fault.c revision 1.93 1 /* $NetBSD: fault.c,v 1.93 2014/01/29 18:45:21 matt Exp $ */
2
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1994-1997 Mark Brinicombe.
39 * Copyright (c) 1994 Brini.
40 * All rights reserved.
41 *
42 * This code is derived from software written for Brini by Mark Brinicombe
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Brini.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * RiscBSD kernel project
72 *
73 * fault.c
74 *
75 * Fault handlers
76 *
77 * Created : 28/11/94
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_kgdb.h"
82
83 #include <sys/types.h>
84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.93 2014/01/29 18:45:21 matt Exp $");
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/kauth.h>
91 #include <sys/cpu.h>
92 #include <sys/intr.h>
93
94 #include <uvm/uvm_extern.h>
95 #include <uvm/uvm_stat.h>
96 #ifdef UVMHIST
97 #include <uvm/uvm.h>
98 #endif
99
100 #include <arm/locore.h>
101
102 #include <arm/arm32/katelib.h>
103
104 #include <machine/pcb.h>
105 #if defined(DDB) || defined(KGDB)
106 #include <machine/db_machdep.h>
107 #ifdef KGDB
108 #include <sys/kgdb.h>
109 #endif
110 #if !defined(DDB)
111 #define kdb_trap kgdb_trap
112 #endif
113 #endif
114
115 #include <arch/arm/arm/disassem.h>
116 #include <arm/arm32/machdep.h>
117
118 extern char fusubailout[];
119
120 #ifdef DEBUG
121 int last_fault_code; /* For the benefit of pmap_fault_fixup() */
122 #endif
123
124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
125 defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
126 /* These CPUs may need data/prefetch abort fixups */
127 #define CPU_ABORT_FIXUP_REQUIRED
128 #endif
129
130 struct data_abort {
131 int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
132 const char *desc;
133 };
134
135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
138
139 static const struct data_abort data_aborts[] = {
140 {dab_fatal, "Vector Exception"},
141 {dab_align, "Alignment Fault 1"},
142 {dab_fatal, "Terminal Exception"},
143 {dab_align, "Alignment Fault 3"},
144 {dab_buserr, "External Linefetch Abort (S)"},
145 {NULL, "Translation Fault (S)"},
146 {dab_buserr, "External Linefetch Abort (P)"},
147 {NULL, "Translation Fault (P)"},
148 {dab_buserr, "External Non-Linefetch Abort (S)"},
149 {NULL, "Domain Fault (S)"},
150 {dab_buserr, "External Non-Linefetch Abort (P)"},
151 {NULL, "Domain Fault (P)"},
152 {dab_buserr, "External Translation Abort (L1)"},
153 {NULL, "Permission Fault (S)"},
154 {dab_buserr, "External Translation Abort (L2)"},
155 {NULL, "Permission Fault (P)"}
156 };
157
158 /* Determine if 'x' is a permission fault */
159 #define IS_PERMISSION_FAULT(x) \
160 (((1 << ((x) & FAULT_TYPE_MASK)) & \
161 ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
162
163 #if 0
164 /* maybe one day we'll do emulations */
165 #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
166 #else
167 #define TRAPSIGNAL(l,k) trapsignal((l), (k))
168 #endif
169
170 static inline void
171 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
172 {
173 if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
174 printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
175 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
176 ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
177 ksi->ksi_trap);
178 printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
179 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
180 printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
181 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
182 printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
183 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
184 printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
185 tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
186 tf->tf_spsr);
187 }
188
189 TRAPSIGNAL(l, ksi);
190 }
191
192 static inline int
193 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
194 {
195 #ifdef CPU_ABORT_FIXUP_REQUIRED
196 int error;
197
198 /* Call the CPU specific data abort fixup routine */
199 error = cpu_dataabt_fixup(tf);
200 if (__predict_true(error != ABORT_FIXUP_FAILED))
201 return (error);
202
203 /*
204 * Oops, couldn't fix up the instruction
205 */
206 printf("%s: fixup for %s mode data abort failed.\n", __func__,
207 TRAP_USERMODE(tf) ? "user" : "kernel");
208 #ifdef THUMB_CODE
209 if (tf->tf_spsr & PSR_T_bit) {
210 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
211 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
212 *((uint16 *)((tf->tf_pc + 2) & ~1)));
213 }
214 else
215 #endif
216 {
217 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
218 *((u_int *)tf->tf_pc));
219 }
220 disassemble(tf->tf_pc);
221
222 /* Die now if this happened in kernel mode */
223 if (!TRAP_USERMODE(tf))
224 dab_fatal(tf, fsr, far, l, NULL);
225
226 return (error);
227 #else
228 return (ABORT_FIXUP_OK);
229 #endif /* CPU_ABORT_FIXUP_REQUIRED */
230 }
231
232 void
233 data_abort_handler(trapframe_t *tf)
234 {
235 struct vm_map *map;
236 struct lwp * const l = curlwp;
237 struct cpu_info * const ci = curcpu();
238 u_int far, fsr;
239 vm_prot_t ftype;
240 void *onfault;
241 vaddr_t va;
242 int error;
243 ksiginfo_t ksi;
244
245 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
246
247 /* Grab FAR/FSR before enabling interrupts */
248 far = cpu_faultaddress();
249 fsr = cpu_faultstatus();
250
251 /* Update vmmeter statistics */
252 ci->ci_data.cpu_ntrap++;
253
254 /* Re-enable interrupts if they were enabled previously */
255 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
256 if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
257 restore_interrupts(tf->tf_spsr & IF32_bits);
258
259 /* Get the current lwp structure */
260
261 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, far=0x%x, fsr=0x%x)",
262 tf->tf_pc, l, far, fsr);
263
264 /* Data abort came from user mode? */
265 bool user = (TRAP_USERMODE(tf) != 0);
266 if (user)
267 LWP_CACHE_CREDS(l, l->l_proc);
268
269 /* Grab the current pcb */
270 struct pcb * const pcb = lwp_getpcb(l);
271
272 curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
273
274 /* Invoke the appropriate handler, if necessary */
275 if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
276 #ifdef DIAGNOSTIC
277 printf("%s: data_aborts fsr=0x%x far=0x%x\n",
278 __func__, fsr, far);
279 #endif
280 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
281 l, &ksi))
282 goto do_trapsignal;
283 goto out;
284 }
285
286 /*
287 * At this point, we're dealing with one of the following data aborts:
288 *
289 * FAULT_TRANS_S - Translation -- Section
290 * FAULT_TRANS_P - Translation -- Page
291 * FAULT_DOMAIN_S - Domain -- Section
292 * FAULT_DOMAIN_P - Domain -- Page
293 * FAULT_PERM_S - Permission -- Section
294 * FAULT_PERM_P - Permission -- Page
295 *
296 * These are the main virtual memory-related faults signalled by
297 * the MMU.
298 */
299
300 /* fusubailout is used by [fs]uswintr to avoid page faulting */
301 if (__predict_false(pcb->pcb_onfault == fusubailout)) {
302 tf->tf_r0 = EFAULT;
303 tf->tf_pc = (intptr_t) pcb->pcb_onfault;
304 return;
305 }
306
307 if (user) {
308 lwp_settrapframe(l, tf);
309 }
310
311 /*
312 * Make sure the Program Counter is sane. We could fall foul of
313 * someone executing Thumb code, in which case the PC might not
314 * be word-aligned. This would cause a kernel alignment fault
315 * further down if we have to decode the current instruction.
316 */
317 #ifdef THUMB_CODE
318 /*
319 * XXX: It would be nice to be able to support Thumb in the kernel
320 * at some point.
321 */
322 if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
323 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
324 __func__);
325 dab_fatal(tf, fsr, far, l, NULL);
326 }
327 #else
328 if (__predict_false((tf->tf_pc & 3) != 0)) {
329 if (user) {
330 /*
331 * Give the user an illegal instruction signal.
332 */
333 /* Deliver a SIGILL to the process */
334 KSI_INIT_TRAP(&ksi);
335 ksi.ksi_signo = SIGILL;
336 ksi.ksi_code = ILL_ILLOPC;
337 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
338 ksi.ksi_trap = fsr;
339 goto do_trapsignal;
340 }
341
342 /*
343 * The kernel never executes Thumb code.
344 */
345 printf("\n%s: Misaligned Kernel-mode Program Counter\n",
346 __func__);
347 dab_fatal(tf, fsr, far, l, NULL);
348 }
349 #endif
350
351 /* See if the CPU state needs to be fixed up */
352 switch (data_abort_fixup(tf, fsr, far, l)) {
353 case ABORT_FIXUP_RETURN:
354 return;
355 case ABORT_FIXUP_FAILED:
356 /* Deliver a SIGILL to the process */
357 KSI_INIT_TRAP(&ksi);
358 ksi.ksi_signo = SIGILL;
359 ksi.ksi_code = ILL_ILLOPC;
360 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
361 ksi.ksi_trap = fsr;
362 goto do_trapsignal;
363 default:
364 break;
365 }
366
367 va = trunc_page((vaddr_t)far);
368
369 /*
370 * It is only a kernel address space fault iff:
371 * 1. user == 0 and
372 * 2. pcb_onfault not set or
373 * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
374 */
375 if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
376 (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
377 __predict_true((pcb->pcb_onfault == NULL ||
378 (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
379 map = kernel_map;
380
381 /* Was the fault due to the FPE/IPKDB ? */
382 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
383 KSI_INIT_TRAP(&ksi);
384 ksi.ksi_signo = SIGSEGV;
385 ksi.ksi_code = SEGV_ACCERR;
386 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
387 ksi.ksi_trap = fsr;
388
389 /*
390 * Force exit via userret()
391 * This is necessary as the FPE is an extension to
392 * userland that actually runs in a priveledged mode
393 * but uses USR mode permissions for its accesses.
394 */
395 user = true;
396 goto do_trapsignal;
397 }
398 } else {
399 map = &l->l_proc->p_vmspace->vm_map;
400 }
401
402 /*
403 * We need to know whether the page should be mapped
404 * as R or R/W. The MMU does not give us the info as
405 * to whether the fault was caused by a read or a write.
406 *
407 * However, we know that a permission fault can only be
408 * the result of a write to a read-only location, so
409 * we can deal with those quickly.
410 *
411 * Otherwise we need to disassemble the instruction
412 * responsible to determine if it was a write.
413 */
414 if (IS_PERMISSION_FAULT(fsr))
415 ftype = VM_PROT_WRITE;
416 else {
417 #ifdef THUMB_CODE
418 /* Fast track the ARM case. */
419 if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
420 u_int insn = read_thumb_insn(tf->tf_pc, user);
421 u_int insn_f8 = insn & 0xf800;
422 u_int insn_fe = insn & 0xfe00;
423
424 if (insn_f8 == 0x6000 || /* STR(1) */
425 insn_f8 == 0x7000 || /* STRB(1) */
426 insn_f8 == 0x8000 || /* STRH(1) */
427 insn_f8 == 0x9000 || /* STR(3) */
428 insn_f8 == 0xc000 || /* STM */
429 insn_fe == 0x5000 || /* STR(2) */
430 insn_fe == 0x5200 || /* STRH(2) */
431 insn_fe == 0x5400) /* STRB(2) */
432 ftype = VM_PROT_WRITE;
433 else
434 ftype = VM_PROT_READ;
435 }
436 else
437 #endif
438 {
439 u_int insn = read_insn(tf->tf_pc, user);
440
441 if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
442 ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
443 ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
444 ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */
445 ftype = VM_PROT_WRITE;
446 else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
447 ftype = VM_PROT_READ | VM_PROT_WRITE;
448 else
449 ftype = VM_PROT_READ;
450 }
451 }
452
453 /*
454 * See if the fault is as a result of ref/mod emulation,
455 * or domain mismatch.
456 */
457 #ifdef DEBUG
458 last_fault_code = fsr;
459 #endif
460 if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
461 UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
462 goto out;
463 }
464
465 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
466 if (pcb->pcb_onfault) {
467 tf->tf_r0 = EINVAL;
468 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
469 return;
470 }
471 printf("\nNon-emulated page fault with intr_depth > 0\n");
472 dab_fatal(tf, fsr, far, l, NULL);
473 }
474
475 onfault = pcb->pcb_onfault;
476 pcb->pcb_onfault = NULL;
477 error = uvm_fault(map, va, ftype);
478 pcb->pcb_onfault = onfault;
479
480 if (__predict_true(error == 0)) {
481 if (user)
482 uvm_grow(l->l_proc, va); /* Record any stack growth */
483 else
484 ucas_ras_check(tf);
485 UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
486 goto out;
487 }
488
489 if (user == 0) {
490 if (pcb->pcb_onfault) {
491 tf->tf_r0 = error;
492 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
493 return;
494 }
495
496 printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
497 error);
498 dab_fatal(tf, fsr, far, l, NULL);
499 }
500
501 KSI_INIT_TRAP(&ksi);
502
503 if (error == ENOMEM) {
504 printf("UVM: pid %d (%s), uid %d killed: "
505 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
506 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
507 ksi.ksi_signo = SIGKILL;
508 } else
509 ksi.ksi_signo = SIGSEGV;
510
511 ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
512 ksi.ksi_addr = (uint32_t *)(intptr_t) far;
513 ksi.ksi_trap = fsr;
514 UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
515
516 do_trapsignal:
517 call_trapsignal(l, tf, &ksi);
518 out:
519 /* If returning to user mode, make sure to invoke userret() */
520 if (user)
521 userret(l);
522 }
523
524 /*
525 * dab_fatal() handles the following data aborts:
526 *
527 * FAULT_WRTBUF_0 - Vector Exception
528 * FAULT_WRTBUF_1 - Terminal Exception
529 *
530 * We should never see these on a properly functioning system.
531 *
532 * This function is also called by the other handlers if they
533 * detect a fatal problem.
534 *
535 * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
536 */
537 static int
538 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
539 {
540 const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
541
542 if (l != NULL) {
543 printf("Fatal %s mode data abort: '%s'\n", mode,
544 data_aborts[fsr & FAULT_TYPE_MASK].desc);
545 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
546 if ((fsr & FAULT_IMPRECISE) == 0)
547 printf("%08x, ", far);
548 else
549 printf("Invalid, ");
550 printf("spsr=%08x\n", tf->tf_spsr);
551 } else {
552 printf("Fatal %s mode prefetch abort at 0x%08x\n",
553 mode, tf->tf_pc);
554 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
555 }
556
557 printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
558 tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
559 printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
560 tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
561 printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
562 tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
563 printf("r12=%08x, ", tf->tf_r12);
564
565 if (TRAP_USERMODE(tf))
566 printf("usp=%08x, ulr=%08x",
567 tf->tf_usr_sp, tf->tf_usr_lr);
568 else
569 printf("ssp=%08x, slr=%08x",
570 tf->tf_svc_sp, tf->tf_svc_lr);
571 printf(", pc =%08x\n\n", tf->tf_pc);
572
573 #if defined(DDB) || defined(KGDB)
574 kdb_trap(T_FAULT, tf);
575 #endif
576 panic("Fatal abort");
577 /*NOTREACHED*/
578 }
579
580 /*
581 * dab_align() handles the following data aborts:
582 *
583 * FAULT_ALIGN_0 - Alignment fault
584 * FAULT_ALIGN_0 - Alignment fault
585 *
586 * These faults are fatal if they happen in kernel mode. Otherwise, we
587 * deliver a bus error to the process.
588 */
589 static int
590 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
591 {
592 /* Alignment faults are always fatal if they occur in kernel mode */
593 if (!TRAP_USERMODE(tf))
594 dab_fatal(tf, fsr, far, l, NULL);
595
596 /* pcb_onfault *must* be NULL at this point */
597 KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
598
599 /* See if the CPU state needs to be fixed up */
600 (void) data_abort_fixup(tf, fsr, far, l);
601
602 /* Deliver a bus error signal to the process */
603 KSI_INIT_TRAP(ksi);
604 ksi->ksi_signo = SIGBUS;
605 ksi->ksi_code = BUS_ADRALN;
606 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
607 ksi->ksi_trap = fsr;
608
609 lwp_settrapframe(l, tf);
610
611 return (1);
612 }
613
614 /*
615 * dab_buserr() handles the following data aborts:
616 *
617 * FAULT_BUSERR_0 - External Abort on Linefetch -- Section
618 * FAULT_BUSERR_1 - External Abort on Linefetch -- Page
619 * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
620 * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
621 * FAULT_BUSTRNL1 - External abort on Translation -- Level 1
622 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2
623 *
624 * If pcb_onfault is set, flag the fault and return to the handler.
625 * If the fault occurred in user mode, give the process a SIGBUS.
626 *
627 * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
628 * can be flagged as imprecise in the FSR. This causes a real headache
629 * since some of the machine state is lost. In this case, tf->tf_pc
630 * may not actually point to the offending instruction. In fact, if
631 * we've taken a double abort fault, it generally points somewhere near
632 * the top of "data_abort_entry" in exception.S.
633 *
634 * In all other cases, these data aborts are considered fatal.
635 */
636 static int
637 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
638 ksiginfo_t *ksi)
639 {
640 struct pcb *pcb = lwp_getpcb(l);
641
642 #ifdef __XSCALE__
643 if ((fsr & FAULT_IMPRECISE) != 0 &&
644 (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
645 /*
646 * Oops, an imprecise, double abort fault. We've lost the
647 * r14_abt/spsr_abt values corresponding to the original
648 * abort, and the spsr saved in the trapframe indicates
649 * ABT mode.
650 */
651 tf->tf_spsr &= ~PSR_MODE;
652
653 /*
654 * We use a simple heuristic to determine if the double abort
655 * happened as a result of a kernel or user mode access.
656 * If the current trapframe is at the top of the kernel stack,
657 * the fault _must_ have come from user mode.
658 */
659 if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
660 /*
661 * Kernel mode. We're either about to die a
662 * spectacular death, or pcb_onfault will come
663 * to our rescue. Either way, the current value
664 * of tf->tf_pc is irrelevant.
665 */
666 tf->tf_spsr |= PSR_SVC32_MODE;
667 if (pcb->pcb_onfault == NULL)
668 printf("\nKernel mode double abort!\n");
669 } else {
670 /*
671 * User mode. We've lost the program counter at the
672 * time of the fault (not that it was accurate anyway;
673 * it's not called an imprecise fault for nothing).
674 * About all we can do is copy r14_usr to tf_pc and
675 * hope for the best. The process is about to get a
676 * SIGBUS, so it's probably history anyway.
677 */
678 tf->tf_spsr |= PSR_USR32_MODE;
679 tf->tf_pc = tf->tf_usr_lr;
680 #ifdef THUMB_CODE
681 tf->tf_spsr &= ~PSR_T_bit;
682 if (tf->tf_usr_lr & 1)
683 tf->tf_spsr |= PSR_T_bit;
684 #endif
685 }
686 }
687
688 /* FAR is invalid for imprecise exceptions */
689 if ((fsr & FAULT_IMPRECISE) != 0)
690 far = 0;
691 #endif /* __XSCALE__ */
692
693 if (pcb->pcb_onfault) {
694 KDASSERT(TRAP_USERMODE(tf) == 0);
695 tf->tf_r0 = EFAULT;
696 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
697 return (0);
698 }
699
700 /* See if the CPU state needs to be fixed up */
701 (void) data_abort_fixup(tf, fsr, far, l);
702
703 /*
704 * At this point, if the fault happened in kernel mode, we're toast
705 */
706 if (!TRAP_USERMODE(tf))
707 dab_fatal(tf, fsr, far, l, NULL);
708
709 /* Deliver a bus error signal to the process */
710 KSI_INIT_TRAP(ksi);
711 ksi->ksi_signo = SIGBUS;
712 ksi->ksi_code = BUS_ADRERR;
713 ksi->ksi_addr = (uint32_t *)(intptr_t)far;
714 ksi->ksi_trap = fsr;
715
716 lwp_settrapframe(l, tf);
717
718 return (1);
719 }
720
721 static inline int
722 prefetch_abort_fixup(trapframe_t *tf)
723 {
724 #ifdef CPU_ABORT_FIXUP_REQUIRED
725 int error;
726
727 /* Call the CPU specific prefetch abort fixup routine */
728 error = cpu_prefetchabt_fixup(tf);
729 if (__predict_true(error != ABORT_FIXUP_FAILED))
730 return (error);
731
732 /*
733 * Oops, couldn't fix up the instruction
734 */
735 printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
736 TRAP_USERMODE(tf) ? "user" : "kernel");
737 #ifdef THUMB_CODE
738 if (tf->tf_spsr & PSR_T_bit) {
739 printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
740 tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
741 *((uint16 *)((tf->tf_pc + 2) & ~1)));
742 }
743 else
744 #endif
745 {
746 printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
747 *((u_int *)tf->tf_pc));
748 }
749 disassemble(tf->tf_pc);
750
751 /* Die now if this happened in kernel mode */
752 if (!TRAP_USERMODE(tf))
753 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
754
755 return (error);
756 #else
757 return (ABORT_FIXUP_OK);
758 #endif /* CPU_ABORT_FIXUP_REQUIRED */
759 }
760
761 /*
762 * void prefetch_abort_handler(trapframe_t *tf)
763 *
764 * Abort handler called when instruction execution occurs at
765 * a non existent or restricted (access permissions) memory page.
766 * If the address is invalid and we were in SVC mode then panic as
767 * the kernel should never prefetch abort.
768 * If the address is invalid and the page is mapped then the user process
769 * does no have read permission so send it a signal.
770 * Otherwise fault the page in and try again.
771 */
772 void
773 prefetch_abort_handler(trapframe_t *tf)
774 {
775 struct lwp *l;
776 struct pcb *pcb __diagused;
777 struct vm_map *map;
778 vaddr_t fault_pc, va;
779 ksiginfo_t ksi;
780 int error, user;
781
782 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
783
784 /* Update vmmeter statistics */
785 curcpu()->ci_data.cpu_ntrap++;
786
787 l = curlwp;
788 pcb = lwp_getpcb(l);
789
790 if ((user = TRAP_USERMODE(tf)) != 0)
791 LWP_CACHE_CREDS(l, l->l_proc);
792
793 /*
794 * Enable IRQ's (disabled by the abort) This always comes
795 * from user mode so we know interrupts were not disabled.
796 * But we check anyway.
797 */
798 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
799 if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
800 restore_interrupts(tf->tf_spsr & IF32_bits);
801
802 /* See if the CPU state needs to be fixed up */
803 switch (prefetch_abort_fixup(tf)) {
804 case ABORT_FIXUP_RETURN:
805 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
806 return;
807 case ABORT_FIXUP_FAILED:
808 /* Deliver a SIGILL to the process */
809 KSI_INIT_TRAP(&ksi);
810 ksi.ksi_signo = SIGILL;
811 ksi.ksi_code = ILL_ILLOPC;
812 ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
813 lwp_settrapframe(l, tf);
814 goto do_trapsignal;
815 default:
816 break;
817 }
818
819 /* Prefetch aborts cannot happen in kernel mode */
820 if (__predict_false(!user))
821 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
822
823 /* Get fault address */
824 fault_pc = tf->tf_pc;
825 lwp_settrapframe(l, tf);
826 UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
827 0);
828
829 /* Ok validate the address, can only execute in USER space */
830 if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
831 (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
832 KSI_INIT_TRAP(&ksi);
833 ksi.ksi_signo = SIGSEGV;
834 ksi.ksi_code = SEGV_ACCERR;
835 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
836 ksi.ksi_trap = fault_pc;
837 goto do_trapsignal;
838 }
839
840 map = &l->l_proc->p_vmspace->vm_map;
841 va = trunc_page(fault_pc);
842
843 /*
844 * See if the pmap can handle this fault on its own...
845 */
846 #ifdef DEBUG
847 last_fault_code = -1;
848 #endif
849 if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
850 UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
851 goto out;
852 }
853
854 #ifdef DIAGNOSTIC
855 if (__predict_false(curcpu()->ci_intr_depth > 0)) {
856 printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
857 dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
858 }
859 #endif
860
861 KASSERT(pcb->pcb_onfault == NULL);
862 error = uvm_fault(map, va, VM_PROT_READ);
863
864 if (__predict_true(error == 0)) {
865 UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
866 goto out;
867 }
868 KSI_INIT_TRAP(&ksi);
869
870 UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
871 if (error == ENOMEM) {
872 printf("UVM: pid %d (%s), uid %d killed: "
873 "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
874 l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
875 ksi.ksi_signo = SIGKILL;
876 } else
877 ksi.ksi_signo = SIGSEGV;
878
879 ksi.ksi_code = SEGV_MAPERR;
880 ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
881 ksi.ksi_trap = fault_pc;
882
883 do_trapsignal:
884 call_trapsignal(l, tf, &ksi);
885
886 out:
887 KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
888 userret(l);
889 }
890
891 /*
892 * Tentatively read an 8, 16, or 32-bit value from 'addr'.
893 * If the read succeeds, the value is written to 'rptr' and zero is returned.
894 * Else, return EFAULT.
895 */
896 int
897 badaddr_read(void *addr, size_t size, void *rptr)
898 {
899 extern int badaddr_read_1(const uint8_t *, uint8_t *);
900 extern int badaddr_read_2(const uint16_t *, uint16_t *);
901 extern int badaddr_read_4(const uint32_t *, uint32_t *);
902 union {
903 uint8_t v1;
904 uint16_t v2;
905 uint32_t v4;
906 } u;
907 int rv, s;
908
909 cpu_drain_writebuf();
910
911 s = splhigh();
912
913 /* Read from the test address. */
914 switch (size) {
915 case sizeof(uint8_t):
916 rv = badaddr_read_1(addr, &u.v1);
917 if (rv == 0 && rptr)
918 *(uint8_t *) rptr = u.v1;
919 break;
920
921 case sizeof(uint16_t):
922 rv = badaddr_read_2(addr, &u.v2);
923 if (rv == 0 && rptr)
924 *(uint16_t *) rptr = u.v2;
925 break;
926
927 case sizeof(uint32_t):
928 rv = badaddr_read_4(addr, &u.v4);
929 if (rv == 0 && rptr)
930 *(uint32_t *) rptr = u.v4;
931 break;
932
933 default:
934 panic("%s: invalid size (%zu)", __func__, size);
935 }
936
937 splx(s);
938
939 /* Return EFAULT if the address was invalid, else zero */
940 return (rv);
941 }
942