);
    709 }
    710 
    711 static inline int
    712 prefetch_abort_fixup(trapframe_t *tf)
    713 {
    714 #ifdef CPU_ABORT_FIXUP_REQUIRED
    715 	int error;
    716 
    717 	/* Call the CPU specific prefetch abort fixup routine */
    718 	error = cpu_prefetchabt_fixup(tf);
    719 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    720 		return (error);
    721 
    722 	/*
    723 	 * Oops, couldn't fix up the instruction
    724 	 */
    725 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    726 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    727 #ifdef THUMB_CODE
    728 	if (tf->tf_spsr & PSR_T_bit) {
    729 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    730 		    tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
    731 		    *((u_int16 *)((tf->tf_pc + 2) & ~1)));
    732 	}
    733 	else
    734 #endif
    735 	{
    736 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    737 		    *((u_int *)tf->tf_pc));
    738 	}
    739 	disassemble(tf->tf_pc);
    740 
    741 	/* Die now if this happened in kernel mode */
    742 	if (!TRAP_USERMODE(tf))
    743 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    744 
    745 	return (error);
    746 #else
    747 	return (ABORT_FIXUP_OK);
    748 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    749 }
    750 
    751 /*
    752  * void prefetch_abort_handler(trapframe_t *tf)
    753  *
    754  * Abort handler called when instruction execution occurs at
    755  * a non existent or restricted (access permissions) memory page.
    756  * If the address is invalid and we were in SVC mode then panic as
    757  * the kernel should never prefetch abort.
    758  * If the address is invalid and the page is mapped then the user process
    759  * does no have read permission so send it a signal.
    760  * Otherwise fault the page in and try again.
    761  */
    762 void
    763 prefetch_abort_handler(trapframe_t *tf)
    764 {
    765 	struct lwp *l;
    766 	struct pcb *pcb;
    767 	struct vm_map *map;
    768 	vaddr_t fault_pc, va;
    769 	ksiginfo_t ksi;
    770 	int error, user;
    771 
    772 	UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
    773 
    774 	/* Update vmmeter statistics */
    775 	curcpu()->ci_data.cpu_ntrap++;
    776 
    777 	l = curlwp;
    778 	pcb = lwp_getpcb(l);
    779 
    780 	if ((user = TRAP_USERMODE(tf)) != 0)
    781 		LWP_CACHE_CREDS(l, l->l_proc);
    782 
    783 	/*
    784 	 * Enable IRQ's (disabled by the abort) This always comes
    785 	 * from user mode so we know interrupts were not disabled.
    786 	 * But we check anyway.
    787 	 */
    788 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    789 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
    790 		restore_interrupts(tf->tf_spsr & IF32_bits);
    791 
    792 	/* See if the CPU state needs to be fixed up */
    793 	switch (prefetch_abort_fixup(tf)) {
    794 	case ABORT_FIXUP_RETURN:
    795 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    796 		return;
    797 	case ABORT_FIXUP_FAILED:
    798 		/* Deliver a SIGILL to the process */
    799 		KSI_INIT_TRAP(&ksi);
    800 		ksi.ksi_signo = SIGILL;
    801 		ksi.ksi_code = ILL_ILLOPC;
    802 		ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
    803 		pcb->pcb_tf = tf;
    804 		goto do_trapsignal;
    805 	default:
    806 		break;
    807 	}
    808 
    809 	/* Prefetch aborts cannot happen in kernel mode */
    810 	if (__predict_false(!user))
    811 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    812 
    813 	/* Get fault address */
    814 	fault_pc = tf->tf_pc;
    815 	pcb->pcb_tf = tf;
    816 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
    817 	    0);
    818 
    819 	/* Ok validate the address, can only execute in USER space */
    820 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    821 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    822 		KSI_INIT_TRAP(&ksi);
    823 		ksi.ksi_signo = SIGSEGV;
    824 		ksi.ksi_code = SEGV_ACCERR;
    825 		ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    826 		ksi.ksi_trap = fault_pc;
    827 		goto do_trapsignal;
    828 	}
    829 
    830 	map = &l->l_proc->p_vmspace->vm_map;
    831 	va = trunc_page(fault_pc);
    832 
    833 	/*
    834 	 * See if the pmap can handle this fault on its own...
    835 	 */
    836 #ifdef DEBUG
    837 	last_fault_code = -1;
    838 #endif
    839 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
    840 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    841 		goto out;
    842 	}
    843 
    844 #ifdef DIAGNOSTIC
    845 	if (__predict_false(l->l_cpu->ci_intr_depth > 0)) {
    846 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    847 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    848 	}
    849 #endif
    850 
    851 	KASSERT(pcb->pcb_onfault == NULL);
    852 	error = uvm_fault(map, va, VM_PROT_READ);
    853 
    854 	if (__predict_true(error == 0)) {
    855 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    856 		goto out;
    857 	}
    858 	KSI_INIT_TRAP(&ksi);
    859 
    860 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    861 	if (error == ENOMEM) {
    862 		printf("UVM: pid %d (%s), uid %d killed: "
    863 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    864 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    865 		ksi.ksi_signo = SIGKILL;
    866 	} else
    867 		ksi.ksi_signo = SIGSEGV;
    868 
    869 	ksi.ksi_code = SEGV_MAPERR;
    870 	ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
    871 	ksi.ksi_trap = fault_pc;
    872 
    873 do_trapsignal:
    874 	call_trapsignal(l, &ksi);
    875 
    876 out:
    877 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    878 	userret(l);
    879 }
    880 
    881 /*
    882  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    883  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    884  * Else, return EFAULT.
    885  */
    886 int
    887 badaddr_read(void *addr, size_t size, void *rptr)
    888 {
    889 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    890 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    891 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    892 	union {
    893 		uint8_t v1;
    894 		uint16_t v2;
    895 		uint32_t v4;
    896 	} u;
    897 	struct pcb *curpcb_save;
    898 	int rv, s;
    899 
    900 	cpu_drain_writebuf();
    901 
    902 	/*
    903 	 * We might be called at interrupt time, so arrange to steal
    904 	 * lwp0's PCB temporarily, if required, so that pcb_onfault
    905 	 * handling works correctly.
    906 	 */
    907 	s = splhigh();
    908 	if ((curpcb_save = curpcb) == NULL)
    909 		curpcb = lwp_getpcb(&lwp0);
    910 
    911 	/* Read from the test address. */
    912 	switch (size) {
    913 	case sizeof(uint8_t):
    914 		rv = badaddr_read_1(addr, &u.v1);
    915 		if (rv == 0 && rptr)
    916 			*(uint8_t *) rptr = u.v1;
    917 		break;
    918 
    919 	case sizeof(uint16_t):
    920 		rv = badaddr_read_2(addr, &u.v2);
    921 		if (rv == 0 && rptr)
    922 			*(uint16_t *) rptr = u.v2;
    923 		break;
    924 
    925 	case sizeof(uint32_t):
    926 		rv = badaddr_read_4(addr, &u.v4);
    927 		if (rv == 0 && rptr)
    928 			*(uint32_t *) rptr = u.v4;
    929 		break;
    930 
    931 	default:
    932 		curpcb = curpcb_save;
    933 		panic("%s: invalid size (%lu)", __func__, (u_long)size);
    934 	}
    935 
    936 	/* Restore curpcb */
    937 	curpcb = curpcb_save;
    938 	splx(s);
    939 
    940 	/* Return EFAULT if the address was invalid, else zero */
    941 	return (rv);
    942 }
    943