Home | History | Annotate | Line # | Download | only in arm32
fault.c revision 1.94
      1 /*	$NetBSD: fault.c,v 1.94 2014/02/25 09:54:33 matt Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1994-1997 Mark Brinicombe.
     39  * Copyright (c) 1994 Brini.
     40  * All rights reserved.
     41  *
     42  * This code is derived from software written for Brini by Mark Brinicombe
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Brini.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * RiscBSD kernel project
     72  *
     73  * fault.c
     74  *
     75  * Fault handlers
     76  *
     77  * Created      : 28/11/94
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_kgdb.h"
     82 
     83 #include <sys/types.h>
     84 __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.94 2014/02/25 09:54:33 matt Exp $");
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kauth.h>
     91 #include <sys/cpu.h>
     92 #include <sys/intr.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 #include <uvm/uvm_stat.h>
     96 #ifdef UVMHIST
     97 #include <uvm/uvm.h>
     98 #endif
     99 
    100 #include <arm/locore.h>
    101 
    102 #include <arm/arm32/katelib.h>
    103 
    104 #include <machine/pcb.h>
    105 #if defined(DDB) || defined(KGDB)
    106 #include <machine/db_machdep.h>
    107 #ifdef KGDB
    108 #include <sys/kgdb.h>
    109 #endif
    110 #if !defined(DDB)
    111 #define kdb_trap	kgdb_trap
    112 #endif
    113 #endif
    114 
    115 #include <arch/arm/arm/disassem.h>
    116 #include <arm/arm32/machdep.h>
    117 
    118 extern char fusubailout[];
    119 
    120 #ifdef DEBUG
    121 int last_fault_code;	/* For the benefit of pmap_fault_fixup() */
    122 #endif
    123 
    124 #if defined(CPU_ARM3) || defined(CPU_ARM6) || \
    125     defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
    126 /* These CPUs may need data/prefetch abort fixups */
    127 #define	CPU_ABORT_FIXUP_REQUIRED
    128 #endif
    129 
    130 struct data_abort {
    131 	int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    132 	const char *desc;
    133 };
    134 
    135 static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    136 static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    137 static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
    138 
    139 static const struct data_abort data_aborts[] = {
    140 	{dab_fatal,	"Vector Exception"},
    141 	{dab_align,	"Alignment Fault 1"},
    142 	{dab_fatal,	"Terminal Exception"},
    143 	{dab_align,	"Alignment Fault 3"},
    144 	{dab_buserr,	"External Linefetch Abort (S)"},
    145 	{NULL,		"Translation Fault (S)"},
    146 	{dab_buserr,	"External Linefetch Abort (P)"},
    147 	{NULL,		"Translation Fault (P)"},
    148 	{dab_buserr,	"External Non-Linefetch Abort (S)"},
    149 	{NULL,		"Domain Fault (S)"},
    150 	{dab_buserr,	"External Non-Linefetch Abort (P)"},
    151 	{NULL,		"Domain Fault (P)"},
    152 	{dab_buserr,	"External Translation Abort (L1)"},
    153 	{NULL,		"Permission Fault (S)"},
    154 	{dab_buserr,	"External Translation Abort (L2)"},
    155 	{NULL,		"Permission Fault (P)"}
    156 };
    157 
    158 /* Determine if 'x' is a permission fault */
    159 #define	IS_PERMISSION_FAULT(x)					\
    160 	(((1 << ((x) & FAULT_TYPE_MASK)) &			\
    161 	  ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
    162 
    163 #if 0
    164 /* maybe one day we'll do emulations */
    165 #define	TRAPSIGNAL(l,k)	(*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
    166 #else
    167 #define	TRAPSIGNAL(l,k)	trapsignal((l), (k))
    168 #endif
    169 
    170 static inline void
    171 call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi)
    172 {
    173 	if (l->l_proc->p_pid == 1 || cpu_printfataltraps) {
    174 		printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n",
    175 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    176 		    ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr,
    177 		    ksi->ksi_trap);
    178 		printf("r0=%08x r1=%08x r2=%08x r3=%08x\n",
    179 		    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    180 		printf("r4=%08x r5=%08x r6=%08x r7=%08x\n",
    181 		    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    182 		printf("r8=%08x r9=%08x rA=%08x rB=%08x\n",
    183 		    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    184 		printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n",
    185 		    tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc,
    186 		    tf->tf_spsr);
    187 	}
    188 
    189 	TRAPSIGNAL(l, ksi);
    190 }
    191 
    192 static inline int
    193 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
    194 {
    195 #ifdef CPU_ABORT_FIXUP_REQUIRED
    196 	int error;
    197 
    198 	/* Call the CPU specific data abort fixup routine */
    199 	error = cpu_dataabt_fixup(tf);
    200 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    201 		return (error);
    202 
    203 	/*
    204 	 * Oops, couldn't fix up the instruction
    205 	 */
    206 	printf("%s: fixup for %s mode data abort failed.\n", __func__,
    207 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    208 #ifdef THUMB_CODE
    209 	if (tf->tf_spsr & PSR_T_bit) {
    210 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    211 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    212 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    213 	}
    214 	else
    215 #endif
    216 	{
    217 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    218 		    *((u_int *)tf->tf_pc));
    219 	}
    220 	disassemble(tf->tf_pc);
    221 
    222 	/* Die now if this happened in kernel mode */
    223 	if (!TRAP_USERMODE(tf))
    224 		dab_fatal(tf, fsr, far, l, NULL);
    225 
    226 	return (error);
    227 #else
    228 	return (ABORT_FIXUP_OK);
    229 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    230 }
    231 
    232 void
    233 data_abort_handler(trapframe_t *tf)
    234 {
    235 	struct vm_map *map;
    236 	struct lwp * const l = curlwp;
    237 	struct cpu_info * const ci = curcpu();
    238 	u_int far, fsr;
    239 	vm_prot_t ftype;
    240 	void *onfault;
    241 	vaddr_t va;
    242 	int error;
    243 	ksiginfo_t ksi;
    244 
    245 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    246 
    247 	/* Grab FAR/FSR before enabling interrupts */
    248 	far = cpu_faultaddress();
    249 	fsr = cpu_faultstatus();
    250 
    251 	/* Update vmmeter statistics */
    252 	ci->ci_data.cpu_ntrap++;
    253 
    254 	/* Re-enable interrupts if they were enabled previously */
    255 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    256 	if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits))
    257 		restore_interrupts(tf->tf_spsr & IF32_bits);
    258 
    259 	/* Get the current lwp structure */
    260 
    261 	UVMHIST_LOG(maphist, " (l=%#x, far=%#x, fsr=%#x",
    262 	    l, far, fsr, 0);
    263 	UVMHIST_LOG(maphist, "  tf=%#x, pc=%#x)",
    264 	    tf, tf->tf_pc, 0, 0);
    265 
    266 	/* Data abort came from user mode? */
    267 	bool user = (TRAP_USERMODE(tf) != 0);
    268 	if (user)
    269 		LWP_CACHE_CREDS(l, l->l_proc);
    270 
    271 	/* Grab the current pcb */
    272 	struct pcb * const pcb = lwp_getpcb(l);
    273 
    274 	curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++;
    275 
    276 	/* Invoke the appropriate handler, if necessary */
    277 	if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
    278 #ifdef DIAGNOSTIC
    279 		printf("%s: data_aborts fsr=0x%x far=0x%x\n",
    280 		    __func__, fsr, far);
    281 #endif
    282 		if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
    283 		    l, &ksi))
    284 			goto do_trapsignal;
    285 		goto out;
    286 	}
    287 
    288 	/*
    289 	 * At this point, we're dealing with one of the following data aborts:
    290 	 *
    291 	 *  FAULT_TRANS_S  - Translation -- Section
    292 	 *  FAULT_TRANS_P  - Translation -- Page
    293 	 *  FAULT_DOMAIN_S - Domain -- Section
    294 	 *  FAULT_DOMAIN_P - Domain -- Page
    295 	 *  FAULT_PERM_S   - Permission -- Section
    296 	 *  FAULT_PERM_P   - Permission -- Page
    297 	 *
    298 	 * These are the main virtual memory-related faults signalled by
    299 	 * the MMU.
    300 	 */
    301 
    302 	/* fusubailout is used by [fs]uswintr to avoid page faulting */
    303 	if (__predict_false(pcb->pcb_onfault == fusubailout)) {
    304 		tf->tf_r0 = EFAULT;
    305 		tf->tf_pc = (intptr_t) pcb->pcb_onfault;
    306 		return;
    307 	}
    308 
    309 	if (user) {
    310 		lwp_settrapframe(l, tf);
    311 	}
    312 
    313 	/*
    314 	 * Make sure the Program Counter is sane. We could fall foul of
    315 	 * someone executing Thumb code, in which case the PC might not
    316 	 * be word-aligned. This would cause a kernel alignment fault
    317 	 * further down if we have to decode the current instruction.
    318 	 */
    319 #ifdef THUMB_CODE
    320 	/*
    321 	 * XXX: It would be nice to be able to support Thumb in the kernel
    322 	 * at some point.
    323 	 */
    324 	if (__predict_false(!user && (tf->tf_pc & 3) != 0)) {
    325 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    326 		    __func__);
    327 		dab_fatal(tf, fsr, far, l, NULL);
    328 	}
    329 #else
    330 	if (__predict_false((tf->tf_pc & 3) != 0)) {
    331 		if (user) {
    332 			/*
    333 			 * Give the user an illegal instruction signal.
    334 			 */
    335 			/* Deliver a SIGILL to the process */
    336 			KSI_INIT_TRAP(&ksi);
    337 			ksi.ksi_signo = SIGILL;
    338 			ksi.ksi_code = ILL_ILLOPC;
    339 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    340 			ksi.ksi_trap = fsr;
    341 			goto do_trapsignal;
    342 		}
    343 
    344 		/*
    345 		 * The kernel never executes Thumb code.
    346 		 */
    347 		printf("\n%s: Misaligned Kernel-mode Program Counter\n",
    348 		    __func__);
    349 		dab_fatal(tf, fsr, far, l, NULL);
    350 	}
    351 #endif
    352 
    353 	/* See if the CPU state needs to be fixed up */
    354 	switch (data_abort_fixup(tf, fsr, far, l)) {
    355 	case ABORT_FIXUP_RETURN:
    356 		return;
    357 	case ABORT_FIXUP_FAILED:
    358 		/* Deliver a SIGILL to the process */
    359 		KSI_INIT_TRAP(&ksi);
    360 		ksi.ksi_signo = SIGILL;
    361 		ksi.ksi_code = ILL_ILLOPC;
    362 		ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    363 		ksi.ksi_trap = fsr;
    364 		goto do_trapsignal;
    365 	default:
    366 		break;
    367 	}
    368 
    369 	va = trunc_page((vaddr_t)far);
    370 
    371 	/*
    372 	 * It is only a kernel address space fault iff:
    373 	 *	1. user == 0  and
    374 	 *	2. pcb_onfault not set or
    375 	 *	3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
    376 	 */
    377 	if (!user && (va >= VM_MIN_KERNEL_ADDRESS ||
    378 	    (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
    379 	    __predict_true((pcb->pcb_onfault == NULL ||
    380 	     (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) {
    381 		map = kernel_map;
    382 
    383 		/* Was the fault due to the FPE/IPKDB ? */
    384 		if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
    385 			KSI_INIT_TRAP(&ksi);
    386 			ksi.ksi_signo = SIGSEGV;
    387 			ksi.ksi_code = SEGV_ACCERR;
    388 			ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    389 			ksi.ksi_trap = fsr;
    390 
    391 			/*
    392 			 * Force exit via userret()
    393 			 * This is necessary as the FPE is an extension to
    394 			 * userland that actually runs in a priveledged mode
    395 			 * but uses USR mode permissions for its accesses.
    396 			 */
    397 			user = true;
    398 			goto do_trapsignal;
    399 		}
    400 	} else {
    401 		map = &l->l_proc->p_vmspace->vm_map;
    402 	}
    403 
    404 	/*
    405 	 * We need to know whether the page should be mapped as R or R/W.
    406 	 * Before ARMv6, the MMU did not give us the info as to whether the
    407 	 * fault was caused by a read or a write.
    408 	 *
    409 	 * However, we know that a permission fault can only be the result of
    410 	 * a write to a read-only location, so we can deal with those quickly.
    411 	 *
    412 	 * Otherwise we need to disassemble the instruction responsible to
    413 	 * determine if it was a write.
    414 	 */
    415 	if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) {
    416 		ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
    417 	} else if (IS_PERMISSION_FAULT(fsr)) {
    418 		ftype = VM_PROT_WRITE;
    419 	} else {
    420 #ifdef THUMB_CODE
    421 		/* Fast track the ARM case.  */
    422 		if (__predict_false(tf->tf_spsr & PSR_T_bit)) {
    423 			u_int insn = read_thumb_insn(tf->tf_pc, user);
    424 			u_int insn_f8 = insn & 0xf800;
    425 			u_int insn_fe = insn & 0xfe00;
    426 
    427 			if (insn_f8 == 0x6000 || /* STR(1) */
    428 			    insn_f8 == 0x7000 || /* STRB(1) */
    429 			    insn_f8 == 0x8000 || /* STRH(1) */
    430 			    insn_f8 == 0x9000 || /* STR(3) */
    431 			    insn_f8 == 0xc000 || /* STM */
    432 			    insn_fe == 0x5000 || /* STR(2) */
    433 			    insn_fe == 0x5200 || /* STRH(2) */
    434 			    insn_fe == 0x5400)   /* STRB(2) */
    435 				ftype = VM_PROT_WRITE;
    436 			else
    437 				ftype = VM_PROT_READ;
    438 		}
    439 		else
    440 #endif
    441 		{
    442 			u_int insn = read_insn(tf->tf_pc, user);
    443 
    444 			if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */
    445 			    ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/
    446 			    ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/
    447 			    ((insn & 0x0f9000f0) == 0x01800090))   /* STREX[BDH] */
    448 				ftype = VM_PROT_WRITE;
    449 			else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */
    450 				ftype = VM_PROT_READ | VM_PROT_WRITE;
    451 			else
    452 				ftype = VM_PROT_READ;
    453 		}
    454 	}
    455 
    456 	/*
    457 	 * See if the fault is as a result of ref/mod emulation,
    458 	 * or domain mismatch.
    459 	 */
    460 #ifdef DEBUG
    461 	last_fault_code = fsr;
    462 #endif
    463 	if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
    464 		UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0);
    465 		goto out;
    466 	}
    467 
    468 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    469 		if (pcb->pcb_onfault) {
    470 			tf->tf_r0 = EINVAL;
    471 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    472 			return;
    473 		}
    474 		printf("\nNon-emulated page fault with intr_depth > 0\n");
    475 		dab_fatal(tf, fsr, far, l, NULL);
    476 	}
    477 
    478 	onfault = pcb->pcb_onfault;
    479 	pcb->pcb_onfault = NULL;
    480 	error = uvm_fault(map, va, ftype);
    481 	pcb->pcb_onfault = onfault;
    482 
    483 	if (__predict_true(error == 0)) {
    484 		if (user)
    485 			uvm_grow(l->l_proc, va); /* Record any stack growth */
    486 		else
    487 			ucas_ras_check(tf);
    488 		UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0);
    489 		goto out;
    490 	}
    491 
    492 	if (user == 0) {
    493 		if (pcb->pcb_onfault) {
    494 			tf->tf_r0 = error;
    495 			tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    496 			return;
    497 		}
    498 
    499 		printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype,
    500 		    error);
    501 		dab_fatal(tf, fsr, far, l, NULL);
    502 	}
    503 
    504 	KSI_INIT_TRAP(&ksi);
    505 
    506 	if (error == ENOMEM) {
    507 		printf("UVM: pid %d (%s), uid %d killed: "
    508 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    509 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    510 		ksi.ksi_signo = SIGKILL;
    511 	} else
    512 		ksi.ksi_signo = SIGSEGV;
    513 
    514 	ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
    515 	ksi.ksi_addr = (uint32_t *)(intptr_t) far;
    516 	ksi.ksi_trap = fsr;
    517 	UVMHIST_LOG(maphist, " <- error (%d)", error, 0, 0, 0);
    518 
    519 do_trapsignal:
    520 	call_trapsignal(l, tf, &ksi);
    521 out:
    522 	/* If returning to user mode, make sure to invoke userret() */
    523 	if (user)
    524 		userret(l);
    525 }
    526 
    527 /*
    528  * dab_fatal() handles the following data aborts:
    529  *
    530  *  FAULT_WRTBUF_0 - Vector Exception
    531  *  FAULT_WRTBUF_1 - Terminal Exception
    532  *
    533  * We should never see these on a properly functioning system.
    534  *
    535  * This function is also called by the other handlers if they
    536  * detect a fatal problem.
    537  *
    538  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
    539  */
    540 static int
    541 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    542 {
    543 	const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel";
    544 
    545 	if (l != NULL) {
    546 		printf("Fatal %s mode data abort: '%s'\n", mode,
    547 		    data_aborts[fsr & FAULT_TYPE_MASK].desc);
    548 		printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
    549 		if ((fsr & FAULT_IMPRECISE) == 0)
    550 			printf("%08x, ", far);
    551 		else
    552 			printf("Invalid,  ");
    553 		printf("spsr=%08x\n", tf->tf_spsr);
    554 	} else {
    555 		printf("Fatal %s mode prefetch abort at 0x%08x\n",
    556 		    mode, tf->tf_pc);
    557 		printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
    558 	}
    559 
    560 	printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
    561 	    tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
    562 	printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
    563 	    tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
    564 	printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
    565 	    tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
    566 	printf("r12=%08x, ", tf->tf_r12);
    567 
    568 	if (TRAP_USERMODE(tf))
    569 		printf("usp=%08x, ulr=%08x",
    570 		    tf->tf_usr_sp, tf->tf_usr_lr);
    571 	else
    572 		printf("ssp=%08x, slr=%08x",
    573 		    tf->tf_svc_sp, tf->tf_svc_lr);
    574 	printf(", pc =%08x\n\n", tf->tf_pc);
    575 
    576 #if defined(DDB) || defined(KGDB)
    577 	kdb_trap(T_FAULT, tf);
    578 #endif
    579 	panic("Fatal abort");
    580 	/*NOTREACHED*/
    581 }
    582 
    583 /*
    584  * dab_align() handles the following data aborts:
    585  *
    586  *  FAULT_ALIGN_0 - Alignment fault
    587  *  FAULT_ALIGN_0 - Alignment fault
    588  *
    589  * These faults are fatal if they happen in kernel mode. Otherwise, we
    590  * deliver a bus error to the process.
    591  */
    592 static int
    593 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
    594 {
    595 	/* Alignment faults are always fatal if they occur in kernel mode */
    596 	if (!TRAP_USERMODE(tf))
    597 		dab_fatal(tf, fsr, far, l, NULL);
    598 
    599 	/* pcb_onfault *must* be NULL at this point */
    600 	KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL);
    601 
    602 	/* See if the CPU state needs to be fixed up */
    603 	(void) data_abort_fixup(tf, fsr, far, l);
    604 
    605 	/* Deliver a bus error signal to the process */
    606 	KSI_INIT_TRAP(ksi);
    607 	ksi->ksi_signo = SIGBUS;
    608 	ksi->ksi_code = BUS_ADRALN;
    609 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    610 	ksi->ksi_trap = fsr;
    611 
    612 	lwp_settrapframe(l, tf);
    613 
    614 	return (1);
    615 }
    616 
    617 /*
    618  * dab_buserr() handles the following data aborts:
    619  *
    620  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
    621  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
    622  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
    623  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
    624  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
    625  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
    626  *
    627  * If pcb_onfault is set, flag the fault and return to the handler.
    628  * If the fault occurred in user mode, give the process a SIGBUS.
    629  *
    630  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
    631  * can be flagged as imprecise in the FSR. This causes a real headache
    632  * since some of the machine state is lost. In this case, tf->tf_pc
    633  * may not actually point to the offending instruction. In fact, if
    634  * we've taken a double abort fault, it generally points somewhere near
    635  * the top of "data_abort_entry" in exception.S.
    636  *
    637  * In all other cases, these data aborts are considered fatal.
    638  */
    639 static int
    640 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
    641     ksiginfo_t *ksi)
    642 {
    643 	struct pcb *pcb = lwp_getpcb(l);
    644 
    645 #ifdef __XSCALE__
    646 	if ((fsr & FAULT_IMPRECISE) != 0 &&
    647 	    (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
    648 		/*
    649 		 * Oops, an imprecise, double abort fault. We've lost the
    650 		 * r14_abt/spsr_abt values corresponding to the original
    651 		 * abort, and the spsr saved in the trapframe indicates
    652 		 * ABT mode.
    653 		 */
    654 		tf->tf_spsr &= ~PSR_MODE;
    655 
    656 		/*
    657 		 * We use a simple heuristic to determine if the double abort
    658 		 * happened as a result of a kernel or user mode access.
    659 		 * If the current trapframe is at the top of the kernel stack,
    660 		 * the fault _must_ have come from user mode.
    661 		 */
    662 		if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) {
    663 			/*
    664 			 * Kernel mode. We're either about to die a
    665 			 * spectacular death, or pcb_onfault will come
    666 			 * to our rescue. Either way, the current value
    667 			 * of tf->tf_pc is irrelevant.
    668 			 */
    669 			tf->tf_spsr |= PSR_SVC32_MODE;
    670 			if (pcb->pcb_onfault == NULL)
    671 				printf("\nKernel mode double abort!\n");
    672 		} else {
    673 			/*
    674 			 * User mode. We've lost the program counter at the
    675 			 * time of the fault (not that it was accurate anyway;
    676 			 * it's not called an imprecise fault for nothing).
    677 			 * About all we can do is copy r14_usr to tf_pc and
    678 			 * hope for the best. The process is about to get a
    679 			 * SIGBUS, so it's probably history anyway.
    680 			 */
    681 			tf->tf_spsr |= PSR_USR32_MODE;
    682 			tf->tf_pc = tf->tf_usr_lr;
    683 #ifdef THUMB_CODE
    684 			tf->tf_spsr &= ~PSR_T_bit;
    685 			if (tf->tf_usr_lr & 1)
    686 				tf->tf_spsr |= PSR_T_bit;
    687 #endif
    688 		}
    689 	}
    690 
    691 	/* FAR is invalid for imprecise exceptions */
    692 	if ((fsr & FAULT_IMPRECISE) != 0)
    693 		far = 0;
    694 #endif /* __XSCALE__ */
    695 
    696 	if (pcb->pcb_onfault) {
    697 		KDASSERT(TRAP_USERMODE(tf) == 0);
    698 		tf->tf_r0 = EFAULT;
    699 		tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
    700 		return (0);
    701 	}
    702 
    703 	/* See if the CPU state needs to be fixed up */
    704 	(void) data_abort_fixup(tf, fsr, far, l);
    705 
    706 	/*
    707 	 * At this point, if the fault happened in kernel mode, we're toast
    708 	 */
    709 	if (!TRAP_USERMODE(tf))
    710 		dab_fatal(tf, fsr, far, l, NULL);
    711 
    712 	/* Deliver a bus error signal to the process */
    713 	KSI_INIT_TRAP(ksi);
    714 	ksi->ksi_signo = SIGBUS;
    715 	ksi->ksi_code = BUS_ADRERR;
    716 	ksi->ksi_addr = (uint32_t *)(intptr_t)far;
    717 	ksi->ksi_trap = fsr;
    718 
    719 	lwp_settrapframe(l, tf);
    720 
    721 	return (1);
    722 }
    723 
    724 static inline int
    725 prefetch_abort_fixup(trapframe_t *tf)
    726 {
    727 #ifdef CPU_ABORT_FIXUP_REQUIRED
    728 	int error;
    729 
    730 	/* Call the CPU specific prefetch abort fixup routine */
    731 	error = cpu_prefetchabt_fixup(tf);
    732 	if (__predict_true(error != ABORT_FIXUP_FAILED))
    733 		return (error);
    734 
    735 	/*
    736 	 * Oops, couldn't fix up the instruction
    737 	 */
    738 	printf("%s: fixup for %s mode prefetch abort failed.\n", __func__,
    739 	    TRAP_USERMODE(tf) ? "user" : "kernel");
    740 #ifdef THUMB_CODE
    741 	if (tf->tf_spsr & PSR_T_bit) {
    742 		printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ",
    743 		    tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)),
    744 		    *((uint16 *)((tf->tf_pc + 2) & ~1)));
    745 	}
    746 	else
    747 #endif
    748 	{
    749 		printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
    750 		    *((u_int *)tf->tf_pc));
    751 	}
    752 	disassemble(tf->tf_pc);
    753 
    754 	/* Die now if this happened in kernel mode */
    755 	if (!TRAP_USERMODE(tf))
    756 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    757 
    758 	return (error);
    759 #else
    760 	return (ABORT_FIXUP_OK);
    761 #endif /* CPU_ABORT_FIXUP_REQUIRED */
    762 }
    763 
    764 /*
    765  * void prefetch_abort_handler(trapframe_t *tf)
    766  *
    767  * Abort handler called when instruction execution occurs at
    768  * a non existent or restricted (access permissions) memory page.
    769  * If the address is invalid and we were in SVC mode then panic as
    770  * the kernel should never prefetch abort.
    771  * If the address is invalid and the page is mapped then the user process
    772  * does no have read permission so send it a signal.
    773  * Otherwise fault the page in and try again.
    774  */
    775 void
    776 prefetch_abort_handler(trapframe_t *tf)
    777 {
    778 	struct lwp *l;
    779 	struct pcb *pcb __diagused;
    780 	struct vm_map *map;
    781 	vaddr_t fault_pc, va;
    782 	ksiginfo_t ksi;
    783 	int error, user;
    784 
    785 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    786 
    787 	/* Update vmmeter statistics */
    788 	curcpu()->ci_data.cpu_ntrap++;
    789 
    790 	l = curlwp;
    791 	pcb = lwp_getpcb(l);
    792 
    793 	if ((user = TRAP_USERMODE(tf)) != 0)
    794 		LWP_CACHE_CREDS(l, l->l_proc);
    795 
    796 	/*
    797 	 * Enable IRQ's (disabled by the abort) This always comes
    798 	 * from user mode so we know interrupts were not disabled.
    799 	 * But we check anyway.
    800 	 */
    801 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    802 	if (__predict_true((tf->tf_spsr & I32_bit) != IF32_bits))
    803 		restore_interrupts(tf->tf_spsr & IF32_bits);
    804 
    805 	/* See if the CPU state needs to be fixed up */
    806 	switch (prefetch_abort_fixup(tf)) {
    807 	case ABORT_FIXUP_RETURN:
    808 		KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    809 		return;
    810 	case ABORT_FIXUP_FAILED:
    811 		/* Deliver a SIGILL to the process */
    812 		KSI_INIT_TRAP(&ksi);
    813 		ksi.ksi_signo = SIGILL;
    814 		ksi.ksi_code = ILL_ILLOPC;
    815 		ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc;
    816 		lwp_settrapframe(l, tf);
    817 		goto do_trapsignal;
    818 	default:
    819 		break;
    820 	}
    821 
    822 	/* Prefetch aborts cannot happen in kernel mode */
    823 	if (__predict_false(!user))
    824 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    825 
    826 	/* Get fault address */
    827 	fault_pc = tf->tf_pc;
    828 	lwp_settrapframe(l, tf);
    829 	UVMHIST_LOG(maphist, " (pc=0x%x, l=0x%x, tf=0x%x)", fault_pc, l, tf,
    830 	    0);
    831 
    832 	/* Ok validate the address, can only execute in USER space */
    833 	if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
    834 	    (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
    835 		KSI_INIT_TRAP(&ksi);
    836 		ksi.ksi_signo = SIGSEGV;
    837 		ksi.ksi_code = SEGV_ACCERR;
    838 		ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    839 		ksi.ksi_trap = fault_pc;
    840 		goto do_trapsignal;
    841 	}
    842 
    843 	map = &l->l_proc->p_vmspace->vm_map;
    844 	va = trunc_page(fault_pc);
    845 
    846 	/*
    847 	 * See if the pmap can handle this fault on its own...
    848 	 */
    849 #ifdef DEBUG
    850 	last_fault_code = -1;
    851 #endif
    852 	if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) {
    853 		UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0);
    854 		goto out;
    855 	}
    856 
    857 #ifdef DIAGNOSTIC
    858 	if (__predict_false(curcpu()->ci_intr_depth > 0)) {
    859 		printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
    860 		dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
    861 	}
    862 #endif
    863 
    864 	KASSERT(pcb->pcb_onfault == NULL);
    865 	error = uvm_fault(map, va, VM_PROT_READ);
    866 
    867 	if (__predict_true(error == 0)) {
    868 		UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0);
    869 		goto out;
    870 	}
    871 	KSI_INIT_TRAP(&ksi);
    872 
    873 	UVMHIST_LOG (maphist, " <- fatal (%d)", error, 0, 0, 0);
    874 	if (error == ENOMEM) {
    875 		printf("UVM: pid %d (%s), uid %d killed: "
    876 		    "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
    877 		    l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1);
    878 		ksi.ksi_signo = SIGKILL;
    879 	} else
    880 		ksi.ksi_signo = SIGSEGV;
    881 
    882 	ksi.ksi_code = SEGV_MAPERR;
    883 	ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc;
    884 	ksi.ksi_trap = fault_pc;
    885 
    886 do_trapsignal:
    887 	call_trapsignal(l, tf, &ksi);
    888 
    889 out:
    890 	KASSERT(!TRAP_USERMODE(tf) || (tf->tf_spsr & IF32_bits) == 0);
    891 	userret(l);
    892 }
    893 
    894 /*
    895  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
    896  * If the read succeeds, the value is written to 'rptr' and zero is returned.
    897  * Else, return EFAULT.
    898  */
    899 int
    900 badaddr_read(void *addr, size_t size, void *rptr)
    901 {
    902 	extern int badaddr_read_1(const uint8_t *, uint8_t *);
    903 	extern int badaddr_read_2(const uint16_t *, uint16_t *);
    904 	extern int badaddr_read_4(const uint32_t *, uint32_t *);
    905 	union {
    906 		uint8_t v1;
    907 		uint16_t v2;
    908 		uint32_t v4;
    909 	} u;
    910 	int rv, s;
    911 
    912 	cpu_drain_writebuf();
    913 
    914 	s = splhigh();
    915 
    916 	/* Read from the test address. */
    917 	switch (size) {
    918 	case sizeof(uint8_t):
    919 		rv = badaddr_read_1(addr, &u.v1);
    920 		if (rv == 0 && rptr)
    921 			*(uint8_t *) rptr = u.v1;
    922 		break;
    923 
    924 	case sizeof(uint16_t):
    925 		rv = badaddr_read_2(addr, &u.v2);
    926 		if (rv == 0 && rptr)
    927 			*(uint16_t *) rptr = u.v2;
    928 		break;
    929 
    930 	case sizeof(uint32_t):
    931 		rv = badaddr_read_4(addr, &u.v4);
    932 		if (rv == 0 && rptr)
    933 			*(uint32_t *) rptr = u.v4;
    934 		break;
    935 
    936 	default:
    937 		panic("%s: invalid size (%zu)", __func__, size);
    938 	}
    939 
    940 	splx(s);
    941 
    942 	/* Return EFAULT if the address was invalid, else zero */
    943 	return (rv);
    944 }
    945