fault.c revision 1.78.8.1 1 /* $NetBSD: fault.c,v 1.78.8.1 2012/04/17 00:06:04 yamt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.78.8.1 2012/04/17 00:06:04 yamt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92
93 #include <uvm/uvm_extern.h>
94 #include <uvm/uvm_stat.h>
95 #ifdef UVMHIST
96 #include <uvm/uvm.h>
97 #endif
98
99 #include <arm/cpuconf.h>
100
101 #include <machine/frame.h>
102 #include <arm/arm32/katelib.h>
103 #include <machine/intr.h>
104 #if defined(DDB) || defined(KGDB)
105 #include <machine/db_machdep.h>
106 #ifdef KGDB
107 #include <sys/kgdb.h>
108 #endif
109 #if !defined(DDB)
110 #define kdb_trap kgdb_trap
111 #endif
112 #endif
113
114 #include <arch/arm/arm/disassem.h>
115 #include <arm/arm32/machdep.h>
116
117 extern char fusubailout[];
118
119 #ifdef DEBUG
120 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
121 #endif
122
123 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
124 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
125 /* These CPUs may need data/prefetch abort fixups */
126 #define CPU_ABORT_FIXUP_REQUIRED
127 #endif
128
129 struct data_abort {
130 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
131 const char *desc;
132 };
133
134 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
135 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137
138 static const struct data_abort data_aborts[] = {
139 {dab_fatal, "Vector Exception"},
140 {dab_align, "Alignment Fault 1"},
141 {dab_fatal, "Terminal Exception"},
142 {dab_align, "Alignment Fault 3"},
143 {dab_buserr, "External Linefetch Abort (S)"},
144 {NULL, "Translation Fault (S)"},
145 {dab_buserr, "External Linefetch Abort (P)"},
146 {NULL, "Translation Fault (P)"},
147 {dab_buserr, "External Non-Linefetch Abort (S)"},
148 {NULL, "Domain Fault (S)"},
149 {dab_buserr, "External Non-Linefetch Abort (P)"},
150 {NULL, "Domain Fault (P)"},
151 {dab_buserr, "External Translation Abort (L1)"},
152 {NULL, "Permission Fault (S)"},
153 {dab_buserr, "External Translation Abort (L2)"},
154 {NULL, "Permission Fault (P)"}
155 };
156
157 /* Determine if a fault came from user mode */
158 #define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
159
160 /* Determine if 'x' is a permission fault */
161 #define IS_PERMISSION_FAULT(x) \
162 (((1 << ((x) & FAULT_TYPE_MASK)) & \
163 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
164
165 #if 0
166 /* maybe one day we'll do emulations */
167 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
168 #else
169 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
170 #endif
171
172 static inline void
173 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
174 {
175
176 TRAPSIGNAL(l, ksi);
177 }
178
179 static inline int
180 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
181 {
182 #ifdef CPU_ABORT_FIXUP_REQUIRED
183 int error;
184
185 /* Call the CPU specific data abort fixup routine */
186 error = cpu_dataabt_fixup(tf);
187 if (__predict_true(error != ABORT_FIXUP_FAILED))
188 return (error);
189
190 /*
191 * Oops, couldn't fix up the instruction
192 */
193 printf("%s: fixup for %s mode data abort failed.\n", __func__,
194 TRAP_USERMODE(tf) ? "user" : "kernel");
195 #ifdef THUMB_CODE
196 if (tf->tf_spsr & PSR_T_bit) {
197 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
198 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
199 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
200 }
201 else
202 #endif
203 {
204 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
205 *((u_int *)tf->tf_pc));
206 }
207 disassemble(tf->tf_pc);
208
209 /* Die now if this happened in kernel mode */
210 if (!TRAP_USERMODE(tf))
211 dab_fatal(tf, fsr, far, l, NULL);
212
213 return (error);
214 #else
215 return (ABORT_FIXUP_OK);
216 #endif /* CPU_ABORT_FIXUP_REQUIRED */
217 }
218
219 void
220 data_abort_handler(trapframe_t *tf)
221 {
222 struct vm_map *map;
223 struct pcb *pcb;
224 struct lwp *l;
225 u_int user, far, fsr;
226 vm_prot_t ftype;
227 void *onfault;
228 vaddr_t va;
229 int error;
230 ksiginfo_t ksi;
231
232 UVMHIST_FUNC("data_abort_handler");
233
234 /* Grab FAR/FSR before enabling interrupts */
235 far = cpu_faultaddress();
236 fsr = cpu_faultstatus();
237
238 UVMHIST_CALLED(maphist);
239 /* Update vmmeter statistics */
240 curcpu()->ci_data.cpu_ntrap++;
241
242 /* Re-enable interrupts if they were enabled previously */
243 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
244 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
245 restore_interrupts(tf->tf_spsr & IF32_bits);
246
247 /* Get the current lwp structure */
248 KASSERT(curlwp != NULL);
249 l = curlwp;
250
251 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
252 tf->tf_pc, l, far, fsr);
253
254 /* Data abort came from user mode? */
255 if ((user = TRAP_USERMODE(tf)) != 0)
256 LWP_CACHE_CREDS(l, l->l_proc);
257
258 /* Grab the current pcb */
259 pcb = lwp_getpcb(l);
260
261 /* Invoke the appropriate handler, if necessary */
262 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
263 #ifdef DIAGNOSTIC
264 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
265 __func__, fsr, far);
266 #endif
267 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
268 l, &ksi))
269 goto do_trapsignal;
270 goto out;
271 }
272
273 /*
274 * At this point, we're dealing with one of the following data aborts:
275 *
276 * FAULT_TRANS_S - Translation -- Section
277 * FAULT_TRANS_P - Translation -- Page
278 * FAULT_DOMAIN_S - Domain -- Section
279 * FAULT_DOMAIN_P - Domain -- Page
280 * FAULT_PERM_S - Permission -- Section
281 * FAULT_PERM_P - Permission -- Page
282 *
283 * These are the main virtual memory-related faults signalled by
284 * the MMU.
285 */
286
287 /* fusubailout is used by [fs]uswintr to avoid page faulting */
288 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
289 tf->tf_r0 = EFAULT;
290 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
291 return;
292 }
293
294 if (user) {
295 pcb->pcb_tf = tf;
296 }
297
298 /*
299 * Make sure the Program Counter is sane. We could fall foul of
300 * someone executing Thumb code, in which case the PC might not
301 * be word-aligned. This would cause a kernel alignment fault
302 * further down if we have to decode the current instruction.
303 */
304 #ifdef THUMB_CODE
305 /*
306 * XXX: It would be nice to be able to support Thumb in the kernel
307 * at some point.
308 */
309 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
310 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
311 __func__);
312 dab_fatal(tf, fsr, far, l, NULL);
313 }
314 #else
315 if (__predict_false((tf->tf_pc & 3) != 0)) {
316 if (user) {
317 /*
318 * Give the user an illegal instruction signal.
319 */
320 /* Deliver a SIGILL to the process */
321 KSI_INIT_TRAP(&ksi);
322 ksi.ksi_signo = SIGILL;
323 ksi.ksi_code = ILL_ILLOPC;
324 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
325 ksi.ksi_trap = fsr;
326 goto do_trapsignal;
327 }
328
329 /*
330 * The kernel never executes Thumb code.
331 */
332 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
333 __func__);
334 dab_fatal(tf, fsr, far, l, NULL);
335 }
336 #endif
337
338 /* See if the CPU state needs to be fixed up */
339 switch (data_abort_fixup(tf, fsr, far, l)) {
340 case ABORT_FIXUP_RETURN:
341 return;
342 case ABORT_FIXUP_FAILED:
343 /* Deliver a SIGILL to the process */
344 KSI_INIT_TRAP(&ksi);
345 ksi.ksi_signo = SIGILL;
346 ksi.ksi_code = ILL_ILLOPC;
347 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
348 ksi.ksi_trap = fsr;
349 goto do_trapsignal;
350 default:
351 break;
352 }
353
354 va = trunc_page((vaddr_t)far);
355
356 /*
357 * It is only a kernel address space fault iff:
358 * 1. user == 0 and
359 * 2. pcb_onfault not set or
360 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
361 */
362 if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
363 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
364 __predict_true((pcb->pcb_onfault == NULL ||
365 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
366 map = kernel_map;
367
368 /* Was the fault due to the FPE/IPKDB ? */
369 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
370 KSI_INIT_TRAP(&ksi);
371 ksi.ksi_signo = SIGSEGV;
372 ksi.ksi_code = SEGV_ACCERR;
373 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
374 ksi.ksi_trap = fsr;
375
376 /*
377 * Force exit via userret()
378 * This is necessary as the FPE is an extension to
379 * userland that actually runs in a priveledged mode
380 * but uses USR mode permissions for its accesses.
381 */
382 user = 1;
383 goto do_trapsignal;
384 }
385 } else {
386 map = &l->l_proc->p_vmspace->vm_map;
387 }
388
389 /*
390 * We need to know whether the page should be mapped
391 * as R or R/W. The MMU does not give us the info as
392 * to whether the fault was caused by a read or a write.
393 *
394 * However, we know that a permission fault can only be
395 * the result of a write to a read-only location, so
396 * we can deal with those quickly.
397 *
398 * Otherwise we need to disassemble the instruction
399 * responsible to determine if it was a write.
400 */
401 if (IS_PERMISSION_FAULT(fsr))
402 ftype = VM_PROT_WRITE;
403 else {
404 #ifdef THUMB_CODE
405 /* Fast track the ARM case. */
406 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
407 u_int insn = fusword((void *)(tf->tf_pc & ~1));
408 u_int insn_f8 = insn & 0xf800;
409 u_int insn_fe = insn & 0xfe00;
410
411 if (insn_f8 == 0x6000 || /* STR(1) */
412 insn_f8 == 0x7000 || /* STRB(1) */
413 insn_f8 == 0x8000 || /* STRH(1) */
414 insn_f8 == 0x9000 || /* STR(3) */
415 insn_f8 == 0xc000 || /* STM */
416 insn_fe == 0x5000 || /* STR(2) */
417 insn_fe == 0x5200 || /* STRH(2) */
418 insn_fe == 0x5400) /* STRB(2) */
419 ftype = VM_PROT_WRITE;
420 else
421 ftype = VM_PROT_READ;
422 }
423 else
424 #endif
425 {
426 u_int insn = ReadWord(tf->tf_pc);
427
428 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
429 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
430 ((insn & 0x0a100000) == 0x08000000)) /* STM/CDT*/
431 ftype = VM_PROT_WRITE;
432 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
433 ftype = VM_PROT_READ | VM_PROT_WRITE;
434 else
435 ftype = VM_PROT_READ;
436 }
437 }
438
439 /*
440 * See if the fault is as a result of ref/mod emulation,
441 * or domain mismatch.
442 */
443 #ifdef DEBUG
444 last_fault_code = fsr;
445 #endif
446 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
447 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
448 goto out;
449 }
450
451 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
452 if (pcb->pcb_onfault) {
453 tf->tf_r0 = EINVAL;
454 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
455 return;
456 }
457 printf("\nNon-emulated page fault with intr_depth > 0\n");
458 dab_fatal(tf, fsr, far, l, NULL);
459 }
460
461 onfault = pcb->pcb_onfault;
462 pcb->pcb_onfault = NULL;
463 error = uvm_fault(map, va, ftype);
464 pcb->pcb_onfault = onfault;
465
466 if (__predict_true(error == 0)) {
467 if (user)
468 uvm_grow(l->l_proc, va); /* Record any stack growth */
469 else
470 ucas_ras_check(tf);
471 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
472 goto out;
473 }
474
475 if (user == 0) {
476 if (pcb->pcb_onfault) {
477 tf->tf_r0 = error;
478 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
479 return;
480 }
481
482 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
483 error);
484 dab_fatal(tf, fsr, far, l, NULL);
485 }
486
487 KSI_INIT_TRAP(&ksi);
488
489 if (error == ENOMEM) {
490 printf("UVM: pid %d (%s), uid %d killed: "
491 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
492 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
493 ksi.ksi_signo = SIGKILL;
494 } else
495 ksi.ksi_signo = SIGSEGV;
496
497 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
498 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
499 ksi.ksi_trap = fsr;
500 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
501
502 do_trapsignal:
503 call_trapsignal(l, &ksi);
504 out:
505 /* If returning to user mode, make sure to invoke userret() */
506 if (user)
507 userret(l);
508 }
509
510 /*
511 * dab_fatal() handles the following data aborts:
512 *
513 * FAULT_WRTBUF_0 - Vector Exception
514 * FAULT_WRTBUF_1 - Terminal Exception
515 *
516 * We should never see these on a properly functioning system.
517 *
518 * This function is also called by the other handlers if they
519 * detect a fatal problem.
520 *
521 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
522 */
523 static int
524 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
525 {
526 const char *mode;
527
528 mode = TRAP_USERMODE(tf) ? "user" : "kernel";
529
530 if (l != NULL) {
531 printf("Fatal %s mode data abort: '%s'\n", mode,
532 data_aborts[fsr & FAULT_TYPE_MASK].desc);
533 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
534 if ((fsr & FAULT_IMPRECISE) == 0)
535 printf("%08x, ", far);
536 else
537 printf("Invalid, ");
538 printf("spsr=%08x\n", tf->tf_spsr);
539 } else {
540 printf("Fatal %s mode prefetch abort at 0x%08x\n",
541 mode, tf->tf_pc);
542 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
543 }
544
545 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
546 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
547 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
548 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
549 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
550 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
551 printf("r12=%08x, ", tf->tf_r12);
552
553 if (TRAP_USERMODE(tf))
554 printf("usp=%08x, ulr=%08x",
555 tf->tf_usr_sp, tf->tf_usr_lr);
556 else
557 printf("ssp=%08x, slr=%08x",
558 tf->tf_svc_sp, tf->tf_svc_lr);
559 printf(", pc =%08x\n\n", tf->tf_pc);
560
561 #if defined(DDB) || defined(KGDB)
562 kdb_trap(T_FAULT, tf);
563 #endif
564 panic("Fatal abort");
565 /*NOTREACHED*/
566 }
567
568 /*
569 * dab_align() handles the following data aborts:
570 *
571 * FAULT_ALIGN_0 - Alignment fault
572 * FAULT_ALIGN_0 - Alignment fault
573 *
574 * These faults are fatal if they happen in kernel mode. Otherwise, we
575 * deliver a bus error to the process.
576 */
577 static int
578 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
579 {
580 struct pcb *pcb = lwp_getpcb(l);
581
582 /* Alignment faults are always fatal if they occur in kernel mode */
583 if (!TRAP_USERMODE(tf))
584 dab_fatal(tf, fsr, far, l, NULL);
585
586 /* pcb_onfault *must* be NULL at this point */
587 KDASSERT(pcb->pcb_onfault == NULL);
588
589 /* See if the CPU state needs to be fixed up */
590 (void) data_abort_fixup(tf, fsr, far, l);
591
592 /* Deliver a bus error signal to the process */
593 KSI_INIT_TRAP(ksi);
594 ksi->ksi_signo = SIGBUS;
595 ksi->ksi_code = BUS_ADRALN;
596 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
597 ksi->ksi_trap = fsr;
598
599 pcb->pcb_tf = tf;
600
601 return (1);
602 }
603
604 /*
605 * dab_buserr() handles the following data aborts:
606 *
607 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
608 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
609 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
610 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
611 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
612 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
613 *
614 * If pcb_onfault is set, flag the fault and return to the handler.
615 * If the fault occurred in user mode, give the process a SIGBUS.
616 *
617 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
618 * can be flagged as imprecise in the FSR. This causes a real headache
619 * since some of the machine state is lost. In this case, tf->tf_pc
620 * may not actually point to the offending instruction. In fact, if
621 * we've taken a double abort fault, it generally points somewhere near
622 * the top of "data_abort_entry" in exception.S.
623 *
624 * In all other cases, these data aborts are considered fatal.
625 */
626 static int
627 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
628 ksiginfo_t *ksi)
629 {
630 struct pcb *pcb = lwp_getpcb(l);
631
632 #ifdef __XSCALE__
633 if ((fsr & FAULT_IMPRECISE) != 0 &&
634 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
635 /*
636 * Oops, an imprecise, double abort fault. We've lost the
637 * r14_abt/spsr_abt values corresponding to the original
638 * abort, and the spsr saved in the trapframe indicates
639 * ABT mode.
640 */
641 tf->tf_spsr &= ~PSR_MODE;
642
643 /*
644 * We use a simple heuristic to determine if the double abort
645 * happened as a result of a kernel or user mode access.
646 * If the current trapframe is at the top of the kernel stack,
647 * the fault _must_ have come from user mode.
648 */
649 if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
650 /*
651 * Kernel mode. We're either about to die a
652 * spectacular death, or pcb_onfault will come
653 * to our rescue. Either way, the current value
654 * of tf->tf_pc is irrelevant.
655 */
656 tf->tf_spsr |= PSR_SVC32_MODE;
657 if (pcb->pcb_onfault == NULL)
658 printf("\nKernel mode double abort!\n");
659 } else {
660 /*
661 * User mode. We've lost the program counter at the
662 * time of the fault (not that it was accurate anyway;
663 * it's not called an imprecise fault for nothing).
664 * About all we can do is copy r14_usr to tf_pc and
665 * hope for the best. The process is about to get a
666 * SIGBUS, so it's probably history anyway.
667 */
668 tf->tf_spsr |= PSR_USR32_MODE;
669 tf->tf_pc = tf->tf_usr_lr;
670 #ifdef THUMB_CODE
671 tf->tf_spsr &= ~PSR_T_bit;
672 if (tf->tf_usr_lr & 1)
673 tf->tf_spsr |= PSR_T_bit;
674 #endif
675 }
676 }
677
678 /* FAR is invalid for imprecise exceptions */
679 if ((fsr & FAULT_IMPRECISE) != 0)
680 far = 0;
681 #endif /* __XSCALE__ */
682
683 if (pcb->pcb_onfault) {
684 KDASSERT(TRAP_USERMODE(tf) == 0);
685 tf->tf_r0 = EFAULT;
686 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
687 return (0);
688 }
689
690 /* See if the CPU state needs to be fixed up */
691 (void) data_abort_fixup(tf, fsr, far, l);
692
693 /*
694 * At this point, if the fault happened in kernel mode, we're toast
695 */
696 if (!TRAP_USERMODE(tf))
697 dab_fatal(tf, fsr, far, l, NULL);
698
699 /* Deliver a bus error signal to the process */
700 KSI_INIT_TRAP(ksi);
701 ksi->ksi_signo = SIGBUS;
702 ksi->ksi_code = BUS_ADRERR;
703 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
704 ksi->ksi_trap = fsr;
705
706 pcb->pcb_tf = tf;
707
708 return (1);
709 }
710
711 static inline int
712 prefetch_abort_fixup(trapframe_t *tf)
713 {
714 #ifdef CPU_ABORT_FIXUP_REQUIRED
715 int error;
716
717 /* Call the CPU specific prefetch abort fixup routine */
718 error = cpu_prefetchabt_fixup(tf);
719 if (__predict_true(error != ABORT_FIXUP_FAILED))
720 return (error);
721
722 /*
723 * Oops, couldn't fix up the instruction
724 */
725 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
726 TRAP_USERMODE(tf) ? "user" : "kernel");
727 #ifdef THUMB_CODE
728 if (tf->tf_spsr & PSR_T_bit) {
729 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
730 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
731 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
732 }
733 else
734 #endif
735 {
736 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
737 *((u_int *)tf->tf_pc));
738 }
739 disassemble(tf->tf_pc);
740
741 /* Die now if this happened in kernel mode */
742 if (!TRAP_USERMODE(tf))
743 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
744
745 return (error);
746 #else
747 return (ABORT_FIXUP_OK);
748 #endif /* CPU_ABORT_FIXUP_REQUIRED */
749 }
750
751 /*
752 * void prefetch_abort_handler(trapframe_t *tf)
753 *
754 * Abort handler called when instruction execution occurs at
755 * a non existent or restricted (access permissions) memory page.
756 * If the address is invalid and we were in SVC mode then panic as
757 * the kernel should never prefetch abort.
758 * If the address is invalid and the page is mapped then the user process
759 * does no have read permission so send it a signal.
760 * Otherwise fault the page in and try again.
761 */
762 void
763 prefetch_abort_handler(trapframe_t *tf)
764 {
765 struct lwp *l;
766 struct pcb *pcb;
767 struct vm_map *map;
768 vaddr_t fault_pc, va;
769 ksiginfo_t ksi;
770 int error, user;
771
772 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
773
774 /* Update vmmeter statistics */
775 curcpu()->ci_data.cpu_ntrap++;
776
777 l = curlwp;
778 pcb = lwp_getpcb(l);
779
780 if ((user = TRAP_USERMODE(tf)) != 0)
781 LWP_CACHE_CREDS(l, l->l_proc);
782
783 /*
784 * Enable IRQ's (disabled by the abort) This always comes
785 * from user mode so we know interrupts were not disabled.
786 * But we check anyway.
787 */
788 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
789 if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
790 restore_interrupts(tf->tf_spsr & IF32_bits);
791
792 /* See if the CPU state needs to be fixed up */
793 switch (prefetch_abort_fixup(tf)) {
794 case ABORT_FIXUP_RETURN:
795 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
796 return;
797 case ABORT_FIXUP_FAILED:
798 /* Deliver a SIGILL to the process */
799 KSI_INIT_TRAP(&ksi);
800 ksi.ksi_signo = SIGILL;
801 ksi.ksi_code = ILL_ILLOPC;
802 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
803 pcb->pcb_tf = tf;
804 goto do_trapsignal;
805 default:
806 break;
807 }
808
809 /* Prefetch aborts cannot happen in kernel mode */
810 if (__predict_false(!user))
811 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
812
813 /* Get fault address */
814 fault_pc = tf->tf_pc;
815 pcb->pcb_tf = tf;
816 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
817 0);
818
819 /* Ok validate the address, can only execute in USER space */
820 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
821 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
822 KSI_INIT_TRAP(&ksi);
823 ksi.ksi_signo = SIGSEGV;
824 ksi.ksi_code = SEGV_ACCERR;
825 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
826 ksi.ksi_trap = fault_pc;
827 goto do_trapsignal;
828 }
829
830 map = &l->l_proc->p_vmspace->vm_map;
831 va = trunc_page(fault_pc);
832
833 /*
834 * See if the pmap can handle this fault on its own...
835 */
836 #ifdef DEBUG
837 last_fault_code = -1;
838 #endif
839 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
840 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
841 goto out;
842 }
843
844 #ifdef DIAGNOSTIC
845 if (__predict_false(l->l_cpu->ci_intr_depth > 0)) {
846 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
847 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
848 }
849 #endif
850
851 KASSERT(pcb->pcb_onfault == NULL);
852 error = uvm_fault(map, va, VM_PROT_READ);
853
854 if (__predict_true(error == 0)) {
855 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
856 goto out;
857 }
858 KSI_INIT_TRAP(&ksi);
859
860 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
861 if (error == ENOMEM) {
862 printf("UVM: pid %d (%s), uid %d killed: "
863 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
864 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
865 ksi.ksi_signo = SIGKILL;
866 } else
867 ksi.ksi_signo = SIGSEGV;
868
869 ksi.ksi_code = SEGV_MAPERR;
870 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
871 ksi.ksi_trap = fault_pc;
872
873 do_trapsignal:
874 call_trapsignal(l, &ksi);
875
876 out:
877 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
878 userret(l);
879 }
880
881 /*
882 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
883 * If the read succeeds, the value is written to 'rptr' and zero is returned.
884 * Else, return EFAULT.
885 */
886 int
887 badaddr_read(void *addr, size_t size, void *rptr)
888 {
889 extern int badaddr_read_1(const uint8_t *, uint8_t *);
890 extern int badaddr_read_2(const uint16_t *, uint16_t *);
891 extern int badaddr_read_4(const uint32_t *, uint32_t *);
892 union {
893 uint8_t v1;
894 uint16_t v2;
895 uint32_t v4;
896 } u;
897 struct pcb *curpcb_save;
898 int rv, s;
899
900 cpu_drain_writebuf();
901
902 /*
903 * We might be called at interrupt time, so arrange to steal
904 * lwp0's PCB temporarily, if required, so that pcb_onfault
905 * handling works correctly.
906 */
907 s = splhigh();
908 if ((curpcb_save = curpcb) == NULL)
909 curpcb = lwp_getpcb(&lwp0);
910
911 /* Read from the test address. */
912 switch (size) {
913 case sizeof(uint8_t):
914 rv = badaddr_read_1(addr, &u.v1);
915 if (rv == 0 && rptr)
916 *(uint8_t *) rptr = u.v1;
917 break;
918
919 case sizeof(uint16_t):
920 rv = badaddr_read_2(addr, &u.v2);
921 if (rv == 0 && rptr)
922 *(uint16_t *) rptr = u.v2;
923 break;
924
925 case sizeof(uint32_t):
926 rv = badaddr_read_4(addr, &u.v4);
927 if (rv == 0 && rptr)
928 *(uint32_t *) rptr = u.v4;
929 break;
930
931 default:
932 curpcb = curpcb_save;
933 panic("%s: invalid size (%lu)", __func__, (u_long)size);
934 }
935
936 /* Restore curpcb */
937 curpcb = curpcb_save;
938 splx(s);
939
940 /* Return EFAULT if the address was invalid, else zero */
941 return (rv);
942 }
943