fault.c revision 1.84 1 /* $NetBSD: fault.c,v 1.84 2012/08/29 16:48:11 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.84 2012/08/29 16:48:11 matt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92
93 #include <uvm/uvm_extern.h>
94 #include <uvm/uvm_stat.h>
95 #ifdef UVMHIST
96 #include <uvm/uvm.h>
97 #endif
98
99 #include <arm/cpuconf.h>
100
101 #include <arm/arm32/katelib.h>
102
103 #include <machine/intr.h>
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if 'x' is a permission fault */
159 #define IS_PERMISSION_FAULT(x) \
160 (((1 << ((x) & FAULT_TYPE_MASK)) & \
161 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
168 #endif
169
170 static inline void
171 call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
172 {
173
174 TRAPSIGNAL(l, ksi);
175 }
176
177 static inline int
178 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
179 {
180 #ifdef CPU_ABORT_FIXUP_REQUIRED
181 int error;
182
183 /* Call the CPU specific data abort fixup routine */
184 error = cpu_dataabt_fixup(tf);
185 if (__predict_true(error != ABORT_FIXUP_FAILED))
186 return (error);
187
188 /*
189 * Oops, couldn't fix up the instruction
190 */
191 printf("%s: fixup for %s mode data abort failed.\n", __func__,
192 TRAP_USERMODE(tf) ? "user" : "kernel");
193 #ifdef THUMB_CODE
194 if (tf->tf_spsr & PSR_T_bit) {
195 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
196 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
197 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
198 }
199 else
200 #endif
201 {
202 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
203 *((u_int *)tf->tf_pc));
204 }
205 disassemble(tf->tf_pc);
206
207 /* Die now if this happened in kernel mode */
208 if (!TRAP_USERMODE(tf))
209 dab_fatal(tf, fsr, far, l, NULL);
210
211 return (error);
212 #else
213 return (ABORT_FIXUP_OK);
214 #endif /* CPU_ABORT_FIXUP_REQUIRED */
215 }
216
217 void
218 data_abort_handler(trapframe_t *tf)
219 {
220 struct vm_map *map;
221 struct lwp * const l = curlwp;
222 struct cpu_info * const ci = curcpu();
223 u_int far, fsr;
224 vm_prot_t ftype;
225 void *onfault;
226 vaddr_t va;
227 int error;
228 ksiginfo_t ksi;
229
230 UVMHIST_FUNC("data_abort_handler");
231
232 /* Grab FAR/FSR before enabling interrupts */
233 far = cpu_faultaddress();
234 fsr = cpu_faultstatus();
235
236 UVMHIST_CALLED(maphist);
237 /* Update vmmeter statistics */
238 ci->ci_data.cpu_ntrap++;
239
240 /* Re-enable interrupts if they were enabled previously */
241 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
242 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
243 restore_interrupts(tf->tf_spsr & IF32_bits);
244
245 /* Get the current lwp structure */
246
247 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
248 tf->tf_pc, l, far, fsr);
249
250 /* Data abort came from user mode? */
251 bool user = (TRAP_USERMODE(tf) != 0);
252 if (user)
253 LWP_CACHE_CREDS(l, l->l_proc);
254
255 /* Grab the current pcb */
256 struct pcb * const pcb = lwp_getpcb(l);
257
258 /* Invoke the appropriate handler, if necessary */
259 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
260 #ifdef DIAGNOSTIC
261 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
262 __func__, fsr, far);
263 #endif
264 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
265 l, &ksi))
266 goto do_trapsignal;
267 goto out;
268 }
269
270 /*
271 * At this point, we're dealing with one of the following data aborts:
272 *
273 * FAULT_TRANS_S - Translation -- Section
274 * FAULT_TRANS_P - Translation -- Page
275 * FAULT_DOMAIN_S - Domain -- Section
276 * FAULT_DOMAIN_P - Domain -- Page
277 * FAULT_PERM_S - Permission -- Section
278 * FAULT_PERM_P - Permission -- Page
279 *
280 * These are the main virtual memory-related faults signalled by
281 * the MMU.
282 */
283
284 /* fusubailout is used by [fs]uswintr to avoid page faulting */
285 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
286 tf->tf_r0 = EFAULT;
287 tf->tf_pc = (intptr_t) pcb->pcb_onfault;
288 return;
289 }
290
291 if (user) {
292 lwp_settrapframe(l, tf);
293 }
294
295 /*
296 * Make sure the Program Counter is sane. We could fall foul of
297 * someone executing Thumb code, in which case the PC might not
298 * be word-aligned. This would cause a kernel alignment fault
299 * further down if we have to decode the current instruction.
300 */
301 #ifdef THUMB_CODE
302 /*
303 * XXX: It would be nice to be able to support Thumb in the kernel
304 * at some point.
305 */
306 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
307 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
308 __func__);
309 dab_fatal(tf, fsr, far, l, NULL);
310 }
311 #else
312 if (__predict_false((tf->tf_pc & 3) != 0)) {
313 if (user) {
314 /*
315 * Give the user an illegal instruction signal.
316 */
317 /* Deliver a SIGILL to the process */
318 KSI_INIT_TRAP(&ksi);
319 ksi.ksi_signo = SIGILL;
320 ksi.ksi_code = ILL_ILLOPC;
321 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
322 ksi.ksi_trap = fsr;
323 goto do_trapsignal;
324 }
325
326 /*
327 * The kernel never executes Thumb code.
328 */
329 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
330 __func__);
331 dab_fatal(tf, fsr, far, l, NULL);
332 }
333 #endif
334
335 /* See if the CPU state needs to be fixed up */
336 switch (data_abort_fixup(tf, fsr, far, l)) {
337 case ABORT_FIXUP_RETURN:
338 return;
339 case ABORT_FIXUP_FAILED:
340 /* Deliver a SIGILL to the process */
341 KSI_INIT_TRAP(&ksi);
342 ksi.ksi_signo = SIGILL;
343 ksi.ksi_code = ILL_ILLOPC;
344 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
345 ksi.ksi_trap = fsr;
346 goto do_trapsignal;
347 default:
348 break;
349 }
350
351 va = trunc_page((vaddr_t)far);
352
353 /*
354 * It is only a kernel address space fault iff:
355 * 1. user == 0 and
356 * 2. pcb_onfault not set or
357 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
358 */
359 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
360 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
361 __predict_true((pcb->pcb_onfault == NULL ||
362 (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
363 map = kernel_map;
364
365 /* Was the fault due to the FPE/IPKDB ? */
366 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
367 KSI_INIT_TRAP(&ksi);
368 ksi.ksi_signo = SIGSEGV;
369 ksi.ksi_code = SEGV_ACCERR;
370 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
371 ksi.ksi_trap = fsr;
372
373 /*
374 * Force exit via userret()
375 * This is necessary as the FPE is an extension to
376 * userland that actually runs in a priveledged mode
377 * but uses USR mode permissions for its accesses.
378 */
379 user = true;
380 goto do_trapsignal;
381 }
382 } else {
383 map = &l->l_proc->p_vmspace->vm_map;
384 }
385
386 /*
387 * We need to know whether the page should be mapped
388 * as R or R/W. The MMU does not give us the info as
389 * to whether the fault was caused by a read or a write.
390 *
391 * However, we know that a permission fault can only be
392 * the result of a write to a read-only location, so
393 * we can deal with those quickly.
394 *
395 * Otherwise we need to disassemble the instruction
396 * responsible to determine if it was a write.
397 */
398 if (IS_PERMISSION_FAULT(fsr))
399 ftype = VM_PROT_WRITE;
400 else {
401 #ifdef THUMB_CODE
402 /* Fast track the ARM case. */
403 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
404 u_int insn = fusword((void *)(tf->tf_pc & ~1));
405 u_int insn_f8 = insn & 0xf800;
406 u_int insn_fe = insn & 0xfe00;
407
408 if (insn_f8 == 0x6000 || /* STR(1) */
409 insn_f8 == 0x7000 || /* STRB(1) */
410 insn_f8 == 0x8000 || /* STRH(1) */
411 insn_f8 == 0x9000 || /* STR(3) */
412 insn_f8 == 0xc000 || /* STM */
413 insn_fe == 0x5000 || /* STR(2) */
414 insn_fe == 0x5200 || /* STRH(2) */
415 insn_fe == 0x5400) /* STRB(2) */
416 ftype = VM_PROT_WRITE;
417 else
418 ftype = VM_PROT_READ;
419 }
420 else
421 #endif
422 {
423 u_int insn = ReadWord(tf->tf_pc);
424
425 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
426 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
427 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
428 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
429 ftype = VM_PROT_WRITE;
430 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
431 ftype = VM_PROT_READ | VM_PROT_WRITE;
432 else
433 ftype = VM_PROT_READ;
434 }
435 }
436
437 /*
438 * See if the fault is as a result of ref/mod emulation,
439 * or domain mismatch.
440 */
441 #ifdef DEBUG
442 last_fault_code = fsr;
443 #endif
444 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
445 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
446 goto out;
447 }
448
449 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
450 if (pcb->pcb_onfault) {
451 tf->tf_r0 = EINVAL;
452 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
453 return;
454 }
455 printf("\nNon-emulated page fault with intr_depth > 0\n");
456 dab_fatal(tf, fsr, far, l, NULL);
457 }
458
459 onfault = pcb->pcb_onfault;
460 pcb->pcb_onfault = NULL;
461 error = uvm_fault(map, va, ftype);
462 pcb->pcb_onfault = onfault;
463
464 if (__predict_true(error == 0)) {
465 if (user)
466 uvm_grow(l->l_proc, va); /* Record any stack growth */
467 else
468 ucas_ras_check(tf);
469 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
470 goto out;
471 }
472
473 if (user == 0) {
474 if (pcb->pcb_onfault) {
475 tf->tf_r0 = error;
476 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
477 return;
478 }
479
480 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
481 error);
482 dab_fatal(tf, fsr, far, l, NULL);
483 }
484
485 KSI_INIT_TRAP(&ksi);
486
487 if (error == ENOMEM) {
488 printf("UVM: pid %d (%s), uid %d killed: "
489 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
490 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
491 ksi.ksi_signo = SIGKILL;
492 } else
493 ksi.ksi_signo = SIGSEGV;
494
495 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
496 ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
497 ksi.ksi_trap = fsr;
498 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
499
500 do_trapsignal:
501 call_trapsignal(l, &ksi);
502 out:
503 /* If returning to user mode, make sure to invoke userret() */
504 if (user)
505 userret(l);
506 }
507
508 /*
509 * dab_fatal() handles the following data aborts:
510 *
511 * FAULT_WRTBUF_0 - Vector Exception
512 * FAULT_WRTBUF_1 - Terminal Exception
513 *
514 * We should never see these on a properly functioning system.
515 *
516 * This function is also called by the other handlers if they
517 * detect a fatal problem.
518 *
519 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
520 */
521 static int
522 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
523 {
524 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
525
526 if (l != NULL) {
527 printf("Fatal %s mode data abort: '%s'\n", mode,
528 data_aborts[fsr & FAULT_TYPE_MASK].desc);
529 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
530 if ((fsr & FAULT_IMPRECISE) == 0)
531 printf("%08x, ", far);
532 else
533 printf("Invalid, ");
534 printf("spsr=%08x\n", tf->tf_spsr);
535 } else {
536 printf("Fatal %s mode prefetch abort at 0x%08x\n",
537 mode, tf->tf_pc);
538 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
539 }
540
541 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
542 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
543 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
544 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
545 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
546 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
547 printf("r12=%08x, ", tf->tf_r12);
548
549 if (TRAP_USERMODE(tf))
550 printf("usp=%08x, ulr=%08x",
551 tf->tf_usr_sp, tf->tf_usr_lr);
552 else
553 printf("ssp=%08x, slr=%08x",
554 tf->tf_svc_sp, tf->tf_svc_lr);
555 printf(", pc =%08x\n\n", tf->tf_pc);
556
557 #if defined(DDB) || defined(KGDB)
558 kdb_trap(T_FAULT, tf);
559 #endif
560 panic("Fatal abort");
561 /*NOTREACHED*/
562 }
563
564 /*
565 * dab_align() handles the following data aborts:
566 *
567 * FAULT_ALIGN_0 - Alignment fault
568 * FAULT_ALIGN_0 - Alignment fault
569 *
570 * These faults are fatal if they happen in kernel mode. Otherwise, we
571 * deliver a bus error to the process.
572 */
573 static int
574 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
575 {
576 /* Alignment faults are always fatal if they occur in kernel mode */
577 if (!TRAP_USERMODE(tf))
578 dab_fatal(tf, fsr, far, l, NULL);
579
580 /* pcb_onfault *must* be NULL at this point */
581 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
582
583 /* See if the CPU state needs to be fixed up */
584 (void) data_abort_fixup(tf, fsr, far, l);
585
586 /* Deliver a bus error signal to the process */
587 KSI_INIT_TRAP(ksi);
588 ksi->ksi_signo = SIGBUS;
589 ksi->ksi_code = BUS_ADRALN;
590 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
591 ksi->ksi_trap = fsr;
592
593 lwp_settrapframe(l, tf);
594
595 return (1);
596 }
597
598 /*
599 * dab_buserr() handles the following data aborts:
600 *
601 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
602 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
603 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
604 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
605 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
606 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
607 *
608 * If pcb_onfault is set, flag the fault and return to the handler.
609 * If the fault occurred in user mode, give the process a SIGBUS.
610 *
611 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
612 * can be flagged as imprecise in the FSR. This causes a real headache
613 * since some of the machine state is lost. In this case, tf->tf_pc
614 * may not actually point to the offending instruction. In fact, if
615 * we've taken a double abort fault, it generally points somewhere near
616 * the top of "data_abort_entry" in exception.S.
617 *
618 * In all other cases, these data aborts are considered fatal.
619 */
620 static int
621 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
622 ksiginfo_t *ksi)
623 {
624 struct pcb *pcb = lwp_getpcb(l);
625
626 #ifdef __XSCALE__
627 if ((fsr & FAULT_IMPRECISE) != 0 &&
628 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
629 /*
630 * Oops, an imprecise, double abort fault. We've lost the
631 * r14_abt/spsr_abt values corresponding to the original
632 * abort, and the spsr saved in the trapframe indicates
633 * ABT mode.
634 */
635 tf->tf_spsr &= ~PSR_MODE;
636
637 /*
638 * We use a simple heuristic to determine if the double abort
639 * happened as a result of a kernel or user mode access.
640 * If the current trapframe is at the top of the kernel stack,
641 * the fault _must_ have come from user mode.
642 */
643 if (tf != ((trapframe_t *)pcb->pcb_sp) - 1) {
644 /*
645 * Kernel mode. We're either about to die a
646 * spectacular death, or pcb_onfault will come
647 * to our rescue. Either way, the current value
648 * of tf->tf_pc is irrelevant.
649 */
650 tf->tf_spsr |= PSR_SVC32_MODE;
651 if (pcb->pcb_onfault == NULL)
652 printf("\nKernel mode double abort!\n");
653 } else {
654 /*
655 * User mode. We've lost the program counter at the
656 * time of the fault (not that it was accurate anyway;
657 * it's not called an imprecise fault for nothing).
658 * About all we can do is copy r14_usr to tf_pc and
659 * hope for the best. The process is about to get a
660 * SIGBUS, so it's probably history anyway.
661 */
662 tf->tf_spsr |= PSR_USR32_MODE;
663 tf->tf_pc = tf->tf_usr_lr;
664 #ifdef THUMB_CODE
665 tf->tf_spsr &= ~PSR_T_bit;
666 if (tf->tf_usr_lr & 1)
667 tf->tf_spsr |= PSR_T_bit;
668 #endif
669 }
670 }
671
672 /* FAR is invalid for imprecise exceptions */
673 if ((fsr & FAULT_IMPRECISE) != 0)
674 far = 0;
675 #endif /* __XSCALE__ */
676
677 if (pcb->pcb_onfault) {
678 KDASSERT(TRAP_USERMODE(tf) == 0);
679 tf->tf_r0 = EFAULT;
680 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
681 return (0);
682 }
683
684 /* See if the CPU state needs to be fixed up */
685 (void) data_abort_fixup(tf, fsr, far, l);
686
687 /*
688 * At this point, if the fault happened in kernel mode, we're toast
689 */
690 if (!TRAP_USERMODE(tf))
691 dab_fatal(tf, fsr, far, l, NULL);
692
693 /* Deliver a bus error signal to the process */
694 KSI_INIT_TRAP(ksi);
695 ksi->ksi_signo = SIGBUS;
696 ksi->ksi_code = BUS_ADRERR;
697 ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
698 ksi->ksi_trap = fsr;
699
700 lwp_settrapframe(l, tf);
701
702 return (1);
703 }
704
705 static inline int
706 prefetch_abort_fixup(trapframe_t *tf)
707 {
708 #ifdef CPU_ABORT_FIXUP_REQUIRED
709 int error;
710
711 /* Call the CPU specific prefetch abort fixup routine */
712 error = cpu_prefetchabt_fixup(tf);
713 if (__predict_true(error != ABORT_FIXUP_FAILED))
714 return (error);
715
716 /*
717 * Oops, couldn't fix up the instruction
718 */
719 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
720 TRAP_USERMODE(tf) ? "user" : "kernel");
721 #ifdef THUMB_CODE
722 if (tf->tf_spsr & PSR_T_bit) {
723 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
724 tf->tf_pc, *((u_int16 *)(tf->tf_pc & ~1)),
725 *((u_int16 *)((tf->tf_pc + 2) & ~1)));
726 }
727 else
728 #endif
729 {
730 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
731 *((u_int *)tf->tf_pc));
732 }
733 disassemble(tf->tf_pc);
734
735 /* Die now if this happened in kernel mode */
736 if (!TRAP_USERMODE(tf))
737 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
738
739 return (error);
740 #else
741 return (ABORT_FIXUP_OK);
742 #endif /* CPU_ABORT_FIXUP_REQUIRED */
743 }
744
745 /*
746 * void prefetch_abort_handler(trapframe_t *tf)
747 *
748 * Abort handler called when instruction execution occurs at
749 * a non existent or restricted (access permissions) memory page.
750 * If the address is invalid and we were in SVC mode then panic as
751 * the kernel should never prefetch abort.
752 * If the address is invalid and the page is mapped then the user process
753 * does no have read permission so send it a signal.
754 * Otherwise fault the page in and try again.
755 */
756 void
757 prefetch_abort_handler(trapframe_t *tf)
758 {
759 struct lwp *l;
760 struct pcb *pcb;
761 struct vm_map *map;
762 vaddr_t fault_pc, va;
763 ksiginfo_t ksi;
764 int error, user;
765
766 UVMHIST_FUNC("prefetch_abort_handler"); UVMHIST_CALLED(maphist);
767
768 /* Update vmmeter statistics */
769 curcpu()->ci_data.cpu_ntrap++;
770
771 l = curlwp;
772 pcb = lwp_getpcb(l);
773
774 if ((user = TRAP_USERMODE(tf)) != 0)
775 LWP_CACHE_CREDS(l, l->l_proc);
776
777 /*
778 * Enable IRQ's (disabled by the abort) This always comes
779 * from user mode so we know interrupts were not disabled.
780 * But we check anyway.
781 */
782 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
783 if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
784 restore_interrupts(tf->tf_spsr & IF32_bits);
785
786 /* See if the CPU state needs to be fixed up */
787 switch (prefetch_abort_fixup(tf)) {
788 case ABORT_FIXUP_RETURN:
789 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
790 return;
791 case ABORT_FIXUP_FAILED:
792 /* Deliver a SIGILL to the process */
793 KSI_INIT_TRAP(&ksi);
794 ksi.ksi_signo = SIGILL;
795 ksi.ksi_code = ILL_ILLOPC;
796 ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
797 lwp_settrapframe(l, tf);
798 goto do_trapsignal;
799 default:
800 break;
801 }
802
803 /* Prefetch aborts cannot happen in kernel mode */
804 if (__predict_false(!user))
805 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
806
807 /* Get fault address */
808 fault_pc = tf->tf_pc;
809 lwp_settrapframe(l, tf);
810 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
811 0);
812
813 /* Ok validate the address, can only execute in USER space */
814 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
815 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
816 KSI_INIT_TRAP(&ksi);
817 ksi.ksi_signo = SIGSEGV;
818 ksi.ksi_code = SEGV_ACCERR;
819 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
820 ksi.ksi_trap = fault_pc;
821 goto do_trapsignal;
822 }
823
824 map = &l->l_proc->p_vmspace->vm_map;
825 va = trunc_page(fault_pc);
826
827 /*
828 * See if the pmap can handle this fault on its own...
829 */
830 #ifdef DEBUG
831 last_fault_code = -1;
832 #endif
833 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1)) {
834 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
835 goto out;
836 }
837
838 #ifdef DIAGNOSTIC
839 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
840 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
841 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
842 }
843 #endif
844
845 KASSERT(pcb->pcb_onfault == NULL);
846 error = uvm_fault(map, va, VM_PROT_READ);
847
848 if (__predict_true(error == 0)) {
849 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
850 goto out;
851 }
852 KSI_INIT_TRAP(&ksi);
853
854 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
855 if (error == ENOMEM) {
856 printf("UVM: pid %d (%s), uid %d killed: "
857 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
858 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
859 ksi.ksi_signo = SIGKILL;
860 } else
861 ksi.ksi_signo = SIGSEGV;
862
863 ksi.ksi_code = SEGV_MAPERR;
864 ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
865 ksi.ksi_trap = fault_pc;
866
867 do_trapsignal:
868 call_trapsignal(l, &ksi);
869
870 out:
871 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
872 userret(l);
873 }
874
875 /*
876 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
877 * If the read succeeds, the value is written to 'rptr' and zero is returned.
878 * Else, return EFAULT.
879 */
880 int
881 badaddr_read(void *addr, size_t size, void *rptr)
882 {
883 extern int badaddr_read_1(const uint8_t *, uint8_t *);
884 extern int badaddr_read_2(const uint16_t *, uint16_t *);
885 extern int badaddr_read_4(const uint32_t *, uint32_t *);
886 union {
887 uint8_t v1;
888 uint16_t v2;
889 uint32_t v4;
890 } u;
891 int rv, s;
892
893 cpu_drain_writebuf();
894
895 s = splhigh();
896
897 /* Read from the test address. */
898 switch (size) {
899 case sizeof(uint8_t):
900 rv = badaddr_read_1(addr, &u.v1);
901 if (rv == 0 && rptr)
902 *(uint8_t *) rptr = u.v1;
903 break;
904
905 case sizeof(uint16_t):
906 rv = badaddr_read_2(addr, &u.v2);
907 if (rv == 0 && rptr)
908 *(uint16_t *) rptr = u.v2;
909 break;
910
911 case sizeof(uint32_t):
912 rv = badaddr_read_4(addr, &u.v4);
913 if (rv == 0 && rptr)
914 *(uint32_t *) rptr = u.v4;
915 break;
916
917 default:
918 panic("%s: invalid size (%zu)", __func__, size);
919 }
920
921 splx(s);
922
923 /* Return EFAULT if the address was invalid, else zero */
924 return (rv);
925 }
926