Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.14.2.4
      1  1.14.2.4  thorpej /*	$NetBSD: pmap.c,v 1.14.2.4 2002/01/10 19:37:49 thorpej Exp $	*/
      2      1.12    chris 
      3      1.12    chris /*
      4      1.12    chris  * Copyright (c) 2001 Richard Earnshaw
      5      1.12    chris  * Copyright (c) 2001 Christopher Gilbert
      6      1.12    chris  * All rights reserved.
      7      1.12    chris  *
      8      1.12    chris  * 1. Redistributions of source code must retain the above copyright
      9      1.12    chris  *    notice, this list of conditions and the following disclaimer.
     10      1.12    chris  * 2. Redistributions in binary form must reproduce the above copyright
     11      1.12    chris  *    notice, this list of conditions and the following disclaimer in the
     12      1.12    chris  *    documentation and/or other materials provided with the distribution.
     13      1.12    chris  * 3. The name of the company nor the name of the author may be used to
     14      1.12    chris  *    endorse or promote products derived from this software without specific
     15      1.12    chris  *    prior written permission.
     16      1.12    chris  *
     17      1.12    chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     18      1.12    chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19      1.12    chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20      1.12    chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     21      1.12    chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22      1.12    chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     23      1.12    chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24      1.12    chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25      1.12    chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26      1.12    chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27      1.12    chris  * SUCH DAMAGE.
     28      1.12    chris  */
     29       1.1     matt 
     30       1.1     matt /*-
     31       1.1     matt  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     32       1.1     matt  * All rights reserved.
     33       1.1     matt  *
     34       1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
     35       1.1     matt  * by Charles M. Hannum.
     36       1.1     matt  *
     37       1.1     matt  * Redistribution and use in source and binary forms, with or without
     38       1.1     matt  * modification, are permitted provided that the following conditions
     39       1.1     matt  * are met:
     40       1.1     matt  * 1. Redistributions of source code must retain the above copyright
     41       1.1     matt  *    notice, this list of conditions and the following disclaimer.
     42       1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     43       1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     44       1.1     matt  *    documentation and/or other materials provided with the distribution.
     45       1.1     matt  * 3. All advertising materials mentioning features or use of this software
     46       1.1     matt  *    must display the following acknowledgement:
     47       1.1     matt  *        This product includes software developed by the NetBSD
     48       1.1     matt  *        Foundation, Inc. and its contributors.
     49       1.1     matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     50       1.1     matt  *    contributors may be used to endorse or promote products derived
     51       1.1     matt  *    from this software without specific prior written permission.
     52       1.1     matt  *
     53       1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     54       1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55       1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56       1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     57       1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58       1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59       1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60       1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61       1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62       1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63       1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     64       1.1     matt  */
     65       1.1     matt 
     66       1.1     matt /*
     67       1.1     matt  * Copyright (c) 1994-1998 Mark Brinicombe.
     68       1.1     matt  * Copyright (c) 1994 Brini.
     69       1.1     matt  * All rights reserved.
     70       1.1     matt  *
     71       1.1     matt  * This code is derived from software written for Brini by Mark Brinicombe
     72       1.1     matt  *
     73       1.1     matt  * Redistribution and use in source and binary forms, with or without
     74       1.1     matt  * modification, are permitted provided that the following conditions
     75       1.1     matt  * are met:
     76       1.1     matt  * 1. Redistributions of source code must retain the above copyright
     77       1.1     matt  *    notice, this list of conditions and the following disclaimer.
     78       1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     79       1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     80       1.1     matt  *    documentation and/or other materials provided with the distribution.
     81       1.1     matt  * 3. All advertising materials mentioning features or use of this software
     82       1.1     matt  *    must display the following acknowledgement:
     83       1.1     matt  *	This product includes software developed by Mark Brinicombe.
     84       1.1     matt  * 4. The name of the author may not be used to endorse or promote products
     85       1.1     matt  *    derived from this software without specific prior written permission.
     86       1.1     matt  *
     87       1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     88       1.1     matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     89       1.1     matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     90       1.1     matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     91       1.1     matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     92       1.1     matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     93       1.1     matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     94       1.1     matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     95       1.1     matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     96       1.1     matt  *
     97       1.1     matt  * RiscBSD kernel project
     98       1.1     matt  *
     99       1.1     matt  * pmap.c
    100       1.1     matt  *
    101       1.1     matt  * Machine dependant vm stuff
    102       1.1     matt  *
    103       1.1     matt  * Created      : 20/09/94
    104       1.1     matt  */
    105       1.1     matt 
    106       1.1     matt /*
    107       1.1     matt  * Performance improvements, UVM changes, overhauls and part-rewrites
    108       1.1     matt  * were contributed by Neil A. Carson <neil (at) causality.com>.
    109       1.1     matt  */
    110       1.1     matt 
    111       1.1     matt /*
    112       1.1     matt  * The dram block info is currently referenced from the bootconfig.
    113       1.1     matt  * This should be placed in a separate structure.
    114       1.1     matt  */
    115       1.1     matt 
    116       1.1     matt /*
    117       1.1     matt  * Special compilation symbols
    118       1.1     matt  * PMAP_DEBUG		- Build in pmap_debug_level code
    119       1.1     matt  */
    120       1.1     matt 
    121       1.1     matt /* Include header files */
    122       1.1     matt 
    123       1.1     matt #include "opt_pmap_debug.h"
    124       1.1     matt #include "opt_ddb.h"
    125       1.1     matt 
    126       1.1     matt #include <sys/types.h>
    127       1.1     matt #include <sys/param.h>
    128       1.1     matt #include <sys/kernel.h>
    129       1.1     matt #include <sys/systm.h>
    130       1.1     matt #include <sys/proc.h>
    131       1.1     matt #include <sys/malloc.h>
    132       1.1     matt #include <sys/user.h>
    133      1.10    chris #include <sys/pool.h>
    134  1.14.2.1    lukem #include <sys/cdefs.h>
    135  1.14.2.1    lukem 
    136       1.1     matt #include <uvm/uvm.h>
    137       1.1     matt 
    138       1.1     matt #include <machine/bootconfig.h>
    139       1.1     matt #include <machine/bus.h>
    140       1.1     matt #include <machine/pmap.h>
    141       1.1     matt #include <machine/pcb.h>
    142       1.1     matt #include <machine/param.h>
    143  1.14.2.4  thorpej #include <arm/arm32/katelib.h>
    144  1.14.2.4  thorpej 
    145  1.14.2.4  thorpej __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.14.2.4 2002/01/10 19:37:49 thorpej Exp $");
    146  1.14.2.1    lukem 
    147       1.1     matt #ifdef PMAP_DEBUG
    148       1.1     matt #define	PDEBUG(_lev_,_stat_) \
    149       1.1     matt 	if (pmap_debug_level >= (_lev_)) \
    150       1.1     matt         	((_stat_))
    151       1.1     matt int pmap_debug_level = -2;
    152  1.14.2.2  thorpej 
    153  1.14.2.2  thorpej /*
    154  1.14.2.2  thorpej  * for switching to potentially finer grained debugging
    155  1.14.2.2  thorpej  */
    156  1.14.2.2  thorpej #define	PDB_FOLLOW	0x0001
    157  1.14.2.2  thorpej #define	PDB_INIT	0x0002
    158  1.14.2.2  thorpej #define	PDB_ENTER	0x0004
    159  1.14.2.2  thorpej #define	PDB_REMOVE	0x0008
    160  1.14.2.2  thorpej #define	PDB_CREATE	0x0010
    161  1.14.2.2  thorpej #define	PDB_PTPAGE	0x0020
    162  1.14.2.2  thorpej #define	PDB_ASN		0x0040
    163  1.14.2.2  thorpej #define	PDB_BITS	0x0080
    164  1.14.2.2  thorpej #define	PDB_COLLECT	0x0100
    165  1.14.2.2  thorpej #define	PDB_PROTECT	0x0200
    166  1.14.2.2  thorpej #define	PDB_BOOTSTRAP	0x1000
    167  1.14.2.2  thorpej #define	PDB_PARANOIA	0x2000
    168  1.14.2.2  thorpej #define	PDB_WIRING	0x4000
    169  1.14.2.2  thorpej #define	PDB_PVDUMP	0x8000
    170  1.14.2.2  thorpej 
    171  1.14.2.2  thorpej int debugmap = 0;
    172  1.14.2.2  thorpej int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    173  1.14.2.2  thorpej #define	NPDEBUG(_lev_,_stat_) \
    174  1.14.2.2  thorpej 	if (pmapdebug & (_lev_)) \
    175  1.14.2.2  thorpej         	((_stat_))
    176  1.14.2.2  thorpej 
    177       1.1     matt #else	/* PMAP_DEBUG */
    178       1.1     matt #define	PDEBUG(_lev_,_stat_) /* Nothing */
    179  1.14.2.2  thorpej #define PDEBUG(_lev_,_stat_) /* Nothing */
    180       1.1     matt #endif	/* PMAP_DEBUG */
    181       1.1     matt 
    182       1.1     matt struct pmap     kernel_pmap_store;
    183       1.1     matt 
    184      1.10    chris /*
    185      1.10    chris  * pool that pmap structures are allocated from
    186      1.10    chris  */
    187      1.10    chris 
    188      1.10    chris struct pool pmap_pmap_pool;
    189      1.10    chris 
    190       1.1     matt pagehook_t page_hook0;
    191       1.1     matt pagehook_t page_hook1;
    192       1.1     matt char *memhook;
    193       1.1     matt pt_entry_t msgbufpte;
    194       1.1     matt extern caddr_t msgbufaddr;
    195       1.1     matt 
    196       1.1     matt boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    197  1.14.2.2  thorpej /*
    198  1.14.2.2  thorpej  * locking data structures
    199  1.14.2.2  thorpej  */
    200       1.1     matt 
    201  1.14.2.2  thorpej static struct lock pmap_main_lock;
    202  1.14.2.2  thorpej static struct simplelock pvalloc_lock;
    203  1.14.2.2  thorpej #ifdef LOCKDEBUG
    204  1.14.2.2  thorpej #define PMAP_MAP_TO_HEAD_LOCK() \
    205  1.14.2.2  thorpej      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    206  1.14.2.2  thorpej #define PMAP_MAP_TO_HEAD_UNLOCK() \
    207  1.14.2.2  thorpej      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    208  1.14.2.2  thorpej 
    209  1.14.2.2  thorpej #define PMAP_HEAD_TO_MAP_LOCK() \
    210  1.14.2.2  thorpej      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    211  1.14.2.2  thorpej #define PMAP_HEAD_TO_MAP_UNLOCK() \
    212  1.14.2.2  thorpej      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    213  1.14.2.2  thorpej #else
    214  1.14.2.2  thorpej #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    215  1.14.2.2  thorpej #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    216  1.14.2.2  thorpej #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    217  1.14.2.2  thorpej #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    218  1.14.2.2  thorpej #endif /* LOCKDEBUG */
    219  1.14.2.2  thorpej 
    220  1.14.2.2  thorpej /*
    221  1.14.2.2  thorpej  * pv_page management structures: locked by pvalloc_lock
    222  1.14.2.2  thorpej  */
    223       1.1     matt 
    224  1.14.2.2  thorpej TAILQ_HEAD(pv_pagelist, pv_page);
    225  1.14.2.2  thorpej static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    226  1.14.2.2  thorpej static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    227  1.14.2.2  thorpej static int pv_nfpvents;			/* # of free pv entries */
    228  1.14.2.2  thorpej static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    229  1.14.2.2  thorpej static vaddr_t pv_cachedva;		/* cached VA for later use */
    230  1.14.2.2  thorpej 
    231  1.14.2.2  thorpej #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    232  1.14.2.2  thorpej #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    233  1.14.2.2  thorpej 					/* high water mark */
    234  1.14.2.2  thorpej 
    235  1.14.2.2  thorpej /*
    236  1.14.2.2  thorpej  * local prototypes
    237  1.14.2.2  thorpej  */
    238  1.14.2.2  thorpej 
    239  1.14.2.2  thorpej static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    240  1.14.2.2  thorpej static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    241  1.14.2.2  thorpej #define ALLOCPV_NEED	0	/* need PV now */
    242  1.14.2.2  thorpej #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    243  1.14.2.2  thorpej #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    244  1.14.2.2  thorpej static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    245  1.14.2.2  thorpej static void		 pmap_enter_pv __P((struct pv_head *,
    246  1.14.2.2  thorpej 					    struct pv_entry *, struct pmap *,
    247  1.14.2.2  thorpej 					    vaddr_t, struct vm_page *, int));
    248  1.14.2.2  thorpej static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    249  1.14.2.2  thorpej static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    250  1.14.2.2  thorpej static void		 pmap_free_pv_doit __P((struct pv_entry *));
    251  1.14.2.2  thorpej static void		 pmap_free_pvpage __P((void));
    252  1.14.2.2  thorpej static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    253  1.14.2.2  thorpej static struct pv_entry	*pmap_remove_pv __P((struct pv_head *, struct pmap *,
    254  1.14.2.2  thorpej 			vaddr_t));
    255  1.14.2.2  thorpej #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    256  1.14.2.2  thorpej #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    257       1.1     matt 
    258  1.14.2.4  thorpej static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct pv_head *,
    259  1.14.2.4  thorpej 	u_int, u_int));
    260  1.14.2.4  thorpej 
    261  1.14.2.4  thorpej static void pmap_free_l1pt __P((struct l1pt *));
    262  1.14.2.4  thorpej static int pmap_allocpagedir __P((struct pmap *));
    263  1.14.2.4  thorpej static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    264  1.14.2.4  thorpej static struct pv_head *pmap_find_pvh __P((paddr_t));
    265  1.14.2.4  thorpej static void pmap_remove_all __P((paddr_t));
    266  1.14.2.4  thorpej 
    267  1.14.2.4  thorpej 
    268       1.2     matt vsize_t npages;
    269       1.1     matt 
    270  1.14.2.2  thorpej static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
    271  1.14.2.2  thorpej static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
    272  1.14.2.4  thorpej __inline static void pmap_clearbit __P((paddr_t, unsigned int));
    273  1.14.2.4  thorpej __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
    274  1.14.2.2  thorpej 
    275       1.2     matt extern paddr_t physical_start;
    276       1.2     matt extern paddr_t physical_freestart;
    277       1.2     matt extern paddr_t physical_end;
    278       1.2     matt extern paddr_t physical_freeend;
    279       1.1     matt extern unsigned int free_pages;
    280       1.1     matt extern int max_processes;
    281       1.1     matt 
    282       1.1     matt vaddr_t virtual_start;
    283       1.1     matt vaddr_t virtual_end;
    284       1.1     matt 
    285       1.1     matt vaddr_t avail_start;
    286       1.1     matt vaddr_t avail_end;
    287       1.1     matt 
    288       1.1     matt extern pv_addr_t systempage;
    289       1.1     matt 
    290       1.1     matt #define ALLOC_PAGE_HOOK(x, s) \
    291       1.1     matt 	x.va = virtual_start; \
    292  1.14.2.1    lukem 	x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
    293       1.1     matt 	virtual_start += s;
    294       1.1     matt 
    295       1.1     matt /* Variables used by the L1 page table queue code */
    296       1.1     matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
    297       1.1     matt struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    298       1.1     matt int l1pt_static_queue_count;		/* items in the static l1 queue */
    299       1.1     matt int l1pt_static_create_count;		/* static l1 items created */
    300       1.1     matt struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    301       1.1     matt int l1pt_queue_count;			/* items in the l1 queue */
    302       1.1     matt int l1pt_create_count;			/* stat - L1's create count */
    303       1.1     matt int l1pt_reuse_count;			/* stat - L1's reused count */
    304       1.1     matt 
    305       1.1     matt /* Local function prototypes (not used outside this file) */
    306  1.14.2.1    lukem pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    307       1.1     matt void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    308       1.2     matt     paddr_t pa, unsigned int flags));
    309       1.2     matt void pmap_copy_on_write __P((paddr_t pa));
    310  1.14.2.1    lukem void pmap_pinit __P((struct pmap *));
    311  1.14.2.1    lukem void pmap_freepagedir __P((struct pmap *));
    312       1.1     matt 
    313       1.1     matt /* Other function prototypes */
    314       1.1     matt extern void bzero_page __P((vaddr_t));
    315       1.1     matt extern void bcopy_page __P((vaddr_t, vaddr_t));
    316       1.1     matt 
    317       1.1     matt struct l1pt *pmap_alloc_l1pt __P((void));
    318  1.14.2.1    lukem static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    319  1.14.2.2  thorpej      vaddr_t l2pa, boolean_t));
    320       1.1     matt 
    321      1.11    chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    322  1.14.2.2  thorpej static void pmap_unmap_ptes __P((struct pmap *));
    323      1.11    chris 
    324  1.14.2.4  thorpej __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
    325  1.14.2.4  thorpej     pt_entry_t *, boolean_t));
    326  1.14.2.4  thorpej static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
    327  1.14.2.4  thorpej     pt_entry_t *, boolean_t));
    328  1.14.2.4  thorpej static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
    329  1.14.2.4  thorpej     pt_entry_t *, boolean_t));
    330  1.14.2.4  thorpej 
    331  1.14.2.4  thorpej /*
    332  1.14.2.4  thorpej  * Cache enable bits in PTE to use on pages that are cacheable.
    333  1.14.2.4  thorpej  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    334  1.14.2.4  thorpej  * can chose between write-through and write-back cacheing.
    335  1.14.2.4  thorpej  */
    336  1.14.2.4  thorpej pt_entry_t pte_cache_mode = (PT_C | PT_B);
    337      1.11    chris 
    338  1.14.2.2  thorpej /*
    339  1.14.2.2  thorpej  * real definition of pv_entry.
    340  1.14.2.2  thorpej  */
    341  1.14.2.2  thorpej 
    342  1.14.2.2  thorpej struct pv_entry {
    343  1.14.2.2  thorpej 	struct pv_entry *pv_next;       /* next pv_entry */
    344  1.14.2.2  thorpej 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    345  1.14.2.2  thorpej 	vaddr_t         pv_va;          /* virtual address for mapping */
    346  1.14.2.2  thorpej 	int             pv_flags;       /* flags */
    347  1.14.2.2  thorpej 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    348  1.14.2.2  thorpej };
    349  1.14.2.2  thorpej 
    350  1.14.2.2  thorpej /*
    351  1.14.2.2  thorpej  * pv_entrys are dynamically allocated in chunks from a single page.
    352  1.14.2.2  thorpej  * we keep track of how many pv_entrys are in use for each page and
    353  1.14.2.2  thorpej  * we can free pv_entry pages if needed.  there is one lock for the
    354  1.14.2.2  thorpej  * entire allocation system.
    355  1.14.2.2  thorpej  */
    356  1.14.2.2  thorpej 
    357  1.14.2.2  thorpej struct pv_page_info {
    358  1.14.2.2  thorpej 	TAILQ_ENTRY(pv_page) pvpi_list;
    359  1.14.2.2  thorpej 	struct pv_entry *pvpi_pvfree;
    360  1.14.2.2  thorpej 	int pvpi_nfree;
    361  1.14.2.2  thorpej };
    362  1.14.2.2  thorpej 
    363  1.14.2.2  thorpej /*
    364  1.14.2.2  thorpej  * number of pv_entry's in a pv_page
    365  1.14.2.2  thorpej  * (note: won't work on systems where NPBG isn't a constant)
    366  1.14.2.2  thorpej  */
    367  1.14.2.2  thorpej 
    368  1.14.2.2  thorpej #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    369  1.14.2.2  thorpej 			sizeof(struct pv_entry))
    370  1.14.2.2  thorpej 
    371  1.14.2.2  thorpej /*
    372  1.14.2.2  thorpej  * a pv_page: where pv_entrys are allocated from
    373  1.14.2.2  thorpej  */
    374  1.14.2.2  thorpej 
    375  1.14.2.2  thorpej struct pv_page {
    376  1.14.2.2  thorpej 	struct pv_page_info pvinfo;
    377  1.14.2.2  thorpej 	struct pv_entry pvents[PVE_PER_PVPAGE];
    378  1.14.2.2  thorpej };
    379  1.14.2.2  thorpej 
    380       1.1     matt #ifdef MYCROFT_HACK
    381       1.1     matt int mycroft_hack = 0;
    382       1.1     matt #endif
    383       1.1     matt 
    384       1.1     matt /* Function to set the debug level of the pmap code */
    385       1.1     matt 
    386       1.1     matt #ifdef PMAP_DEBUG
    387       1.1     matt void
    388       1.1     matt pmap_debug(level)
    389       1.1     matt 	int level;
    390       1.1     matt {
    391       1.1     matt 	pmap_debug_level = level;
    392       1.1     matt 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    393       1.1     matt }
    394       1.1     matt #endif	/* PMAP_DEBUG */
    395       1.1     matt 
    396  1.14.2.4  thorpej __inline static boolean_t
    397  1.14.2.2  thorpej pmap_is_curpmap(struct pmap *pmap)
    398  1.14.2.2  thorpej {
    399  1.14.2.2  thorpej     if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
    400  1.14.2.2  thorpej 	    || (pmap == pmap_kernel()))
    401  1.14.2.2  thorpej 	return (TRUE);
    402  1.14.2.2  thorpej     return (FALSE);
    403  1.14.2.2  thorpej }
    404       1.1     matt #include "isadma.h"
    405       1.1     matt 
    406       1.1     matt #if NISADMA > 0
    407       1.1     matt /*
    408       1.1     matt  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    409       1.1     matt  * pages into the system, memory intersects with any of these ranges,
    410       1.1     matt  * the intersecting memory will be loaded into a lower-priority free list.
    411       1.1     matt  */
    412       1.1     matt bus_dma_segment_t *pmap_isa_dma_ranges;
    413       1.1     matt int pmap_isa_dma_nranges;
    414       1.1     matt 
    415       1.2     matt boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    416       1.2     matt 	    paddr_t *, psize_t *));
    417       1.1     matt 
    418       1.1     matt /*
    419       1.1     matt  * Check if a memory range intersects with an ISA DMA range, and
    420       1.1     matt  * return the page-rounded intersection if it does.  The intersection
    421       1.1     matt  * will be placed on a lower-priority free list.
    422       1.1     matt  */
    423       1.1     matt boolean_t
    424       1.1     matt pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    425       1.2     matt 	paddr_t pa;
    426       1.2     matt 	psize_t size;
    427       1.2     matt 	paddr_t *pap;
    428       1.2     matt 	psize_t *sizep;
    429       1.1     matt {
    430       1.1     matt 	bus_dma_segment_t *ds;
    431       1.1     matt 	int i;
    432       1.1     matt 
    433       1.1     matt 	if (pmap_isa_dma_ranges == NULL)
    434       1.1     matt 		return (FALSE);
    435       1.1     matt 
    436       1.1     matt 	for (i = 0, ds = pmap_isa_dma_ranges;
    437       1.1     matt 	     i < pmap_isa_dma_nranges; i++, ds++) {
    438       1.1     matt 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    439       1.1     matt 			/*
    440       1.1     matt 			 * Beginning of region intersects with this range.
    441       1.1     matt 			 */
    442       1.1     matt 			*pap = trunc_page(pa);
    443       1.1     matt 			*sizep = round_page(min(pa + size,
    444       1.1     matt 			    ds->ds_addr + ds->ds_len) - pa);
    445       1.1     matt 			return (TRUE);
    446       1.1     matt 		}
    447       1.1     matt 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    448       1.1     matt 			/*
    449       1.1     matt 			 * End of region intersects with this range.
    450       1.1     matt 			 */
    451       1.1     matt 			*pap = trunc_page(ds->ds_addr);
    452       1.1     matt 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    453       1.1     matt 			    ds->ds_len));
    454       1.1     matt 			return (TRUE);
    455       1.1     matt 		}
    456       1.1     matt 	}
    457       1.1     matt 
    458       1.1     matt 	/*
    459       1.1     matt 	 * No intersection found.
    460       1.1     matt 	 */
    461       1.1     matt 	return (FALSE);
    462       1.1     matt }
    463       1.1     matt #endif /* NISADMA > 0 */
    464       1.1     matt 
    465       1.1     matt /*
    466  1.14.2.2  thorpej  * p v _ e n t r y   f u n c t i o n s
    467  1.14.2.2  thorpej  */
    468  1.14.2.2  thorpej 
    469  1.14.2.2  thorpej /*
    470  1.14.2.2  thorpej  * pv_entry allocation functions:
    471  1.14.2.2  thorpej  *   the main pv_entry allocation functions are:
    472  1.14.2.2  thorpej  *     pmap_alloc_pv: allocate a pv_entry structure
    473  1.14.2.2  thorpej  *     pmap_free_pv: free one pv_entry
    474  1.14.2.2  thorpej  *     pmap_free_pvs: free a list of pv_entrys
    475  1.14.2.2  thorpej  *
    476  1.14.2.2  thorpej  * the rest are helper functions
    477       1.1     matt  */
    478       1.1     matt 
    479       1.1     matt /*
    480  1.14.2.2  thorpej  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    481  1.14.2.2  thorpej  * => we lock pvalloc_lock
    482  1.14.2.2  thorpej  * => if we fail, we call out to pmap_alloc_pvpage
    483  1.14.2.2  thorpej  * => 3 modes:
    484  1.14.2.2  thorpej  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    485  1.14.2.2  thorpej  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    486  1.14.2.2  thorpej  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    487  1.14.2.2  thorpej  *			one now
    488  1.14.2.2  thorpej  *
    489  1.14.2.2  thorpej  * "try" is for optional functions like pmap_copy().
    490       1.1     matt  */
    491  1.14.2.2  thorpej 
    492  1.14.2.2  thorpej __inline static struct pv_entry *
    493  1.14.2.2  thorpej pmap_alloc_pv(pmap, mode)
    494  1.14.2.2  thorpej 	struct pmap *pmap;
    495  1.14.2.2  thorpej 	int mode;
    496       1.1     matt {
    497  1.14.2.2  thorpej 	struct pv_page *pvpage;
    498       1.1     matt 	struct pv_entry *pv;
    499       1.1     matt 
    500  1.14.2.2  thorpej 	simple_lock(&pvalloc_lock);
    501       1.1     matt 
    502  1.14.2.2  thorpej 	if (pv_freepages.tqh_first != NULL) {
    503  1.14.2.2  thorpej 		pvpage = pv_freepages.tqh_first;
    504  1.14.2.2  thorpej 		pvpage->pvinfo.pvpi_nfree--;
    505  1.14.2.2  thorpej 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    506  1.14.2.2  thorpej 			/* nothing left in this one? */
    507  1.14.2.2  thorpej 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    508       1.1     matt 		}
    509  1.14.2.2  thorpej 		pv = pvpage->pvinfo.pvpi_pvfree;
    510       1.1     matt #ifdef DIAGNOSTIC
    511  1.14.2.2  thorpej 		if (pv == NULL)
    512  1.14.2.2  thorpej 			panic("pmap_alloc_pv: pvpi_nfree off");
    513  1.14.2.2  thorpej #endif
    514  1.14.2.2  thorpej 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    515  1.14.2.2  thorpej 		pv_nfpvents--;  /* took one from pool */
    516  1.14.2.2  thorpej 	} else {
    517  1.14.2.2  thorpej 		pv = NULL;		/* need more of them */
    518       1.1     matt 	}
    519  1.14.2.2  thorpej 
    520  1.14.2.2  thorpej 	/*
    521  1.14.2.2  thorpej 	 * if below low water mark or we didn't get a pv_entry we try and
    522  1.14.2.2  thorpej 	 * create more pv_entrys ...
    523  1.14.2.2  thorpej 	 */
    524  1.14.2.2  thorpej 
    525  1.14.2.2  thorpej 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    526  1.14.2.2  thorpej 		if (pv == NULL)
    527  1.14.2.2  thorpej 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    528  1.14.2.2  thorpej 					       mode : ALLOCPV_NEED);
    529  1.14.2.2  thorpej 		else
    530  1.14.2.2  thorpej 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    531  1.14.2.2  thorpej 	}
    532  1.14.2.2  thorpej 
    533  1.14.2.2  thorpej 	simple_unlock(&pvalloc_lock);
    534  1.14.2.2  thorpej 	return(pv);
    535       1.1     matt }
    536       1.1     matt 
    537       1.1     matt /*
    538  1.14.2.2  thorpej  * pmap_alloc_pvpage: maybe allocate a new pvpage
    539  1.14.2.2  thorpej  *
    540  1.14.2.2  thorpej  * if need_entry is false: try and allocate a new pv_page
    541  1.14.2.2  thorpej  * if need_entry is true: try and allocate a new pv_page and return a
    542  1.14.2.2  thorpej  *	new pv_entry from it.   if we are unable to allocate a pv_page
    543  1.14.2.2  thorpej  *	we make a last ditch effort to steal a pv_page from some other
    544  1.14.2.2  thorpej  *	mapping.    if that fails, we panic...
    545  1.14.2.2  thorpej  *
    546  1.14.2.2  thorpej  * => we assume that the caller holds pvalloc_lock
    547       1.1     matt  */
    548       1.1     matt 
    549  1.14.2.2  thorpej static struct pv_entry *
    550  1.14.2.2  thorpej pmap_alloc_pvpage(pmap, mode)
    551  1.14.2.2  thorpej 	struct pmap *pmap;
    552  1.14.2.2  thorpej 	int mode;
    553       1.1     matt {
    554  1.14.2.2  thorpej 	struct vm_page *pg;
    555  1.14.2.2  thorpej 	struct pv_page *pvpage;
    556  1.14.2.2  thorpej 	struct pv_entry *pv;
    557  1.14.2.2  thorpej 	int s;
    558       1.1     matt 
    559  1.14.2.2  thorpej 	/*
    560  1.14.2.2  thorpej 	 * if we need_entry and we've got unused pv_pages, allocate from there
    561  1.14.2.2  thorpej 	 */
    562  1.14.2.2  thorpej 
    563  1.14.2.2  thorpej 	if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
    564  1.14.2.2  thorpej 
    565  1.14.2.2  thorpej 		/* move it to pv_freepages list */
    566  1.14.2.2  thorpej 		pvpage = pv_unusedpgs.tqh_first;
    567  1.14.2.2  thorpej 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    568  1.14.2.2  thorpej 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    569  1.14.2.2  thorpej 
    570  1.14.2.2  thorpej 		/* allocate a pv_entry */
    571  1.14.2.2  thorpej 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    572  1.14.2.2  thorpej 		pv = pvpage->pvinfo.pvpi_pvfree;
    573  1.14.2.2  thorpej #ifdef DIAGNOSTIC
    574  1.14.2.2  thorpej 		if (pv == NULL)
    575  1.14.2.2  thorpej 			panic("pmap_alloc_pvpage: pvpi_nfree off");
    576  1.14.2.2  thorpej #endif
    577  1.14.2.2  thorpej 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    578  1.14.2.2  thorpej 
    579  1.14.2.2  thorpej 		pv_nfpvents--;  /* took one from pool */
    580  1.14.2.2  thorpej 		return(pv);
    581  1.14.2.2  thorpej 	}
    582  1.14.2.2  thorpej 
    583  1.14.2.2  thorpej 	/*
    584  1.14.2.2  thorpej 	 *  see if we've got a cached unmapped VA that we can map a page in.
    585  1.14.2.2  thorpej 	 * if not, try to allocate one.
    586  1.14.2.2  thorpej 	 */
    587  1.14.2.2  thorpej 
    588  1.14.2.4  thorpej 
    589  1.14.2.2  thorpej 	if (pv_cachedva == 0) {
    590  1.14.2.4  thorpej 		s = splvm();
    591  1.14.2.4  thorpej 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    592  1.14.2.2  thorpej 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    593  1.14.2.4  thorpej 		splx(s);
    594  1.14.2.2  thorpej 		if (pv_cachedva == 0) {
    595  1.14.2.2  thorpej 			return (NULL);
    596  1.14.2.2  thorpej 		}
    597  1.14.2.2  thorpej 	}
    598  1.14.2.2  thorpej 
    599  1.14.2.4  thorpej 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    600  1.14.2.4  thorpej 	    UVM_PGA_USERESERVE);
    601  1.14.2.2  thorpej 	if (pg)
    602  1.14.2.2  thorpej 		pg->flags &= ~PG_BUSY;	/* never busy */
    603  1.14.2.2  thorpej 
    604  1.14.2.2  thorpej 	if (pg == NULL)
    605  1.14.2.2  thorpej 		return (NULL);
    606  1.14.2.2  thorpej 
    607  1.14.2.2  thorpej 	/*
    608  1.14.2.2  thorpej 	 * add a mapping for our new pv_page and free its entrys (save one!)
    609  1.14.2.2  thorpej 	 *
    610  1.14.2.2  thorpej 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    611  1.14.2.2  thorpej 	 * pmap is already locked!  (...but entering the mapping is safe...)
    612  1.14.2.2  thorpej 	 */
    613  1.14.2.2  thorpej 
    614  1.14.2.2  thorpej 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    615  1.14.2.3  thorpej 	pmap_update(pmap_kernel());
    616  1.14.2.2  thorpej 	pvpage = (struct pv_page *) pv_cachedva;
    617  1.14.2.2  thorpej 	pv_cachedva = 0;
    618  1.14.2.2  thorpej 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    619       1.1     matt }
    620       1.1     matt 
    621  1.14.2.2  thorpej /*
    622  1.14.2.2  thorpej  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    623  1.14.2.2  thorpej  *
    624  1.14.2.2  thorpej  * => caller must hold pvalloc_lock
    625  1.14.2.2  thorpej  * => if need_entry is true, we allocate and return one pv_entry
    626  1.14.2.2  thorpej  */
    627  1.14.2.2  thorpej 
    628  1.14.2.2  thorpej static struct pv_entry *
    629  1.14.2.2  thorpej pmap_add_pvpage(pvp, need_entry)
    630  1.14.2.2  thorpej 	struct pv_page *pvp;
    631  1.14.2.2  thorpej 	boolean_t need_entry;
    632       1.1     matt {
    633  1.14.2.2  thorpej 	int tofree, lcv;
    634       1.1     matt 
    635  1.14.2.2  thorpej 	/* do we need to return one? */
    636  1.14.2.2  thorpej 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    637       1.1     matt 
    638  1.14.2.2  thorpej 	pvp->pvinfo.pvpi_pvfree = NULL;
    639  1.14.2.2  thorpej 	pvp->pvinfo.pvpi_nfree = tofree;
    640  1.14.2.2  thorpej 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    641  1.14.2.2  thorpej 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    642  1.14.2.2  thorpej 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    643       1.1     matt 	}
    644  1.14.2.2  thorpej 	if (need_entry)
    645  1.14.2.2  thorpej 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    646  1.14.2.2  thorpej 	else
    647  1.14.2.2  thorpej 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    648  1.14.2.2  thorpej 	pv_nfpvents += tofree;
    649  1.14.2.2  thorpej 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    650  1.14.2.2  thorpej }
    651       1.1     matt 
    652  1.14.2.2  thorpej /*
    653  1.14.2.2  thorpej  * pmap_free_pv_doit: actually free a pv_entry
    654  1.14.2.2  thorpej  *
    655  1.14.2.2  thorpej  * => do not call this directly!  instead use either
    656  1.14.2.2  thorpej  *    1. pmap_free_pv ==> free a single pv_entry
    657  1.14.2.2  thorpej  *    2. pmap_free_pvs => free a list of pv_entrys
    658  1.14.2.2  thorpej  * => we must be holding pvalloc_lock
    659  1.14.2.2  thorpej  */
    660       1.1     matt 
    661  1.14.2.2  thorpej __inline static void
    662  1.14.2.2  thorpej pmap_free_pv_doit(pv)
    663  1.14.2.2  thorpej 	struct pv_entry *pv;
    664  1.14.2.2  thorpej {
    665  1.14.2.2  thorpej 	struct pv_page *pvp;
    666  1.14.2.2  thorpej 
    667  1.14.2.2  thorpej 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    668  1.14.2.2  thorpej 	pv_nfpvents++;
    669  1.14.2.2  thorpej 	pvp->pvinfo.pvpi_nfree++;
    670  1.14.2.2  thorpej 
    671  1.14.2.2  thorpej 	/* nfree == 1 => fully allocated page just became partly allocated */
    672  1.14.2.2  thorpej 	if (pvp->pvinfo.pvpi_nfree == 1) {
    673  1.14.2.2  thorpej 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    674       1.1     matt 	}
    675       1.1     matt 
    676  1.14.2.2  thorpej 	/* free it */
    677  1.14.2.2  thorpej 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    678  1.14.2.2  thorpej 	pvp->pvinfo.pvpi_pvfree = pv;
    679  1.14.2.2  thorpej 
    680  1.14.2.2  thorpej 	/*
    681  1.14.2.2  thorpej 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    682  1.14.2.2  thorpej 	 */
    683  1.14.2.2  thorpej 
    684  1.14.2.2  thorpej 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    685  1.14.2.2  thorpej 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    686  1.14.2.2  thorpej 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    687       1.1     matt 	}
    688       1.1     matt }
    689       1.1     matt 
    690       1.1     matt /*
    691  1.14.2.2  thorpej  * pmap_free_pv: free a single pv_entry
    692  1.14.2.2  thorpej  *
    693  1.14.2.2  thorpej  * => we gain the pvalloc_lock
    694       1.1     matt  */
    695       1.1     matt 
    696  1.14.2.2  thorpej __inline static void
    697  1.14.2.2  thorpej pmap_free_pv(pmap, pv)
    698  1.14.2.1    lukem 	struct pmap *pmap;
    699       1.1     matt 	struct pv_entry *pv;
    700       1.1     matt {
    701  1.14.2.2  thorpej 	simple_lock(&pvalloc_lock);
    702  1.14.2.2  thorpej 	pmap_free_pv_doit(pv);
    703       1.1     matt 
    704  1.14.2.2  thorpej 	/*
    705  1.14.2.2  thorpej 	 * Can't free the PV page if the PV entries were associated with
    706  1.14.2.2  thorpej 	 * the kernel pmap; the pmap is already locked.
    707  1.14.2.2  thorpej 	 */
    708  1.14.2.2  thorpej 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    709  1.14.2.2  thorpej 	    pmap != pmap_kernel())
    710  1.14.2.2  thorpej 		pmap_free_pvpage();
    711       1.1     matt 
    712  1.14.2.2  thorpej 	simple_unlock(&pvalloc_lock);
    713  1.14.2.2  thorpej }
    714       1.1     matt 
    715  1.14.2.2  thorpej /*
    716  1.14.2.2  thorpej  * pmap_free_pvs: free a list of pv_entrys
    717  1.14.2.2  thorpej  *
    718  1.14.2.2  thorpej  * => we gain the pvalloc_lock
    719  1.14.2.2  thorpej  */
    720       1.1     matt 
    721  1.14.2.2  thorpej __inline static void
    722  1.14.2.2  thorpej pmap_free_pvs(pmap, pvs)
    723  1.14.2.2  thorpej 	struct pmap *pmap;
    724  1.14.2.2  thorpej 	struct pv_entry *pvs;
    725  1.14.2.2  thorpej {
    726  1.14.2.2  thorpej 	struct pv_entry *nextpv;
    727  1.14.2.2  thorpej 
    728  1.14.2.2  thorpej 	simple_lock(&pvalloc_lock);
    729  1.14.2.2  thorpej 
    730  1.14.2.2  thorpej 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    731  1.14.2.2  thorpej 		nextpv = pvs->pv_next;
    732  1.14.2.2  thorpej 		pmap_free_pv_doit(pvs);
    733       1.1     matt 	}
    734       1.1     matt 
    735  1.14.2.2  thorpej 	/*
    736  1.14.2.2  thorpej 	 * Can't free the PV page if the PV entries were associated with
    737  1.14.2.2  thorpej 	 * the kernel pmap; the pmap is already locked.
    738  1.14.2.2  thorpej 	 */
    739  1.14.2.2  thorpej 	if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
    740  1.14.2.2  thorpej 	    pmap != pmap_kernel())
    741  1.14.2.2  thorpej 		pmap_free_pvpage();
    742       1.1     matt 
    743  1.14.2.2  thorpej 	simple_unlock(&pvalloc_lock);
    744       1.1     matt }
    745       1.1     matt 
    746       1.1     matt 
    747       1.1     matt /*
    748  1.14.2.2  thorpej  * pmap_free_pvpage: try and free an unused pv_page structure
    749  1.14.2.2  thorpej  *
    750  1.14.2.2  thorpej  * => assume caller is holding the pvalloc_lock and that
    751  1.14.2.2  thorpej  *	there is a page on the pv_unusedpgs list
    752  1.14.2.2  thorpej  * => if we can't get a lock on the kmem_map we try again later
    753  1.14.2.2  thorpej  * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
    754  1.14.2.2  thorpej  *	that if we can lock the kmem_map then we are not already
    755  1.14.2.2  thorpej  *	holding kmem_object's lock.
    756       1.1     matt  */
    757       1.1     matt 
    758  1.14.2.2  thorpej static void
    759  1.14.2.2  thorpej pmap_free_pvpage()
    760       1.1     matt {
    761  1.14.2.2  thorpej 	int s;
    762  1.14.2.2  thorpej 	struct vm_map *map;
    763  1.14.2.2  thorpej 	struct vm_map_entry *dead_entries;
    764  1.14.2.2  thorpej 	struct pv_page *pvp;
    765       1.1     matt 
    766  1.14.2.2  thorpej 	s = splvm(); /* protect kmem_map */
    767  1.14.2.2  thorpej 
    768  1.14.2.2  thorpej 	pvp = pv_unusedpgs.tqh_first;
    769       1.1     matt 
    770       1.1     matt 	/*
    771  1.14.2.2  thorpej 	 * note: watch out for pv_initpage which is allocated out of
    772  1.14.2.2  thorpej 	 * kernel_map rather than kmem_map.
    773       1.1     matt 	 */
    774  1.14.2.2  thorpej 	if (pvp == pv_initpage)
    775  1.14.2.2  thorpej 		map = kernel_map;
    776  1.14.2.2  thorpej 	else
    777  1.14.2.2  thorpej 		map = kmem_map;
    778       1.1     matt 
    779  1.14.2.2  thorpej 	if (vm_map_lock_try(map)) {
    780  1.14.2.2  thorpej 
    781  1.14.2.2  thorpej 		/* remove pvp from pv_unusedpgs */
    782  1.14.2.2  thorpej 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    783  1.14.2.2  thorpej 
    784  1.14.2.2  thorpej 		/* unmap the page */
    785  1.14.2.2  thorpej 		dead_entries = NULL;
    786  1.14.2.2  thorpej 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    787  1.14.2.2  thorpej 		    &dead_entries);
    788  1.14.2.2  thorpej 		vm_map_unlock(map);
    789  1.14.2.2  thorpej 
    790  1.14.2.2  thorpej 		if (dead_entries != NULL)
    791  1.14.2.2  thorpej 			uvm_unmap_detach(dead_entries, 0);
    792  1.14.2.2  thorpej 
    793  1.14.2.2  thorpej 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    794       1.1     matt 	}
    795       1.1     matt 
    796  1.14.2.2  thorpej 	if (pvp == pv_initpage)
    797  1.14.2.2  thorpej 		/* no more initpage, we've freed it */
    798  1.14.2.2  thorpej 		pv_initpage = NULL;
    799       1.1     matt 
    800       1.1     matt 	splx(s);
    801       1.1     matt }
    802       1.1     matt 
    803       1.1     matt /*
    804  1.14.2.2  thorpej  * main pv_entry manipulation functions:
    805  1.14.2.2  thorpej  *   pmap_enter_pv: enter a mapping onto a pv_head list
    806  1.14.2.2  thorpej  *   pmap_remove_pv: remove a mappiing from a pv_head list
    807  1.14.2.2  thorpej  *
    808  1.14.2.2  thorpej  * NOTE: pmap_enter_pv expects to lock the pvh itself
    809  1.14.2.2  thorpej  *       pmap_remove_pv expects te caller to lock the pvh before calling
    810  1.14.2.2  thorpej  */
    811  1.14.2.2  thorpej 
    812  1.14.2.2  thorpej /*
    813  1.14.2.2  thorpej  * pmap_enter_pv: enter a mapping onto a pv_head lst
    814  1.14.2.2  thorpej  *
    815  1.14.2.2  thorpej  * => caller should hold the proper lock on pmap_main_lock
    816  1.14.2.2  thorpej  * => caller should have pmap locked
    817  1.14.2.2  thorpej  * => we will gain the lock on the pv_head and allocate the new pv_entry
    818  1.14.2.2  thorpej  * => caller should adjust ptp's wire_count before calling
    819  1.14.2.2  thorpej  * => caller should not adjust pmap's wire_count
    820  1.14.2.2  thorpej  */
    821  1.14.2.2  thorpej 
    822  1.14.2.2  thorpej __inline static void
    823  1.14.2.2  thorpej pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
    824  1.14.2.2  thorpej 	struct pv_head *pvh;
    825  1.14.2.2  thorpej 	struct pv_entry *pve;	/* preallocated pve for us to use */
    826  1.14.2.2  thorpej 	struct pmap *pmap;
    827  1.14.2.2  thorpej 	vaddr_t va;
    828  1.14.2.2  thorpej 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    829  1.14.2.2  thorpej 	int flags;
    830  1.14.2.2  thorpej {
    831  1.14.2.2  thorpej 	pve->pv_pmap = pmap;
    832  1.14.2.2  thorpej 	pve->pv_va = va;
    833  1.14.2.2  thorpej 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    834  1.14.2.2  thorpej 	pve->pv_flags = flags;
    835  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);		/* lock pv_head */
    836  1.14.2.2  thorpej 	pve->pv_next = pvh->pvh_list;		/* add to ... */
    837  1.14.2.2  thorpej 	pvh->pvh_list = pve;			/* ... locked list */
    838  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);		/* unlock, done! */
    839  1.14.2.2  thorpej 	if (pve->pv_flags & PT_W)
    840  1.14.2.2  thorpej 		++pmap->pm_stats.wired_count;
    841  1.14.2.2  thorpej }
    842  1.14.2.2  thorpej 
    843  1.14.2.2  thorpej /*
    844  1.14.2.2  thorpej  * pmap_remove_pv: try to remove a mapping from a pv_list
    845  1.14.2.2  thorpej  *
    846  1.14.2.2  thorpej  * => caller should hold proper lock on pmap_main_lock
    847  1.14.2.2  thorpej  * => pmap should be locked
    848  1.14.2.2  thorpej  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    849  1.14.2.2  thorpej  * => caller should adjust ptp's wire_count and free PTP if needed
    850  1.14.2.2  thorpej  * => caller should NOT adjust pmap's wire_count
    851  1.14.2.2  thorpej  * => we return the removed pve
    852  1.14.2.2  thorpej  */
    853  1.14.2.2  thorpej 
    854  1.14.2.2  thorpej __inline static struct pv_entry *
    855  1.14.2.2  thorpej pmap_remove_pv(pvh, pmap, va)
    856  1.14.2.2  thorpej 	struct pv_head *pvh;
    857  1.14.2.2  thorpej 	struct pmap *pmap;
    858  1.14.2.2  thorpej 	vaddr_t va;
    859  1.14.2.2  thorpej {
    860  1.14.2.2  thorpej 	struct pv_entry *pve, **prevptr;
    861  1.14.2.2  thorpej 
    862  1.14.2.2  thorpej 	prevptr = &pvh->pvh_list;		/* previous pv_entry pointer */
    863  1.14.2.2  thorpej 	pve = *prevptr;
    864  1.14.2.2  thorpej 	while (pve) {
    865  1.14.2.2  thorpej 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    866  1.14.2.2  thorpej 			*prevptr = pve->pv_next;		/* remove it! */
    867  1.14.2.2  thorpej 			if (pve->pv_flags & PT_W)
    868  1.14.2.2  thorpej 			    --pmap->pm_stats.wired_count;
    869  1.14.2.2  thorpej 			break;
    870  1.14.2.2  thorpej 		}
    871  1.14.2.2  thorpej 		prevptr = &pve->pv_next;		/* previous pointer */
    872  1.14.2.2  thorpej 		pve = pve->pv_next;			/* advance */
    873  1.14.2.2  thorpej 	}
    874  1.14.2.2  thorpej 	return(pve);				/* return removed pve */
    875  1.14.2.2  thorpej }
    876  1.14.2.2  thorpej 
    877  1.14.2.2  thorpej /*
    878  1.14.2.2  thorpej  *
    879  1.14.2.2  thorpej  * pmap_modify_pv: Update pv flags
    880  1.14.2.2  thorpej  *
    881  1.14.2.2  thorpej  * => caller should hold lock on pv_head [so that attrs can be adjusted]
    882  1.14.2.2  thorpej  * => caller should NOT adjust pmap's wire_count
    883  1.14.2.4  thorpej  * => caller must call pmap_vac_me_harder() if writable status of a page
    884  1.14.2.4  thorpej  *    may have changed.
    885  1.14.2.2  thorpej  * => we return the old flags
    886  1.14.2.2  thorpej  *
    887       1.1     matt  * Modify a physical-virtual mapping in the pv table
    888       1.1     matt  */
    889       1.1     matt 
    890  1.14.2.4  thorpej /*__inline */
    891  1.14.2.4  thorpej static u_int
    892  1.14.2.2  thorpej pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
    893  1.14.2.1    lukem 	struct pmap *pmap;
    894       1.1     matt 	vaddr_t va;
    895  1.14.2.2  thorpej 	struct pv_head *pvh;
    896       1.1     matt 	u_int bic_mask;
    897       1.1     matt 	u_int eor_mask;
    898       1.1     matt {
    899       1.1     matt 	struct pv_entry *npv;
    900       1.1     matt 	u_int flags, oflags;
    901       1.1     matt 
    902       1.1     matt 	/*
    903       1.1     matt 	 * There is at least one VA mapping this page.
    904       1.1     matt 	 */
    905       1.1     matt 
    906  1.14.2.2  thorpej 	for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
    907       1.1     matt 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    908       1.1     matt 			oflags = npv->pv_flags;
    909       1.1     matt 			npv->pv_flags = flags =
    910       1.1     matt 			    ((oflags & ~bic_mask) ^ eor_mask);
    911       1.1     matt 			if ((flags ^ oflags) & PT_W) {
    912       1.1     matt 				if (flags & PT_W)
    913       1.1     matt 					++pmap->pm_stats.wired_count;
    914       1.1     matt 				else
    915       1.1     matt 					--pmap->pm_stats.wired_count;
    916       1.1     matt 			}
    917       1.1     matt 			return (oflags);
    918       1.1     matt 		}
    919       1.1     matt 	}
    920       1.1     matt 	return (0);
    921       1.1     matt }
    922       1.1     matt 
    923       1.1     matt /*
    924       1.1     matt  * Map the specified level 2 pagetable into the level 1 page table for
    925       1.1     matt  * the given pmap to cover a chunk of virtual address space starting from the
    926       1.1     matt  * address specified.
    927       1.1     matt  */
    928       1.1     matt static /*__inline*/ void
    929  1.14.2.2  thorpej pmap_map_in_l1(pmap, va, l2pa, selfref)
    930  1.14.2.1    lukem 	struct pmap *pmap;
    931       1.1     matt 	vaddr_t va, l2pa;
    932  1.14.2.2  thorpej 	boolean_t selfref;
    933       1.1     matt {
    934       1.1     matt 	vaddr_t ptva;
    935       1.1     matt 
    936       1.1     matt 	/* Calculate the index into the L1 page table. */
    937       1.1     matt 	ptva = (va >> PDSHIFT) & ~3;
    938       1.1     matt 
    939       1.1     matt 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    940       1.1     matt 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    941       1.1     matt 
    942       1.1     matt 	/* Map page table into the L1. */
    943       1.1     matt 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    944       1.1     matt 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    945       1.1     matt 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    946       1.1     matt 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    947       1.1     matt 
    948       1.1     matt 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    949       1.1     matt 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    950       1.1     matt 
    951       1.1     matt 	/* Map the page table into the page table area. */
    952  1.14.2.2  thorpej 	if (selfref) {
    953  1.14.2.2  thorpej 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    954  1.14.2.2  thorpej 			L2_PTE_NC_NB(l2pa, AP_KRW);
    955  1.14.2.2  thorpej 	}
    956       1.1     matt 	/* XXX should be a purge */
    957       1.1     matt /*	cpu_tlb_flushD();*/
    958       1.1     matt }
    959       1.1     matt 
    960       1.1     matt #if 0
    961       1.1     matt static /*__inline*/ void
    962       1.1     matt pmap_unmap_in_l1(pmap, va)
    963  1.14.2.1    lukem 	struct pmap *pmap;
    964       1.1     matt 	vaddr_t va;
    965       1.1     matt {
    966       1.1     matt 	vaddr_t ptva;
    967       1.1     matt 
    968       1.1     matt 	/* Calculate the index into the L1 page table. */
    969       1.1     matt 	ptva = (va >> PDSHIFT) & ~3;
    970       1.1     matt 
    971       1.1     matt 	/* Unmap page table from the L1. */
    972       1.1     matt 	pmap->pm_pdir[ptva + 0] = 0;
    973       1.1     matt 	pmap->pm_pdir[ptva + 1] = 0;
    974       1.1     matt 	pmap->pm_pdir[ptva + 2] = 0;
    975       1.1     matt 	pmap->pm_pdir[ptva + 3] = 0;
    976       1.1     matt 
    977       1.1     matt 	/* Unmap the page table from the page table area. */
    978       1.1     matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    979       1.1     matt 
    980       1.1     matt 	/* XXX should be a purge */
    981       1.1     matt /*	cpu_tlb_flushD();*/
    982       1.1     matt }
    983       1.1     matt #endif
    984       1.1     matt 
    985       1.1     matt /*
    986       1.1     matt  *	Used to map a range of physical addresses into kernel
    987       1.1     matt  *	virtual address space.
    988       1.1     matt  *
    989       1.1     matt  *	For now, VM is already on, we only need to map the
    990       1.1     matt  *	specified memory.
    991       1.1     matt  */
    992       1.1     matt vaddr_t
    993       1.1     matt pmap_map(va, spa, epa, prot)
    994       1.1     matt 	vaddr_t va, spa, epa;
    995       1.1     matt 	int prot;
    996       1.1     matt {
    997       1.1     matt 	while (spa < epa) {
    998  1.14.2.3  thorpej 		pmap_kenter_pa(va, spa, prot);
    999       1.1     matt 		va += NBPG;
   1000       1.1     matt 		spa += NBPG;
   1001       1.1     matt 	}
   1002  1.14.2.3  thorpej 	pmap_update(pmap_kernel());
   1003       1.1     matt 	return(va);
   1004       1.1     matt }
   1005       1.1     matt 
   1006       1.1     matt 
   1007       1.1     matt /*
   1008       1.3     matt  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1009       1.1     matt  *
   1010       1.1     matt  * bootstrap the pmap system. This is called from initarm and allows
   1011       1.1     matt  * the pmap system to initailise any structures it requires.
   1012       1.1     matt  *
   1013       1.1     matt  * Currently this sets up the kernel_pmap that is statically allocated
   1014       1.1     matt  * and also allocated virtual addresses for certain page hooks.
   1015       1.1     matt  * Currently the only one page hook is allocated that is used
   1016       1.1     matt  * to zero physical pages of memory.
   1017       1.1     matt  * It also initialises the start and end address of the kernel data space.
   1018       1.1     matt  */
   1019       1.2     matt extern paddr_t physical_freestart;
   1020       1.2     matt extern paddr_t physical_freeend;
   1021       1.1     matt 
   1022  1.14.2.2  thorpej char *boot_head;
   1023       1.1     matt 
   1024       1.1     matt void
   1025       1.1     matt pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1026       1.1     matt 	pd_entry_t *kernel_l1pt;
   1027       1.1     matt 	pv_addr_t kernel_ptpt;
   1028       1.1     matt {
   1029       1.1     matt 	int loop;
   1030       1.2     matt 	paddr_t start, end;
   1031       1.1     matt #if NISADMA > 0
   1032       1.2     matt 	paddr_t istart;
   1033       1.2     matt 	psize_t isize;
   1034       1.1     matt #endif
   1035       1.1     matt 
   1036  1.14.2.1    lukem 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1037  1.14.2.1    lukem 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1038  1.14.2.1    lukem 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1039  1.14.2.1    lukem 	simple_lock_init(&pmap_kernel()->pm_lock);
   1040  1.14.2.1    lukem 	pmap_kernel()->pm_obj.pgops = NULL;
   1041  1.14.2.1    lukem 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1042  1.14.2.1    lukem 	pmap_kernel()->pm_obj.uo_npages = 0;
   1043  1.14.2.1    lukem 	pmap_kernel()->pm_obj.uo_refs = 1;
   1044  1.14.2.1    lukem 
   1045       1.1     matt 	/*
   1046       1.1     matt 	 * Initialize PAGE_SIZE-dependent variables.
   1047       1.1     matt 	 */
   1048       1.1     matt 	uvm_setpagesize();
   1049       1.1     matt 
   1050       1.1     matt 	npages = 0;
   1051       1.1     matt 	loop = 0;
   1052       1.1     matt 	while (loop < bootconfig.dramblocks) {
   1053       1.2     matt 		start = (paddr_t)bootconfig.dram[loop].address;
   1054       1.1     matt 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1055       1.1     matt 		if (start < physical_freestart)
   1056       1.1     matt 			start = physical_freestart;
   1057       1.1     matt 		if (end > physical_freeend)
   1058       1.1     matt 			end = physical_freeend;
   1059       1.1     matt #if 0
   1060       1.1     matt 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1061       1.1     matt #endif
   1062       1.1     matt #if NISADMA > 0
   1063       1.1     matt 		if (pmap_isa_dma_range_intersect(start, end - start,
   1064       1.1     matt 		    &istart, &isize)) {
   1065       1.1     matt 			/*
   1066       1.1     matt 			 * Place the pages that intersect with the
   1067       1.1     matt 			 * ISA DMA range onto the ISA DMA free list.
   1068       1.1     matt 			 */
   1069       1.1     matt #if 0
   1070       1.1     matt 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1071       1.1     matt 			    istart + isize - 1);
   1072       1.1     matt #endif
   1073       1.1     matt 			uvm_page_physload(atop(istart),
   1074       1.1     matt 			    atop(istart + isize), atop(istart),
   1075       1.1     matt 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1076       1.1     matt 			npages += atop(istart + isize) - atop(istart);
   1077       1.1     matt 
   1078       1.1     matt 			/*
   1079       1.1     matt 			 * Load the pieces that come before
   1080       1.1     matt 			 * the intersection into the default
   1081       1.1     matt 			 * free list.
   1082       1.1     matt 			 */
   1083       1.1     matt 			if (start < istart) {
   1084       1.1     matt #if 0
   1085       1.1     matt 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1086       1.1     matt 				    start, istart - 1);
   1087       1.1     matt #endif
   1088       1.1     matt 				uvm_page_physload(atop(start),
   1089       1.1     matt 				    atop(istart), atop(start),
   1090       1.1     matt 				    atop(istart), VM_FREELIST_DEFAULT);
   1091       1.1     matt 				npages += atop(istart) - atop(start);
   1092       1.1     matt 			}
   1093       1.1     matt 
   1094       1.1     matt 			/*
   1095       1.1     matt 			 * Load the pieces that come after
   1096       1.1     matt 			 * the intersection into the default
   1097       1.1     matt 			 * free list.
   1098       1.1     matt 			 */
   1099       1.1     matt 			if ((istart + isize) < end) {
   1100       1.1     matt #if 0
   1101       1.1     matt 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1102       1.1     matt 				    (istart + isize), end - 1);
   1103       1.1     matt #endif
   1104       1.1     matt 				uvm_page_physload(atop(istart + isize),
   1105       1.1     matt 				    atop(end), atop(istart + isize),
   1106       1.1     matt 				    atop(end), VM_FREELIST_DEFAULT);
   1107       1.1     matt 				npages += atop(end) - atop(istart + isize);
   1108       1.1     matt 			}
   1109       1.1     matt 		} else {
   1110       1.1     matt 			uvm_page_physload(atop(start), atop(end),
   1111       1.1     matt 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1112       1.1     matt 			npages += atop(end) - atop(start);
   1113       1.1     matt 		}
   1114       1.1     matt #else	/* NISADMA > 0 */
   1115       1.1     matt 		uvm_page_physload(atop(start), atop(end),
   1116       1.1     matt 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1117       1.1     matt 		npages += atop(end) - atop(start);
   1118       1.1     matt #endif /* NISADMA > 0 */
   1119       1.1     matt 		++loop;
   1120       1.1     matt 	}
   1121       1.1     matt 
   1122       1.1     matt #ifdef MYCROFT_HACK
   1123       1.1     matt 	printf("npages = %ld\n", npages);
   1124       1.1     matt #endif
   1125       1.1     matt 
   1126       1.1     matt 	virtual_start = KERNEL_VM_BASE;
   1127       1.1     matt 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
   1128       1.1     matt 
   1129       1.1     matt 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
   1130       1.1     matt 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
   1131       1.1     matt 
   1132       1.1     matt 	/*
   1133       1.1     matt 	 * The mem special device needs a virtual hook but we don't
   1134       1.1     matt 	 * need a pte
   1135       1.1     matt 	 */
   1136       1.1     matt 	memhook = (char *)virtual_start;
   1137       1.1     matt 	virtual_start += NBPG;
   1138       1.1     matt 
   1139       1.1     matt 	msgbufaddr = (caddr_t)virtual_start;
   1140  1.14.2.1    lukem 	msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
   1141       1.1     matt 	virtual_start += round_page(MSGBUFSIZE);
   1142       1.1     matt 
   1143  1.14.2.2  thorpej 	/*
   1144  1.14.2.2  thorpej 	 * init the static-global locks and global lists.
   1145  1.14.2.2  thorpej 	 */
   1146  1.14.2.2  thorpej 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1147  1.14.2.2  thorpej 	simple_lock_init(&pvalloc_lock);
   1148  1.14.2.2  thorpej 	TAILQ_INIT(&pv_freepages);
   1149  1.14.2.2  thorpej 	TAILQ_INIT(&pv_unusedpgs);
   1150       1.1     matt 
   1151      1.10    chris 	/*
   1152  1.14.2.2  thorpej 	 * compute the number of pages we have and then allocate RAM
   1153  1.14.2.2  thorpej 	 * for each pages' pv_head and saved attributes.
   1154  1.14.2.2  thorpej 	 */
   1155  1.14.2.2  thorpej 	{
   1156  1.14.2.2  thorpej 	       	int npages, lcv;
   1157  1.14.2.2  thorpej 		vsize_t s;
   1158  1.14.2.2  thorpej 
   1159  1.14.2.2  thorpej 		npages = 0;
   1160  1.14.2.2  thorpej 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
   1161  1.14.2.2  thorpej 			npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
   1162  1.14.2.2  thorpej 		s = (vsize_t) (sizeof(struct pv_head) * npages +
   1163  1.14.2.2  thorpej 				sizeof(char) * npages);
   1164  1.14.2.2  thorpej 		s = round_page(s); /* round up */
   1165  1.14.2.2  thorpej 		boot_head = (char *)uvm_pageboot_alloc(s);
   1166  1.14.2.2  thorpej 		bzero((char *)boot_head, s);
   1167  1.14.2.2  thorpej 		if (boot_head == 0)
   1168  1.14.2.2  thorpej 			panic("pmap_init: unable to allocate pv_heads");
   1169  1.14.2.2  thorpej 	}
   1170  1.14.2.2  thorpej 
   1171  1.14.2.2  thorpej 	/*
   1172      1.10    chris 	 * initialize the pmap pool.
   1173      1.10    chris 	 */
   1174      1.10    chris 
   1175      1.10    chris 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1176      1.10    chris 		  0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1177      1.10    chris 
   1178       1.1     matt 	cpu_cache_cleanD();
   1179       1.1     matt }
   1180       1.1     matt 
   1181       1.1     matt /*
   1182       1.1     matt  * void pmap_init(void)
   1183       1.1     matt  *
   1184       1.1     matt  * Initialize the pmap module.
   1185       1.1     matt  * Called by vm_init() in vm/vm_init.c in order to initialise
   1186       1.1     matt  * any structures that the pmap system needs to map virtual memory.
   1187       1.1     matt  */
   1188       1.1     matt 
   1189       1.1     matt extern int physmem;
   1190       1.1     matt 
   1191       1.1     matt void
   1192       1.1     matt pmap_init()
   1193       1.1     matt {
   1194  1.14.2.2  thorpej 	int lcv, i;
   1195       1.1     matt 
   1196       1.1     matt #ifdef MYCROFT_HACK
   1197       1.1     matt 	printf("physmem = %d\n", physmem);
   1198       1.1     matt #endif
   1199       1.1     matt 
   1200       1.1     matt 	/*
   1201       1.1     matt 	 * Set the available memory vars - These do not map to real memory
   1202       1.1     matt 	 * addresses and cannot as the physical memory is fragmented.
   1203       1.1     matt 	 * They are used by ps for %mem calculations.
   1204       1.1     matt 	 * One could argue whether this should be the entire memory or just
   1205       1.1     matt 	 * the memory that is useable in a user process.
   1206       1.1     matt 	 */
   1207       1.1     matt 	avail_start = 0;
   1208       1.1     matt 	avail_end = physmem * NBPG;
   1209       1.1     matt 
   1210  1.14.2.2  thorpej 	/* allocate pv_head stuff first */
   1211  1.14.2.2  thorpej 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1212  1.14.2.2  thorpej 		vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
   1213  1.14.2.2  thorpej 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
   1214  1.14.2.2  thorpej 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1215  1.14.2.2  thorpej 		for (i = 0;
   1216  1.14.2.2  thorpej 		     i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
   1217  1.14.2.2  thorpej 			simple_lock_init(
   1218  1.14.2.2  thorpej 			    &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
   1219  1.14.2.2  thorpej 		}
   1220       1.1     matt 	}
   1221  1.14.2.2  thorpej 
   1222  1.14.2.2  thorpej 	/* now allocate attrs */
   1223  1.14.2.2  thorpej 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1224  1.14.2.2  thorpej 		vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
   1225  1.14.2.2  thorpej 		boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
   1226  1.14.2.2  thorpej 				 (vm_physmem[lcv].end - vm_physmem[lcv].start));
   1227  1.14.2.2  thorpej 	}
   1228  1.14.2.2  thorpej 
   1229  1.14.2.2  thorpej 	/*
   1230  1.14.2.2  thorpej 	 * now we need to free enough pv_entry structures to allow us to get
   1231  1.14.2.2  thorpej 	 * the kmem_map/kmem_object allocated and inited (done after this
   1232  1.14.2.2  thorpej 	 * function is finished).  to do this we allocate one bootstrap page out
   1233  1.14.2.2  thorpej 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1234  1.14.2.2  thorpej 	 * structures.   we never free this page.
   1235  1.14.2.2  thorpej 	 */
   1236  1.14.2.2  thorpej 
   1237  1.14.2.2  thorpej 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1238  1.14.2.2  thorpej 	if (pv_initpage == NULL)
   1239  1.14.2.2  thorpej 		panic("pmap_init: pv_initpage");
   1240  1.14.2.2  thorpej 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1241  1.14.2.2  thorpej 	pv_nfpvents = 0;
   1242  1.14.2.2  thorpej 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1243  1.14.2.2  thorpej 
   1244       1.1     matt #ifdef MYCROFT_HACK
   1245       1.1     matt 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
   1246       1.1     matt 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
   1247       1.1     matt 		    lcv,
   1248       1.1     matt 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
   1249       1.1     matt 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
   1250       1.1     matt 	}
   1251       1.1     matt #endif
   1252       1.1     matt 	pmap_initialized = TRUE;
   1253       1.1     matt 
   1254       1.1     matt 	/* Initialise our L1 page table queues and counters */
   1255       1.1     matt 	SIMPLEQ_INIT(&l1pt_static_queue);
   1256       1.1     matt 	l1pt_static_queue_count = 0;
   1257       1.1     matt 	l1pt_static_create_count = 0;
   1258       1.1     matt 	SIMPLEQ_INIT(&l1pt_queue);
   1259       1.1     matt 	l1pt_queue_count = 0;
   1260       1.1     matt 	l1pt_create_count = 0;
   1261       1.1     matt 	l1pt_reuse_count = 0;
   1262       1.1     matt }
   1263       1.1     matt 
   1264       1.1     matt /*
   1265       1.1     matt  * pmap_postinit()
   1266       1.1     matt  *
   1267       1.1     matt  * This routine is called after the vm and kmem subsystems have been
   1268       1.1     matt  * initialised. This allows the pmap code to perform any initialisation
   1269       1.1     matt  * that can only be done one the memory allocation is in place.
   1270       1.1     matt  */
   1271       1.1     matt 
   1272       1.1     matt void
   1273       1.1     matt pmap_postinit()
   1274       1.1     matt {
   1275       1.1     matt 	int loop;
   1276       1.1     matt 	struct l1pt *pt;
   1277       1.1     matt 
   1278       1.1     matt #ifdef PMAP_STATIC_L1S
   1279       1.1     matt 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1280       1.1     matt #else	/* PMAP_STATIC_L1S */
   1281       1.1     matt 	for (loop = 0; loop < max_processes; ++loop) {
   1282       1.1     matt #endif	/* PMAP_STATIC_L1S */
   1283       1.1     matt 		/* Allocate a L1 page table */
   1284       1.1     matt 		pt = pmap_alloc_l1pt();
   1285       1.1     matt 		if (!pt)
   1286       1.1     matt 			panic("Cannot allocate static L1 page tables\n");
   1287       1.1     matt 
   1288       1.1     matt 		/* Clean it */
   1289       1.1     matt 		bzero((void *)pt->pt_va, PD_SIZE);
   1290       1.1     matt 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1291       1.1     matt 		/* Add the page table to the queue */
   1292       1.1     matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1293       1.1     matt 		++l1pt_static_queue_count;
   1294       1.1     matt 		++l1pt_static_create_count;
   1295       1.1     matt 	}
   1296       1.1     matt }
   1297       1.1     matt 
   1298       1.1     matt 
   1299       1.1     matt /*
   1300       1.1     matt  * Create and return a physical map.
   1301       1.1     matt  *
   1302       1.1     matt  * If the size specified for the map is zero, the map is an actual physical
   1303       1.1     matt  * map, and may be referenced by the hardware.
   1304       1.1     matt  *
   1305       1.1     matt  * If the size specified is non-zero, the map will be used in software only,
   1306       1.1     matt  * and is bounded by that size.
   1307       1.1     matt  */
   1308       1.1     matt 
   1309       1.1     matt pmap_t
   1310       1.1     matt pmap_create()
   1311       1.1     matt {
   1312  1.14.2.1    lukem 	struct pmap *pmap;
   1313       1.1     matt 
   1314      1.10    chris 	/*
   1315      1.10    chris 	 * Fetch pmap entry from the pool
   1316      1.10    chris 	 */
   1317      1.10    chris 
   1318      1.10    chris 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1319  1.14.2.2  thorpej 	/* XXX is this really needed! */
   1320  1.14.2.2  thorpej 	memset(pmap, 0, sizeof(*pmap));
   1321       1.1     matt 
   1322  1.14.2.1    lukem 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1323  1.14.2.1    lukem 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1324  1.14.2.1    lukem 	TAILQ_INIT(&pmap->pm_obj.memq);
   1325  1.14.2.1    lukem 	pmap->pm_obj.uo_npages = 0;
   1326  1.14.2.1    lukem 	pmap->pm_obj.uo_refs = 1;
   1327  1.14.2.1    lukem 	pmap->pm_stats.wired_count = 0;
   1328  1.14.2.1    lukem 	pmap->pm_stats.resident_count = 1;
   1329  1.14.2.1    lukem 
   1330       1.1     matt 	/* Now init the machine part of the pmap */
   1331       1.1     matt 	pmap_pinit(pmap);
   1332       1.1     matt 	return(pmap);
   1333       1.1     matt }
   1334       1.1     matt 
   1335       1.1     matt /*
   1336       1.1     matt  * pmap_alloc_l1pt()
   1337       1.1     matt  *
   1338       1.1     matt  * This routine allocates physical and virtual memory for a L1 page table
   1339       1.1     matt  * and wires it.
   1340       1.1     matt  * A l1pt structure is returned to describe the allocated page table.
   1341       1.1     matt  *
   1342       1.1     matt  * This routine is allowed to fail if the required memory cannot be allocated.
   1343       1.1     matt  * In this case NULL is returned.
   1344       1.1     matt  */
   1345       1.1     matt 
   1346       1.1     matt struct l1pt *
   1347       1.1     matt pmap_alloc_l1pt(void)
   1348       1.1     matt {
   1349       1.2     matt 	paddr_t pa;
   1350       1.2     matt 	vaddr_t va;
   1351       1.1     matt 	struct l1pt *pt;
   1352       1.1     matt 	int error;
   1353       1.9      chs 	struct vm_page *m;
   1354      1.11    chris 	pt_entry_t *ptes;
   1355       1.1     matt 
   1356       1.1     matt 	/* Allocate virtual address space for the L1 page table */
   1357       1.1     matt 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1358       1.1     matt 	if (va == 0) {
   1359       1.1     matt #ifdef DIAGNOSTIC
   1360  1.14.2.4  thorpej 		PDEBUG(0,
   1361  1.14.2.4  thorpej 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1362       1.1     matt #endif	/* DIAGNOSTIC */
   1363       1.1     matt 		return(NULL);
   1364       1.1     matt 	}
   1365       1.1     matt 
   1366       1.1     matt 	/* Allocate memory for the l1pt structure */
   1367       1.1     matt 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1368       1.1     matt 
   1369       1.1     matt 	/*
   1370       1.1     matt 	 * Allocate pages from the VM system.
   1371       1.1     matt 	 */
   1372       1.1     matt 	TAILQ_INIT(&pt->pt_plist);
   1373       1.1     matt 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1374       1.1     matt 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1375       1.1     matt 	if (error) {
   1376       1.1     matt #ifdef DIAGNOSTIC
   1377  1.14.2.4  thorpej 		PDEBUG(0,
   1378  1.14.2.4  thorpej 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1379  1.14.2.4  thorpej 		    error));
   1380       1.1     matt #endif	/* DIAGNOSTIC */
   1381       1.1     matt 		/* Release the resources we already have claimed */
   1382       1.1     matt 		free(pt, M_VMPMAP);
   1383       1.1     matt 		uvm_km_free(kernel_map, va, PD_SIZE);
   1384       1.1     matt 		return(NULL);
   1385       1.1     matt 	}
   1386       1.1     matt 
   1387       1.1     matt 	/* Map our physical pages into our virtual space */
   1388       1.1     matt 	pt->pt_va = va;
   1389       1.1     matt 	m = pt->pt_plist.tqh_first;
   1390      1.11    chris 	ptes = pmap_map_ptes(pmap_kernel());
   1391       1.1     matt 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1392       1.1     matt 		pa = VM_PAGE_TO_PHYS(m);
   1393       1.1     matt 
   1394  1.14.2.3  thorpej 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1395       1.1     matt 
   1396       1.1     matt 		/* Revoke cacheability and bufferability */
   1397       1.1     matt 		/* XXX should be done better than this */
   1398      1.11    chris 		ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
   1399       1.1     matt 
   1400       1.1     matt 		va += NBPG;
   1401       1.1     matt 		m = m->pageq.tqe_next;
   1402       1.1     matt 	}
   1403      1.11    chris 	pmap_unmap_ptes(pmap_kernel());
   1404  1.14.2.3  thorpej 	pmap_update(pmap_kernel());
   1405       1.1     matt 
   1406       1.1     matt #ifdef DIAGNOSTIC
   1407       1.1     matt 	if (m)
   1408       1.1     matt 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1409       1.1     matt #endif	/* DIAGNOSTIC */
   1410       1.1     matt 
   1411       1.1     matt 	pt->pt_flags = 0;
   1412       1.1     matt 	return(pt);
   1413       1.1     matt }
   1414       1.1     matt 
   1415       1.1     matt /*
   1416       1.1     matt  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1417       1.1     matt  */
   1418  1.14.2.4  thorpej static void
   1419       1.1     matt pmap_free_l1pt(pt)
   1420       1.1     matt 	struct l1pt *pt;
   1421       1.1     matt {
   1422       1.1     matt 	/* Separate the physical memory for the virtual space */
   1423  1.14.2.3  thorpej 	pmap_kremove(pt->pt_va, PD_SIZE);
   1424  1.14.2.3  thorpej 	pmap_update(pmap_kernel());
   1425       1.1     matt 
   1426       1.1     matt 	/* Return the physical memory */
   1427       1.1     matt 	uvm_pglistfree(&pt->pt_plist);
   1428       1.1     matt 
   1429       1.1     matt 	/* Free the virtual space */
   1430       1.1     matt 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1431       1.1     matt 
   1432       1.1     matt 	/* Free the l1pt structure */
   1433       1.1     matt 	free(pt, M_VMPMAP);
   1434       1.1     matt }
   1435       1.1     matt 
   1436       1.1     matt /*
   1437       1.1     matt  * Allocate a page directory.
   1438       1.1     matt  * This routine will either allocate a new page directory from the pool
   1439       1.1     matt  * of L1 page tables currently held by the kernel or it will allocate
   1440       1.1     matt  * a new one via pmap_alloc_l1pt().
   1441       1.1     matt  * It will then initialise the l1 page table for use.
   1442       1.1     matt  */
   1443  1.14.2.4  thorpej static int
   1444       1.1     matt pmap_allocpagedir(pmap)
   1445       1.1     matt 	struct pmap *pmap;
   1446       1.1     matt {
   1447       1.2     matt 	paddr_t pa;
   1448       1.1     matt 	struct l1pt *pt;
   1449       1.1     matt 	pt_entry_t *pte;
   1450       1.1     matt 
   1451       1.1     matt 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1452       1.1     matt 
   1453       1.1     matt 	/* Do we have any spare L1's lying around ? */
   1454       1.1     matt 	if (l1pt_static_queue_count) {
   1455       1.1     matt 		--l1pt_static_queue_count;
   1456       1.1     matt 		pt = l1pt_static_queue.sqh_first;
   1457       1.1     matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1458       1.1     matt 	} else if (l1pt_queue_count) {
   1459       1.1     matt 		--l1pt_queue_count;
   1460       1.1     matt 		pt = l1pt_queue.sqh_first;
   1461       1.1     matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1462       1.1     matt 		++l1pt_reuse_count;
   1463       1.1     matt 	} else {
   1464       1.1     matt 		pt = pmap_alloc_l1pt();
   1465       1.1     matt 		if (!pt)
   1466       1.1     matt 			return(ENOMEM);
   1467       1.1     matt 		++l1pt_create_count;
   1468       1.1     matt 	}
   1469       1.1     matt 
   1470       1.1     matt 	/* Store the pointer to the l1 descriptor in the pmap. */
   1471       1.1     matt 	pmap->pm_l1pt = pt;
   1472       1.1     matt 
   1473       1.1     matt 	/* Get the physical address of the start of the l1 */
   1474       1.1     matt 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1475       1.1     matt 
   1476       1.1     matt 	/* Store the virtual address of the l1 in the pmap. */
   1477       1.1     matt 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1478       1.1     matt 
   1479       1.1     matt 	/* Clean the L1 if it is dirty */
   1480       1.1     matt 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1481       1.1     matt 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1482       1.1     matt 
   1483       1.1     matt 	/* Do we already have the kernel mappings ? */
   1484       1.1     matt 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1485       1.1     matt 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1486       1.1     matt 
   1487  1.14.2.1    lukem 		bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1488       1.1     matt 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1489       1.1     matt 		    KERNEL_PD_SIZE);
   1490       1.1     matt 		pt->pt_flags |= PTFLAG_KPT;
   1491       1.1     matt 	}
   1492       1.1     matt 
   1493       1.1     matt 	/* Allocate a page table to map all the page tables for this pmap */
   1494       1.1     matt 
   1495       1.1     matt #ifdef DIAGNOSTIC
   1496       1.1     matt 	if (pmap->pm_vptpt) {
   1497       1.1     matt 		/* XXX What if we have one already ? */
   1498       1.1     matt 		panic("pmap_allocpagedir: have pt already\n");
   1499       1.1     matt 	}
   1500       1.1     matt #endif	/* DIAGNOSTIC */
   1501       1.1     matt 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1502       1.5   toshii 	if (pmap->pm_vptpt == 0) {
   1503       1.5   toshii 		pmap_freepagedir(pmap);
   1504       1.5   toshii 		return(ENOMEM);
   1505       1.5   toshii 	}
   1506       1.5   toshii 
   1507  1.14.2.1    lukem 	(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
   1508       1.1     matt 	pmap->pm_pptpt &= PG_FRAME;
   1509       1.1     matt 	/* Revoke cacheability and bufferability */
   1510       1.1     matt 	/* XXX should be done better than this */
   1511  1.14.2.1    lukem 	pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
   1512       1.1     matt 	*pte = *pte & ~(PT_C | PT_B);
   1513       1.1     matt 
   1514       1.1     matt 	/* Wire in this page table */
   1515  1.14.2.2  thorpej 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
   1516       1.1     matt 
   1517       1.1     matt 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1518       1.1     matt 
   1519       1.1     matt 	/*
   1520       1.1     matt 	 * Map the kernel page tables for 0xf0000000 +
   1521       1.1     matt 	 * into the page table used to map the
   1522       1.1     matt 	 * pmap's page tables
   1523       1.1     matt 	 */
   1524       1.1     matt 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1525       1.1     matt 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1526       1.1     matt 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1527       1.1     matt 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1528       1.1     matt 	    (KERNEL_PD_SIZE >> 2));
   1529       1.1     matt 
   1530       1.1     matt 	return(0);
   1531       1.1     matt }
   1532       1.1     matt 
   1533       1.1     matt 
   1534       1.1     matt /*
   1535       1.1     matt  * Initialize a preallocated and zeroed pmap structure,
   1536       1.1     matt  * such as one in a vmspace structure.
   1537       1.1     matt  */
   1538       1.1     matt 
   1539       1.1     matt void
   1540       1.1     matt pmap_pinit(pmap)
   1541       1.1     matt 	struct pmap *pmap;
   1542       1.1     matt {
   1543  1.14.2.4  thorpej 	int backoff = 6;
   1544  1.14.2.4  thorpej 	int retry = 10;
   1545  1.14.2.4  thorpej 
   1546       1.1     matt 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1547       1.1     matt 
   1548       1.1     matt 	/* Keep looping until we succeed in allocating a page directory */
   1549       1.1     matt 	while (pmap_allocpagedir(pmap) != 0) {
   1550       1.1     matt 		/*
   1551       1.1     matt 		 * Ok we failed to allocate a suitable block of memory for an
   1552       1.1     matt 		 * L1 page table. This means that either:
   1553       1.1     matt 		 * 1. 16KB of virtual address space could not be allocated
   1554       1.1     matt 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1555       1.1     matt 		 *    could not be allocated.
   1556       1.1     matt 		 *
   1557       1.1     matt 		 * Since we cannot fail we will sleep for a while and try
   1558  1.14.2.2  thorpej 		 * again.
   1559  1.14.2.4  thorpej 		 *
   1560  1.14.2.4  thorpej 		 * Searching for a suitable L1 PT is expensive:
   1561  1.14.2.4  thorpej 		 * to avoid hogging the system when memory is really
   1562  1.14.2.4  thorpej 		 * scarce, use an exponential back-off so that
   1563  1.14.2.4  thorpej 		 * eventually we won't retry more than once every 8
   1564  1.14.2.4  thorpej 		 * seconds.  This should allow other processes to run
   1565  1.14.2.4  thorpej 		 * to completion and free up resources.
   1566       1.1     matt 		 */
   1567  1.14.2.4  thorpej 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1568  1.14.2.4  thorpej 		    NULL);
   1569  1.14.2.4  thorpej 		if (--retry == 0) {
   1570  1.14.2.4  thorpej 			retry = 10;
   1571  1.14.2.4  thorpej 			if (backoff)
   1572  1.14.2.4  thorpej 				--backoff;
   1573  1.14.2.4  thorpej 		}
   1574       1.1     matt 	}
   1575       1.1     matt 
   1576       1.1     matt 	/* Map zero page for the pmap. This will also map the L2 for it */
   1577       1.1     matt 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1578       1.1     matt 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1579  1.14.2.3  thorpej 	pmap_update(pmap);
   1580       1.1     matt }
   1581       1.1     matt 
   1582       1.1     matt 
   1583       1.1     matt void
   1584       1.1     matt pmap_freepagedir(pmap)
   1585  1.14.2.1    lukem 	struct pmap *pmap;
   1586       1.1     matt {
   1587       1.1     matt 	/* Free the memory used for the page table mapping */
   1588       1.5   toshii 	if (pmap->pm_vptpt != 0)
   1589       1.5   toshii 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1590       1.1     matt 
   1591       1.1     matt 	/* junk the L1 page table */
   1592       1.1     matt 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1593       1.1     matt 		/* Add the page table to the queue */
   1594       1.1     matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1595       1.1     matt 		++l1pt_static_queue_count;
   1596       1.1     matt 	} else if (l1pt_queue_count < 8) {
   1597       1.1     matt 		/* Add the page table to the queue */
   1598       1.1     matt 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1599       1.1     matt 		++l1pt_queue_count;
   1600       1.1     matt 	} else
   1601       1.1     matt 		pmap_free_l1pt(pmap->pm_l1pt);
   1602       1.1     matt }
   1603       1.1     matt 
   1604       1.1     matt 
   1605       1.1     matt /*
   1606       1.1     matt  * Retire the given physical map from service.
   1607       1.1     matt  * Should only be called if the map contains no valid mappings.
   1608       1.1     matt  */
   1609       1.1     matt 
   1610       1.1     matt void
   1611       1.1     matt pmap_destroy(pmap)
   1612  1.14.2.1    lukem 	struct pmap *pmap;
   1613       1.1     matt {
   1614  1.14.2.2  thorpej 	struct vm_page *page;
   1615       1.1     matt 	int count;
   1616       1.1     matt 
   1617       1.1     matt 	if (pmap == NULL)
   1618       1.1     matt 		return;
   1619       1.1     matt 
   1620       1.1     matt 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1621  1.14.2.2  thorpej 
   1622  1.14.2.2  thorpej 	/*
   1623  1.14.2.2  thorpej 	 * Drop reference count
   1624  1.14.2.2  thorpej 	 */
   1625  1.14.2.2  thorpej 	simple_lock(&pmap->pm_obj.vmobjlock);
   1626  1.14.2.1    lukem 	count = --pmap->pm_obj.uo_refs;
   1627  1.14.2.2  thorpej 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1628  1.14.2.2  thorpej 	if (count > 0) {
   1629  1.14.2.2  thorpej 		return;
   1630       1.1     matt 	}
   1631       1.1     matt 
   1632  1.14.2.2  thorpej 	/*
   1633  1.14.2.2  thorpej 	 * reference count is zero, free pmap resources and then free pmap.
   1634  1.14.2.2  thorpej 	 */
   1635  1.14.2.2  thorpej 
   1636       1.1     matt 	/* Remove the zero page mapping */
   1637       1.1     matt 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1638  1.14.2.3  thorpej 	pmap_update(pmap);
   1639       1.1     matt 
   1640       1.1     matt 	/*
   1641       1.1     matt 	 * Free any page tables still mapped
   1642       1.1     matt 	 * This is only temporay until pmap_enter can count the number
   1643       1.1     matt 	 * of mappings made in a page table. Then pmap_remove() can
   1644       1.1     matt 	 * reduce the count and free the pagetable when the count
   1645  1.14.2.1    lukem 	 * reaches zero.  Note that entries in this list should match the
   1646  1.14.2.1    lukem 	 * contents of the ptpt, however this is faster than walking a 1024
   1647  1.14.2.1    lukem 	 * entries looking for pt's
   1648  1.14.2.1    lukem 	 * taken from i386 pmap.c
   1649       1.1     matt 	 */
   1650  1.14.2.1    lukem 	while (pmap->pm_obj.memq.tqh_first != NULL) {
   1651  1.14.2.1    lukem 		page = pmap->pm_obj.memq.tqh_first;
   1652  1.14.2.1    lukem #ifdef DIAGNOSTIC
   1653  1.14.2.1    lukem 		if (page->flags & PG_BUSY)
   1654  1.14.2.1    lukem 			panic("pmap_release: busy page table page");
   1655  1.14.2.1    lukem #endif
   1656  1.14.2.1    lukem 		/* pmap_page_protect?  currently no need for it. */
   1657  1.14.2.1    lukem 
   1658  1.14.2.1    lukem 		page->wire_count = 0;
   1659  1.14.2.1    lukem 		uvm_pagefree(page);
   1660       1.1     matt 	}
   1661  1.14.2.1    lukem 
   1662       1.1     matt 	/* Free the page dir */
   1663       1.1     matt 	pmap_freepagedir(pmap);
   1664  1.14.2.2  thorpej 
   1665  1.14.2.2  thorpej 	/* return the pmap to the pool */
   1666  1.14.2.2  thorpej 	pool_put(&pmap_pmap_pool, pmap);
   1667       1.1     matt }
   1668       1.1     matt 
   1669       1.1     matt 
   1670       1.1     matt /*
   1671  1.14.2.1    lukem  * void pmap_reference(struct pmap *pmap)
   1672       1.1     matt  *
   1673       1.1     matt  * Add a reference to the specified pmap.
   1674       1.1     matt  */
   1675       1.1     matt 
   1676       1.1     matt void
   1677       1.1     matt pmap_reference(pmap)
   1678  1.14.2.1    lukem 	struct pmap *pmap;
   1679       1.1     matt {
   1680       1.1     matt 	if (pmap == NULL)
   1681       1.1     matt 		return;
   1682       1.1     matt 
   1683       1.1     matt 	simple_lock(&pmap->pm_lock);
   1684  1.14.2.1    lukem 	pmap->pm_obj.uo_refs++;
   1685       1.1     matt 	simple_unlock(&pmap->pm_lock);
   1686       1.1     matt }
   1687       1.1     matt 
   1688       1.1     matt /*
   1689       1.1     matt  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1690       1.1     matt  *
   1691       1.1     matt  * Return the start and end addresses of the kernel's virtual space.
   1692       1.1     matt  * These values are setup in pmap_bootstrap and are updated as pages
   1693       1.1     matt  * are allocated.
   1694       1.1     matt  */
   1695       1.1     matt 
   1696       1.1     matt void
   1697       1.1     matt pmap_virtual_space(start, end)
   1698       1.1     matt 	vaddr_t *start;
   1699       1.1     matt 	vaddr_t *end;
   1700       1.1     matt {
   1701       1.1     matt 	*start = virtual_start;
   1702       1.1     matt 	*end = virtual_end;
   1703       1.1     matt }
   1704       1.1     matt 
   1705       1.1     matt 
   1706       1.1     matt /*
   1707       1.1     matt  * Activate the address space for the specified process.  If the process
   1708       1.1     matt  * is the current process, load the new MMU context.
   1709       1.1     matt  */
   1710       1.1     matt void
   1711       1.1     matt pmap_activate(p)
   1712       1.1     matt 	struct proc *p;
   1713       1.1     matt {
   1714  1.14.2.1    lukem 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1715       1.1     matt 	struct pcb *pcb = &p->p_addr->u_pcb;
   1716       1.1     matt 
   1717  1.14.2.1    lukem 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1718       1.1     matt 	    (paddr_t *)&pcb->pcb_pagedir);
   1719       1.1     matt 
   1720       1.1     matt 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1721       1.1     matt 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1722       1.1     matt 
   1723       1.1     matt 	if (p == curproc) {
   1724       1.1     matt 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1725       1.1     matt 		setttb((u_int)pcb->pcb_pagedir);
   1726       1.1     matt 	}
   1727       1.1     matt #if 0
   1728       1.1     matt 	pmap->pm_pdchanged = FALSE;
   1729       1.1     matt #endif
   1730       1.1     matt }
   1731       1.1     matt 
   1732       1.1     matt 
   1733       1.1     matt /*
   1734       1.1     matt  * Deactivate the address space of the specified process.
   1735       1.1     matt  */
   1736       1.1     matt void
   1737       1.1     matt pmap_deactivate(p)
   1738       1.1     matt 	struct proc *p;
   1739       1.1     matt {
   1740       1.1     matt }
   1741       1.1     matt 
   1742  1.14.2.4  thorpej /*
   1743  1.14.2.4  thorpej  * Perform any deferred pmap operations.
   1744  1.14.2.4  thorpej  */
   1745  1.14.2.4  thorpej void
   1746  1.14.2.4  thorpej pmap_update(struct pmap *pmap)
   1747  1.14.2.4  thorpej {
   1748  1.14.2.4  thorpej 
   1749  1.14.2.4  thorpej 	/*
   1750  1.14.2.4  thorpej 	 * We haven't deferred any pmap operations, but we do need to
   1751  1.14.2.4  thorpej 	 * make sure TLB/cache operations have completed.
   1752  1.14.2.4  thorpej 	 */
   1753  1.14.2.4  thorpej 	cpu_cpwait();
   1754  1.14.2.4  thorpej }
   1755       1.1     matt 
   1756       1.1     matt /*
   1757       1.1     matt  * pmap_clean_page()
   1758       1.1     matt  *
   1759       1.1     matt  * This is a local function used to work out the best strategy to clean
   1760       1.1     matt  * a single page referenced by its entry in the PV table. It's used by
   1761       1.1     matt  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1762       1.1     matt  *
   1763       1.1     matt  * Its policy is effectively:
   1764       1.1     matt  *  o If there are no mappings, we don't bother doing anything with the cache.
   1765       1.1     matt  *  o If there is one mapping, we clean just that page.
   1766       1.1     matt  *  o If there are multiple mappings, we clean the entire cache.
   1767       1.1     matt  *
   1768       1.1     matt  * So that some functions can be further optimised, it returns 0 if it didn't
   1769       1.1     matt  * clean the entire cache, or 1 if it did.
   1770       1.1     matt  *
   1771       1.1     matt  * XXX One bug in this routine is that if the pv_entry has a single page
   1772       1.1     matt  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1773       1.1     matt  * just the 1 page. Since this should not occur in everyday use and if it does
   1774       1.1     matt  * it will just result in not the most efficient clean for the page.
   1775       1.1     matt  */
   1776       1.1     matt static int
   1777  1.14.2.2  thorpej pmap_clean_page(pv, is_src)
   1778       1.1     matt 	struct pv_entry *pv;
   1779  1.14.2.2  thorpej 	boolean_t is_src;
   1780       1.1     matt {
   1781  1.14.2.2  thorpej 	struct pmap *pmap;
   1782  1.14.2.2  thorpej 	struct pv_entry *npv;
   1783       1.1     matt 	int cache_needs_cleaning = 0;
   1784       1.1     matt 	vaddr_t page_to_clean = 0;
   1785       1.1     matt 
   1786  1.14.2.2  thorpej 	if (pv == NULL)
   1787  1.14.2.2  thorpej 		/* nothing mapped in so nothing to flush */
   1788  1.14.2.2  thorpej 		return (0);
   1789  1.14.2.2  thorpej 
   1790  1.14.2.2  thorpej 	/* Since we flush the cache each time we change curproc, we
   1791  1.14.2.2  thorpej 	 * only need to flush the page if it is in the current pmap.
   1792  1.14.2.2  thorpej 	 */
   1793  1.14.2.2  thorpej 	if (curproc)
   1794  1.14.2.2  thorpej 		pmap = curproc->p_vmspace->vm_map.pmap;
   1795  1.14.2.2  thorpej 	else
   1796  1.14.2.2  thorpej 		pmap = pmap_kernel();
   1797  1.14.2.2  thorpej 
   1798  1.14.2.2  thorpej 	for (npv = pv; npv; npv = npv->pv_next) {
   1799  1.14.2.2  thorpej 		if (npv->pv_pmap == pmap) {
   1800  1.14.2.2  thorpej 			/* The page is mapped non-cacheable in
   1801  1.14.2.2  thorpej 			 * this map.  No need to flush the cache.
   1802  1.14.2.2  thorpej 			 */
   1803  1.14.2.2  thorpej 			if (npv->pv_flags & PT_NC) {
   1804  1.14.2.2  thorpej #ifdef DIAGNOSTIC
   1805  1.14.2.2  thorpej 				if (cache_needs_cleaning)
   1806  1.14.2.2  thorpej 					panic("pmap_clean_page: "
   1807  1.14.2.2  thorpej 							"cache inconsistency");
   1808  1.14.2.2  thorpej #endif
   1809  1.14.2.2  thorpej 				break;
   1810  1.14.2.2  thorpej 			}
   1811  1.14.2.2  thorpej #if 0
   1812  1.14.2.2  thorpej 			/* This doesn't work, because pmap_protect
   1813  1.14.2.2  thorpej 			   doesn't flush changes on pages that it
   1814  1.14.2.2  thorpej 			   has write-protected.  */
   1815  1.14.2.4  thorpej 
   1816  1.14.2.4  thorpej 			/* If the page is not writable and this
   1817  1.14.2.2  thorpej 			   is the source, then there is no need
   1818  1.14.2.2  thorpej 			   to flush it from the cache.  */
   1819  1.14.2.2  thorpej 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1820  1.14.2.2  thorpej 				continue;
   1821  1.14.2.2  thorpej #endif
   1822  1.14.2.2  thorpej 			if (cache_needs_cleaning){
   1823  1.14.2.2  thorpej 				page_to_clean = 0;
   1824  1.14.2.2  thorpej 				break;
   1825  1.14.2.2  thorpej 			}
   1826  1.14.2.2  thorpej 			else
   1827  1.14.2.2  thorpej 				page_to_clean = npv->pv_va;
   1828  1.14.2.2  thorpej 			cache_needs_cleaning = 1;
   1829  1.14.2.2  thorpej 		}
   1830       1.1     matt 	}
   1831       1.1     matt 
   1832       1.1     matt 	if (page_to_clean)
   1833       1.1     matt 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1834       1.1     matt 	else if (cache_needs_cleaning) {
   1835       1.1     matt 		cpu_cache_purgeID();
   1836       1.1     matt 		return (1);
   1837       1.1     matt 	}
   1838       1.1     matt 	return (0);
   1839       1.1     matt }
   1840       1.1     matt 
   1841       1.1     matt /*
   1842       1.1     matt  * pmap_find_pv()
   1843       1.1     matt  *
   1844  1.14.2.2  thorpej  * This is a local function that finds a PV head for a given physical page.
   1845       1.1     matt  * This is a common op, and this function removes loads of ifdefs in the code.
   1846       1.1     matt  */
   1847  1.14.2.2  thorpej static __inline struct pv_head *
   1848  1.14.2.2  thorpej pmap_find_pvh(phys)
   1849       1.2     matt 	paddr_t phys;
   1850       1.1     matt {
   1851       1.1     matt 	int bank, off;
   1852  1.14.2.2  thorpej 	struct pv_head *pvh;
   1853       1.1     matt 
   1854       1.1     matt 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1855       1.1     matt 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1856  1.14.2.2  thorpej 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   1857  1.14.2.2  thorpej 	return (pvh);
   1858       1.1     matt }
   1859       1.1     matt 
   1860       1.1     matt /*
   1861       1.1     matt  * pmap_zero_page()
   1862       1.1     matt  *
   1863       1.1     matt  * Zero a given physical page by mapping it at a page hook point.
   1864       1.1     matt  * In doing the zero page op, the page we zero is mapped cachable, as with
   1865       1.1     matt  * StrongARM accesses to non-cached pages are non-burst making writing
   1866       1.1     matt  * _any_ bulk data very slow.
   1867       1.1     matt  */
   1868       1.1     matt void
   1869       1.1     matt pmap_zero_page(phys)
   1870       1.2     matt 	paddr_t phys;
   1871       1.1     matt {
   1872  1.14.2.2  thorpej 	struct pv_head *pvh;
   1873       1.1     matt 
   1874       1.1     matt 	/* Get an entry for this page, and clean it it. */
   1875  1.14.2.2  thorpej 	pvh = pmap_find_pvh(phys);
   1876  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   1877  1.14.2.2  thorpej 	pmap_clean_page(pvh->pvh_list, FALSE);
   1878  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   1879  1.14.2.2  thorpej 
   1880       1.1     matt 	/*
   1881       1.1     matt 	 * Hook in the page, zero it, and purge the cache for that
   1882       1.1     matt 	 * zeroed page. Invalidate the TLB as needed.
   1883       1.1     matt 	 */
   1884       1.1     matt 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1885       1.1     matt 	cpu_tlb_flushD_SE(page_hook0.va);
   1886  1.14.2.4  thorpej 	cpu_cpwait();
   1887       1.1     matt 	bzero_page(page_hook0.va);
   1888       1.1     matt 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1889       1.1     matt }
   1890       1.1     matt 
   1891  1.14.2.2  thorpej /* pmap_pageidlezero()
   1892  1.14.2.2  thorpej  *
   1893  1.14.2.2  thorpej  * The same as above, except that we assume that the page is not
   1894  1.14.2.2  thorpej  * mapped.  This means we never have to flush the cache first.  Called
   1895  1.14.2.2  thorpej  * from the idle loop.
   1896  1.14.2.2  thorpej  */
   1897  1.14.2.2  thorpej boolean_t
   1898  1.14.2.2  thorpej pmap_pageidlezero(phys)
   1899  1.14.2.2  thorpej     paddr_t phys;
   1900  1.14.2.2  thorpej {
   1901  1.14.2.2  thorpej 	int i, *ptr;
   1902  1.14.2.2  thorpej 	boolean_t rv = TRUE;
   1903  1.14.2.2  thorpej 
   1904  1.14.2.2  thorpej #ifdef DIAGNOSTIC
   1905  1.14.2.2  thorpej 	struct pv_head *pvh;
   1906  1.14.2.2  thorpej 
   1907  1.14.2.2  thorpej 	pvh = pmap_find_pvh(phys);
   1908  1.14.2.2  thorpej 	if (pvh->pvh_list != NULL)
   1909  1.14.2.2  thorpej 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1910  1.14.2.2  thorpej #endif
   1911  1.14.2.2  thorpej 
   1912  1.14.2.2  thorpej 	/*
   1913  1.14.2.2  thorpej 	 * Hook in the page, zero it, and purge the cache for that
   1914  1.14.2.2  thorpej 	 * zeroed page. Invalidate the TLB as needed.
   1915  1.14.2.2  thorpej 	 */
   1916  1.14.2.2  thorpej 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1917  1.14.2.2  thorpej 	cpu_tlb_flushD_SE(page_hook0.va);
   1918  1.14.2.4  thorpej 	cpu_cpwait();
   1919  1.14.2.4  thorpej 
   1920  1.14.2.2  thorpej 	for (i = 0, ptr = (int *)page_hook0.va;
   1921  1.14.2.2  thorpej 			i < (NBPG / sizeof(int)); i++) {
   1922  1.14.2.2  thorpej 		if (sched_whichqs != 0) {
   1923  1.14.2.2  thorpej 			/*
   1924  1.14.2.2  thorpej 			 * A process has become ready.  Abort now,
   1925  1.14.2.2  thorpej 			 * so we don't keep it waiting while we
   1926  1.14.2.2  thorpej 			 * do slow memory access to finish this
   1927  1.14.2.2  thorpej 			 * page.
   1928  1.14.2.2  thorpej 			 */
   1929  1.14.2.2  thorpej 			rv = FALSE;
   1930  1.14.2.2  thorpej 			break;
   1931  1.14.2.2  thorpej 		}
   1932  1.14.2.2  thorpej 		*ptr++ = 0;
   1933  1.14.2.2  thorpej 	}
   1934  1.14.2.2  thorpej 
   1935  1.14.2.2  thorpej 	if (rv)
   1936  1.14.2.2  thorpej 		/*
   1937  1.14.2.2  thorpej 		 * if we aborted we'll rezero this page again later so don't
   1938  1.14.2.2  thorpej 		 * purge it unless we finished it
   1939  1.14.2.2  thorpej 		 */
   1940  1.14.2.2  thorpej 		cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1941  1.14.2.2  thorpej 	return (rv);
   1942  1.14.2.2  thorpej }
   1943  1.14.2.2  thorpej 
   1944       1.1     matt /*
   1945       1.1     matt  * pmap_copy_page()
   1946       1.1     matt  *
   1947       1.1     matt  * Copy one physical page into another, by mapping the pages into
   1948       1.1     matt  * hook points. The same comment regarding cachability as in
   1949       1.1     matt  * pmap_zero_page also applies here.
   1950       1.1     matt  */
   1951       1.1     matt void
   1952       1.1     matt pmap_copy_page(src, dest)
   1953       1.2     matt 	paddr_t src;
   1954       1.2     matt 	paddr_t dest;
   1955       1.1     matt {
   1956  1.14.2.2  thorpej 	struct pv_head *src_pvh, *dest_pvh;
   1957  1.14.2.3  thorpej 	boolean_t cleanedcache;
   1958       1.1     matt 
   1959       1.1     matt 	/* Get PV entries for the pages, and clean them if needed. */
   1960  1.14.2.2  thorpej 	src_pvh = pmap_find_pvh(src);
   1961  1.14.2.2  thorpej 
   1962  1.14.2.3  thorpej 	simple_lock(&src_pvh->pvh_lock);
   1963  1.14.2.3  thorpej 	cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
   1964  1.14.2.2  thorpej 	simple_unlock(&src_pvh->pvh_lock);
   1965       1.1     matt 
   1966  1.14.2.3  thorpej 	if (cleanedcache == 0) {
   1967  1.14.2.3  thorpej 		dest_pvh = pmap_find_pvh(dest);
   1968  1.14.2.3  thorpej 		simple_lock(&dest_pvh->pvh_lock);
   1969  1.14.2.3  thorpej 		pmap_clean_page(dest_pvh->pvh_list, FALSE);
   1970  1.14.2.3  thorpej 		simple_unlock(&dest_pvh->pvh_lock);
   1971  1.14.2.3  thorpej 	}
   1972       1.1     matt 	/*
   1973       1.1     matt 	 * Map the pages into the page hook points, copy them, and purge
   1974       1.1     matt 	 * the cache for the appropriate page. Invalidate the TLB
   1975       1.1     matt 	 * as required.
   1976       1.1     matt 	 */
   1977       1.1     matt 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1978       1.1     matt 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1979       1.1     matt 	cpu_tlb_flushD_SE(page_hook0.va);
   1980       1.1     matt 	cpu_tlb_flushD_SE(page_hook1.va);
   1981  1.14.2.4  thorpej 	cpu_cpwait();
   1982       1.1     matt 	bcopy_page(page_hook0.va, page_hook1.va);
   1983       1.1     matt 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1984       1.1     matt 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1985       1.1     matt }
   1986       1.1     matt 
   1987       1.1     matt #if 0
   1988       1.1     matt void
   1989       1.1     matt pmap_pte_addref(pmap, va)
   1990  1.14.2.1    lukem 	struct pmap *pmap;
   1991       1.1     matt 	vaddr_t va;
   1992       1.1     matt {
   1993       1.1     matt 	pd_entry_t *pde;
   1994       1.2     matt 	paddr_t pa;
   1995       1.1     matt 	struct vm_page *m;
   1996       1.1     matt 
   1997       1.1     matt 	if (pmap == pmap_kernel())
   1998       1.1     matt 		return;
   1999       1.1     matt 
   2000       1.1     matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2001       1.1     matt 	pa = pmap_pte_pa(pde);
   2002       1.1     matt 	m = PHYS_TO_VM_PAGE(pa);
   2003       1.1     matt 	++m->wire_count;
   2004       1.1     matt #ifdef MYCROFT_HACK
   2005       1.1     matt 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2006       1.1     matt 	    pmap, va, pde, pa, m, m->wire_count);
   2007       1.1     matt #endif
   2008       1.1     matt }
   2009       1.1     matt 
   2010       1.1     matt void
   2011       1.1     matt pmap_pte_delref(pmap, va)
   2012  1.14.2.1    lukem 	struct pmap *pmap;
   2013       1.1     matt 	vaddr_t va;
   2014       1.1     matt {
   2015       1.1     matt 	pd_entry_t *pde;
   2016       1.2     matt 	paddr_t pa;
   2017       1.1     matt 	struct vm_page *m;
   2018       1.1     matt 
   2019       1.1     matt 	if (pmap == pmap_kernel())
   2020       1.1     matt 		return;
   2021       1.1     matt 
   2022       1.1     matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   2023       1.1     matt 	pa = pmap_pte_pa(pde);
   2024       1.1     matt 	m = PHYS_TO_VM_PAGE(pa);
   2025       1.1     matt 	--m->wire_count;
   2026       1.1     matt #ifdef MYCROFT_HACK
   2027       1.1     matt 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2028       1.1     matt 	    pmap, va, pde, pa, m, m->wire_count);
   2029       1.1     matt #endif
   2030       1.1     matt 	if (m->wire_count == 0) {
   2031       1.1     matt #ifdef MYCROFT_HACK
   2032       1.1     matt 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2033       1.1     matt 		    pmap, va, pde, pa, m);
   2034       1.1     matt #endif
   2035       1.1     matt 		pmap_unmap_in_l1(pmap, va);
   2036       1.1     matt 		uvm_pagefree(m);
   2037       1.1     matt 		--pmap->pm_stats.resident_count;
   2038       1.1     matt 	}
   2039       1.1     matt }
   2040       1.1     matt #else
   2041       1.1     matt #define	pmap_pte_addref(pmap, va)
   2042       1.1     matt #define	pmap_pte_delref(pmap, va)
   2043       1.1     matt #endif
   2044       1.1     matt 
   2045       1.1     matt /*
   2046       1.1     matt  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2047       1.1     matt  * there is more than one mapping and at least one of them is writable.
   2048       1.1     matt  * Since we purge the cache on every context switch, we only need to check for
   2049       1.1     matt  * other mappings within the same pmap, or kernel_pmap.
   2050       1.1     matt  * This function is also called when a page is unmapped, to possibly reenable
   2051       1.1     matt  * caching on any remaining mappings.
   2052      1.11    chris  *
   2053  1.14.2.4  thorpej  * The code implements the following logic, where:
   2054  1.14.2.4  thorpej  *
   2055  1.14.2.4  thorpej  * KW = # of kernel read/write pages
   2056  1.14.2.4  thorpej  * KR = # of kernel read only pages
   2057  1.14.2.4  thorpej  * UW = # of user read/write pages
   2058  1.14.2.4  thorpej  * UR = # of user read only pages
   2059  1.14.2.4  thorpej  * OW = # of user read/write pages in another pmap, then
   2060  1.14.2.4  thorpej  *
   2061  1.14.2.4  thorpej  * KC = kernel mapping is cacheable
   2062  1.14.2.4  thorpej  * UC = user mapping is cacheable
   2063  1.14.2.4  thorpej  *
   2064  1.14.2.4  thorpej  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2065  1.14.2.4  thorpej  *                   +---------------------------------------------
   2066  1.14.2.4  thorpej  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2067  1.14.2.4  thorpej  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2068  1.14.2.4  thorpej  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2069  1.14.2.4  thorpej  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2070  1.14.2.4  thorpej  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2071  1.14.2.4  thorpej  *
   2072      1.11    chris  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2073       1.1     matt  */
   2074  1.14.2.4  thorpej __inline static void
   2075  1.14.2.2  thorpej pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2076      1.12    chris 	boolean_t clear_cache)
   2077       1.1     matt {
   2078  1.14.2.4  thorpej 	if (pmap == pmap_kernel())
   2079  1.14.2.4  thorpej 		pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
   2080  1.14.2.4  thorpej 	else
   2081  1.14.2.4  thorpej 		pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2082  1.14.2.4  thorpej }
   2083  1.14.2.4  thorpej 
   2084  1.14.2.4  thorpej static void
   2085  1.14.2.4  thorpej pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2086  1.14.2.4  thorpej 	boolean_t clear_cache)
   2087  1.14.2.4  thorpej {
   2088  1.14.2.4  thorpej 	int user_entries = 0;
   2089  1.14.2.4  thorpej 	int user_writable = 0;
   2090  1.14.2.4  thorpej 	int user_cacheable = 0;
   2091  1.14.2.4  thorpej 	int kernel_entries = 0;
   2092  1.14.2.4  thorpej 	int kernel_writable = 0;
   2093  1.14.2.4  thorpej 	int kernel_cacheable = 0;
   2094  1.14.2.4  thorpej 	struct pv_entry *pv;
   2095  1.14.2.4  thorpej 	struct pmap *last_pmap = pmap;
   2096  1.14.2.4  thorpej 
   2097  1.14.2.4  thorpej #ifdef DIAGNOSTIC
   2098  1.14.2.4  thorpej 	if (pmap != pmap_kernel())
   2099  1.14.2.4  thorpej 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2100  1.14.2.4  thorpej #endif
   2101  1.14.2.4  thorpej 
   2102  1.14.2.4  thorpej 	/*
   2103  1.14.2.4  thorpej 	 * Pass one, see if there are both kernel and user pmaps for
   2104  1.14.2.4  thorpej 	 * this page.  Calculate whether there are user-writable or
   2105  1.14.2.4  thorpej 	 * kernel-writable pages.
   2106  1.14.2.4  thorpej 	 */
   2107  1.14.2.4  thorpej 	for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
   2108  1.14.2.4  thorpej 		if (pv->pv_pmap != pmap) {
   2109  1.14.2.4  thorpej 			user_entries++;
   2110  1.14.2.4  thorpej 			if (pv->pv_flags & PT_Wr)
   2111  1.14.2.4  thorpej 				user_writable++;
   2112  1.14.2.4  thorpej 			if ((pv->pv_flags & PT_NC) == 0)
   2113  1.14.2.4  thorpej 				user_cacheable++;
   2114  1.14.2.4  thorpej 		} else {
   2115  1.14.2.4  thorpej 			kernel_entries++;
   2116  1.14.2.4  thorpej 			if (pv->pv_flags & PT_Wr)
   2117  1.14.2.4  thorpej 				kernel_writable++;
   2118  1.14.2.4  thorpej 			if ((pv->pv_flags & PT_NC) == 0)
   2119  1.14.2.4  thorpej 				kernel_cacheable++;
   2120  1.14.2.4  thorpej 		}
   2121  1.14.2.4  thorpej 	}
   2122  1.14.2.4  thorpej 
   2123  1.14.2.4  thorpej 	/*
   2124  1.14.2.4  thorpej 	 * We know we have just been updating a kernel entry, so if
   2125  1.14.2.4  thorpej 	 * all user pages are already cacheable, then there is nothing
   2126  1.14.2.4  thorpej 	 * further to do.
   2127  1.14.2.4  thorpej 	 */
   2128  1.14.2.4  thorpej 	if (kernel_entries == 0 &&
   2129  1.14.2.4  thorpej 	    user_cacheable == user_entries)
   2130  1.14.2.4  thorpej 		return;
   2131  1.14.2.4  thorpej 
   2132  1.14.2.4  thorpej 	if (user_entries) {
   2133  1.14.2.4  thorpej 		/*
   2134  1.14.2.4  thorpej 		 * Scan over the list again, for each entry, if it
   2135  1.14.2.4  thorpej 		 * might not be set correctly, call pmap_vac_me_user
   2136  1.14.2.4  thorpej 		 * to recalculate the settings.
   2137  1.14.2.4  thorpej 		 */
   2138  1.14.2.4  thorpej 		for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   2139  1.14.2.4  thorpej 			/*
   2140  1.14.2.4  thorpej 			 * We know kernel mappings will get set
   2141  1.14.2.4  thorpej 			 * correctly in other calls.  We also know
   2142  1.14.2.4  thorpej 			 * that if the pmap is the same as last_pmap
   2143  1.14.2.4  thorpej 			 * then we've just handled this entry.
   2144  1.14.2.4  thorpej 			 */
   2145  1.14.2.4  thorpej 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2146  1.14.2.4  thorpej 				continue;
   2147  1.14.2.4  thorpej 			/*
   2148  1.14.2.4  thorpej 			 * If there are kernel entries and this page
   2149  1.14.2.4  thorpej 			 * is writable but non-cacheable, then we can
   2150  1.14.2.4  thorpej 			 * skip this entry also.
   2151  1.14.2.4  thorpej 			 */
   2152  1.14.2.4  thorpej 			if (kernel_entries > 0 &&
   2153  1.14.2.4  thorpej 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2154  1.14.2.4  thorpej 			    (PT_NC | PT_Wr))
   2155  1.14.2.4  thorpej 				continue;
   2156  1.14.2.4  thorpej 			/*
   2157  1.14.2.4  thorpej 			 * Similarly if there are no kernel-writable
   2158  1.14.2.4  thorpej 			 * entries and the page is already
   2159  1.14.2.4  thorpej 			 * read-only/cacheable.
   2160  1.14.2.4  thorpej 			 */
   2161  1.14.2.4  thorpej 			if (kernel_writable == 0 &&
   2162  1.14.2.4  thorpej 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2163  1.14.2.4  thorpej 				continue;
   2164  1.14.2.4  thorpej 			/*
   2165  1.14.2.4  thorpej 			 * For some of the remaining cases, we know
   2166  1.14.2.4  thorpej 			 * that we must recalculate, but for others we
   2167  1.14.2.4  thorpej 			 * can't tell if they are correct or not, so
   2168  1.14.2.4  thorpej 			 * we recalculate anyway.
   2169  1.14.2.4  thorpej 			 */
   2170  1.14.2.4  thorpej 			pmap_unmap_ptes(last_pmap);
   2171  1.14.2.4  thorpej 			last_pmap = pv->pv_pmap;
   2172  1.14.2.4  thorpej 			ptes = pmap_map_ptes(last_pmap);
   2173  1.14.2.4  thorpej 			pmap_vac_me_user(last_pmap, pvh, ptes,
   2174  1.14.2.4  thorpej 			    pmap_is_curpmap(last_pmap));
   2175  1.14.2.4  thorpej 		}
   2176  1.14.2.4  thorpej 		/* Restore the pte mapping that was passed to us.  */
   2177  1.14.2.4  thorpej 		if (last_pmap != pmap) {
   2178  1.14.2.4  thorpej 			pmap_unmap_ptes(last_pmap);
   2179  1.14.2.4  thorpej 			ptes = pmap_map_ptes(pmap);
   2180  1.14.2.4  thorpej 		}
   2181  1.14.2.4  thorpej 		if (kernel_entries == 0)
   2182  1.14.2.4  thorpej 			return;
   2183  1.14.2.4  thorpej 	}
   2184  1.14.2.4  thorpej 
   2185  1.14.2.4  thorpej 	pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
   2186  1.14.2.4  thorpej 	return;
   2187  1.14.2.4  thorpej }
   2188  1.14.2.4  thorpej 
   2189  1.14.2.4  thorpej static void
   2190  1.14.2.4  thorpej pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
   2191  1.14.2.4  thorpej 	boolean_t clear_cache)
   2192  1.14.2.4  thorpej {
   2193  1.14.2.4  thorpej 	struct pmap *kpmap = pmap_kernel();
   2194  1.14.2.2  thorpej 	struct pv_entry *pv, *npv;
   2195       1.1     matt 	int entries = 0;
   2196  1.14.2.4  thorpej 	int writable = 0;
   2197      1.12    chris 	int cacheable_entries = 0;
   2198  1.14.2.4  thorpej 	int kern_cacheable = 0;
   2199  1.14.2.4  thorpej 	int other_writable = 0;
   2200       1.1     matt 
   2201  1.14.2.2  thorpej 	pv = pvh->pvh_list;
   2202      1.11    chris 	KASSERT(ptes != NULL);
   2203       1.1     matt 
   2204       1.1     matt 	/*
   2205       1.1     matt 	 * Count mappings and writable mappings in this pmap.
   2206  1.14.2.4  thorpej 	 * Include kernel mappings as part of our own.
   2207       1.1     matt 	 * Keep a pointer to the first one.
   2208       1.1     matt 	 */
   2209       1.1     matt 	for (npv = pv; npv; npv = npv->pv_next) {
   2210       1.1     matt 		/* Count mappings in the same pmap */
   2211  1.14.2.4  thorpej 		if (pmap == npv->pv_pmap ||
   2212  1.14.2.4  thorpej 		    kpmap == npv->pv_pmap) {
   2213       1.1     matt 			if (entries++ == 0)
   2214       1.1     matt 				pv = npv;
   2215      1.12    chris 			/* Cacheable mappings */
   2216  1.14.2.4  thorpej 			if ((npv->pv_flags & PT_NC) == 0) {
   2217      1.12    chris 				cacheable_entries++;
   2218  1.14.2.4  thorpej 				if (kpmap == npv->pv_pmap)
   2219  1.14.2.4  thorpej 					kern_cacheable++;
   2220  1.14.2.4  thorpej 			}
   2221  1.14.2.4  thorpej 			/* Writable mappings */
   2222       1.1     matt 			if (npv->pv_flags & PT_Wr)
   2223  1.14.2.4  thorpej 				++writable;
   2224  1.14.2.4  thorpej 		} else if (npv->pv_flags & PT_Wr)
   2225  1.14.2.4  thorpej 			other_writable = 1;
   2226       1.1     matt 	}
   2227       1.1     matt 
   2228      1.12    chris 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2229  1.14.2.4  thorpej 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2230      1.12    chris 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2231      1.12    chris 
   2232       1.1     matt 	/*
   2233       1.1     matt 	 * Enable or disable caching as necessary.
   2234  1.14.2.4  thorpej 	 * Note: the first entry might be part of the kernel pmap,
   2235  1.14.2.4  thorpej 	 * so we can't assume this is indicative of the state of the
   2236  1.14.2.4  thorpej 	 * other (maybe non-kpmap) entries.
   2237       1.1     matt 	 */
   2238  1.14.2.4  thorpej 	if ((entries > 1 && writable) ||
   2239  1.14.2.4  thorpej 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2240      1.12    chris 		if (cacheable_entries == 0)
   2241      1.12    chris 		    return;
   2242  1.14.2.4  thorpej 		for (npv = pv; npv; npv = npv->pv_next) {
   2243  1.14.2.4  thorpej 			if ((pmap == npv->pv_pmap
   2244  1.14.2.4  thorpej 			    || kpmap == npv->pv_pmap) &&
   2245      1.12    chris 			    (npv->pv_flags & PT_NC) == 0) {
   2246      1.12    chris 				ptes[arm_byte_to_page(npv->pv_va)] &=
   2247      1.11    chris 				    ~(PT_C | PT_B);
   2248      1.12    chris  				npv->pv_flags |= PT_NC;
   2249  1.14.2.4  thorpej 				/*
   2250  1.14.2.4  thorpej 				 * If this page needs flushing from the
   2251  1.14.2.4  thorpej 				 * cache, and we aren't going to do it
   2252  1.14.2.4  thorpej 				 * below, do it now.
   2253  1.14.2.4  thorpej 				 */
   2254  1.14.2.4  thorpej 				if ((cacheable_entries < 4 &&
   2255  1.14.2.4  thorpej 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2256  1.14.2.4  thorpej 				    (npv->pv_pmap == kpmap &&
   2257  1.14.2.4  thorpej 				    !clear_cache && kern_cacheable < 4)) {
   2258      1.12    chris 					cpu_cache_purgeID_rng(npv->pv_va,
   2259      1.12    chris 					    NBPG);
   2260      1.12    chris 					cpu_tlb_flushID_SE(npv->pv_va);
   2261      1.12    chris 				}
   2262       1.1     matt 			}
   2263       1.1     matt 		}
   2264  1.14.2.4  thorpej 		if ((clear_cache && cacheable_entries >= 4) ||
   2265  1.14.2.4  thorpej 		    kern_cacheable >= 4) {
   2266      1.12    chris 			cpu_cache_purgeID();
   2267      1.12    chris 			cpu_tlb_flushID();
   2268      1.12    chris 		}
   2269  1.14.2.4  thorpej 		cpu_cpwait();
   2270       1.1     matt 	} else if (entries > 0) {
   2271  1.14.2.4  thorpej 		/*
   2272  1.14.2.4  thorpej 		 * Turn cacheing back on for some pages.  If it is a kernel
   2273  1.14.2.4  thorpej 		 * page, only do so if there are no other writable pages.
   2274  1.14.2.4  thorpej 		 */
   2275  1.14.2.4  thorpej 		for (npv = pv; npv; npv = npv->pv_next) {
   2276  1.14.2.4  thorpej 			if ((pmap == npv->pv_pmap ||
   2277  1.14.2.4  thorpej 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2278  1.14.2.4  thorpej 			    (npv->pv_flags & PT_NC)) {
   2279      1.11    chris 				ptes[arm_byte_to_page(npv->pv_va)] |=
   2280  1.14.2.4  thorpej 				    pte_cache_mode;
   2281      1.12    chris 				npv->pv_flags &= ~PT_NC;
   2282       1.1     matt 			}
   2283       1.1     matt 		}
   2284       1.1     matt 	}
   2285       1.1     matt }
   2286       1.1     matt 
   2287       1.1     matt /*
   2288       1.1     matt  * pmap_remove()
   2289       1.1     matt  *
   2290       1.1     matt  * pmap_remove is responsible for nuking a number of mappings for a range
   2291       1.1     matt  * of virtual address space in the current pmap. To do this efficiently
   2292       1.1     matt  * is interesting, because in a number of cases a wide virtual address
   2293       1.1     matt  * range may be supplied that contains few actual mappings. So, the
   2294       1.1     matt  * optimisations are:
   2295       1.1     matt  *  1. Try and skip over hunks of address space for which an L1 entry
   2296       1.1     matt  *     does not exist.
   2297       1.1     matt  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2298       1.1     matt  *     maybe do just a partial cache clean. This path of execution is
   2299       1.1     matt  *     complicated by the fact that the cache must be flushed _before_
   2300       1.1     matt  *     the PTE is nuked, being a VAC :-)
   2301       1.1     matt  *  3. Maybe later fast-case a single page, but I don't think this is
   2302       1.1     matt  *     going to make _that_ much difference overall.
   2303       1.1     matt  */
   2304       1.1     matt 
   2305       1.1     matt #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2306       1.1     matt 
   2307       1.1     matt void
   2308       1.1     matt pmap_remove(pmap, sva, eva)
   2309  1.14.2.1    lukem 	struct pmap *pmap;
   2310       1.1     matt 	vaddr_t sva;
   2311       1.1     matt 	vaddr_t eva;
   2312       1.1     matt {
   2313       1.1     matt 	int cleanlist_idx = 0;
   2314       1.1     matt 	struct pagelist {
   2315       1.1     matt 		vaddr_t va;
   2316       1.1     matt 		pt_entry_t *pte;
   2317       1.1     matt 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2318      1.11    chris 	pt_entry_t *pte = 0, *ptes;
   2319       1.2     matt 	paddr_t pa;
   2320       1.1     matt 	int pmap_active;
   2321  1.14.2.2  thorpej 	struct pv_head *pvh;
   2322       1.1     matt 
   2323       1.1     matt 	/* Exit quick if there is no pmap */
   2324       1.1     matt 	if (!pmap)
   2325       1.1     matt 		return;
   2326       1.1     matt 
   2327       1.1     matt 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2328       1.1     matt 
   2329       1.1     matt 	sva &= PG_FRAME;
   2330       1.1     matt 	eva &= PG_FRAME;
   2331       1.1     matt 
   2332  1.14.2.2  thorpej 	/*
   2333  1.14.2.2  thorpej 	 * we lock in the pmap => pv_head direction
   2334  1.14.2.2  thorpej 	 */
   2335  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2336  1.14.2.2  thorpej 
   2337      1.11    chris 	ptes = pmap_map_ptes(pmap);
   2338       1.1     matt 	/* Get a page table pointer */
   2339       1.1     matt 	while (sva < eva) {
   2340  1.14.2.4  thorpej 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2341       1.1     matt 			break;
   2342       1.1     matt 		sva = (sva & PD_MASK) + NBPD;
   2343       1.1     matt 	}
   2344      1.11    chris 
   2345      1.11    chris 	pte = &ptes[arm_byte_to_page(sva)];
   2346       1.1     matt 	/* Note if the pmap is active thus require cache and tlb cleans */
   2347       1.1     matt 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2348  1.14.2.1    lukem 	    || (pmap == pmap_kernel()))
   2349       1.1     matt 		pmap_active = 1;
   2350       1.1     matt 	else
   2351       1.1     matt 		pmap_active = 0;
   2352       1.1     matt 
   2353       1.1     matt 	/* Now loop along */
   2354       1.1     matt 	while (sva < eva) {
   2355       1.1     matt 		/* Check if we can move to the next PDE (l1 chunk) */
   2356       1.1     matt 		if (!(sva & PT_MASK))
   2357  1.14.2.4  thorpej 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2358       1.1     matt 				sva += NBPD;
   2359       1.1     matt 				pte += arm_byte_to_page(NBPD);
   2360       1.1     matt 				continue;
   2361       1.1     matt 			}
   2362       1.1     matt 
   2363       1.1     matt 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2364       1.1     matt 		if (pmap_pte_v(pte)) {
   2365       1.1     matt 			int bank, off;
   2366       1.1     matt 
   2367       1.1     matt 			/* Update statistics */
   2368       1.1     matt 			--pmap->pm_stats.resident_count;
   2369       1.1     matt 
   2370       1.1     matt 			/*
   2371       1.1     matt 			 * Add this page to our cache remove list, if we can.
   2372       1.1     matt 			 * If, however the cache remove list is totally full,
   2373       1.1     matt 			 * then do a complete cache invalidation taking note
   2374       1.1     matt 			 * to backtrack the PTE table beforehand, and ignore
   2375       1.1     matt 			 * the lists in future because there's no longer any
   2376       1.1     matt 			 * point in bothering with them (we've paid the
   2377       1.1     matt 			 * penalty, so will carry on unhindered). Otherwise,
   2378       1.1     matt 			 * when we fall out, we just clean the list.
   2379       1.1     matt 			 */
   2380       1.1     matt 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2381       1.1     matt 			pa = pmap_pte_pa(pte);
   2382       1.1     matt 
   2383       1.1     matt 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2384       1.1     matt 				/* Add to the clean list. */
   2385       1.1     matt 				cleanlist[cleanlist_idx].pte = pte;
   2386       1.1     matt 				cleanlist[cleanlist_idx].va = sva;
   2387       1.1     matt 				cleanlist_idx++;
   2388       1.1     matt 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2389       1.1     matt 				int cnt;
   2390       1.1     matt 
   2391       1.1     matt 				/* Nuke everything if needed. */
   2392       1.1     matt 				if (pmap_active) {
   2393       1.1     matt 					cpu_cache_purgeID();
   2394       1.1     matt 					cpu_tlb_flushID();
   2395       1.1     matt 				}
   2396       1.1     matt 
   2397       1.1     matt 				/*
   2398       1.1     matt 				 * Roll back the previous PTE list,
   2399       1.1     matt 				 * and zero out the current PTE.
   2400       1.1     matt 				 */
   2401       1.1     matt 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2402       1.1     matt 					*cleanlist[cnt].pte = 0;
   2403       1.1     matt 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2404       1.1     matt 				}
   2405       1.1     matt 				*pte = 0;
   2406       1.1     matt 				pmap_pte_delref(pmap, sva);
   2407       1.1     matt 				cleanlist_idx++;
   2408       1.1     matt 			} else {
   2409       1.1     matt 				/*
   2410       1.1     matt 				 * We've already nuked the cache and
   2411       1.1     matt 				 * TLB, so just carry on regardless,
   2412       1.1     matt 				 * and we won't need to do it again
   2413       1.1     matt 				 */
   2414       1.1     matt 				*pte = 0;
   2415       1.1     matt 				pmap_pte_delref(pmap, sva);
   2416       1.1     matt 			}
   2417       1.1     matt 
   2418       1.1     matt 			/*
   2419       1.1     matt 			 * Update flags. In a number of circumstances,
   2420       1.1     matt 			 * we could cluster a lot of these and do a
   2421       1.1     matt 			 * number of sequential pages in one go.
   2422       1.1     matt 			 */
   2423       1.1     matt 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2424  1.14.2.2  thorpej 				struct pv_entry *pve;
   2425  1.14.2.2  thorpej 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2426  1.14.2.2  thorpej 				simple_lock(&pvh->pvh_lock);
   2427  1.14.2.2  thorpej 				pve = pmap_remove_pv(pvh, pmap, sva);
   2428  1.14.2.2  thorpej 				pmap_free_pv(pmap, pve);
   2429  1.14.2.2  thorpej 				pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2430  1.14.2.2  thorpej 				simple_unlock(&pvh->pvh_lock);
   2431       1.1     matt 			}
   2432       1.1     matt 		}
   2433       1.1     matt 		sva += NBPG;
   2434       1.1     matt 		pte++;
   2435       1.1     matt 	}
   2436       1.1     matt 
   2437      1.11    chris 	pmap_unmap_ptes(pmap);
   2438       1.1     matt 	/*
   2439       1.1     matt 	 * Now, if we've fallen through down to here, chances are that there
   2440       1.1     matt 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2441       1.1     matt 	 */
   2442       1.1     matt 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2443       1.1     matt 		u_int cnt;
   2444       1.1     matt 
   2445       1.1     matt 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2446       1.1     matt 			if (pmap_active) {
   2447       1.1     matt 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   2448       1.1     matt 				*cleanlist[cnt].pte = 0;
   2449       1.1     matt 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2450       1.1     matt 			} else
   2451       1.1     matt 				*cleanlist[cnt].pte = 0;
   2452       1.1     matt 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2453       1.1     matt 		}
   2454       1.1     matt 	}
   2455  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2456       1.1     matt }
   2457       1.1     matt 
   2458       1.1     matt /*
   2459       1.1     matt  * Routine:	pmap_remove_all
   2460       1.1     matt  * Function:
   2461       1.1     matt  *		Removes this physical page from
   2462       1.1     matt  *		all physical maps in which it resides.
   2463       1.1     matt  *		Reflects back modify bits to the pager.
   2464       1.1     matt  */
   2465       1.1     matt 
   2466  1.14.2.4  thorpej static void
   2467       1.1     matt pmap_remove_all(pa)
   2468       1.2     matt 	paddr_t pa;
   2469       1.1     matt {
   2470  1.14.2.2  thorpej 	struct pv_entry *pv, *npv;
   2471  1.14.2.2  thorpej 	struct pv_head *pvh;
   2472  1.14.2.1    lukem 	struct pmap *pmap;
   2473      1.11    chris 	pt_entry_t *pte, *ptes;
   2474       1.1     matt 
   2475       1.1     matt 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   2476       1.1     matt 
   2477  1.14.2.2  thorpej 	/* set pv_head => pmap locking */
   2478  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_LOCK();
   2479       1.1     matt 
   2480  1.14.2.2  thorpej 	pvh = pmap_find_pvh(pa);
   2481  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   2482  1.14.2.2  thorpej 
   2483  1.14.2.2  thorpej 	pv = pvh->pvh_list;
   2484  1.14.2.2  thorpej 	if (pv == NULL)
   2485  1.14.2.2  thorpej 	{
   2486  1.14.2.2  thorpej 	    PDEBUG(0, printf("free page\n"));
   2487  1.14.2.2  thorpej 	    simple_unlock(&pvh->pvh_lock);
   2488  1.14.2.2  thorpej 	    PMAP_HEAD_TO_MAP_UNLOCK();
   2489  1.14.2.2  thorpej 	    return;
   2490       1.1     matt 	}
   2491  1.14.2.2  thorpej 	pmap_clean_page(pv, FALSE);
   2492       1.1     matt 
   2493       1.1     matt 	while (pv) {
   2494       1.1     matt 		pmap = pv->pv_pmap;
   2495      1.11    chris 		ptes = pmap_map_ptes(pmap);
   2496      1.11    chris 		pte = &ptes[arm_byte_to_page(pv->pv_va)];
   2497       1.1     matt 
   2498       1.1     matt 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2499       1.1     matt 		    pv->pv_va, pv->pv_flags));
   2500       1.1     matt #ifdef DEBUG
   2501  1.14.2.4  thorpej 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2502  1.14.2.4  thorpej 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2503       1.1     matt 			panic("pmap_remove_all: bad mapping");
   2504       1.1     matt #endif	/* DEBUG */
   2505       1.1     matt 
   2506       1.1     matt 		/*
   2507       1.1     matt 		 * Update statistics
   2508       1.1     matt 		 */
   2509       1.1     matt 		--pmap->pm_stats.resident_count;
   2510       1.1     matt 
   2511       1.1     matt 		/* Wired bit */
   2512       1.1     matt 		if (pv->pv_flags & PT_W)
   2513       1.1     matt 			--pmap->pm_stats.wired_count;
   2514       1.1     matt 
   2515       1.1     matt 		/*
   2516       1.1     matt 		 * Invalidate the PTEs.
   2517       1.1     matt 		 * XXX: should cluster them up and invalidate as many
   2518       1.1     matt 		 * as possible at once.
   2519       1.1     matt 		 */
   2520       1.1     matt 
   2521       1.1     matt #ifdef needednotdone
   2522       1.1     matt reduce wiring count on page table pages as references drop
   2523       1.1     matt #endif
   2524       1.1     matt 
   2525       1.1     matt 		*pte = 0;
   2526       1.1     matt 		pmap_pte_delref(pmap, pv->pv_va);
   2527       1.1     matt 
   2528       1.1     matt 		npv = pv->pv_next;
   2529  1.14.2.2  thorpej 		pmap_free_pv(pmap, pv);
   2530       1.1     matt 		pv = npv;
   2531      1.11    chris 		pmap_unmap_ptes(pmap);
   2532       1.1     matt 	}
   2533  1.14.2.2  thorpej 	pvh->pvh_list = NULL;
   2534  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   2535  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_UNLOCK();
   2536       1.1     matt 
   2537       1.1     matt 	PDEBUG(0, printf("done\n"));
   2538       1.1     matt 	cpu_tlb_flushID();
   2539  1.14.2.4  thorpej 	cpu_cpwait();
   2540       1.1     matt }
   2541       1.1     matt 
   2542       1.1     matt 
   2543       1.1     matt /*
   2544       1.1     matt  * Set the physical protection on the specified range of this map as requested.
   2545       1.1     matt  */
   2546       1.1     matt 
   2547       1.1     matt void
   2548       1.1     matt pmap_protect(pmap, sva, eva, prot)
   2549  1.14.2.1    lukem 	struct pmap *pmap;
   2550       1.1     matt 	vaddr_t sva;
   2551       1.1     matt 	vaddr_t eva;
   2552       1.1     matt 	vm_prot_t prot;
   2553       1.1     matt {
   2554      1.11    chris 	pt_entry_t *pte = NULL, *ptes;
   2555       1.1     matt 	int armprot;
   2556       1.1     matt 	int flush = 0;
   2557       1.2     matt 	paddr_t pa;
   2558       1.1     matt 	int bank, off;
   2559  1.14.2.2  thorpej 	struct pv_head *pvh;
   2560       1.1     matt 
   2561       1.1     matt 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2562       1.1     matt 	    pmap, sva, eva, prot));
   2563       1.1     matt 
   2564       1.1     matt 	if (~prot & VM_PROT_READ) {
   2565       1.1     matt 		/* Just remove the mappings. */
   2566       1.1     matt 		pmap_remove(pmap, sva, eva);
   2567  1.14.2.4  thorpej 		/* pmap_update not needed as it should be called by the caller
   2568  1.14.2.4  thorpej 		 * of pmap_protect */
   2569       1.1     matt 		return;
   2570       1.1     matt 	}
   2571       1.1     matt 	if (prot & VM_PROT_WRITE) {
   2572       1.1     matt 		/*
   2573       1.1     matt 		 * If this is a read->write transition, just ignore it and let
   2574       1.1     matt 		 * uvm_fault() take care of it later.
   2575       1.1     matt 		 */
   2576       1.1     matt 		return;
   2577       1.1     matt 	}
   2578       1.1     matt 
   2579       1.1     matt 	sva &= PG_FRAME;
   2580       1.1     matt 	eva &= PG_FRAME;
   2581       1.1     matt 
   2582  1.14.2.2  thorpej 	/* Need to lock map->head */
   2583  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2584  1.14.2.2  thorpej 
   2585      1.11    chris 	ptes = pmap_map_ptes(pmap);
   2586       1.1     matt 	/*
   2587       1.1     matt 	 * We need to acquire a pointer to a page table page before entering
   2588       1.1     matt 	 * the following loop.
   2589       1.1     matt 	 */
   2590       1.1     matt 	while (sva < eva) {
   2591  1.14.2.4  thorpej 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2592       1.1     matt 			break;
   2593       1.1     matt 		sva = (sva & PD_MASK) + NBPD;
   2594       1.1     matt 	}
   2595      1.11    chris 
   2596      1.11    chris 	pte = &ptes[arm_byte_to_page(sva)];
   2597  1.14.2.2  thorpej 
   2598       1.1     matt 	while (sva < eva) {
   2599       1.1     matt 		/* only check once in a while */
   2600       1.1     matt 		if ((sva & PT_MASK) == 0) {
   2601  1.14.2.4  thorpej 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2602       1.1     matt 				/* We can race ahead here, to the next pde. */
   2603       1.1     matt 				sva += NBPD;
   2604       1.1     matt 				pte += arm_byte_to_page(NBPD);
   2605       1.1     matt 				continue;
   2606       1.1     matt 			}
   2607       1.1     matt 		}
   2608       1.1     matt 
   2609       1.1     matt 		if (!pmap_pte_v(pte))
   2610       1.1     matt 			goto next;
   2611       1.1     matt 
   2612       1.1     matt 		flush = 1;
   2613       1.1     matt 
   2614       1.1     matt 		armprot = 0;
   2615       1.1     matt 		if (sva < VM_MAXUSER_ADDRESS)
   2616       1.1     matt 			armprot |= PT_AP(AP_U);
   2617       1.1     matt 		else if (sva < VM_MAX_ADDRESS)
   2618       1.1     matt 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2619       1.1     matt 		*pte = (*pte & 0xfffff00f) | armprot;
   2620       1.1     matt 
   2621       1.1     matt 		pa = pmap_pte_pa(pte);
   2622       1.1     matt 
   2623       1.1     matt 		/* Get the physical page index */
   2624       1.1     matt 
   2625       1.1     matt 		/* Clear write flag */
   2626       1.1     matt 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2627  1.14.2.2  thorpej 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2628  1.14.2.2  thorpej 			simple_lock(&pvh->pvh_lock);
   2629  1.14.2.2  thorpej 			(void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
   2630  1.14.2.2  thorpej 			pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
   2631  1.14.2.2  thorpej 			simple_unlock(&pvh->pvh_lock);
   2632       1.1     matt 		}
   2633       1.1     matt 
   2634       1.1     matt next:
   2635       1.1     matt 		sva += NBPG;
   2636       1.1     matt 		pte++;
   2637       1.1     matt 	}
   2638      1.11    chris 	pmap_unmap_ptes(pmap);
   2639  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2640       1.1     matt 	if (flush)
   2641       1.1     matt 		cpu_tlb_flushID();
   2642       1.1     matt }
   2643       1.1     matt 
   2644       1.1     matt /*
   2645  1.14.2.1    lukem  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2646       1.1     matt  * int flags)
   2647       1.1     matt  *
   2648       1.1     matt  *      Insert the given physical page (p) at
   2649       1.1     matt  *      the specified virtual address (v) in the
   2650       1.1     matt  *      target physical map with the protection requested.
   2651       1.1     matt  *
   2652       1.1     matt  *      If specified, the page will be wired down, meaning
   2653       1.1     matt  *      that the related pte can not be reclaimed.
   2654       1.1     matt  *
   2655       1.1     matt  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2656       1.1     matt  *      or lose information.  That is, this routine must actually
   2657       1.1     matt  *      insert this page into the given map NOW.
   2658       1.1     matt  */
   2659       1.1     matt 
   2660       1.1     matt int
   2661       1.1     matt pmap_enter(pmap, va, pa, prot, flags)
   2662  1.14.2.1    lukem 	struct pmap *pmap;
   2663       1.1     matt 	vaddr_t va;
   2664       1.2     matt 	paddr_t pa;
   2665       1.1     matt 	vm_prot_t prot;
   2666       1.1     matt 	int flags;
   2667       1.1     matt {
   2668      1.11    chris 	pt_entry_t *pte, *ptes;
   2669       1.1     matt 	u_int npte;
   2670       1.1     matt 	int bank, off;
   2671       1.2     matt 	paddr_t opa;
   2672       1.1     matt 	int nflags;
   2673       1.1     matt 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2674  1.14.2.2  thorpej 	struct pv_entry *pve;
   2675  1.14.2.2  thorpej 	struct pv_head	*pvh;
   2676  1.14.2.2  thorpej 	int error;
   2677       1.1     matt 
   2678       1.1     matt 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2679       1.1     matt 	    va, pa, pmap, prot, wired));
   2680       1.1     matt 
   2681       1.1     matt #ifdef DIAGNOSTIC
   2682       1.1     matt 	/* Valid address ? */
   2683       1.1     matt 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   2684       1.1     matt 		panic("pmap_enter: too big");
   2685       1.1     matt 	if (pmap != pmap_kernel() && va != 0) {
   2686       1.1     matt 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2687       1.1     matt 			panic("pmap_enter: kernel page in user map");
   2688       1.1     matt 	} else {
   2689       1.1     matt 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2690       1.1     matt 			panic("pmap_enter: user page in kernel map");
   2691       1.1     matt 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2692       1.1     matt 			panic("pmap_enter: entering PT page");
   2693       1.1     matt 	}
   2694       1.1     matt #endif
   2695  1.14.2.2  thorpej 	/* get lock */
   2696  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2697       1.1     matt 	/*
   2698       1.1     matt 	 * Get a pointer to the pte for this virtual address. If the
   2699       1.1     matt 	 * pte pointer is NULL then we are missing the L2 page table
   2700       1.1     matt 	 * so we need to create one.
   2701       1.1     matt 	 */
   2702  1.14.2.4  thorpej 	/* XXX horrible hack to get us working with lockdebug */
   2703  1.14.2.4  thorpej 	simple_lock(&pmap->pm_obj.vmobjlock);
   2704       1.1     matt 	pte = pmap_pte(pmap, va);
   2705       1.1     matt 	if (!pte) {
   2706  1.14.2.2  thorpej 		struct vm_page *ptp;
   2707       1.1     matt 
   2708  1.14.2.2  thorpej 		/* if failure is allowed then don't try too hard */
   2709  1.14.2.2  thorpej 		ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
   2710  1.14.2.2  thorpej 		if (ptp == NULL) {
   2711  1.14.2.2  thorpej 			if (flags & PMAP_CANFAIL) {
   2712  1.14.2.2  thorpej 				error = ENOMEM;
   2713  1.14.2.2  thorpej 				goto out;
   2714  1.14.2.2  thorpej 			}
   2715  1.14.2.2  thorpej 			panic("pmap_enter: get ptp failed");
   2716  1.14.2.2  thorpej 		}
   2717  1.14.2.1    lukem 
   2718       1.1     matt 		pte = pmap_pte(pmap, va);
   2719       1.1     matt #ifdef DIAGNOSTIC
   2720       1.1     matt 		if (!pte)
   2721       1.1     matt 			panic("pmap_enter: no pte");
   2722       1.1     matt #endif
   2723       1.1     matt 	}
   2724       1.1     matt 
   2725       1.1     matt 	nflags = 0;
   2726       1.1     matt 	if (prot & VM_PROT_WRITE)
   2727       1.1     matt 		nflags |= PT_Wr;
   2728       1.1     matt 	if (wired)
   2729       1.1     matt 		nflags |= PT_W;
   2730       1.1     matt 
   2731       1.1     matt 	/* More debugging info */
   2732       1.1     matt 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2733       1.1     matt 	    *pte));
   2734       1.1     matt 
   2735       1.1     matt 	/* Is the pte valid ? If so then this page is already mapped */
   2736       1.1     matt 	if (pmap_pte_v(pte)) {
   2737       1.1     matt 		/* Get the physical address of the current page mapped */
   2738       1.1     matt 		opa = pmap_pte_pa(pte);
   2739       1.1     matt 
   2740       1.1     matt #ifdef MYCROFT_HACK
   2741       1.1     matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2742       1.1     matt #endif
   2743       1.1     matt 
   2744       1.1     matt 		/* Are we mapping the same page ? */
   2745       1.1     matt 		if (opa == pa) {
   2746       1.1     matt 			/* All we must be doing is changing the protection */
   2747       1.1     matt 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2748       1.1     matt 			    va, pa));
   2749       1.1     matt 
   2750       1.1     matt 			/* Has the wiring changed ? */
   2751       1.1     matt 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2752  1.14.2.2  thorpej 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2753  1.14.2.2  thorpej 				simple_lock(&pvh->pvh_lock);
   2754  1.14.2.2  thorpej 				(void) pmap_modify_pv(pmap, va, pvh,
   2755       1.1     matt 				    PT_Wr | PT_W, nflags);
   2756  1.14.2.2  thorpej 				simple_unlock(&pvh->pvh_lock);
   2757  1.14.2.2  thorpej  			} else {
   2758  1.14.2.2  thorpej 				pvh = NULL;
   2759  1.14.2.2  thorpej 			}
   2760       1.1     matt 		} else {
   2761       1.1     matt 			/* We are replacing the page with a new one. */
   2762       1.1     matt 			cpu_cache_purgeID_rng(va, NBPG);
   2763       1.1     matt 
   2764       1.1     matt 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2765       1.1     matt 			    va, pa, opa));
   2766       1.1     matt 
   2767       1.1     matt 			/*
   2768       1.1     matt 			 * If it is part of our managed memory then we
   2769       1.1     matt 			 * must remove it from the PV list
   2770       1.1     matt 			 */
   2771       1.1     matt 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2772  1.14.2.2  thorpej 				pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2773  1.14.2.2  thorpej 				simple_lock(&pvh->pvh_lock);
   2774  1.14.2.2  thorpej 				pve = pmap_remove_pv(pvh, pmap, va);
   2775  1.14.2.2  thorpej 				simple_unlock(&pvh->pvh_lock);
   2776  1.14.2.2  thorpej 			} else {
   2777  1.14.2.2  thorpej 				pve = NULL;
   2778       1.1     matt 			}
   2779       1.1     matt 
   2780       1.1     matt 			goto enter;
   2781       1.1     matt 		}
   2782       1.1     matt 	} else {
   2783       1.1     matt 		opa = 0;
   2784  1.14.2.2  thorpej 		pve = NULL;
   2785       1.1     matt 		pmap_pte_addref(pmap, va);
   2786       1.1     matt 
   2787       1.1     matt 		/* pte is not valid so we must be hooking in a new page */
   2788       1.1     matt 		++pmap->pm_stats.resident_count;
   2789       1.1     matt 
   2790       1.1     matt 	enter:
   2791       1.1     matt 		/*
   2792       1.1     matt 		 * Enter on the PV list if part of our managed memory
   2793       1.1     matt 		 */
   2794  1.14.2.2  thorpej 		bank = vm_physseg_find(atop(pa), &off);
   2795  1.14.2.2  thorpej 
   2796  1.14.2.2  thorpej 		if (pmap_initialized && (bank != -1)) {
   2797  1.14.2.2  thorpej 			pvh = &vm_physmem[bank].pmseg.pvhead[off];
   2798  1.14.2.2  thorpej 			if (pve == NULL) {
   2799  1.14.2.2  thorpej 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2800  1.14.2.2  thorpej 				if (pve == NULL) {
   2801  1.14.2.2  thorpej 					if (flags & PMAP_CANFAIL) {
   2802  1.14.2.2  thorpej 						error = ENOMEM;
   2803  1.14.2.2  thorpej 						goto out;
   2804  1.14.2.2  thorpej 					}
   2805  1.14.2.2  thorpej 					panic("pmap_enter: no pv entries available");
   2806  1.14.2.2  thorpej 				}
   2807  1.14.2.2  thorpej 			}
   2808  1.14.2.2  thorpej 			/* enter_pv locks pvh when adding */
   2809  1.14.2.2  thorpej 			pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
   2810  1.14.2.2  thorpej 		} else {
   2811  1.14.2.2  thorpej 			pvh = NULL;
   2812  1.14.2.2  thorpej 			if (pve != NULL)
   2813  1.14.2.2  thorpej 				pmap_free_pv(pmap, pve);
   2814       1.1     matt 		}
   2815       1.1     matt 	}
   2816       1.1     matt 
   2817       1.1     matt #ifdef MYCROFT_HACK
   2818       1.1     matt 	if (mycroft_hack)
   2819       1.1     matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2820       1.1     matt #endif
   2821       1.1     matt 
   2822       1.1     matt 	/* Construct the pte, giving the correct access. */
   2823       1.1     matt 	npte = (pa & PG_FRAME);
   2824       1.1     matt 
   2825       1.1     matt 	/* VA 0 is magic. */
   2826       1.1     matt 	if (pmap != pmap_kernel() && va != 0)
   2827       1.1     matt 		npte |= PT_AP(AP_U);
   2828       1.1     matt 
   2829  1.14.2.2  thorpej 	if (pmap_initialized && bank != -1) {
   2830       1.1     matt #ifdef DIAGNOSTIC
   2831       1.1     matt 		if ((flags & VM_PROT_ALL) & ~prot)
   2832       1.1     matt 			panic("pmap_enter: access_type exceeds prot");
   2833       1.1     matt #endif
   2834  1.14.2.4  thorpej 		npte |= pte_cache_mode;
   2835       1.1     matt 		if (flags & VM_PROT_WRITE) {
   2836       1.1     matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2837       1.1     matt 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2838       1.1     matt 		} else if (flags & VM_PROT_ALL) {
   2839       1.1     matt 			npte |= L2_SPAGE;
   2840       1.1     matt 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2841       1.1     matt 		} else
   2842       1.1     matt 			npte |= L2_INVAL;
   2843       1.1     matt 	} else {
   2844       1.1     matt 		if (prot & VM_PROT_WRITE)
   2845       1.1     matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2846       1.1     matt 		else if (prot & VM_PROT_ALL)
   2847       1.1     matt 			npte |= L2_SPAGE;
   2848       1.1     matt 		else
   2849       1.1     matt 			npte |= L2_INVAL;
   2850       1.1     matt 	}
   2851       1.1     matt 
   2852       1.1     matt #ifdef MYCROFT_HACK
   2853       1.1     matt 	if (mycroft_hack)
   2854       1.1     matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2855       1.1     matt #endif
   2856       1.1     matt 
   2857       1.1     matt 	*pte = npte;
   2858       1.1     matt 
   2859  1.14.2.2  thorpej 	if (pmap_initialized && bank != -1)
   2860      1.11    chris 	{
   2861      1.12    chris 		boolean_t pmap_active = FALSE;
   2862      1.11    chris 		/* XXX this will change once the whole of pmap_enter uses
   2863      1.11    chris 		 * map_ptes
   2864      1.11    chris 		 */
   2865      1.11    chris 		ptes = pmap_map_ptes(pmap);
   2866      1.12    chris 		if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   2867  1.14.2.1    lukem 		    || (pmap == pmap_kernel()))
   2868      1.12    chris 			pmap_active = TRUE;
   2869  1.14.2.2  thorpej 		simple_lock(&pvh->pvh_lock);
   2870  1.14.2.2  thorpej  		pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
   2871  1.14.2.2  thorpej 		simple_unlock(&pvh->pvh_lock);
   2872      1.11    chris 		pmap_unmap_ptes(pmap);
   2873      1.11    chris 	}
   2874       1.1     matt 
   2875       1.1     matt 	/* Better flush the TLB ... */
   2876       1.1     matt 	cpu_tlb_flushID_SE(va);
   2877  1.14.2.2  thorpej 	error = 0;
   2878  1.14.2.2  thorpej out:
   2879  1.14.2.4  thorpej 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2880  1.14.2.2  thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2881       1.1     matt 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2882       1.1     matt 
   2883  1.14.2.2  thorpej 	return error;
   2884       1.1     matt }
   2885       1.1     matt 
   2886       1.1     matt void
   2887       1.1     matt pmap_kenter_pa(va, pa, prot)
   2888       1.1     matt 	vaddr_t va;
   2889       1.1     matt 	paddr_t pa;
   2890       1.1     matt 	vm_prot_t prot;
   2891       1.1     matt {
   2892      1.14      chs 	struct pmap *pmap = pmap_kernel();
   2893      1.13    chris 	pt_entry_t *pte;
   2894      1.14      chs 	struct vm_page *pg;
   2895      1.13    chris 
   2896  1.14.2.4  thorpej 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2897      1.14      chs 
   2898  1.14.2.4  thorpej #ifdef DIAGNOSTIC
   2899  1.14.2.4  thorpej 		if (pmap_pde_v(pmap_pde(pmap, va)))
   2900  1.14.2.4  thorpej 			panic("Trying to map kernel page into section mapping"
   2901  1.14.2.4  thorpej 			    " VA=%lx PA=%lx", va, pa);
   2902  1.14.2.4  thorpej #endif
   2903      1.13    chris 		/*
   2904      1.13    chris 		 * For the kernel pmaps it would be better to ensure
   2905      1.13    chris 		 * that they are always present, and to grow the
   2906      1.13    chris 		 * kernel as required.
   2907      1.13    chris 		 */
   2908      1.13    chris 
   2909  1.14.2.4  thorpej 	    	/* must lock the pmap */
   2910  1.14.2.4  thorpej 	    	simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
   2911      1.13    chris 		/* Allocate a page table */
   2912  1.14.2.1    lukem 		pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
   2913      1.14      chs 		    UVM_PGA_USERESERVE | UVM_PGA_ZERO);
   2914      1.14      chs 		if (pg == NULL) {
   2915      1.13    chris 			panic("pmap_kenter_pa: no free pages");
   2916      1.13    chris 		}
   2917  1.14.2.1    lukem 		pg->flags &= ~PG_BUSY;	/* never busy */
   2918      1.13    chris 
   2919      1.13    chris 		/* Wire this page table into the L1. */
   2920  1.14.2.2  thorpej 		pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
   2921  1.14.2.4  thorpej 		simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
   2922      1.13    chris 	}
   2923      1.13    chris 	pte = vtopte(va);
   2924      1.14      chs 	KASSERT(!pmap_pte_v(pte));
   2925      1.13    chris 	*pte = L2_PTE(pa, AP_KRW);
   2926       1.1     matt }
   2927       1.1     matt 
   2928       1.1     matt void
   2929       1.1     matt pmap_kremove(va, len)
   2930       1.1     matt 	vaddr_t va;
   2931       1.1     matt 	vsize_t len;
   2932       1.1     matt {
   2933      1.14      chs 	pt_entry_t *pte;
   2934      1.14      chs 
   2935       1.1     matt 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2936      1.13    chris 
   2937      1.14      chs 		/*
   2938      1.14      chs 		 * We assume that we will only be called with small
   2939      1.14      chs 		 * regions of memory.
   2940      1.14      chs 		 */
   2941      1.14      chs 
   2942  1.14.2.4  thorpej 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2943      1.13    chris 		pte = vtopte(va);
   2944      1.13    chris 		cpu_cache_purgeID_rng(va, PAGE_SIZE);
   2945      1.13    chris 		*pte = 0;
   2946      1.13    chris 		cpu_tlb_flushID_SE(va);
   2947       1.1     matt 	}
   2948       1.1     matt }
   2949       1.1     matt 
   2950       1.1     matt /*
   2951       1.1     matt  * pmap_page_protect:
   2952       1.1     matt  *
   2953       1.1     matt  * Lower the permission for all mappings to a given page.
   2954       1.1     matt  */
   2955       1.1     matt 
   2956       1.1     matt void
   2957       1.1     matt pmap_page_protect(pg, prot)
   2958       1.1     matt 	struct vm_page *pg;
   2959       1.1     matt 	vm_prot_t prot;
   2960       1.1     matt {
   2961       1.1     matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2962       1.1     matt 
   2963       1.1     matt 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2964       1.1     matt 
   2965       1.1     matt 	switch(prot) {
   2966  1.14.2.2  thorpej 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2967  1.14.2.2  thorpej 	case VM_PROT_READ|VM_PROT_WRITE:
   2968  1.14.2.2  thorpej 		return;
   2969  1.14.2.2  thorpej 
   2970       1.1     matt 	case VM_PROT_READ:
   2971       1.1     matt 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2972       1.1     matt 		pmap_copy_on_write(pa);
   2973       1.1     matt 		break;
   2974       1.1     matt 
   2975       1.1     matt 	default:
   2976       1.1     matt 		pmap_remove_all(pa);
   2977       1.1     matt 		break;
   2978       1.1     matt 	}
   2979       1.1     matt }
   2980       1.1     matt 
   2981       1.1     matt 
   2982       1.1     matt /*
   2983       1.1     matt  * Routine:	pmap_unwire
   2984       1.1     matt  * Function:	Clear the wired attribute for a map/virtual-address
   2985       1.1     matt  *		pair.
   2986       1.1     matt  * In/out conditions:
   2987       1.1     matt  *		The mapping must already exist in the pmap.
   2988       1.1     matt  */
   2989       1.1     matt 
   2990       1.1     matt void
   2991       1.1     matt pmap_unwire(pmap, va)
   2992  1.14.2.1    lukem 	struct pmap *pmap;
   2993       1.1     matt 	vaddr_t va;
   2994       1.1     matt {
   2995       1.1     matt 	pt_entry_t *pte;
   2996       1.2     matt 	paddr_t pa;
   2997       1.1     matt 	int bank, off;
   2998  1.14.2.2  thorpej 	struct pv_head *pvh;
   2999       1.1     matt 
   3000       1.1     matt 	/*
   3001       1.1     matt 	 * Make sure pmap is valid. -dct
   3002       1.1     matt 	 */
   3003       1.1     matt 	if (pmap == NULL)
   3004       1.1     matt 		return;
   3005       1.1     matt 
   3006       1.1     matt 	/* Get the pte */
   3007       1.1     matt 	pte = pmap_pte(pmap, va);
   3008       1.1     matt 	if (!pte)
   3009       1.1     matt 		return;
   3010       1.1     matt 
   3011       1.1     matt 	/* Extract the physical address of the page */
   3012       1.1     matt 	pa = pmap_pte_pa(pte);
   3013       1.1     matt 
   3014       1.1     matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3015       1.1     matt 		return;
   3016  1.14.2.2  thorpej 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3017  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   3018       1.1     matt 	/* Update the wired bit in the pv entry for this page. */
   3019  1.14.2.2  thorpej 	(void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
   3020  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   3021       1.1     matt }
   3022       1.1     matt 
   3023       1.1     matt /*
   3024  1.14.2.1    lukem  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   3025       1.1     matt  *
   3026       1.1     matt  * Return the pointer to a page table entry corresponding to the supplied
   3027       1.1     matt  * virtual address.
   3028       1.1     matt  *
   3029       1.1     matt  * The page directory is first checked to make sure that a page table
   3030       1.1     matt  * for the address in question exists and if it does a pointer to the
   3031       1.1     matt  * entry is returned.
   3032       1.1     matt  *
   3033       1.1     matt  * The way this works is that that the kernel page tables are mapped
   3034       1.1     matt  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   3035       1.1     matt  * This allows page tables to be located quickly.
   3036       1.1     matt  */
   3037       1.1     matt pt_entry_t *
   3038       1.1     matt pmap_pte(pmap, va)
   3039  1.14.2.1    lukem 	struct pmap *pmap;
   3040       1.1     matt 	vaddr_t va;
   3041       1.1     matt {
   3042       1.1     matt 	pt_entry_t *ptp;
   3043       1.1     matt 	pt_entry_t *result;
   3044       1.1     matt 
   3045       1.1     matt 	/* The pmap must be valid */
   3046       1.1     matt 	if (!pmap)
   3047       1.1     matt 		return(NULL);
   3048       1.1     matt 
   3049       1.1     matt 	/* Return the address of the pte */
   3050       1.1     matt 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   3051       1.1     matt 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   3052       1.1     matt 
   3053       1.1     matt 	/* Do we have a valid pde ? If not we don't have a page table */
   3054  1.14.2.4  thorpej 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   3055       1.1     matt 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   3056       1.1     matt 		    pmap_pde(pmap, va)));
   3057       1.1     matt 		return(NULL);
   3058       1.1     matt 	}
   3059       1.1     matt 
   3060       1.1     matt 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   3061       1.1     matt 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3062       1.1     matt 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3063       1.1     matt 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   3064       1.1     matt 
   3065       1.1     matt 	/*
   3066       1.1     matt 	 * If the pmap is the kernel pmap or the pmap is the active one
   3067       1.1     matt 	 * then we can just return a pointer to entry relative to
   3068       1.1     matt 	 * PROCESS_PAGE_TBLS_BASE.
   3069       1.1     matt 	 * Otherwise we need to map the page tables to an alternative
   3070       1.1     matt 	 * address and reference them there.
   3071       1.1     matt 	 */
   3072  1.14.2.1    lukem 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   3073       1.1     matt 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3074       1.1     matt 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   3075       1.1     matt 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3076       1.1     matt 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3077       1.1     matt 	} else {
   3078       1.1     matt 		struct proc *p = curproc;
   3079       1.1     matt 
   3080       1.1     matt 		/* If we don't have a valid curproc use proc0 */
   3081       1.1     matt 		/* Perhaps we should just use kernel_pmap instead */
   3082       1.1     matt 		if (p == NULL)
   3083       1.1     matt 			p = &proc0;
   3084       1.1     matt #ifdef DIAGNOSTIC
   3085       1.1     matt 		/*
   3086       1.1     matt 		 * The pmap should always be valid for the process so
   3087       1.1     matt 		 * panic if it is not.
   3088       1.1     matt 		 */
   3089       1.1     matt 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   3090       1.1     matt 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   3091       1.1     matt 			    va, p, p->p_vmspace);
   3092       1.1     matt 			console_debugger();
   3093       1.1     matt 		}
   3094       1.1     matt 		/*
   3095       1.1     matt 		 * The pmap for the current process should be mapped. If it
   3096       1.1     matt 		 * is not then we have a problem.
   3097       1.1     matt 		 */
   3098       1.1     matt 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3099       1.1     matt 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3100       1.1     matt 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3101       1.1     matt 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   3102       1.1     matt 			printf("pmap pagetable = P%08lx current = P%08x ",
   3103       1.1     matt 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   3104       1.1     matt 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   3105       1.1     matt 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   3106       1.1     matt 			    PG_FRAME));
   3107       1.1     matt 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3108       1.1     matt 			panic("pmap_pte: current and pmap mismatch\n");
   3109       1.1     matt 		}
   3110       1.1     matt #endif
   3111       1.1     matt 
   3112       1.1     matt 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3113       1.1     matt 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3114  1.14.2.2  thorpej 		    pmap->pm_pptpt, FALSE);
   3115       1.1     matt 		cpu_tlb_flushD();
   3116  1.14.2.4  thorpej 		cpu_cpwait();
   3117       1.1     matt 	}
   3118       1.1     matt 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3119       1.1     matt 	    ((va >> (PGSHIFT-2)) & ~3)));
   3120       1.1     matt 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3121       1.1     matt 	return(result);
   3122       1.1     matt }
   3123       1.1     matt 
   3124       1.1     matt /*
   3125       1.1     matt  * Routine:  pmap_extract
   3126       1.1     matt  * Function:
   3127       1.1     matt  *           Extract the physical page address associated
   3128       1.1     matt  *           with the given map/virtual_address pair.
   3129       1.1     matt  */
   3130       1.1     matt boolean_t
   3131       1.1     matt pmap_extract(pmap, va, pap)
   3132  1.14.2.1    lukem 	struct pmap *pmap;
   3133       1.1     matt 	vaddr_t va;
   3134       1.1     matt 	paddr_t *pap;
   3135       1.1     matt {
   3136      1.11    chris 	pt_entry_t *pte, *ptes;
   3137       1.1     matt 	paddr_t pa;
   3138       1.1     matt 
   3139       1.1     matt 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3140       1.1     matt 
   3141       1.1     matt 	/*
   3142      1.11    chris 	 * Get the pte for this virtual address.
   3143       1.1     matt 	 */
   3144      1.11    chris 	ptes = pmap_map_ptes(pmap);
   3145      1.11    chris 	pte = &ptes[arm_byte_to_page(va)];
   3146       1.1     matt 
   3147      1.11    chris 	/*
   3148      1.11    chris 	 * If there is no pte then there is no page table etc.
   3149      1.11    chris 	 * Is the pte valid ? If not then no paged is actually mapped here
   3150  1.14.2.4  thorpej 	 * XXX Should we handle section mappings?
   3151      1.11    chris 	 */
   3152  1.14.2.4  thorpej 	if (!pmap_pde_page(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
   3153      1.11    chris 	    pmap_unmap_ptes(pmap);
   3154      1.11    chris     	    return (FALSE);
   3155      1.11    chris 	}
   3156       1.1     matt 
   3157       1.1     matt 	/* Return the physical address depending on the PTE type */
   3158       1.1     matt 	/* XXX What about L1 section mappings ? */
   3159       1.1     matt 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   3160       1.1     matt 		/* Extract the physical address from the pte */
   3161       1.1     matt 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   3162       1.1     matt 
   3163       1.1     matt 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3164       1.1     matt 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3165       1.1     matt 
   3166       1.1     matt 		if (pap != NULL)
   3167       1.1     matt 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3168       1.1     matt 	} else {
   3169       1.1     matt 		/* Extract the physical address from the pte */
   3170       1.1     matt 		pa = pmap_pte_pa(pte);
   3171       1.1     matt 
   3172       1.1     matt 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3173       1.1     matt 		    (pa | (va & ~PG_FRAME))));
   3174       1.1     matt 
   3175       1.1     matt 		if (pap != NULL)
   3176       1.1     matt 			*pap = pa | (va & ~PG_FRAME);
   3177       1.1     matt 	}
   3178      1.11    chris 	pmap_unmap_ptes(pmap);
   3179      1.11    chris 	return (TRUE);
   3180       1.1     matt }
   3181       1.1     matt 
   3182       1.1     matt 
   3183       1.1     matt /*
   3184       1.1     matt  * Copy the range specified by src_addr/len from the source map to the
   3185       1.1     matt  * range dst_addr/len in the destination map.
   3186       1.1     matt  *
   3187       1.1     matt  * This routine is only advisory and need not do anything.
   3188       1.1     matt  */
   3189       1.1     matt 
   3190       1.1     matt void
   3191       1.1     matt pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3192  1.14.2.1    lukem 	struct pmap *dst_pmap;
   3193  1.14.2.1    lukem 	struct pmap *src_pmap;
   3194       1.1     matt 	vaddr_t dst_addr;
   3195       1.2     matt 	vsize_t len;
   3196       1.1     matt 	vaddr_t src_addr;
   3197       1.1     matt {
   3198       1.1     matt 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3199       1.1     matt 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3200       1.1     matt }
   3201       1.1     matt 
   3202       1.1     matt #if defined(PMAP_DEBUG)
   3203       1.1     matt void
   3204       1.1     matt pmap_dump_pvlist(phys, m)
   3205       1.1     matt 	vaddr_t phys;
   3206       1.1     matt 	char *m;
   3207       1.1     matt {
   3208  1.14.2.2  thorpej 	struct pv_head *pvh;
   3209       1.1     matt 	struct pv_entry *pv;
   3210       1.1     matt 	int bank, off;
   3211       1.1     matt 
   3212       1.1     matt 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   3213       1.1     matt 		printf("INVALID PA\n");
   3214       1.1     matt 		return;
   3215       1.1     matt 	}
   3216  1.14.2.2  thorpej 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3217  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   3218       1.1     matt 	printf("%s %08lx:", m, phys);
   3219  1.14.2.2  thorpej 	if (pvh->pvh_list == NULL) {
   3220       1.1     matt 		printf(" no mappings\n");
   3221       1.1     matt 		return;
   3222       1.1     matt 	}
   3223       1.1     matt 
   3224  1.14.2.2  thorpej 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
   3225       1.1     matt 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3226       1.1     matt 		    pv->pv_va, pv->pv_flags);
   3227       1.1     matt 
   3228       1.1     matt 	printf("\n");
   3229  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   3230       1.1     matt }
   3231       1.1     matt 
   3232       1.1     matt #endif	/* PMAP_DEBUG */
   3233       1.1     matt 
   3234  1.14.2.4  thorpej __inline static boolean_t
   3235       1.1     matt pmap_testbit(pa, setbits)
   3236       1.2     matt 	paddr_t pa;
   3237  1.14.2.4  thorpej 	unsigned int setbits;
   3238       1.1     matt {
   3239       1.1     matt 	int bank, off;
   3240       1.1     matt 
   3241       1.1     matt 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   3242       1.1     matt 
   3243       1.1     matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3244       1.1     matt 		return(FALSE);
   3245       1.1     matt 
   3246       1.1     matt 	/*
   3247       1.1     matt 	 * Check saved info only
   3248       1.1     matt 	 */
   3249       1.1     matt 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   3250       1.1     matt 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   3251       1.1     matt 		    vm_physmem[bank].pmseg.attrs[off]));
   3252       1.1     matt 		return(TRUE);
   3253       1.1     matt 	}
   3254       1.1     matt 
   3255       1.1     matt 	return(FALSE);
   3256       1.1     matt }
   3257       1.1     matt 
   3258      1.11    chris static pt_entry_t *
   3259      1.11    chris pmap_map_ptes(struct pmap *pmap)
   3260      1.11    chris {
   3261  1.14.2.2  thorpej     	struct proc *p;
   3262  1.14.2.2  thorpej 
   3263  1.14.2.2  thorpej     	/* the kernel's pmap is always accessible */
   3264  1.14.2.2  thorpej 	if (pmap == pmap_kernel()) {
   3265  1.14.2.2  thorpej 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
   3266  1.14.2.2  thorpej 	}
   3267  1.14.2.2  thorpej 
   3268  1.14.2.2  thorpej 	if (pmap_is_curpmap(pmap)) {
   3269  1.14.2.2  thorpej 		simple_lock(&pmap->pm_obj.vmobjlock);
   3270  1.14.2.2  thorpej 		return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   3271  1.14.2.2  thorpej 	}
   3272  1.14.2.2  thorpej 
   3273  1.14.2.2  thorpej 	p = curproc;
   3274  1.14.2.2  thorpej 
   3275  1.14.2.2  thorpej 	if (p == NULL)
   3276  1.14.2.2  thorpej 		p = &proc0;
   3277  1.14.2.2  thorpej 
   3278  1.14.2.2  thorpej 	/* need to lock both curpmap and pmap: use ordered locking */
   3279  1.14.2.2  thorpej 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3280  1.14.2.2  thorpej 		simple_lock(&pmap->pm_obj.vmobjlock);
   3281  1.14.2.2  thorpej 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3282  1.14.2.2  thorpej 	} else {
   3283  1.14.2.2  thorpej 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3284  1.14.2.2  thorpej 		simple_lock(&pmap->pm_obj.vmobjlock);
   3285  1.14.2.2  thorpej 	}
   3286      1.11    chris 
   3287  1.14.2.2  thorpej 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   3288  1.14.2.2  thorpej 			pmap->pm_pptpt, FALSE);
   3289  1.14.2.2  thorpej 	cpu_tlb_flushD();
   3290  1.14.2.4  thorpej 	cpu_cpwait();
   3291  1.14.2.2  thorpej 	return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   3292  1.14.2.2  thorpej }
   3293  1.14.2.2  thorpej 
   3294  1.14.2.2  thorpej /*
   3295  1.14.2.2  thorpej  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3296  1.14.2.2  thorpej  */
   3297  1.14.2.2  thorpej 
   3298  1.14.2.2  thorpej static void
   3299  1.14.2.2  thorpej pmap_unmap_ptes(pmap)
   3300  1.14.2.2  thorpej 	struct pmap *pmap;
   3301  1.14.2.2  thorpej {
   3302  1.14.2.2  thorpej 	if (pmap == pmap_kernel()) {
   3303  1.14.2.2  thorpej 		return;
   3304  1.14.2.2  thorpej 	}
   3305  1.14.2.2  thorpej 	if (pmap_is_curpmap(pmap)) {
   3306  1.14.2.2  thorpej 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3307  1.14.2.2  thorpej 	} else {
   3308  1.14.2.2  thorpej 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3309  1.14.2.2  thorpej 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3310  1.14.2.2  thorpej 	}
   3311      1.11    chris }
   3312       1.1     matt 
   3313       1.1     matt /*
   3314       1.1     matt  * Modify pte bits for all ptes corresponding to the given physical address.
   3315       1.1     matt  * We use `maskbits' rather than `clearbits' because we're always passing
   3316       1.1     matt  * constants and the latter would require an extra inversion at run-time.
   3317       1.1     matt  */
   3318       1.1     matt 
   3319  1.14.2.4  thorpej static void
   3320       1.1     matt pmap_clearbit(pa, maskbits)
   3321       1.2     matt 	paddr_t pa;
   3322  1.14.2.4  thorpej 	unsigned int maskbits;
   3323       1.1     matt {
   3324       1.1     matt 	struct pv_entry *pv;
   3325  1.14.2.2  thorpej 	struct pv_head *pvh;
   3326       1.1     matt 	pt_entry_t *pte;
   3327       1.1     matt 	vaddr_t va;
   3328  1.14.2.4  thorpej 	int bank, off, tlbentry;
   3329       1.1     matt 
   3330       1.1     matt 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3331       1.1     matt 	    pa, maskbits));
   3332  1.14.2.4  thorpej 
   3333  1.14.2.4  thorpej 	tlbentry = 0;
   3334  1.14.2.4  thorpej 
   3335       1.1     matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3336       1.1     matt 		return;
   3337  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_LOCK();
   3338  1.14.2.2  thorpej 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3339  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   3340  1.14.2.2  thorpej 
   3341       1.1     matt 	/*
   3342       1.1     matt 	 * Clear saved attributes (modify, reference)
   3343       1.1     matt 	 */
   3344       1.1     matt 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   3345       1.1     matt 
   3346  1.14.2.2  thorpej 	if (pvh->pvh_list == NULL) {
   3347  1.14.2.2  thorpej 		simple_unlock(&pvh->pvh_lock);
   3348  1.14.2.2  thorpej 		PMAP_HEAD_TO_MAP_UNLOCK();
   3349       1.1     matt 		return;
   3350       1.1     matt 	}
   3351       1.1     matt 
   3352       1.1     matt 	/*
   3353       1.1     matt 	 * Loop over all current mappings setting/clearing as appropos
   3354       1.1     matt 	 */
   3355  1.14.2.2  thorpej 	for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
   3356       1.1     matt 		va = pv->pv_va;
   3357       1.1     matt 		pv->pv_flags &= ~maskbits;
   3358       1.1     matt 		pte = pmap_pte(pv->pv_pmap, va);
   3359  1.14.2.2  thorpej 		KASSERT(pte != NULL);
   3360  1.14.2.4  thorpej 		if (maskbits & (PT_Wr|PT_M)) {
   3361  1.14.2.4  thorpej 			if ((pv->pv_flags & PT_NC)) {
   3362  1.14.2.4  thorpej 				/*
   3363  1.14.2.4  thorpej 				 * Entry is not cacheable: reenable
   3364  1.14.2.4  thorpej 				 * the cache, nothing to flush
   3365  1.14.2.4  thorpej 				 *
   3366  1.14.2.4  thorpej 				 * Don't turn caching on again if this
   3367  1.14.2.4  thorpej 				 * is a modified emulation.  This
   3368  1.14.2.4  thorpej 				 * would be inconsitent with the
   3369  1.14.2.4  thorpej 				 * settings created by
   3370  1.14.2.4  thorpej 				 * pmap_vac_me_harder().
   3371  1.14.2.4  thorpej 				 *
   3372  1.14.2.4  thorpej 				 * There's no need to call
   3373  1.14.2.4  thorpej 				 * pmap_vac_me_harder() here: all
   3374  1.14.2.4  thorpej 				 * pages are loosing their write
   3375  1.14.2.4  thorpej 				 * permission.
   3376  1.14.2.4  thorpej 				 *
   3377  1.14.2.4  thorpej 				 */
   3378  1.14.2.4  thorpej 				if (maskbits & PT_Wr) {
   3379  1.14.2.4  thorpej 					*pte |= pte_cache_mode;
   3380  1.14.2.4  thorpej 					pv->pv_flags &= ~PT_NC;
   3381  1.14.2.4  thorpej 				}
   3382  1.14.2.4  thorpej 			} else if (pmap_is_curpmap(pv->pv_pmap))
   3383  1.14.2.4  thorpej 				/*
   3384  1.14.2.4  thorpej 				 * Entry is cacheable: check if pmap is
   3385  1.14.2.4  thorpej 				 * current if it is flush it,
   3386  1.14.2.4  thorpej 				 * otherwise it won't be in the cache
   3387  1.14.2.4  thorpej 				 */
   3388  1.14.2.4  thorpej 				cpu_cache_purgeID_rng(pv->pv_va, NBPG);
   3389  1.14.2.4  thorpej 
   3390  1.14.2.4  thorpej 			/* make the pte read only */
   3391  1.14.2.2  thorpej 			*pte &= ~PT_AP(AP_W);
   3392  1.14.2.4  thorpej 		}
   3393  1.14.2.4  thorpej 
   3394       1.1     matt 		if (maskbits & PT_H)
   3395       1.1     matt 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   3396  1.14.2.4  thorpej 
   3397  1.14.2.4  thorpej 		if (pmap_is_curpmap(pv->pv_pmap))
   3398  1.14.2.4  thorpej 			/*
   3399  1.14.2.4  thorpej 			 * if we had cacheable pte's we'd clean the
   3400  1.14.2.4  thorpej 			 * pte out to memory here
   3401  1.14.2.4  thorpej 			 *
   3402  1.14.2.4  thorpej 			 * flush tlb entry as it's in the current pmap
   3403  1.14.2.4  thorpej 			 */
   3404  1.14.2.4  thorpej 			cpu_tlb_flushID_SE(pv->pv_va);
   3405       1.1     matt 	}
   3406  1.14.2.4  thorpej 	cpu_cpwait();
   3407  1.14.2.4  thorpej 
   3408  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   3409  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_UNLOCK();
   3410       1.1     matt }
   3411       1.1     matt 
   3412       1.1     matt 
   3413       1.1     matt boolean_t
   3414       1.1     matt pmap_clear_modify(pg)
   3415       1.1     matt 	struct vm_page *pg;
   3416       1.1     matt {
   3417       1.1     matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3418       1.1     matt 	boolean_t rv;
   3419       1.1     matt 
   3420       1.1     matt 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   3421       1.1     matt 	rv = pmap_testbit(pa, PT_M);
   3422       1.1     matt 	pmap_clearbit(pa, PT_M);
   3423       1.1     matt 	return rv;
   3424       1.1     matt }
   3425       1.1     matt 
   3426       1.1     matt 
   3427       1.1     matt boolean_t
   3428       1.1     matt pmap_clear_reference(pg)
   3429       1.1     matt 	struct vm_page *pg;
   3430       1.1     matt {
   3431       1.1     matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3432       1.1     matt 	boolean_t rv;
   3433       1.1     matt 
   3434       1.1     matt 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   3435       1.1     matt 	rv = pmap_testbit(pa, PT_H);
   3436       1.1     matt 	pmap_clearbit(pa, PT_H);
   3437       1.1     matt 	return rv;
   3438       1.1     matt }
   3439       1.1     matt 
   3440       1.1     matt 
   3441       1.1     matt void
   3442       1.1     matt pmap_copy_on_write(pa)
   3443       1.2     matt 	paddr_t pa;
   3444       1.1     matt {
   3445       1.1     matt 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   3446       1.1     matt 	pmap_clearbit(pa, PT_Wr);
   3447       1.1     matt }
   3448       1.1     matt 
   3449       1.1     matt 
   3450       1.1     matt boolean_t
   3451       1.1     matt pmap_is_modified(pg)
   3452       1.1     matt 	struct vm_page *pg;
   3453       1.1     matt {
   3454       1.1     matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3455       1.1     matt 	boolean_t result;
   3456       1.1     matt 
   3457       1.1     matt 	result = pmap_testbit(pa, PT_M);
   3458  1.14.2.2  thorpej 	PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   3459       1.1     matt 	return (result);
   3460       1.1     matt }
   3461       1.1     matt 
   3462       1.1     matt 
   3463       1.1     matt boolean_t
   3464       1.1     matt pmap_is_referenced(pg)
   3465       1.1     matt 	struct vm_page *pg;
   3466       1.1     matt {
   3467       1.1     matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3468       1.1     matt 	boolean_t result;
   3469       1.1     matt 
   3470       1.1     matt 	result = pmap_testbit(pa, PT_H);
   3471       1.1     matt 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   3472       1.1     matt 	return (result);
   3473       1.1     matt }
   3474       1.1     matt 
   3475       1.1     matt 
   3476       1.1     matt int
   3477       1.1     matt pmap_modified_emulation(pmap, va)
   3478  1.14.2.1    lukem 	struct pmap *pmap;
   3479       1.1     matt 	vaddr_t va;
   3480       1.1     matt {
   3481       1.1     matt 	pt_entry_t *pte;
   3482       1.2     matt 	paddr_t pa;
   3483       1.1     matt 	int bank, off;
   3484  1.14.2.2  thorpej 	struct pv_head *pvh;
   3485       1.1     matt 	u_int flags;
   3486       1.1     matt 
   3487       1.1     matt 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3488       1.1     matt 
   3489       1.1     matt 	/* Get the pte */
   3490       1.1     matt 	pte = pmap_pte(pmap, va);
   3491       1.1     matt 	if (!pte) {
   3492       1.1     matt 		PDEBUG(2, printf("no pte\n"));
   3493       1.1     matt 		return(0);
   3494       1.1     matt 	}
   3495       1.1     matt 
   3496       1.1     matt 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3497       1.1     matt 
   3498       1.1     matt 	/* Check for a zero pte */
   3499       1.1     matt 	if (*pte == 0)
   3500       1.1     matt 		return(0);
   3501       1.1     matt 
   3502       1.1     matt 	/* This can happen if user code tries to access kernel memory. */
   3503       1.1     matt 	if ((*pte & PT_AP(AP_W)) != 0)
   3504       1.1     matt 		return (0);
   3505       1.1     matt 
   3506       1.1     matt 	/* Extract the physical address of the page */
   3507       1.1     matt 	pa = pmap_pte_pa(pte);
   3508       1.1     matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3509       1.1     matt 		return(0);
   3510       1.1     matt 
   3511  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_LOCK();
   3512       1.1     matt 	/* Get the current flags for this page. */
   3513  1.14.2.2  thorpej 	pvh = &vm_physmem[bank].pmseg.pvhead[off];
   3514  1.14.2.2  thorpej 	/* XXX: needed if we hold head->map lock? */
   3515  1.14.2.2  thorpej 	simple_lock(&pvh->pvh_lock);
   3516  1.14.2.2  thorpej 
   3517  1.14.2.2  thorpej 	flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
   3518       1.1     matt 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3519       1.1     matt 
   3520       1.1     matt 	/*
   3521       1.1     matt 	 * Do the flags say this page is writable ? If not then it is a
   3522       1.1     matt 	 * genuine write fault. If yes then the write fault is our fault
   3523       1.1     matt 	 * as we did not reflect the write access in the PTE. Now we know
   3524       1.1     matt 	 * a write has occurred we can correct this and also set the
   3525       1.1     matt 	 * modified bit
   3526       1.1     matt 	 */
   3527  1.14.2.2  thorpej 	if (~flags & PT_Wr) {
   3528  1.14.2.2  thorpej 	    	simple_unlock(&pvh->pvh_lock);
   3529  1.14.2.2  thorpej 		PMAP_HEAD_TO_MAP_UNLOCK();
   3530       1.1     matt 		return(0);
   3531  1.14.2.2  thorpej 	}
   3532       1.1     matt 
   3533       1.1     matt 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   3534       1.1     matt 	    va, pte, *pte));
   3535       1.1     matt 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   3536  1.14.2.4  thorpej 
   3537  1.14.2.4  thorpej 	/*
   3538  1.14.2.4  thorpej 	 * Re-enable write permissions for the page.  No need to call
   3539  1.14.2.4  thorpej 	 * pmap_vac_me_harder(), since this is just a
   3540  1.14.2.4  thorpej 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3541  1.14.2.4  thorpej 	 * already set the cacheable bits based on the assumption that we
   3542  1.14.2.4  thorpej 	 * can write to this page.
   3543  1.14.2.4  thorpej 	 */
   3544       1.1     matt 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3545       1.1     matt 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3546       1.1     matt 
   3547  1.14.2.2  thorpej 	simple_unlock(&pvh->pvh_lock);
   3548  1.14.2.2  thorpej 	PMAP_HEAD_TO_MAP_UNLOCK();
   3549       1.1     matt 	/* Return, indicating the problem has been dealt with */
   3550       1.1     matt 	cpu_tlb_flushID_SE(va);
   3551  1.14.2.4  thorpej 	cpu_cpwait();
   3552       1.1     matt 	return(1);
   3553       1.1     matt }
   3554       1.1     matt 
   3555       1.1     matt 
   3556       1.1     matt int
   3557       1.1     matt pmap_handled_emulation(pmap, va)
   3558  1.14.2.1    lukem 	struct pmap *pmap;
   3559       1.1     matt 	vaddr_t va;
   3560       1.1     matt {
   3561       1.1     matt 	pt_entry_t *pte;
   3562       1.2     matt 	paddr_t pa;
   3563       1.1     matt 	int bank, off;
   3564       1.1     matt 
   3565       1.1     matt 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3566       1.1     matt 
   3567       1.1     matt 	/* Get the pte */
   3568       1.1     matt 	pte = pmap_pte(pmap, va);
   3569       1.1     matt 	if (!pte) {
   3570       1.1     matt 		PDEBUG(2, printf("no pte\n"));
   3571       1.1     matt 		return(0);
   3572       1.1     matt 	}
   3573       1.1     matt 
   3574       1.1     matt 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   3575       1.1     matt 
   3576       1.1     matt 	/* Check for a zero pte */
   3577       1.1     matt 	if (*pte == 0)
   3578       1.1     matt 		return(0);
   3579       1.1     matt 
   3580       1.1     matt 	/* This can happen if user code tries to access kernel memory. */
   3581       1.1     matt 	if ((*pte & L2_MASK) != L2_INVAL)
   3582       1.1     matt 		return (0);
   3583       1.1     matt 
   3584       1.1     matt 	/* Extract the physical address of the page */
   3585       1.1     matt 	pa = pmap_pte_pa(pte);
   3586       1.1     matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   3587       1.1     matt 		return(0);
   3588       1.1     matt 
   3589       1.1     matt 	/*
   3590       1.1     matt 	 * Ok we just enable the pte and mark the attibs as handled
   3591       1.1     matt 	 */
   3592       1.1     matt 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   3593       1.1     matt 	    va, pte, *pte));
   3594       1.1     matt 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   3595       1.1     matt 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   3596       1.1     matt 	PDEBUG(0, printf("->(%08x)\n", *pte));
   3597       1.1     matt 
   3598       1.1     matt 	/* Return, indicating the problem has been dealt with */
   3599       1.1     matt 	cpu_tlb_flushID_SE(va);
   3600  1.14.2.4  thorpej 	cpu_cpwait();
   3601       1.1     matt 	return(1);
   3602       1.1     matt }
   3603       1.1     matt 
   3604  1.14.2.2  thorpej 
   3605  1.14.2.2  thorpej 
   3606  1.14.2.2  thorpej 
   3607       1.1     matt /*
   3608       1.1     matt  * pmap_collect: free resources held by a pmap
   3609       1.1     matt  *
   3610       1.1     matt  * => optional function.
   3611       1.1     matt  * => called when a process is swapped out to free memory.
   3612       1.1     matt  */
   3613       1.1     matt 
   3614       1.1     matt void
   3615       1.1     matt pmap_collect(pmap)
   3616  1.14.2.1    lukem 	struct pmap *pmap;
   3617       1.1     matt {
   3618       1.1     matt }
   3619       1.1     matt 
   3620       1.1     matt /*
   3621       1.1     matt  * Routine:	pmap_procwr
   3622       1.1     matt  *
   3623       1.1     matt  * Function:
   3624       1.1     matt  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3625       1.1     matt  *
   3626       1.1     matt  */
   3627       1.1     matt void
   3628       1.1     matt pmap_procwr(p, va, len)
   3629       1.1     matt 	struct proc	*p;
   3630       1.1     matt 	vaddr_t		va;
   3631       1.3     matt 	int		len;
   3632       1.1     matt {
   3633       1.1     matt 	/* We only need to do anything if it is the current process. */
   3634       1.1     matt 	if (p == curproc)
   3635       1.1     matt 		cpu_cache_syncI_rng(va, len);
   3636  1.14.2.2  thorpej }
   3637  1.14.2.2  thorpej /*
   3638  1.14.2.2  thorpej  * PTP functions
   3639  1.14.2.2  thorpej  */
   3640  1.14.2.2  thorpej 
   3641  1.14.2.2  thorpej /*
   3642  1.14.2.2  thorpej  * pmap_steal_ptp: Steal a PTP from somewhere else.
   3643  1.14.2.2  thorpej  *
   3644  1.14.2.2  thorpej  * This is just a placeholder, for now we never steal.
   3645  1.14.2.2  thorpej  */
   3646  1.14.2.2  thorpej 
   3647  1.14.2.2  thorpej static struct vm_page *
   3648  1.14.2.2  thorpej pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
   3649  1.14.2.2  thorpej {
   3650  1.14.2.2  thorpej     return (NULL);
   3651  1.14.2.2  thorpej }
   3652  1.14.2.2  thorpej 
   3653  1.14.2.2  thorpej /*
   3654  1.14.2.2  thorpej  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3655  1.14.2.2  thorpej  *
   3656  1.14.2.2  thorpej  * => pmap should NOT be pmap_kernel()
   3657  1.14.2.2  thorpej  * => pmap should be locked
   3658  1.14.2.2  thorpej  */
   3659  1.14.2.2  thorpej 
   3660  1.14.2.2  thorpej static struct vm_page *
   3661  1.14.2.2  thorpej pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3662  1.14.2.2  thorpej {
   3663  1.14.2.2  thorpej     struct vm_page *ptp;
   3664  1.14.2.2  thorpej 
   3665  1.14.2.4  thorpej     if (pmap_pde_page(pmap_pde(pmap, va))) {
   3666  1.14.2.2  thorpej 
   3667  1.14.2.2  thorpej 	/* valid... check hint (saves us a PA->PG lookup) */
   3668  1.14.2.2  thorpej #if 0
   3669  1.14.2.2  thorpej 	if (pmap->pm_ptphint &&
   3670  1.14.2.2  thorpej     		((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3671  1.14.2.2  thorpej 		VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3672  1.14.2.2  thorpej 	    return (pmap->pm_ptphint);
   3673  1.14.2.2  thorpej #endif
   3674  1.14.2.2  thorpej 	ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3675  1.14.2.2  thorpej #ifdef DIAGNOSTIC
   3676  1.14.2.2  thorpej 	if (ptp == NULL)
   3677  1.14.2.2  thorpej     	    panic("pmap_get_ptp: unmanaged user PTP");
   3678  1.14.2.2  thorpej #endif
   3679  1.14.2.2  thorpej //	pmap->pm_ptphint = ptp;
   3680  1.14.2.2  thorpej 	return(ptp);
   3681  1.14.2.2  thorpej     }
   3682  1.14.2.2  thorpej 
   3683  1.14.2.2  thorpej     /* allocate a new PTP (updates ptphint) */
   3684  1.14.2.2  thorpej     return(pmap_alloc_ptp(pmap, va, just_try));
   3685  1.14.2.2  thorpej }
   3686  1.14.2.2  thorpej 
   3687  1.14.2.2  thorpej /*
   3688  1.14.2.2  thorpej  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3689  1.14.2.2  thorpej  *
   3690  1.14.2.2  thorpej  * => pmap should already be locked by caller
   3691  1.14.2.2  thorpej  * => we use the ptp's wire_count to count the number of active mappings
   3692  1.14.2.2  thorpej  *	in the PTP (we start it at one to prevent any chance this PTP
   3693  1.14.2.2  thorpej  *	will ever leak onto the active/inactive queues)
   3694  1.14.2.2  thorpej  */
   3695  1.14.2.2  thorpej 
   3696  1.14.2.2  thorpej /*__inline */ static struct vm_page *
   3697  1.14.2.2  thorpej pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
   3698  1.14.2.2  thorpej {
   3699  1.14.2.2  thorpej 	struct vm_page *ptp;
   3700  1.14.2.2  thorpej 
   3701  1.14.2.2  thorpej 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3702  1.14.2.2  thorpej 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3703  1.14.2.2  thorpej 	if (ptp == NULL) {
   3704  1.14.2.2  thorpej 	    if (just_try)
   3705  1.14.2.2  thorpej 		return (NULL);
   3706  1.14.2.2  thorpej 
   3707  1.14.2.2  thorpej 	    ptp = pmap_steal_ptp(pmap, va);
   3708  1.14.2.2  thorpej 
   3709  1.14.2.2  thorpej 	    if (ptp == NULL)
   3710  1.14.2.2  thorpej 		return (NULL);
   3711  1.14.2.2  thorpej 	    /* Stole a page, zero it.  */
   3712  1.14.2.2  thorpej 	    pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
   3713  1.14.2.2  thorpej 	}
   3714  1.14.2.2  thorpej 
   3715  1.14.2.2  thorpej 	/* got one! */
   3716  1.14.2.2  thorpej 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3717  1.14.2.2  thorpej 	ptp->wire_count = 1;	/* no mappings yet */
   3718  1.14.2.2  thorpej 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3719  1.14.2.2  thorpej 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3720  1.14.2.2  thorpej //	pmap->pm_ptphint = ptp;
   3721  1.14.2.2  thorpej 	return (ptp);
   3722       1.1     matt }
   3723       1.1     matt 
   3724       1.1     matt /* End of pmap.c */
   3725