pmap.c revision 1.16 1 1.16 chris /* $NetBSD: pmap.c,v 1.16 2001/07/29 12:45:27 chris Exp $ */
2 1.12 chris
3 1.12 chris /*
4 1.12 chris * Copyright (c) 2001 Richard Earnshaw
5 1.12 chris * Copyright (c) 2001 Christopher Gilbert
6 1.12 chris * All rights reserved.
7 1.12 chris *
8 1.12 chris * 1. Redistributions of source code must retain the above copyright
9 1.12 chris * notice, this list of conditions and the following disclaimer.
10 1.12 chris * 2. Redistributions in binary form must reproduce the above copyright
11 1.12 chris * notice, this list of conditions and the following disclaimer in the
12 1.12 chris * documentation and/or other materials provided with the distribution.
13 1.12 chris * 3. The name of the company nor the name of the author may be used to
14 1.12 chris * endorse or promote products derived from this software without specific
15 1.12 chris * prior written permission.
16 1.12 chris *
17 1.12 chris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 1.12 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 1.12 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.12 chris * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 1.12 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 1.12 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 1.12 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.12 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.12 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.12 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.12 chris * SUCH DAMAGE.
28 1.12 chris */
29 1.1 matt
30 1.1 matt /*-
31 1.1 matt * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
35 1.1 matt * by Charles M. Hannum.
36 1.1 matt *
37 1.1 matt * Redistribution and use in source and binary forms, with or without
38 1.1 matt * modification, are permitted provided that the following conditions
39 1.1 matt * are met:
40 1.1 matt * 1. Redistributions of source code must retain the above copyright
41 1.1 matt * notice, this list of conditions and the following disclaimer.
42 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 matt * notice, this list of conditions and the following disclaimer in the
44 1.1 matt * documentation and/or other materials provided with the distribution.
45 1.1 matt * 3. All advertising materials mentioning features or use of this software
46 1.1 matt * must display the following acknowledgement:
47 1.1 matt * This product includes software developed by the NetBSD
48 1.1 matt * Foundation, Inc. and its contributors.
49 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
50 1.1 matt * contributors may be used to endorse or promote products derived
51 1.1 matt * from this software without specific prior written permission.
52 1.1 matt *
53 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
64 1.1 matt */
65 1.1 matt
66 1.1 matt /*
67 1.1 matt * Copyright (c) 1994-1998 Mark Brinicombe.
68 1.1 matt * Copyright (c) 1994 Brini.
69 1.1 matt * All rights reserved.
70 1.1 matt *
71 1.1 matt * This code is derived from software written for Brini by Mark Brinicombe
72 1.1 matt *
73 1.1 matt * Redistribution and use in source and binary forms, with or without
74 1.1 matt * modification, are permitted provided that the following conditions
75 1.1 matt * are met:
76 1.1 matt * 1. Redistributions of source code must retain the above copyright
77 1.1 matt * notice, this list of conditions and the following disclaimer.
78 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
79 1.1 matt * notice, this list of conditions and the following disclaimer in the
80 1.1 matt * documentation and/or other materials provided with the distribution.
81 1.1 matt * 3. All advertising materials mentioning features or use of this software
82 1.1 matt * must display the following acknowledgement:
83 1.1 matt * This product includes software developed by Mark Brinicombe.
84 1.1 matt * 4. The name of the author may not be used to endorse or promote products
85 1.1 matt * derived from this software without specific prior written permission.
86 1.1 matt *
87 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 1.1 matt *
97 1.1 matt * RiscBSD kernel project
98 1.1 matt *
99 1.1 matt * pmap.c
100 1.1 matt *
101 1.1 matt * Machine dependant vm stuff
102 1.1 matt *
103 1.1 matt * Created : 20/09/94
104 1.1 matt */
105 1.1 matt
106 1.1 matt /*
107 1.1 matt * Performance improvements, UVM changes, overhauls and part-rewrites
108 1.1 matt * were contributed by Neil A. Carson <neil (at) causality.com>.
109 1.1 matt */
110 1.1 matt
111 1.1 matt /*
112 1.1 matt * The dram block info is currently referenced from the bootconfig.
113 1.1 matt * This should be placed in a separate structure.
114 1.1 matt */
115 1.1 matt
116 1.1 matt /*
117 1.1 matt * Special compilation symbols
118 1.1 matt * PMAP_DEBUG - Build in pmap_debug_level code
119 1.1 matt */
120 1.1 matt
121 1.1 matt /* Include header files */
122 1.1 matt
123 1.1 matt #include "opt_pmap_debug.h"
124 1.1 matt #include "opt_ddb.h"
125 1.1 matt
126 1.1 matt #include <sys/types.h>
127 1.1 matt #include <sys/param.h>
128 1.1 matt #include <sys/kernel.h>
129 1.1 matt #include <sys/systm.h>
130 1.1 matt #include <sys/proc.h>
131 1.1 matt #include <sys/malloc.h>
132 1.1 matt #include <sys/user.h>
133 1.10 chris #include <sys/pool.h>
134 1.16 chris #include <sys/cdefs.h>
135 1.16 chris
136 1.1 matt #include <uvm/uvm.h>
137 1.1 matt
138 1.1 matt #include <machine/bootconfig.h>
139 1.1 matt #include <machine/bus.h>
140 1.1 matt #include <machine/pmap.h>
141 1.1 matt #include <machine/pcb.h>
142 1.1 matt #include <machine/param.h>
143 1.1 matt #include <machine/katelib.h>
144 1.16 chris
145 1.16 chris __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.16 2001/07/29 12:45:27 chris Exp $");
146 1.16 chris
147 1.1 matt #ifdef PMAP_DEBUG
148 1.1 matt #define PDEBUG(_lev_,_stat_) \
149 1.1 matt if (pmap_debug_level >= (_lev_)) \
150 1.1 matt ((_stat_))
151 1.1 matt int pmap_debug_level = -2;
152 1.1 matt #else /* PMAP_DEBUG */
153 1.1 matt #define PDEBUG(_lev_,_stat_) /* Nothing */
154 1.1 matt #endif /* PMAP_DEBUG */
155 1.1 matt
156 1.1 matt struct pmap kernel_pmap_store;
157 1.1 matt
158 1.10 chris /*
159 1.10 chris * pool that pmap structures are allocated from
160 1.10 chris */
161 1.10 chris
162 1.10 chris struct pool pmap_pmap_pool;
163 1.10 chris
164 1.1 matt pagehook_t page_hook0;
165 1.1 matt pagehook_t page_hook1;
166 1.1 matt char *memhook;
167 1.1 matt pt_entry_t msgbufpte;
168 1.1 matt extern caddr_t msgbufaddr;
169 1.1 matt
170 1.1 matt #ifdef DIAGNOSTIC
171 1.1 matt boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
172 1.1 matt #endif
173 1.1 matt
174 1.1 matt TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
175 1.1 matt
176 1.1 matt int pv_nfree = 0;
177 1.1 matt
178 1.2 matt vsize_t npages;
179 1.1 matt
180 1.2 matt extern paddr_t physical_start;
181 1.2 matt extern paddr_t physical_freestart;
182 1.2 matt extern paddr_t physical_end;
183 1.2 matt extern paddr_t physical_freeend;
184 1.1 matt extern unsigned int free_pages;
185 1.1 matt extern int max_processes;
186 1.1 matt
187 1.1 matt vaddr_t virtual_start;
188 1.1 matt vaddr_t virtual_end;
189 1.1 matt
190 1.1 matt vaddr_t avail_start;
191 1.1 matt vaddr_t avail_end;
192 1.1 matt
193 1.1 matt extern pv_addr_t systempage;
194 1.1 matt
195 1.1 matt #define ALLOC_PAGE_HOOK(x, s) \
196 1.1 matt x.va = virtual_start; \
197 1.15 chris x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
198 1.1 matt virtual_start += s;
199 1.1 matt
200 1.1 matt /* Variables used by the L1 page table queue code */
201 1.1 matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
202 1.1 matt struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
203 1.1 matt int l1pt_static_queue_count; /* items in the static l1 queue */
204 1.1 matt int l1pt_static_create_count; /* static l1 items created */
205 1.1 matt struct l1pt_queue l1pt_queue; /* head of our l1 queue */
206 1.1 matt int l1pt_queue_count; /* items in the l1 queue */
207 1.1 matt int l1pt_create_count; /* stat - L1's create count */
208 1.1 matt int l1pt_reuse_count; /* stat - L1's reused count */
209 1.1 matt
210 1.1 matt /* Local function prototypes (not used outside this file) */
211 1.15 chris pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
212 1.1 matt void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
213 1.2 matt paddr_t pa, unsigned int flags));
214 1.2 matt void pmap_copy_on_write __P((paddr_t pa));
215 1.15 chris void pmap_pinit __P((struct pmap *));
216 1.15 chris void pmap_freepagedir __P((struct pmap *));
217 1.15 chris void pmap_release __P((struct pmap *));
218 1.1 matt
219 1.1 matt /* Other function prototypes */
220 1.1 matt extern void bzero_page __P((vaddr_t));
221 1.1 matt extern void bcopy_page __P((vaddr_t, vaddr_t));
222 1.1 matt
223 1.1 matt struct l1pt *pmap_alloc_l1pt __P((void));
224 1.15 chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
225 1.1 matt vaddr_t l2pa));
226 1.1 matt
227 1.11 chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
228 1.11 chris /* eventually this will be a function */
229 1.11 chris #define pmap_unmap_ptes(a)
230 1.11 chris
231 1.11 chris void pmap_vac_me_harder __P((struct pmap *, struct pv_entry *,
232 1.12 chris pt_entry_t *, boolean_t));
233 1.11 chris
234 1.1 matt #ifdef MYCROFT_HACK
235 1.1 matt int mycroft_hack = 0;
236 1.1 matt #endif
237 1.1 matt
238 1.1 matt /* Function to set the debug level of the pmap code */
239 1.1 matt
240 1.1 matt #ifdef PMAP_DEBUG
241 1.1 matt void
242 1.1 matt pmap_debug(level)
243 1.1 matt int level;
244 1.1 matt {
245 1.1 matt pmap_debug_level = level;
246 1.1 matt printf("pmap_debug: level=%d\n", pmap_debug_level);
247 1.1 matt }
248 1.1 matt #endif /* PMAP_DEBUG */
249 1.1 matt
250 1.1 matt #include "isadma.h"
251 1.1 matt
252 1.1 matt #if NISADMA > 0
253 1.1 matt /*
254 1.1 matt * Used to protect memory for ISA DMA bounce buffers. If, when loading
255 1.1 matt * pages into the system, memory intersects with any of these ranges,
256 1.1 matt * the intersecting memory will be loaded into a lower-priority free list.
257 1.1 matt */
258 1.1 matt bus_dma_segment_t *pmap_isa_dma_ranges;
259 1.1 matt int pmap_isa_dma_nranges;
260 1.1 matt
261 1.2 matt boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
262 1.2 matt paddr_t *, psize_t *));
263 1.1 matt
264 1.1 matt /*
265 1.1 matt * Check if a memory range intersects with an ISA DMA range, and
266 1.1 matt * return the page-rounded intersection if it does. The intersection
267 1.1 matt * will be placed on a lower-priority free list.
268 1.1 matt */
269 1.1 matt boolean_t
270 1.1 matt pmap_isa_dma_range_intersect(pa, size, pap, sizep)
271 1.2 matt paddr_t pa;
272 1.2 matt psize_t size;
273 1.2 matt paddr_t *pap;
274 1.2 matt psize_t *sizep;
275 1.1 matt {
276 1.1 matt bus_dma_segment_t *ds;
277 1.1 matt int i;
278 1.1 matt
279 1.1 matt if (pmap_isa_dma_ranges == NULL)
280 1.1 matt return (FALSE);
281 1.1 matt
282 1.1 matt for (i = 0, ds = pmap_isa_dma_ranges;
283 1.1 matt i < pmap_isa_dma_nranges; i++, ds++) {
284 1.1 matt if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
285 1.1 matt /*
286 1.1 matt * Beginning of region intersects with this range.
287 1.1 matt */
288 1.1 matt *pap = trunc_page(pa);
289 1.1 matt *sizep = round_page(min(pa + size,
290 1.1 matt ds->ds_addr + ds->ds_len) - pa);
291 1.1 matt return (TRUE);
292 1.1 matt }
293 1.1 matt if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
294 1.1 matt /*
295 1.1 matt * End of region intersects with this range.
296 1.1 matt */
297 1.1 matt *pap = trunc_page(ds->ds_addr);
298 1.1 matt *sizep = round_page(min((pa + size) - ds->ds_addr,
299 1.1 matt ds->ds_len));
300 1.1 matt return (TRUE);
301 1.1 matt }
302 1.1 matt }
303 1.1 matt
304 1.1 matt /*
305 1.1 matt * No intersection found.
306 1.1 matt */
307 1.1 matt return (FALSE);
308 1.1 matt }
309 1.1 matt #endif /* NISADMA > 0 */
310 1.1 matt
311 1.1 matt /*
312 1.1 matt * Functions for manipluation pv_entry structures. These are used to keep a
313 1.1 matt * record of the mappings of virtual addresses and the associated physical
314 1.1 matt * pages.
315 1.1 matt */
316 1.1 matt
317 1.1 matt /*
318 1.1 matt * Allocate a new pv_entry structure from the freelist. If the list is
319 1.1 matt * empty allocate a new page and fill the freelist.
320 1.1 matt */
321 1.1 matt struct pv_entry *
322 1.1 matt pmap_alloc_pv()
323 1.1 matt {
324 1.1 matt struct pv_page *pvp;
325 1.1 matt struct pv_entry *pv;
326 1.1 matt int i;
327 1.1 matt
328 1.1 matt /*
329 1.1 matt * Do we have any free pv_entry structures left ?
330 1.1 matt * If not allocate a page of them
331 1.1 matt */
332 1.1 matt
333 1.1 matt if (pv_nfree == 0) {
334 1.1 matt /* NOTE: can't lock kernel_map here */
335 1.1 matt MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
336 1.1 matt if (pvp == 0)
337 1.1 matt panic("pmap_alloc_pv: kmem_alloc() failed");
338 1.1 matt pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
339 1.1 matt for (i = NPVPPG - 2; i; i--, pv++)
340 1.1 matt pv->pv_next = pv + 1;
341 1.1 matt pv->pv_next = 0;
342 1.1 matt pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
343 1.1 matt TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
344 1.1 matt pv = &pvp->pvp_pv[0];
345 1.1 matt } else {
346 1.1 matt --pv_nfree;
347 1.1 matt pvp = pv_page_freelist.tqh_first;
348 1.1 matt if (--pvp->pvp_pgi.pgi_nfree == 0) {
349 1.1 matt TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
350 1.1 matt }
351 1.1 matt pv = pvp->pvp_pgi.pgi_freelist;
352 1.1 matt #ifdef DIAGNOSTIC
353 1.1 matt if (pv == 0)
354 1.1 matt panic("pmap_alloc_pv: pgi_nfree inconsistent");
355 1.1 matt #endif /* DIAGNOSTIC */
356 1.1 matt pvp->pvp_pgi.pgi_freelist = pv->pv_next;
357 1.1 matt }
358 1.1 matt return pv;
359 1.1 matt }
360 1.1 matt
361 1.1 matt /*
362 1.1 matt * Release a pv_entry structure putting it back on the freelist.
363 1.1 matt */
364 1.1 matt
365 1.1 matt void
366 1.1 matt pmap_free_pv(pv)
367 1.1 matt struct pv_entry *pv;
368 1.1 matt {
369 1.1 matt struct pv_page *pvp;
370 1.1 matt
371 1.1 matt pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
372 1.1 matt switch (++pvp->pvp_pgi.pgi_nfree) {
373 1.1 matt case 1:
374 1.1 matt TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
375 1.1 matt default:
376 1.1 matt pv->pv_next = pvp->pvp_pgi.pgi_freelist;
377 1.1 matt pvp->pvp_pgi.pgi_freelist = pv;
378 1.1 matt ++pv_nfree;
379 1.1 matt break;
380 1.1 matt case NPVPPG:
381 1.1 matt pv_nfree -= NPVPPG - 1;
382 1.1 matt TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
383 1.1 matt FREE((vaddr_t)pvp, M_VMPVENT);
384 1.1 matt break;
385 1.1 matt }
386 1.1 matt }
387 1.1 matt
388 1.1 matt #if 0
389 1.1 matt void
390 1.1 matt pmap_collect_pv()
391 1.1 matt {
392 1.1 matt struct pv_page_list pv_page_collectlist;
393 1.1 matt struct pv_page *pvp, *npvp;
394 1.1 matt struct pv_entry *ph, *ppv, *pv, *npv;
395 1.1 matt int s;
396 1.1 matt
397 1.1 matt TAILQ_INIT(&pv_page_collectlist);
398 1.1 matt
399 1.1 matt for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
400 1.1 matt if (pv_nfree < NPVPPG)
401 1.1 matt break;
402 1.1 matt npvp = pvp->pvp_pgi.pgi_list.tqe_next;
403 1.1 matt if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
404 1.1 matt TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
405 1.1 matt TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
406 1.1 matt pvp_pgi.pgi_list);
407 1.1 matt pv_nfree -= NPVPPG;
408 1.1 matt pvp->pvp_pgi.pgi_nfree = -1;
409 1.1 matt }
410 1.1 matt }
411 1.1 matt
412 1.1 matt if (pv_page_collectlist.tqh_first == 0)
413 1.1 matt return;
414 1.1 matt
415 1.1 matt for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
416 1.1 matt if (ph->pv_pmap == 0)
417 1.1 matt continue;
418 1.1 matt s = splvm();
419 1.1 matt for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
420 1.1 matt pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
421 1.1 matt if (pvp->pvp_pgi.pgi_nfree == -1) {
422 1.1 matt pvp = pv_page_freelist.tqh_first;
423 1.1 matt if (--pvp->pvp_pgi.pgi_nfree == 0) {
424 1.1 matt TAILQ_REMOVE(&pv_page_freelist,
425 1.1 matt pvp, pvp_pgi.pgi_list);
426 1.1 matt }
427 1.1 matt npv = pvp->pvp_pgi.pgi_freelist;
428 1.1 matt #ifdef DIAGNOSTIC
429 1.1 matt if (npv == 0)
430 1.1 matt panic("pmap_collect_pv: pgi_nfree inconsistent");
431 1.1 matt #endif /* DIAGNOSTIC */
432 1.1 matt pvp->pvp_pgi.pgi_freelist = npv->pv_next;
433 1.1 matt *npv = *pv;
434 1.1 matt ppv->pv_next = npv;
435 1.1 matt ppv = npv;
436 1.1 matt } else
437 1.1 matt ppv = pv;
438 1.1 matt }
439 1.1 matt splx(s);
440 1.1 matt }
441 1.1 matt
442 1.1 matt for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
443 1.1 matt npvp = pvp->pvp_pgi.pgi_list.tqe_next;
444 1.1 matt FREE((vaddr_t)pvp, M_VMPVENT);
445 1.1 matt }
446 1.1 matt }
447 1.1 matt #endif
448 1.1 matt
449 1.1 matt /*
450 1.1 matt * Enter a new physical-virtual mapping into the pv table
451 1.1 matt */
452 1.1 matt
453 1.1 matt /*__inline*/ void
454 1.1 matt pmap_enter_pv(pmap, va, pv, flags)
455 1.15 chris struct pmap *pmap;
456 1.1 matt vaddr_t va;
457 1.1 matt struct pv_entry *pv;
458 1.1 matt u_int flags;
459 1.1 matt {
460 1.1 matt struct pv_entry *npv;
461 1.1 matt u_int s;
462 1.1 matt
463 1.1 matt #ifdef DIAGNOSTIC
464 1.1 matt if (!pmap_initialized)
465 1.1 matt panic("pmap_enter_pv: !pmap_initialized");
466 1.1 matt #endif
467 1.1 matt
468 1.1 matt s = splvm();
469 1.1 matt
470 1.1 matt PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
471 1.1 matt pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
472 1.1 matt
473 1.1 matt if (pv->pv_pmap == NULL) {
474 1.1 matt /*
475 1.1 matt * No entries yet, use header as the first entry
476 1.1 matt */
477 1.1 matt pv->pv_va = va;
478 1.1 matt pv->pv_pmap = pmap;
479 1.1 matt pv->pv_next = NULL;
480 1.1 matt pv->pv_flags = flags;
481 1.1 matt } else {
482 1.1 matt /*
483 1.1 matt * There is at least one other VA mapping this page.
484 1.1 matt * Place this entry after the header.
485 1.1 matt */
486 1.1 matt #ifdef PMAP_DEBUG
487 1.1 matt for (npv = pv; npv; npv = npv->pv_next)
488 1.1 matt if (pmap == npv->pv_pmap && va == npv->pv_va)
489 1.1 matt panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
490 1.1 matt pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
491 1.1 matt #endif
492 1.1 matt npv = pmap_alloc_pv();
493 1.12 chris /* Must make sure that the new entry is before any others
494 1.12 chris * for the same pmap. Otherwise the vac handling code
495 1.12 chris * will get confused.
496 1.12 chris * XXX this would be better if we used lists like i386 (infact
497 1.12 chris * this would be a lot simpler)
498 1.12 chris */
499 1.12 chris *npv = *pv;
500 1.12 chris pv->pv_va = va;
501 1.12 chris pv->pv_pmap = pmap;
502 1.12 chris pv->pv_flags = flags;
503 1.1 matt pv->pv_next = npv;
504 1.1 matt }
505 1.1 matt
506 1.1 matt if (flags & PT_W)
507 1.1 matt ++pmap->pm_stats.wired_count;
508 1.1 matt
509 1.1 matt splx(s);
510 1.1 matt }
511 1.1 matt
512 1.1 matt
513 1.1 matt /*
514 1.1 matt * Remove a physical-virtual mapping from the pv table
515 1.1 matt */
516 1.1 matt
517 1.1 matt /*__inline*/ void
518 1.1 matt pmap_remove_pv(pmap, va, pv)
519 1.15 chris struct pmap *pmap;
520 1.1 matt vaddr_t va;
521 1.1 matt struct pv_entry *pv;
522 1.1 matt {
523 1.1 matt struct pv_entry *npv;
524 1.1 matt u_int s;
525 1.1 matt u_int flags = 0;
526 1.1 matt
527 1.1 matt #ifdef DIAGNOSTIC
528 1.1 matt if (!pmap_initialized)
529 1.1 matt panic("pmap_remove_pv: !pmap_initialized");
530 1.1 matt #endif
531 1.1 matt
532 1.1 matt s = splvm();
533 1.1 matt
534 1.1 matt /*
535 1.1 matt * If it is the first entry on the list, it is actually
536 1.1 matt * in the header and we must copy the following entry up
537 1.1 matt * to the header. Otherwise we must search the list for
538 1.1 matt * the entry. In either case we free the now unused entry.
539 1.1 matt */
540 1.1 matt
541 1.1 matt if (pmap == pv->pv_pmap && va == pv->pv_va) {
542 1.1 matt npv = pv->pv_next;
543 1.1 matt if (npv) {
544 1.1 matt *pv = *npv;
545 1.1 matt flags = npv->pv_flags;
546 1.1 matt pmap_free_pv(npv);
547 1.1 matt } else {
548 1.1 matt flags = pv->pv_flags;
549 1.1 matt pv->pv_pmap = NULL;
550 1.1 matt }
551 1.1 matt } else {
552 1.1 matt for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
553 1.1 matt if (pmap == npv->pv_pmap && va == npv->pv_va)
554 1.1 matt break;
555 1.1 matt }
556 1.1 matt if (npv) {
557 1.1 matt pv->pv_next = npv->pv_next;
558 1.1 matt flags = npv->pv_flags;
559 1.1 matt pmap_free_pv(npv);
560 1.1 matt } else
561 1.1 matt panic("pmap_remove_pv: lost entry");
562 1.1 matt }
563 1.1 matt
564 1.1 matt if (flags & PT_W)
565 1.1 matt --pmap->pm_stats.wired_count;
566 1.1 matt
567 1.1 matt splx(s);
568 1.1 matt }
569 1.1 matt
570 1.1 matt /*
571 1.1 matt * Modify a physical-virtual mapping in the pv table
572 1.1 matt */
573 1.1 matt
574 1.1 matt /*__inline */ u_int
575 1.1 matt pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
576 1.15 chris struct pmap *pmap;
577 1.1 matt vaddr_t va;
578 1.1 matt struct pv_entry *pv;
579 1.1 matt u_int bic_mask;
580 1.1 matt u_int eor_mask;
581 1.1 matt {
582 1.1 matt struct pv_entry *npv;
583 1.1 matt u_int s;
584 1.1 matt u_int flags, oflags;
585 1.1 matt
586 1.1 matt PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
587 1.1 matt pmap, va, pv, bic_mask, eor_mask));
588 1.1 matt
589 1.1 matt #ifdef DIAGNOSTIC
590 1.1 matt if (!pmap_initialized)
591 1.1 matt panic("pmap_modify_pv: !pmap_initialized");
592 1.1 matt #endif
593 1.1 matt
594 1.1 matt s = splvm();
595 1.1 matt
596 1.1 matt PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
597 1.1 matt pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
598 1.1 matt
599 1.1 matt /*
600 1.1 matt * There is at least one VA mapping this page.
601 1.1 matt */
602 1.1 matt
603 1.1 matt for (npv = pv; npv; npv = npv->pv_next) {
604 1.1 matt if (pmap == npv->pv_pmap && va == npv->pv_va) {
605 1.1 matt oflags = npv->pv_flags;
606 1.1 matt npv->pv_flags = flags =
607 1.1 matt ((oflags & ~bic_mask) ^ eor_mask);
608 1.1 matt if ((flags ^ oflags) & PT_W) {
609 1.1 matt if (flags & PT_W)
610 1.1 matt ++pmap->pm_stats.wired_count;
611 1.1 matt else
612 1.1 matt --pmap->pm_stats.wired_count;
613 1.1 matt }
614 1.1 matt PDEBUG(0, printf("done flags=%08x\n", flags));
615 1.1 matt splx(s);
616 1.1 matt return (oflags);
617 1.1 matt }
618 1.1 matt }
619 1.1 matt
620 1.1 matt PDEBUG(0, printf("done.\n"));
621 1.1 matt splx(s);
622 1.1 matt return (0);
623 1.1 matt }
624 1.1 matt
625 1.1 matt
626 1.1 matt /*
627 1.1 matt * Map the specified level 2 pagetable into the level 1 page table for
628 1.1 matt * the given pmap to cover a chunk of virtual address space starting from the
629 1.1 matt * address specified.
630 1.1 matt */
631 1.1 matt static /*__inline*/ void
632 1.1 matt pmap_map_in_l1(pmap, va, l2pa)
633 1.15 chris struct pmap *pmap;
634 1.1 matt vaddr_t va, l2pa;
635 1.1 matt {
636 1.1 matt vaddr_t ptva;
637 1.1 matt
638 1.1 matt /* Calculate the index into the L1 page table. */
639 1.1 matt ptva = (va >> PDSHIFT) & ~3;
640 1.1 matt
641 1.1 matt PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
642 1.1 matt pmap->pm_pdir, L1_PTE(l2pa), ptva));
643 1.1 matt
644 1.1 matt /* Map page table into the L1. */
645 1.1 matt pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
646 1.1 matt pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
647 1.1 matt pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
648 1.1 matt pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
649 1.1 matt
650 1.1 matt PDEBUG(0, printf("pt self reference %lx in %lx\n",
651 1.1 matt L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
652 1.1 matt
653 1.1 matt /* Map the page table into the page table area. */
654 1.1 matt *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
655 1.1 matt
656 1.1 matt /* XXX should be a purge */
657 1.1 matt /* cpu_tlb_flushD();*/
658 1.1 matt }
659 1.1 matt
660 1.1 matt #if 0
661 1.1 matt static /*__inline*/ void
662 1.1 matt pmap_unmap_in_l1(pmap, va)
663 1.15 chris struct pmap *pmap;
664 1.1 matt vaddr_t va;
665 1.1 matt {
666 1.1 matt vaddr_t ptva;
667 1.1 matt
668 1.1 matt /* Calculate the index into the L1 page table. */
669 1.1 matt ptva = (va >> PDSHIFT) & ~3;
670 1.1 matt
671 1.1 matt /* Unmap page table from the L1. */
672 1.1 matt pmap->pm_pdir[ptva + 0] = 0;
673 1.1 matt pmap->pm_pdir[ptva + 1] = 0;
674 1.1 matt pmap->pm_pdir[ptva + 2] = 0;
675 1.1 matt pmap->pm_pdir[ptva + 3] = 0;
676 1.1 matt
677 1.1 matt /* Unmap the page table from the page table area. */
678 1.1 matt *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
679 1.1 matt
680 1.1 matt /* XXX should be a purge */
681 1.1 matt /* cpu_tlb_flushD();*/
682 1.1 matt }
683 1.1 matt #endif
684 1.1 matt
685 1.1 matt
686 1.1 matt /*
687 1.1 matt * Used to map a range of physical addresses into kernel
688 1.1 matt * virtual address space.
689 1.1 matt *
690 1.1 matt * For now, VM is already on, we only need to map the
691 1.1 matt * specified memory.
692 1.1 matt */
693 1.1 matt vaddr_t
694 1.1 matt pmap_map(va, spa, epa, prot)
695 1.1 matt vaddr_t va, spa, epa;
696 1.1 matt int prot;
697 1.1 matt {
698 1.1 matt while (spa < epa) {
699 1.1 matt pmap_enter(pmap_kernel(), va, spa, prot, 0);
700 1.1 matt va += NBPG;
701 1.1 matt spa += NBPG;
702 1.1 matt }
703 1.7 thorpej pmap_update();
704 1.1 matt return(va);
705 1.1 matt }
706 1.1 matt
707 1.1 matt
708 1.1 matt /*
709 1.3 matt * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
710 1.1 matt *
711 1.1 matt * bootstrap the pmap system. This is called from initarm and allows
712 1.1 matt * the pmap system to initailise any structures it requires.
713 1.1 matt *
714 1.1 matt * Currently this sets up the kernel_pmap that is statically allocated
715 1.1 matt * and also allocated virtual addresses for certain page hooks.
716 1.1 matt * Currently the only one page hook is allocated that is used
717 1.1 matt * to zero physical pages of memory.
718 1.1 matt * It also initialises the start and end address of the kernel data space.
719 1.1 matt */
720 1.2 matt extern paddr_t physical_freestart;
721 1.2 matt extern paddr_t physical_freeend;
722 1.1 matt
723 1.1 matt struct pv_entry *boot_pvent;
724 1.1 matt char *boot_attrs;
725 1.1 matt
726 1.1 matt void
727 1.1 matt pmap_bootstrap(kernel_l1pt, kernel_ptpt)
728 1.1 matt pd_entry_t *kernel_l1pt;
729 1.1 matt pv_addr_t kernel_ptpt;
730 1.1 matt {
731 1.1 matt int loop;
732 1.2 matt paddr_t start, end;
733 1.1 matt #if NISADMA > 0
734 1.2 matt paddr_t istart;
735 1.2 matt psize_t isize;
736 1.1 matt #endif
737 1.1 matt vsize_t size;
738 1.1 matt
739 1.15 chris pmap_kernel()->pm_pdir = kernel_l1pt;
740 1.15 chris pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
741 1.15 chris pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
742 1.15 chris simple_lock_init(&pmap_kernel()->pm_lock);
743 1.16 chris pmap_kernel()->pm_obj.pgops = NULL;
744 1.16 chris TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
745 1.16 chris pmap_kernel()->pm_obj.uo_npages = 0;
746 1.16 chris pmap_kernel()->pm_obj.uo_refs = 1;
747 1.16 chris
748 1.1 matt /*
749 1.1 matt * Initialize PAGE_SIZE-dependent variables.
750 1.1 matt */
751 1.1 matt uvm_setpagesize();
752 1.1 matt
753 1.1 matt npages = 0;
754 1.1 matt loop = 0;
755 1.1 matt while (loop < bootconfig.dramblocks) {
756 1.2 matt start = (paddr_t)bootconfig.dram[loop].address;
757 1.1 matt end = start + (bootconfig.dram[loop].pages * NBPG);
758 1.1 matt if (start < physical_freestart)
759 1.1 matt start = physical_freestart;
760 1.1 matt if (end > physical_freeend)
761 1.1 matt end = physical_freeend;
762 1.1 matt #if 0
763 1.1 matt printf("%d: %lx -> %lx\n", loop, start, end - 1);
764 1.1 matt #endif
765 1.1 matt #if NISADMA > 0
766 1.1 matt if (pmap_isa_dma_range_intersect(start, end - start,
767 1.1 matt &istart, &isize)) {
768 1.1 matt /*
769 1.1 matt * Place the pages that intersect with the
770 1.1 matt * ISA DMA range onto the ISA DMA free list.
771 1.1 matt */
772 1.1 matt #if 0
773 1.1 matt printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
774 1.1 matt istart + isize - 1);
775 1.1 matt #endif
776 1.1 matt uvm_page_physload(atop(istart),
777 1.1 matt atop(istart + isize), atop(istart),
778 1.1 matt atop(istart + isize), VM_FREELIST_ISADMA);
779 1.1 matt npages += atop(istart + isize) - atop(istart);
780 1.1 matt
781 1.1 matt /*
782 1.1 matt * Load the pieces that come before
783 1.1 matt * the intersection into the default
784 1.1 matt * free list.
785 1.1 matt */
786 1.1 matt if (start < istart) {
787 1.1 matt #if 0
788 1.1 matt printf(" BEFORE 0x%lx -> 0x%lx\n",
789 1.1 matt start, istart - 1);
790 1.1 matt #endif
791 1.1 matt uvm_page_physload(atop(start),
792 1.1 matt atop(istart), atop(start),
793 1.1 matt atop(istart), VM_FREELIST_DEFAULT);
794 1.1 matt npages += atop(istart) - atop(start);
795 1.1 matt }
796 1.1 matt
797 1.1 matt /*
798 1.1 matt * Load the pieces that come after
799 1.1 matt * the intersection into the default
800 1.1 matt * free list.
801 1.1 matt */
802 1.1 matt if ((istart + isize) < end) {
803 1.1 matt #if 0
804 1.1 matt printf(" AFTER 0x%lx -> 0x%lx\n",
805 1.1 matt (istart + isize), end - 1);
806 1.1 matt #endif
807 1.1 matt uvm_page_physload(atop(istart + isize),
808 1.1 matt atop(end), atop(istart + isize),
809 1.1 matt atop(end), VM_FREELIST_DEFAULT);
810 1.1 matt npages += atop(end) - atop(istart + isize);
811 1.1 matt }
812 1.1 matt } else {
813 1.1 matt uvm_page_physload(atop(start), atop(end),
814 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
815 1.1 matt npages += atop(end) - atop(start);
816 1.1 matt }
817 1.1 matt #else /* NISADMA > 0 */
818 1.1 matt uvm_page_physload(atop(start), atop(end),
819 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
820 1.1 matt npages += atop(end) - atop(start);
821 1.1 matt #endif /* NISADMA > 0 */
822 1.1 matt ++loop;
823 1.1 matt }
824 1.1 matt
825 1.1 matt #ifdef MYCROFT_HACK
826 1.1 matt printf("npages = %ld\n", npages);
827 1.1 matt #endif
828 1.1 matt
829 1.1 matt virtual_start = KERNEL_VM_BASE;
830 1.1 matt virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
831 1.1 matt
832 1.1 matt ALLOC_PAGE_HOOK(page_hook0, NBPG);
833 1.1 matt ALLOC_PAGE_HOOK(page_hook1, NBPG);
834 1.1 matt
835 1.1 matt /*
836 1.1 matt * The mem special device needs a virtual hook but we don't
837 1.1 matt * need a pte
838 1.1 matt */
839 1.1 matt memhook = (char *)virtual_start;
840 1.1 matt virtual_start += NBPG;
841 1.1 matt
842 1.1 matt msgbufaddr = (caddr_t)virtual_start;
843 1.15 chris msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
844 1.1 matt virtual_start += round_page(MSGBUFSIZE);
845 1.1 matt
846 1.1 matt size = npages * sizeof(struct pv_entry);
847 1.1 matt boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
848 1.1 matt bzero(boot_pvent, size);
849 1.1 matt size = npages * sizeof(char);
850 1.1 matt boot_attrs = (char *)uvm_pageboot_alloc(size);
851 1.1 matt bzero(boot_attrs, size);
852 1.1 matt
853 1.10 chris /*
854 1.10 chris * initialize the pmap pool.
855 1.10 chris */
856 1.10 chris
857 1.10 chris pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
858 1.10 chris 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
859 1.10 chris
860 1.1 matt cpu_cache_cleanD();
861 1.1 matt }
862 1.1 matt
863 1.1 matt /*
864 1.1 matt * void pmap_init(void)
865 1.1 matt *
866 1.1 matt * Initialize the pmap module.
867 1.1 matt * Called by vm_init() in vm/vm_init.c in order to initialise
868 1.1 matt * any structures that the pmap system needs to map virtual memory.
869 1.1 matt */
870 1.1 matt
871 1.1 matt extern int physmem;
872 1.1 matt
873 1.1 matt void
874 1.1 matt pmap_init()
875 1.1 matt {
876 1.1 matt int lcv;
877 1.1 matt
878 1.1 matt #ifdef MYCROFT_HACK
879 1.1 matt printf("physmem = %d\n", physmem);
880 1.1 matt #endif
881 1.1 matt
882 1.1 matt /*
883 1.1 matt * Set the available memory vars - These do not map to real memory
884 1.1 matt * addresses and cannot as the physical memory is fragmented.
885 1.1 matt * They are used by ps for %mem calculations.
886 1.1 matt * One could argue whether this should be the entire memory or just
887 1.1 matt * the memory that is useable in a user process.
888 1.1 matt */
889 1.1 matt avail_start = 0;
890 1.1 matt avail_end = physmem * NBPG;
891 1.1 matt
892 1.1 matt /* Set up pmap info for physsegs. */
893 1.1 matt for (lcv = 0; lcv < vm_nphysseg; lcv++) {
894 1.1 matt vm_physmem[lcv].pmseg.pvent = boot_pvent;
895 1.1 matt boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
896 1.1 matt vm_physmem[lcv].pmseg.attrs = boot_attrs;
897 1.1 matt boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
898 1.1 matt }
899 1.1 matt #ifdef MYCROFT_HACK
900 1.1 matt for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
901 1.1 matt printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
902 1.1 matt lcv,
903 1.1 matt vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
904 1.1 matt vm_physmem[lcv].start, vm_physmem[lcv].end);
905 1.1 matt }
906 1.1 matt #endif
907 1.1 matt TAILQ_INIT(&pv_page_freelist);
908 1.1 matt
909 1.1 matt #ifdef DIAGNOSTIC
910 1.1 matt /* Now it is safe to enable pv_entry recording. */
911 1.1 matt pmap_initialized = TRUE;
912 1.1 matt #endif
913 1.1 matt
914 1.1 matt /* Initialise our L1 page table queues and counters */
915 1.1 matt SIMPLEQ_INIT(&l1pt_static_queue);
916 1.1 matt l1pt_static_queue_count = 0;
917 1.1 matt l1pt_static_create_count = 0;
918 1.1 matt SIMPLEQ_INIT(&l1pt_queue);
919 1.1 matt l1pt_queue_count = 0;
920 1.1 matt l1pt_create_count = 0;
921 1.1 matt l1pt_reuse_count = 0;
922 1.1 matt }
923 1.1 matt
924 1.1 matt /*
925 1.1 matt * pmap_postinit()
926 1.1 matt *
927 1.1 matt * This routine is called after the vm and kmem subsystems have been
928 1.1 matt * initialised. This allows the pmap code to perform any initialisation
929 1.1 matt * that can only be done one the memory allocation is in place.
930 1.1 matt */
931 1.1 matt
932 1.1 matt void
933 1.1 matt pmap_postinit()
934 1.1 matt {
935 1.1 matt int loop;
936 1.1 matt struct l1pt *pt;
937 1.1 matt
938 1.1 matt #ifdef PMAP_STATIC_L1S
939 1.1 matt for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
940 1.1 matt #else /* PMAP_STATIC_L1S */
941 1.1 matt for (loop = 0; loop < max_processes; ++loop) {
942 1.1 matt #endif /* PMAP_STATIC_L1S */
943 1.1 matt /* Allocate a L1 page table */
944 1.1 matt pt = pmap_alloc_l1pt();
945 1.1 matt if (!pt)
946 1.1 matt panic("Cannot allocate static L1 page tables\n");
947 1.1 matt
948 1.1 matt /* Clean it */
949 1.1 matt bzero((void *)pt->pt_va, PD_SIZE);
950 1.1 matt pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
951 1.1 matt /* Add the page table to the queue */
952 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
953 1.1 matt ++l1pt_static_queue_count;
954 1.1 matt ++l1pt_static_create_count;
955 1.1 matt }
956 1.1 matt }
957 1.1 matt
958 1.1 matt
959 1.1 matt /*
960 1.1 matt * Create and return a physical map.
961 1.1 matt *
962 1.1 matt * If the size specified for the map is zero, the map is an actual physical
963 1.1 matt * map, and may be referenced by the hardware.
964 1.1 matt *
965 1.1 matt * If the size specified is non-zero, the map will be used in software only,
966 1.1 matt * and is bounded by that size.
967 1.1 matt */
968 1.1 matt
969 1.1 matt pmap_t
970 1.1 matt pmap_create()
971 1.1 matt {
972 1.15 chris struct pmap *pmap;
973 1.1 matt
974 1.10 chris /*
975 1.10 chris * Fetch pmap entry from the pool
976 1.10 chris */
977 1.10 chris
978 1.10 chris pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
979 1.1 matt bzero(pmap, sizeof(*pmap));
980 1.1 matt
981 1.16 chris simple_lock_init(&pmap->pm_obj.vmobjlock);
982 1.16 chris pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
983 1.16 chris TAILQ_INIT(&pmap->pm_obj.memq);
984 1.16 chris pmap->pm_obj.uo_npages = 0;
985 1.16 chris pmap->pm_obj.uo_refs = 1;
986 1.16 chris pmap->pm_stats.wired_count = 0;
987 1.16 chris pmap->pm_stats.resident_count = 1;
988 1.16 chris
989 1.1 matt /* Now init the machine part of the pmap */
990 1.1 matt pmap_pinit(pmap);
991 1.1 matt return(pmap);
992 1.1 matt }
993 1.1 matt
994 1.1 matt /*
995 1.1 matt * pmap_alloc_l1pt()
996 1.1 matt *
997 1.1 matt * This routine allocates physical and virtual memory for a L1 page table
998 1.1 matt * and wires it.
999 1.1 matt * A l1pt structure is returned to describe the allocated page table.
1000 1.1 matt *
1001 1.1 matt * This routine is allowed to fail if the required memory cannot be allocated.
1002 1.1 matt * In this case NULL is returned.
1003 1.1 matt */
1004 1.1 matt
1005 1.1 matt struct l1pt *
1006 1.1 matt pmap_alloc_l1pt(void)
1007 1.1 matt {
1008 1.2 matt paddr_t pa;
1009 1.2 matt vaddr_t va;
1010 1.1 matt struct l1pt *pt;
1011 1.1 matt int error;
1012 1.9 chs struct vm_page *m;
1013 1.11 chris pt_entry_t *ptes;
1014 1.1 matt
1015 1.1 matt /* Allocate virtual address space for the L1 page table */
1016 1.1 matt va = uvm_km_valloc(kernel_map, PD_SIZE);
1017 1.1 matt if (va == 0) {
1018 1.1 matt #ifdef DIAGNOSTIC
1019 1.1 matt printf("pmap: Cannot allocate pageable memory for L1\n");
1020 1.1 matt #endif /* DIAGNOSTIC */
1021 1.1 matt return(NULL);
1022 1.1 matt }
1023 1.1 matt
1024 1.1 matt /* Allocate memory for the l1pt structure */
1025 1.1 matt pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1026 1.1 matt
1027 1.1 matt /*
1028 1.1 matt * Allocate pages from the VM system.
1029 1.1 matt */
1030 1.1 matt TAILQ_INIT(&pt->pt_plist);
1031 1.1 matt error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1032 1.1 matt PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1033 1.1 matt if (error) {
1034 1.1 matt #ifdef DIAGNOSTIC
1035 1.1 matt printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
1036 1.1 matt error);
1037 1.1 matt #endif /* DIAGNOSTIC */
1038 1.1 matt /* Release the resources we already have claimed */
1039 1.1 matt free(pt, M_VMPMAP);
1040 1.1 matt uvm_km_free(kernel_map, va, PD_SIZE);
1041 1.1 matt return(NULL);
1042 1.1 matt }
1043 1.1 matt
1044 1.1 matt /* Map our physical pages into our virtual space */
1045 1.1 matt pt->pt_va = va;
1046 1.1 matt m = pt->pt_plist.tqh_first;
1047 1.11 chris ptes = pmap_map_ptes(pmap_kernel());
1048 1.1 matt while (m && va < (pt->pt_va + PD_SIZE)) {
1049 1.1 matt pa = VM_PAGE_TO_PHYS(m);
1050 1.1 matt
1051 1.1 matt pmap_enter(pmap_kernel(), va, pa,
1052 1.1 matt VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1053 1.1 matt
1054 1.1 matt /* Revoke cacheability and bufferability */
1055 1.1 matt /* XXX should be done better than this */
1056 1.11 chris ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1057 1.1 matt
1058 1.1 matt va += NBPG;
1059 1.1 matt m = m->pageq.tqe_next;
1060 1.1 matt }
1061 1.11 chris pmap_unmap_ptes(pmap_kernel());
1062 1.7 thorpej pmap_update();
1063 1.1 matt
1064 1.1 matt #ifdef DIAGNOSTIC
1065 1.1 matt if (m)
1066 1.1 matt panic("pmap_alloc_l1pt: pglist not empty\n");
1067 1.1 matt #endif /* DIAGNOSTIC */
1068 1.1 matt
1069 1.1 matt pt->pt_flags = 0;
1070 1.1 matt return(pt);
1071 1.1 matt }
1072 1.1 matt
1073 1.1 matt /*
1074 1.1 matt * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1075 1.1 matt */
1076 1.1 matt void
1077 1.1 matt pmap_free_l1pt(pt)
1078 1.1 matt struct l1pt *pt;
1079 1.1 matt {
1080 1.1 matt /* Separate the physical memory for the virtual space */
1081 1.15 chris pmap_remove(pmap_kernel(), pt->pt_va, pt->pt_va + PD_SIZE);
1082 1.7 thorpej pmap_update();
1083 1.1 matt
1084 1.1 matt /* Return the physical memory */
1085 1.1 matt uvm_pglistfree(&pt->pt_plist);
1086 1.1 matt
1087 1.1 matt /* Free the virtual space */
1088 1.1 matt uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1089 1.1 matt
1090 1.1 matt /* Free the l1pt structure */
1091 1.1 matt free(pt, M_VMPMAP);
1092 1.1 matt }
1093 1.1 matt
1094 1.1 matt /*
1095 1.1 matt * Allocate a page directory.
1096 1.1 matt * This routine will either allocate a new page directory from the pool
1097 1.1 matt * of L1 page tables currently held by the kernel or it will allocate
1098 1.1 matt * a new one via pmap_alloc_l1pt().
1099 1.1 matt * It will then initialise the l1 page table for use.
1100 1.1 matt */
1101 1.1 matt int
1102 1.1 matt pmap_allocpagedir(pmap)
1103 1.1 matt struct pmap *pmap;
1104 1.1 matt {
1105 1.2 matt paddr_t pa;
1106 1.1 matt struct l1pt *pt;
1107 1.1 matt pt_entry_t *pte;
1108 1.1 matt
1109 1.1 matt PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1110 1.1 matt
1111 1.1 matt /* Do we have any spare L1's lying around ? */
1112 1.1 matt if (l1pt_static_queue_count) {
1113 1.1 matt --l1pt_static_queue_count;
1114 1.1 matt pt = l1pt_static_queue.sqh_first;
1115 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1116 1.1 matt } else if (l1pt_queue_count) {
1117 1.1 matt --l1pt_queue_count;
1118 1.1 matt pt = l1pt_queue.sqh_first;
1119 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1120 1.1 matt ++l1pt_reuse_count;
1121 1.1 matt } else {
1122 1.1 matt pt = pmap_alloc_l1pt();
1123 1.1 matt if (!pt)
1124 1.1 matt return(ENOMEM);
1125 1.1 matt ++l1pt_create_count;
1126 1.1 matt }
1127 1.1 matt
1128 1.1 matt /* Store the pointer to the l1 descriptor in the pmap. */
1129 1.1 matt pmap->pm_l1pt = pt;
1130 1.1 matt
1131 1.1 matt /* Get the physical address of the start of the l1 */
1132 1.1 matt pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1133 1.1 matt
1134 1.1 matt /* Store the virtual address of the l1 in the pmap. */
1135 1.1 matt pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1136 1.1 matt
1137 1.1 matt /* Clean the L1 if it is dirty */
1138 1.1 matt if (!(pt->pt_flags & PTFLAG_CLEAN))
1139 1.1 matt bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1140 1.1 matt
1141 1.1 matt /* Do we already have the kernel mappings ? */
1142 1.1 matt if (!(pt->pt_flags & PTFLAG_KPT)) {
1143 1.1 matt /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1144 1.1 matt
1145 1.15 chris bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1146 1.1 matt (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1147 1.1 matt KERNEL_PD_SIZE);
1148 1.1 matt pt->pt_flags |= PTFLAG_KPT;
1149 1.1 matt }
1150 1.1 matt
1151 1.1 matt /* Allocate a page table to map all the page tables for this pmap */
1152 1.1 matt
1153 1.1 matt #ifdef DIAGNOSTIC
1154 1.1 matt if (pmap->pm_vptpt) {
1155 1.1 matt /* XXX What if we have one already ? */
1156 1.1 matt panic("pmap_allocpagedir: have pt already\n");
1157 1.1 matt }
1158 1.1 matt #endif /* DIAGNOSTIC */
1159 1.1 matt pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1160 1.5 toshii if (pmap->pm_vptpt == 0) {
1161 1.5 toshii pmap_freepagedir(pmap);
1162 1.5 toshii return(ENOMEM);
1163 1.5 toshii }
1164 1.5 toshii
1165 1.15 chris (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1166 1.1 matt pmap->pm_pptpt &= PG_FRAME;
1167 1.1 matt /* Revoke cacheability and bufferability */
1168 1.1 matt /* XXX should be done better than this */
1169 1.15 chris pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1170 1.1 matt *pte = *pte & ~(PT_C | PT_B);
1171 1.1 matt
1172 1.1 matt /* Wire in this page table */
1173 1.1 matt pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
1174 1.1 matt
1175 1.1 matt pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1176 1.1 matt
1177 1.1 matt /*
1178 1.1 matt * Map the kernel page tables for 0xf0000000 +
1179 1.1 matt * into the page table used to map the
1180 1.1 matt * pmap's page tables
1181 1.1 matt */
1182 1.1 matt bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1183 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1184 1.1 matt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1185 1.1 matt (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1186 1.1 matt (KERNEL_PD_SIZE >> 2));
1187 1.1 matt
1188 1.1 matt return(0);
1189 1.1 matt }
1190 1.1 matt
1191 1.1 matt
1192 1.1 matt /*
1193 1.1 matt * Initialize a preallocated and zeroed pmap structure,
1194 1.1 matt * such as one in a vmspace structure.
1195 1.1 matt */
1196 1.1 matt
1197 1.1 matt static int pmap_pagedir_ident; /* tsleep() ident */
1198 1.1 matt
1199 1.1 matt void
1200 1.1 matt pmap_pinit(pmap)
1201 1.1 matt struct pmap *pmap;
1202 1.1 matt {
1203 1.1 matt PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1204 1.1 matt
1205 1.1 matt /* Keep looping until we succeed in allocating a page directory */
1206 1.1 matt while (pmap_allocpagedir(pmap) != 0) {
1207 1.1 matt /*
1208 1.1 matt * Ok we failed to allocate a suitable block of memory for an
1209 1.1 matt * L1 page table. This means that either:
1210 1.1 matt * 1. 16KB of virtual address space could not be allocated
1211 1.1 matt * 2. 16KB of physically contiguous memory on a 16KB boundary
1212 1.1 matt * could not be allocated.
1213 1.1 matt *
1214 1.1 matt * Since we cannot fail we will sleep for a while and try
1215 1.1 matt * again. Although we will be wakened when another page table
1216 1.1 matt * is freed other memory releasing and swapping may occur
1217 1.1 matt * that will mean we can succeed so we will keep trying
1218 1.1 matt * regularly just in case.
1219 1.1 matt */
1220 1.1 matt
1221 1.1 matt if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
1222 1.1 matt "l1ptwait", 1000) == EWOULDBLOCK)
1223 1.1 matt printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
1224 1.1 matt }
1225 1.1 matt
1226 1.1 matt /* Map zero page for the pmap. This will also map the L2 for it */
1227 1.1 matt pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1228 1.1 matt VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1229 1.7 thorpej pmap_update();
1230 1.1 matt }
1231 1.1 matt
1232 1.1 matt
1233 1.1 matt void
1234 1.1 matt pmap_freepagedir(pmap)
1235 1.15 chris struct pmap *pmap;
1236 1.1 matt {
1237 1.1 matt /* Free the memory used for the page table mapping */
1238 1.5 toshii if (pmap->pm_vptpt != 0)
1239 1.5 toshii uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1240 1.1 matt
1241 1.1 matt /* junk the L1 page table */
1242 1.1 matt if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1243 1.1 matt /* Add the page table to the queue */
1244 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1245 1.1 matt ++l1pt_static_queue_count;
1246 1.1 matt /* Wake up any sleeping processes waiting for a l1 page table */
1247 1.1 matt wakeup((caddr_t)&pmap_pagedir_ident);
1248 1.1 matt } else if (l1pt_queue_count < 8) {
1249 1.1 matt /* Add the page table to the queue */
1250 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1251 1.1 matt ++l1pt_queue_count;
1252 1.1 matt /* Wake up any sleeping processes waiting for a l1 page table */
1253 1.1 matt wakeup((caddr_t)&pmap_pagedir_ident);
1254 1.1 matt } else
1255 1.1 matt pmap_free_l1pt(pmap->pm_l1pt);
1256 1.1 matt }
1257 1.1 matt
1258 1.1 matt
1259 1.1 matt /*
1260 1.1 matt * Retire the given physical map from service.
1261 1.1 matt * Should only be called if the map contains no valid mappings.
1262 1.1 matt */
1263 1.1 matt
1264 1.1 matt void
1265 1.1 matt pmap_destroy(pmap)
1266 1.15 chris struct pmap *pmap;
1267 1.1 matt {
1268 1.1 matt int count;
1269 1.1 matt
1270 1.1 matt if (pmap == NULL)
1271 1.1 matt return;
1272 1.1 matt
1273 1.1 matt PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1274 1.1 matt simple_lock(&pmap->pm_lock);
1275 1.16 chris count = --pmap->pm_obj.uo_refs;
1276 1.1 matt simple_unlock(&pmap->pm_lock);
1277 1.1 matt if (count == 0) {
1278 1.1 matt pmap_release(pmap);
1279 1.10 chris pool_put(&pmap_pmap_pool, pmap);
1280 1.1 matt }
1281 1.1 matt }
1282 1.1 matt
1283 1.1 matt
1284 1.1 matt /*
1285 1.1 matt * Release any resources held by the given physical map.
1286 1.1 matt * Called when a pmap initialized by pmap_pinit is being released.
1287 1.1 matt * Should only be called if the map contains no valid mappings.
1288 1.1 matt */
1289 1.1 matt
1290 1.1 matt void
1291 1.1 matt pmap_release(pmap)
1292 1.15 chris struct pmap *pmap;
1293 1.1 matt {
1294 1.1 matt struct vm_page *page;
1295 1.1 matt
1296 1.1 matt PDEBUG(0, printf("pmap_release(%p)\n", pmap));
1297 1.1 matt
1298 1.1 matt /* Remove the zero page mapping */
1299 1.1 matt pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1300 1.7 thorpej pmap_update();
1301 1.1 matt
1302 1.1 matt /*
1303 1.1 matt * Free any page tables still mapped
1304 1.1 matt * This is only temporay until pmap_enter can count the number
1305 1.1 matt * of mappings made in a page table. Then pmap_remove() can
1306 1.1 matt * reduce the count and free the pagetable when the count
1307 1.16 chris * reaches zero. Note that entries in this list should match the
1308 1.16 chris * contents of the ptpt, however this is faster than walking a 1024
1309 1.16 chris * entries looking for pt's
1310 1.16 chris * taken from i386 pmap.c
1311 1.1 matt */
1312 1.16 chris while (pmap->pm_obj.memq.tqh_first != NULL) {
1313 1.16 chris page = pmap->pm_obj.memq.tqh_first;
1314 1.16 chris #ifdef DIAGNOSTIC
1315 1.16 chris if (page->flags & PG_BUSY)
1316 1.16 chris panic("pmap_release: busy page table page");
1317 1.16 chris #endif
1318 1.16 chris /* pmap_page_protect? currently no need for it. */
1319 1.16 chris
1320 1.16 chris page->wire_count = 0;
1321 1.16 chris uvm_pagefree(page);
1322 1.1 matt }
1323 1.16 chris
1324 1.1 matt /* Free the page dir */
1325 1.1 matt pmap_freepagedir(pmap);
1326 1.1 matt }
1327 1.1 matt
1328 1.1 matt
1329 1.1 matt /*
1330 1.15 chris * void pmap_reference(struct pmap *pmap)
1331 1.1 matt *
1332 1.1 matt * Add a reference to the specified pmap.
1333 1.1 matt */
1334 1.1 matt
1335 1.1 matt void
1336 1.1 matt pmap_reference(pmap)
1337 1.15 chris struct pmap *pmap;
1338 1.1 matt {
1339 1.1 matt if (pmap == NULL)
1340 1.1 matt return;
1341 1.1 matt
1342 1.1 matt simple_lock(&pmap->pm_lock);
1343 1.16 chris pmap->pm_obj.uo_refs++;
1344 1.1 matt simple_unlock(&pmap->pm_lock);
1345 1.1 matt }
1346 1.1 matt
1347 1.1 matt /*
1348 1.1 matt * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1349 1.1 matt *
1350 1.1 matt * Return the start and end addresses of the kernel's virtual space.
1351 1.1 matt * These values are setup in pmap_bootstrap and are updated as pages
1352 1.1 matt * are allocated.
1353 1.1 matt */
1354 1.1 matt
1355 1.1 matt void
1356 1.1 matt pmap_virtual_space(start, end)
1357 1.1 matt vaddr_t *start;
1358 1.1 matt vaddr_t *end;
1359 1.1 matt {
1360 1.1 matt *start = virtual_start;
1361 1.1 matt *end = virtual_end;
1362 1.1 matt }
1363 1.1 matt
1364 1.1 matt
1365 1.1 matt /*
1366 1.1 matt * Activate the address space for the specified process. If the process
1367 1.1 matt * is the current process, load the new MMU context.
1368 1.1 matt */
1369 1.1 matt void
1370 1.1 matt pmap_activate(p)
1371 1.1 matt struct proc *p;
1372 1.1 matt {
1373 1.15 chris struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1374 1.1 matt struct pcb *pcb = &p->p_addr->u_pcb;
1375 1.1 matt
1376 1.15 chris (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1377 1.1 matt (paddr_t *)&pcb->pcb_pagedir);
1378 1.1 matt
1379 1.1 matt PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1380 1.1 matt p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1381 1.1 matt
1382 1.1 matt if (p == curproc) {
1383 1.1 matt PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1384 1.1 matt setttb((u_int)pcb->pcb_pagedir);
1385 1.1 matt }
1386 1.1 matt #if 0
1387 1.1 matt pmap->pm_pdchanged = FALSE;
1388 1.1 matt #endif
1389 1.1 matt }
1390 1.1 matt
1391 1.1 matt
1392 1.1 matt /*
1393 1.1 matt * Deactivate the address space of the specified process.
1394 1.1 matt */
1395 1.1 matt void
1396 1.1 matt pmap_deactivate(p)
1397 1.1 matt struct proc *p;
1398 1.1 matt {
1399 1.1 matt }
1400 1.1 matt
1401 1.1 matt
1402 1.1 matt /*
1403 1.1 matt * pmap_clean_page()
1404 1.1 matt *
1405 1.1 matt * This is a local function used to work out the best strategy to clean
1406 1.1 matt * a single page referenced by its entry in the PV table. It's used by
1407 1.1 matt * pmap_copy_page, pmap_zero page and maybe some others later on.
1408 1.1 matt *
1409 1.1 matt * Its policy is effectively:
1410 1.1 matt * o If there are no mappings, we don't bother doing anything with the cache.
1411 1.1 matt * o If there is one mapping, we clean just that page.
1412 1.1 matt * o If there are multiple mappings, we clean the entire cache.
1413 1.1 matt *
1414 1.1 matt * So that some functions can be further optimised, it returns 0 if it didn't
1415 1.1 matt * clean the entire cache, or 1 if it did.
1416 1.1 matt *
1417 1.1 matt * XXX One bug in this routine is that if the pv_entry has a single page
1418 1.1 matt * mapped at 0x00000000 a whole cache clean will be performed rather than
1419 1.1 matt * just the 1 page. Since this should not occur in everyday use and if it does
1420 1.1 matt * it will just result in not the most efficient clean for the page.
1421 1.1 matt */
1422 1.1 matt static int
1423 1.1 matt pmap_clean_page(pv)
1424 1.1 matt struct pv_entry *pv;
1425 1.1 matt {
1426 1.1 matt int s;
1427 1.1 matt int cache_needs_cleaning = 0;
1428 1.1 matt vaddr_t page_to_clean = 0;
1429 1.1 matt
1430 1.1 matt /* Go to splvm() so we get exclusive lock for a mo */
1431 1.1 matt s = splvm();
1432 1.1 matt if (pv->pv_pmap) {
1433 1.1 matt cache_needs_cleaning = 1;
1434 1.1 matt if (!pv->pv_next)
1435 1.1 matt page_to_clean = pv->pv_va;
1436 1.1 matt }
1437 1.1 matt splx(s);
1438 1.1 matt
1439 1.1 matt /* Do cache ops outside the splvm. */
1440 1.1 matt if (page_to_clean)
1441 1.1 matt cpu_cache_purgeID_rng(page_to_clean, NBPG);
1442 1.1 matt else if (cache_needs_cleaning) {
1443 1.1 matt cpu_cache_purgeID();
1444 1.1 matt return (1);
1445 1.1 matt }
1446 1.1 matt return (0);
1447 1.1 matt }
1448 1.1 matt
1449 1.1 matt /*
1450 1.1 matt * pmap_find_pv()
1451 1.1 matt *
1452 1.1 matt * This is a local function that finds a PV entry for a given physical page.
1453 1.1 matt * This is a common op, and this function removes loads of ifdefs in the code.
1454 1.1 matt */
1455 1.1 matt static __inline struct pv_entry *
1456 1.1 matt pmap_find_pv(phys)
1457 1.2 matt paddr_t phys;
1458 1.1 matt {
1459 1.1 matt int bank, off;
1460 1.1 matt struct pv_entry *pv;
1461 1.1 matt
1462 1.1 matt #ifdef DIAGNOSTIC
1463 1.1 matt if (!pmap_initialized)
1464 1.1 matt panic("pmap_find_pv: !pmap_initialized");
1465 1.1 matt #endif
1466 1.1 matt
1467 1.1 matt if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1468 1.1 matt panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1469 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
1470 1.1 matt return (pv);
1471 1.1 matt }
1472 1.1 matt
1473 1.1 matt /*
1474 1.1 matt * pmap_zero_page()
1475 1.1 matt *
1476 1.1 matt * Zero a given physical page by mapping it at a page hook point.
1477 1.1 matt * In doing the zero page op, the page we zero is mapped cachable, as with
1478 1.1 matt * StrongARM accesses to non-cached pages are non-burst making writing
1479 1.1 matt * _any_ bulk data very slow.
1480 1.1 matt */
1481 1.1 matt void
1482 1.1 matt pmap_zero_page(phys)
1483 1.2 matt paddr_t phys;
1484 1.1 matt {
1485 1.1 matt struct pv_entry *pv;
1486 1.1 matt
1487 1.1 matt /* Get an entry for this page, and clean it it. */
1488 1.1 matt pv = pmap_find_pv(phys);
1489 1.1 matt pmap_clean_page(pv);
1490 1.1 matt
1491 1.1 matt /*
1492 1.1 matt * Hook in the page, zero it, and purge the cache for that
1493 1.1 matt * zeroed page. Invalidate the TLB as needed.
1494 1.1 matt */
1495 1.1 matt *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1496 1.1 matt cpu_tlb_flushD_SE(page_hook0.va);
1497 1.1 matt bzero_page(page_hook0.va);
1498 1.1 matt cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1499 1.1 matt }
1500 1.1 matt
1501 1.1 matt /*
1502 1.1 matt * pmap_copy_page()
1503 1.1 matt *
1504 1.1 matt * Copy one physical page into another, by mapping the pages into
1505 1.1 matt * hook points. The same comment regarding cachability as in
1506 1.1 matt * pmap_zero_page also applies here.
1507 1.1 matt */
1508 1.1 matt void
1509 1.1 matt pmap_copy_page(src, dest)
1510 1.2 matt paddr_t src;
1511 1.2 matt paddr_t dest;
1512 1.1 matt {
1513 1.1 matt struct pv_entry *src_pv, *dest_pv;
1514 1.1 matt
1515 1.1 matt /* Get PV entries for the pages, and clean them if needed. */
1516 1.1 matt src_pv = pmap_find_pv(src);
1517 1.1 matt dest_pv = pmap_find_pv(dest);
1518 1.1 matt if (!pmap_clean_page(src_pv))
1519 1.1 matt pmap_clean_page(dest_pv);
1520 1.1 matt
1521 1.1 matt /*
1522 1.1 matt * Map the pages into the page hook points, copy them, and purge
1523 1.1 matt * the cache for the appropriate page. Invalidate the TLB
1524 1.1 matt * as required.
1525 1.1 matt */
1526 1.1 matt *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1527 1.1 matt *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1528 1.1 matt cpu_tlb_flushD_SE(page_hook0.va);
1529 1.1 matt cpu_tlb_flushD_SE(page_hook1.va);
1530 1.1 matt bcopy_page(page_hook0.va, page_hook1.va);
1531 1.1 matt cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1532 1.1 matt cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1533 1.1 matt }
1534 1.1 matt
1535 1.1 matt /*
1536 1.2 matt * int pmap_next_phys_page(paddr_t *addr)
1537 1.1 matt *
1538 1.1 matt * Allocate another physical page returning true or false depending
1539 1.1 matt * on whether a page could be allocated.
1540 1.1 matt */
1541 1.1 matt
1542 1.2 matt paddr_t
1543 1.1 matt pmap_next_phys_page(addr)
1544 1.2 matt paddr_t addr;
1545 1.1 matt
1546 1.1 matt {
1547 1.1 matt int loop;
1548 1.1 matt
1549 1.1 matt if (addr < bootconfig.dram[0].address)
1550 1.1 matt return(bootconfig.dram[0].address);
1551 1.1 matt
1552 1.1 matt loop = 0;
1553 1.1 matt
1554 1.1 matt while (bootconfig.dram[loop].address != 0
1555 1.1 matt && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1556 1.1 matt ++loop;
1557 1.1 matt
1558 1.1 matt if (bootconfig.dram[loop].address == 0)
1559 1.1 matt return(0);
1560 1.1 matt
1561 1.1 matt addr += NBPG;
1562 1.1 matt
1563 1.1 matt if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1564 1.1 matt if (bootconfig.dram[loop + 1].address == 0)
1565 1.1 matt return(0);
1566 1.1 matt addr = bootconfig.dram[loop + 1].address;
1567 1.1 matt }
1568 1.1 matt
1569 1.1 matt return(addr);
1570 1.1 matt }
1571 1.1 matt
1572 1.1 matt #if 0
1573 1.1 matt void
1574 1.1 matt pmap_pte_addref(pmap, va)
1575 1.15 chris struct pmap *pmap;
1576 1.1 matt vaddr_t va;
1577 1.1 matt {
1578 1.1 matt pd_entry_t *pde;
1579 1.2 matt paddr_t pa;
1580 1.1 matt struct vm_page *m;
1581 1.1 matt
1582 1.1 matt if (pmap == pmap_kernel())
1583 1.1 matt return;
1584 1.1 matt
1585 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1586 1.1 matt pa = pmap_pte_pa(pde);
1587 1.1 matt m = PHYS_TO_VM_PAGE(pa);
1588 1.1 matt ++m->wire_count;
1589 1.1 matt #ifdef MYCROFT_HACK
1590 1.1 matt printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1591 1.1 matt pmap, va, pde, pa, m, m->wire_count);
1592 1.1 matt #endif
1593 1.1 matt }
1594 1.1 matt
1595 1.1 matt void
1596 1.1 matt pmap_pte_delref(pmap, va)
1597 1.15 chris struct pmap *pmap;
1598 1.1 matt vaddr_t va;
1599 1.1 matt {
1600 1.1 matt pd_entry_t *pde;
1601 1.2 matt paddr_t pa;
1602 1.1 matt struct vm_page *m;
1603 1.1 matt
1604 1.1 matt if (pmap == pmap_kernel())
1605 1.1 matt return;
1606 1.1 matt
1607 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1608 1.1 matt pa = pmap_pte_pa(pde);
1609 1.1 matt m = PHYS_TO_VM_PAGE(pa);
1610 1.1 matt --m->wire_count;
1611 1.1 matt #ifdef MYCROFT_HACK
1612 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1613 1.1 matt pmap, va, pde, pa, m, m->wire_count);
1614 1.1 matt #endif
1615 1.1 matt if (m->wire_count == 0) {
1616 1.1 matt #ifdef MYCROFT_HACK
1617 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1618 1.1 matt pmap, va, pde, pa, m);
1619 1.1 matt #endif
1620 1.1 matt pmap_unmap_in_l1(pmap, va);
1621 1.1 matt uvm_pagefree(m);
1622 1.1 matt --pmap->pm_stats.resident_count;
1623 1.1 matt }
1624 1.1 matt }
1625 1.1 matt #else
1626 1.1 matt #define pmap_pte_addref(pmap, va)
1627 1.1 matt #define pmap_pte_delref(pmap, va)
1628 1.1 matt #endif
1629 1.1 matt
1630 1.1 matt /*
1631 1.1 matt * Since we have a virtually indexed cache, we may need to inhibit caching if
1632 1.1 matt * there is more than one mapping and at least one of them is writable.
1633 1.1 matt * Since we purge the cache on every context switch, we only need to check for
1634 1.1 matt * other mappings within the same pmap, or kernel_pmap.
1635 1.1 matt * This function is also called when a page is unmapped, to possibly reenable
1636 1.1 matt * caching on any remaining mappings.
1637 1.11 chris *
1638 1.11 chris * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1639 1.1 matt */
1640 1.1 matt void
1641 1.12 chris pmap_vac_me_harder(struct pmap *pmap, struct pv_entry *pv, pt_entry_t *ptes,
1642 1.12 chris boolean_t clear_cache)
1643 1.1 matt {
1644 1.1 matt struct pv_entry *npv;
1645 1.1 matt pt_entry_t *pte;
1646 1.1 matt int entries = 0;
1647 1.1 matt int writeable = 0;
1648 1.12 chris int cacheable_entries = 0;
1649 1.1 matt
1650 1.1 matt if (pv->pv_pmap == NULL)
1651 1.1 matt return;
1652 1.11 chris KASSERT(ptes != NULL);
1653 1.1 matt
1654 1.1 matt /*
1655 1.1 matt * Count mappings and writable mappings in this pmap.
1656 1.1 matt * Keep a pointer to the first one.
1657 1.1 matt */
1658 1.1 matt for (npv = pv; npv; npv = npv->pv_next) {
1659 1.1 matt /* Count mappings in the same pmap */
1660 1.1 matt if (pmap == npv->pv_pmap) {
1661 1.1 matt if (entries++ == 0)
1662 1.1 matt pv = npv;
1663 1.12 chris /* Cacheable mappings */
1664 1.12 chris if ((npv->pv_flags & PT_NC) == 0)
1665 1.12 chris cacheable_entries++;
1666 1.1 matt /* Writeable mappings */
1667 1.1 matt if (npv->pv_flags & PT_Wr)
1668 1.1 matt ++writeable;
1669 1.1 matt }
1670 1.1 matt }
1671 1.1 matt
1672 1.12 chris PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
1673 1.12 chris "writeable %d cacheable %d %s\n", pmap, entries, writeable,
1674 1.12 chris cacheable_entries, clear_cache ? "clean" : "no clean"));
1675 1.12 chris
1676 1.1 matt /*
1677 1.1 matt * Enable or disable caching as necessary.
1678 1.1 matt * We do a quick check of the first PTE to avoid walking the list if
1679 1.1 matt * we're already in the right state.
1680 1.1 matt */
1681 1.1 matt if (entries > 1 && writeable) {
1682 1.12 chris if (cacheable_entries == 0)
1683 1.12 chris return;
1684 1.12 chris if (pv->pv_flags & PT_NC) {
1685 1.12 chris #ifdef DIAGNOSTIC
1686 1.12 chris /* We have cacheable entries, but the first one
1687 1.12 chris isn't among them. Something is wrong. */
1688 1.12 chris if (cacheable_entries)
1689 1.12 chris panic("pmap_vac_me_harder: "
1690 1.12 chris "cacheable inconsistent");
1691 1.12 chris #endif
1692 1.1 matt return;
1693 1.11 chris }
1694 1.12 chris pte = &ptes[arm_byte_to_page(pv->pv_va)];
1695 1.11 chris *pte &= ~(PT_C | PT_B);
1696 1.12 chris pv->pv_flags |= PT_NC;
1697 1.12 chris if (clear_cache && cacheable_entries < 4) {
1698 1.12 chris cpu_cache_purgeID_rng(pv->pv_va, NBPG);
1699 1.12 chris cpu_tlb_flushID_SE(pv->pv_va);
1700 1.12 chris }
1701 1.1 matt for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1702 1.12 chris if (pmap == npv->pv_pmap &&
1703 1.12 chris (npv->pv_flags & PT_NC) == 0) {
1704 1.12 chris ptes[arm_byte_to_page(npv->pv_va)] &=
1705 1.11 chris ~(PT_C | PT_B);
1706 1.12 chris npv->pv_flags |= PT_NC;
1707 1.12 chris if (clear_cache && cacheable_entries < 4) {
1708 1.12 chris cpu_cache_purgeID_rng(npv->pv_va,
1709 1.12 chris NBPG);
1710 1.12 chris cpu_tlb_flushID_SE(npv->pv_va);
1711 1.12 chris }
1712 1.1 matt }
1713 1.1 matt }
1714 1.12 chris if (clear_cache && cacheable_entries >= 4) {
1715 1.12 chris cpu_cache_purgeID();
1716 1.12 chris cpu_tlb_flushID();
1717 1.12 chris }
1718 1.1 matt } else if (entries > 0) {
1719 1.12 chris if ((pv->pv_flags & PT_NC) == 0)
1720 1.12 chris return;
1721 1.11 chris pte = &ptes[arm_byte_to_page(pv->pv_va)];
1722 1.11 chris *pte |= (PT_C | PT_B);
1723 1.12 chris pv->pv_flags &= ~PT_NC;
1724 1.1 matt for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1725 1.12 chris if (pmap == npv->pv_pmap &&
1726 1.12 chris (npv->pv_flags & PT_NC)) {
1727 1.11 chris ptes[arm_byte_to_page(npv->pv_va)] |=
1728 1.12 chris (PT_C | PT_B);
1729 1.12 chris npv->pv_flags &= ~PT_NC;
1730 1.1 matt }
1731 1.1 matt }
1732 1.1 matt }
1733 1.1 matt }
1734 1.1 matt
1735 1.1 matt /*
1736 1.1 matt * pmap_remove()
1737 1.1 matt *
1738 1.1 matt * pmap_remove is responsible for nuking a number of mappings for a range
1739 1.1 matt * of virtual address space in the current pmap. To do this efficiently
1740 1.1 matt * is interesting, because in a number of cases a wide virtual address
1741 1.1 matt * range may be supplied that contains few actual mappings. So, the
1742 1.1 matt * optimisations are:
1743 1.1 matt * 1. Try and skip over hunks of address space for which an L1 entry
1744 1.1 matt * does not exist.
1745 1.1 matt * 2. Build up a list of pages we've hit, up to a maximum, so we can
1746 1.1 matt * maybe do just a partial cache clean. This path of execution is
1747 1.1 matt * complicated by the fact that the cache must be flushed _before_
1748 1.1 matt * the PTE is nuked, being a VAC :-)
1749 1.1 matt * 3. Maybe later fast-case a single page, but I don't think this is
1750 1.1 matt * going to make _that_ much difference overall.
1751 1.1 matt */
1752 1.1 matt
1753 1.1 matt #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
1754 1.1 matt
1755 1.1 matt void
1756 1.1 matt pmap_remove(pmap, sva, eva)
1757 1.15 chris struct pmap *pmap;
1758 1.1 matt vaddr_t sva;
1759 1.1 matt vaddr_t eva;
1760 1.1 matt {
1761 1.1 matt int cleanlist_idx = 0;
1762 1.1 matt struct pagelist {
1763 1.1 matt vaddr_t va;
1764 1.1 matt pt_entry_t *pte;
1765 1.1 matt } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
1766 1.11 chris pt_entry_t *pte = 0, *ptes;
1767 1.2 matt paddr_t pa;
1768 1.1 matt int pmap_active;
1769 1.1 matt struct pv_entry *pv;
1770 1.1 matt
1771 1.1 matt /* Exit quick if there is no pmap */
1772 1.1 matt if (!pmap)
1773 1.1 matt return;
1774 1.1 matt
1775 1.1 matt PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
1776 1.1 matt
1777 1.1 matt sva &= PG_FRAME;
1778 1.1 matt eva &= PG_FRAME;
1779 1.1 matt
1780 1.11 chris ptes = pmap_map_ptes(pmap);
1781 1.1 matt /* Get a page table pointer */
1782 1.1 matt while (sva < eva) {
1783 1.11 chris if (pmap_pde_v(pmap_pde(pmap, sva)))
1784 1.1 matt break;
1785 1.1 matt sva = (sva & PD_MASK) + NBPD;
1786 1.1 matt }
1787 1.11 chris
1788 1.11 chris pte = &ptes[arm_byte_to_page(sva)];
1789 1.1 matt /* Note if the pmap is active thus require cache and tlb cleans */
1790 1.1 matt if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
1791 1.15 chris || (pmap == pmap_kernel()))
1792 1.1 matt pmap_active = 1;
1793 1.1 matt else
1794 1.1 matt pmap_active = 0;
1795 1.1 matt
1796 1.1 matt /* Now loop along */
1797 1.1 matt while (sva < eva) {
1798 1.1 matt /* Check if we can move to the next PDE (l1 chunk) */
1799 1.1 matt if (!(sva & PT_MASK))
1800 1.1 matt if (!pmap_pde_v(pmap_pde(pmap, sva))) {
1801 1.1 matt sva += NBPD;
1802 1.1 matt pte += arm_byte_to_page(NBPD);
1803 1.1 matt continue;
1804 1.1 matt }
1805 1.1 matt
1806 1.1 matt /* We've found a valid PTE, so this page of PTEs has to go. */
1807 1.1 matt if (pmap_pte_v(pte)) {
1808 1.1 matt int bank, off;
1809 1.1 matt
1810 1.1 matt /* Update statistics */
1811 1.1 matt --pmap->pm_stats.resident_count;
1812 1.1 matt
1813 1.1 matt /*
1814 1.1 matt * Add this page to our cache remove list, if we can.
1815 1.1 matt * If, however the cache remove list is totally full,
1816 1.1 matt * then do a complete cache invalidation taking note
1817 1.1 matt * to backtrack the PTE table beforehand, and ignore
1818 1.1 matt * the lists in future because there's no longer any
1819 1.1 matt * point in bothering with them (we've paid the
1820 1.1 matt * penalty, so will carry on unhindered). Otherwise,
1821 1.1 matt * when we fall out, we just clean the list.
1822 1.1 matt */
1823 1.1 matt PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
1824 1.1 matt pa = pmap_pte_pa(pte);
1825 1.1 matt
1826 1.1 matt if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
1827 1.1 matt /* Add to the clean list. */
1828 1.1 matt cleanlist[cleanlist_idx].pte = pte;
1829 1.1 matt cleanlist[cleanlist_idx].va = sva;
1830 1.1 matt cleanlist_idx++;
1831 1.1 matt } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
1832 1.1 matt int cnt;
1833 1.1 matt
1834 1.1 matt /* Nuke everything if needed. */
1835 1.1 matt if (pmap_active) {
1836 1.1 matt cpu_cache_purgeID();
1837 1.1 matt cpu_tlb_flushID();
1838 1.1 matt }
1839 1.1 matt
1840 1.1 matt /*
1841 1.1 matt * Roll back the previous PTE list,
1842 1.1 matt * and zero out the current PTE.
1843 1.1 matt */
1844 1.1 matt for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
1845 1.1 matt *cleanlist[cnt].pte = 0;
1846 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
1847 1.1 matt }
1848 1.1 matt *pte = 0;
1849 1.1 matt pmap_pte_delref(pmap, sva);
1850 1.1 matt cleanlist_idx++;
1851 1.1 matt } else {
1852 1.1 matt /*
1853 1.1 matt * We've already nuked the cache and
1854 1.1 matt * TLB, so just carry on regardless,
1855 1.1 matt * and we won't need to do it again
1856 1.1 matt */
1857 1.1 matt *pte = 0;
1858 1.1 matt pmap_pte_delref(pmap, sva);
1859 1.1 matt }
1860 1.1 matt
1861 1.1 matt /*
1862 1.1 matt * Update flags. In a number of circumstances,
1863 1.1 matt * we could cluster a lot of these and do a
1864 1.1 matt * number of sequential pages in one go.
1865 1.1 matt */
1866 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
1867 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
1868 1.1 matt pmap_remove_pv(pmap, sva, pv);
1869 1.12 chris pmap_vac_me_harder(pmap, pv, ptes, FALSE);
1870 1.1 matt }
1871 1.1 matt }
1872 1.1 matt sva += NBPG;
1873 1.1 matt pte++;
1874 1.1 matt }
1875 1.1 matt
1876 1.11 chris pmap_unmap_ptes(pmap);
1877 1.1 matt /*
1878 1.1 matt * Now, if we've fallen through down to here, chances are that there
1879 1.1 matt * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
1880 1.1 matt */
1881 1.1 matt if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
1882 1.1 matt u_int cnt;
1883 1.1 matt
1884 1.1 matt for (cnt = 0; cnt < cleanlist_idx; cnt++) {
1885 1.1 matt if (pmap_active) {
1886 1.1 matt cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
1887 1.1 matt *cleanlist[cnt].pte = 0;
1888 1.1 matt cpu_tlb_flushID_SE(cleanlist[cnt].va);
1889 1.1 matt } else
1890 1.1 matt *cleanlist[cnt].pte = 0;
1891 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
1892 1.1 matt }
1893 1.1 matt }
1894 1.1 matt }
1895 1.1 matt
1896 1.1 matt /*
1897 1.1 matt * Routine: pmap_remove_all
1898 1.1 matt * Function:
1899 1.1 matt * Removes this physical page from
1900 1.1 matt * all physical maps in which it resides.
1901 1.1 matt * Reflects back modify bits to the pager.
1902 1.1 matt */
1903 1.1 matt
1904 1.1 matt void
1905 1.1 matt pmap_remove_all(pa)
1906 1.2 matt paddr_t pa;
1907 1.1 matt {
1908 1.1 matt struct pv_entry *ph, *pv, *npv;
1909 1.15 chris struct pmap *pmap;
1910 1.11 chris pt_entry_t *pte, *ptes;
1911 1.1 matt int s;
1912 1.1 matt
1913 1.1 matt PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
1914 1.1 matt
1915 1.1 matt pv = ph = pmap_find_pv(pa);
1916 1.1 matt pmap_clean_page(pv);
1917 1.1 matt
1918 1.1 matt s = splvm();
1919 1.1 matt
1920 1.1 matt if (ph->pv_pmap == NULL) {
1921 1.1 matt PDEBUG(0, printf("free page\n"));
1922 1.1 matt splx(s);
1923 1.1 matt return;
1924 1.1 matt }
1925 1.1 matt
1926 1.11 chris
1927 1.11 chris
1928 1.1 matt while (pv) {
1929 1.1 matt pmap = pv->pv_pmap;
1930 1.11 chris ptes = pmap_map_ptes(pmap);
1931 1.11 chris pte = &ptes[arm_byte_to_page(pv->pv_va)];
1932 1.1 matt
1933 1.1 matt PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
1934 1.1 matt pv->pv_va, pv->pv_flags));
1935 1.1 matt #ifdef DEBUG
1936 1.11 chris if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
1937 1.11 chris || pmap_pte_pa(pte) != pa)
1938 1.1 matt panic("pmap_remove_all: bad mapping");
1939 1.1 matt #endif /* DEBUG */
1940 1.1 matt
1941 1.1 matt /*
1942 1.1 matt * Update statistics
1943 1.1 matt */
1944 1.1 matt --pmap->pm_stats.resident_count;
1945 1.1 matt
1946 1.1 matt /* Wired bit */
1947 1.1 matt if (pv->pv_flags & PT_W)
1948 1.1 matt --pmap->pm_stats.wired_count;
1949 1.1 matt
1950 1.1 matt /*
1951 1.1 matt * Invalidate the PTEs.
1952 1.1 matt * XXX: should cluster them up and invalidate as many
1953 1.1 matt * as possible at once.
1954 1.1 matt */
1955 1.1 matt
1956 1.1 matt #ifdef needednotdone
1957 1.1 matt reduce wiring count on page table pages as references drop
1958 1.1 matt #endif
1959 1.1 matt
1960 1.1 matt *pte = 0;
1961 1.1 matt pmap_pte_delref(pmap, pv->pv_va);
1962 1.1 matt
1963 1.1 matt npv = pv->pv_next;
1964 1.1 matt if (pv == ph)
1965 1.1 matt ph->pv_pmap = NULL;
1966 1.1 matt else
1967 1.1 matt pmap_free_pv(pv);
1968 1.1 matt pv = npv;
1969 1.11 chris pmap_unmap_ptes(pmap);
1970 1.1 matt }
1971 1.11 chris
1972 1.1 matt splx(s);
1973 1.1 matt
1974 1.1 matt PDEBUG(0, printf("done\n"));
1975 1.1 matt cpu_tlb_flushID();
1976 1.1 matt }
1977 1.1 matt
1978 1.1 matt
1979 1.1 matt /*
1980 1.1 matt * Set the physical protection on the specified range of this map as requested.
1981 1.1 matt */
1982 1.1 matt
1983 1.1 matt void
1984 1.1 matt pmap_protect(pmap, sva, eva, prot)
1985 1.15 chris struct pmap *pmap;
1986 1.1 matt vaddr_t sva;
1987 1.1 matt vaddr_t eva;
1988 1.1 matt vm_prot_t prot;
1989 1.1 matt {
1990 1.11 chris pt_entry_t *pte = NULL, *ptes;
1991 1.1 matt int armprot;
1992 1.1 matt int flush = 0;
1993 1.2 matt paddr_t pa;
1994 1.1 matt int bank, off;
1995 1.1 matt struct pv_entry *pv;
1996 1.1 matt
1997 1.1 matt /*
1998 1.1 matt * Make sure pmap is valid. -dct
1999 1.1 matt */
2000 1.1 matt if (pmap == NULL)
2001 1.1 matt return;
2002 1.1 matt PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2003 1.1 matt pmap, sva, eva, prot));
2004 1.1 matt
2005 1.1 matt if (~prot & VM_PROT_READ) {
2006 1.1 matt /* Just remove the mappings. */
2007 1.1 matt pmap_remove(pmap, sva, eva);
2008 1.1 matt return;
2009 1.1 matt }
2010 1.1 matt if (prot & VM_PROT_WRITE) {
2011 1.1 matt /*
2012 1.1 matt * If this is a read->write transition, just ignore it and let
2013 1.1 matt * uvm_fault() take care of it later.
2014 1.1 matt */
2015 1.1 matt return;
2016 1.1 matt }
2017 1.1 matt
2018 1.1 matt sva &= PG_FRAME;
2019 1.1 matt eva &= PG_FRAME;
2020 1.1 matt
2021 1.11 chris ptes = pmap_map_ptes(pmap);
2022 1.1 matt /*
2023 1.1 matt * We need to acquire a pointer to a page table page before entering
2024 1.1 matt * the following loop.
2025 1.1 matt */
2026 1.1 matt while (sva < eva) {
2027 1.11 chris if (pmap_pde_v(pmap_pde(pmap, sva)))
2028 1.1 matt break;
2029 1.1 matt sva = (sva & PD_MASK) + NBPD;
2030 1.1 matt }
2031 1.11 chris
2032 1.11 chris pte = &ptes[arm_byte_to_page(sva)];
2033 1.1 matt
2034 1.1 matt while (sva < eva) {
2035 1.1 matt /* only check once in a while */
2036 1.1 matt if ((sva & PT_MASK) == 0) {
2037 1.1 matt if (!pmap_pde_v(pmap_pde(pmap, sva))) {
2038 1.1 matt /* We can race ahead here, to the next pde. */
2039 1.1 matt sva += NBPD;
2040 1.1 matt pte += arm_byte_to_page(NBPD);
2041 1.1 matt continue;
2042 1.1 matt }
2043 1.1 matt }
2044 1.1 matt
2045 1.1 matt if (!pmap_pte_v(pte))
2046 1.1 matt goto next;
2047 1.1 matt
2048 1.1 matt flush = 1;
2049 1.1 matt
2050 1.1 matt armprot = 0;
2051 1.1 matt if (sva < VM_MAXUSER_ADDRESS)
2052 1.1 matt armprot |= PT_AP(AP_U);
2053 1.1 matt else if (sva < VM_MAX_ADDRESS)
2054 1.1 matt armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2055 1.1 matt *pte = (*pte & 0xfffff00f) | armprot;
2056 1.1 matt
2057 1.1 matt pa = pmap_pte_pa(pte);
2058 1.1 matt
2059 1.1 matt /* Get the physical page index */
2060 1.1 matt
2061 1.1 matt /* Clear write flag */
2062 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2063 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2064 1.1 matt (void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
2065 1.12 chris pmap_vac_me_harder(pmap, pv, ptes, FALSE);
2066 1.1 matt }
2067 1.1 matt
2068 1.1 matt next:
2069 1.1 matt sva += NBPG;
2070 1.1 matt pte++;
2071 1.1 matt }
2072 1.11 chris pmap_unmap_ptes(pmap);
2073 1.1 matt if (flush)
2074 1.1 matt cpu_tlb_flushID();
2075 1.1 matt }
2076 1.1 matt
2077 1.1 matt /*
2078 1.15 chris * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2079 1.1 matt * int flags)
2080 1.1 matt *
2081 1.1 matt * Insert the given physical page (p) at
2082 1.1 matt * the specified virtual address (v) in the
2083 1.1 matt * target physical map with the protection requested.
2084 1.1 matt *
2085 1.1 matt * If specified, the page will be wired down, meaning
2086 1.1 matt * that the related pte can not be reclaimed.
2087 1.1 matt *
2088 1.1 matt * NB: This is the only routine which MAY NOT lazy-evaluate
2089 1.1 matt * or lose information. That is, this routine must actually
2090 1.1 matt * insert this page into the given map NOW.
2091 1.1 matt */
2092 1.1 matt
2093 1.1 matt int
2094 1.1 matt pmap_enter(pmap, va, pa, prot, flags)
2095 1.15 chris struct pmap *pmap;
2096 1.1 matt vaddr_t va;
2097 1.2 matt paddr_t pa;
2098 1.1 matt vm_prot_t prot;
2099 1.1 matt int flags;
2100 1.1 matt {
2101 1.11 chris pt_entry_t *pte, *ptes;
2102 1.1 matt u_int npte;
2103 1.1 matt int bank, off;
2104 1.1 matt struct pv_entry *pv = NULL;
2105 1.2 matt paddr_t opa;
2106 1.1 matt int nflags;
2107 1.1 matt boolean_t wired = (flags & PMAP_WIRED) != 0;
2108 1.1 matt
2109 1.1 matt PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2110 1.1 matt va, pa, pmap, prot, wired));
2111 1.1 matt
2112 1.1 matt #ifdef DIAGNOSTIC
2113 1.1 matt /* Valid address ? */
2114 1.1 matt if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2115 1.1 matt panic("pmap_enter: too big");
2116 1.1 matt if (pmap != pmap_kernel() && va != 0) {
2117 1.1 matt if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2118 1.1 matt panic("pmap_enter: kernel page in user map");
2119 1.1 matt } else {
2120 1.1 matt if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2121 1.1 matt panic("pmap_enter: user page in kernel map");
2122 1.1 matt if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2123 1.1 matt panic("pmap_enter: entering PT page");
2124 1.1 matt }
2125 1.1 matt #endif
2126 1.1 matt
2127 1.1 matt /*
2128 1.1 matt * Get a pointer to the pte for this virtual address. If the
2129 1.1 matt * pte pointer is NULL then we are missing the L2 page table
2130 1.1 matt * so we need to create one.
2131 1.1 matt */
2132 1.1 matt pte = pmap_pte(pmap, va);
2133 1.1 matt if (!pte) {
2134 1.2 matt paddr_t l2pa;
2135 1.1 matt struct vm_page *m;
2136 1.1 matt
2137 1.1 matt /* Allocate a page table */
2138 1.1 matt for (;;) {
2139 1.16 chris m = uvm_pagealloc(&(pmap->pm_obj), 0, NULL,
2140 1.16 chris UVM_PGA_USERESERVE);
2141 1.1 matt if (m != NULL)
2142 1.1 matt break;
2143 1.1 matt
2144 1.1 matt /*
2145 1.1 matt * No page available. If we're the kernel
2146 1.1 matt * pmap, we die, since we might not have
2147 1.1 matt * a valid thread context. For user pmaps,
2148 1.1 matt * we assume that we _do_ have a valid thread
2149 1.1 matt * context, so we wait here for the pagedaemon
2150 1.1 matt * to free up some pages.
2151 1.1 matt *
2152 1.1 matt * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
2153 1.1 matt * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
2154 1.1 matt * XXX SO THIS IS PROBABLY SAFE. In any case,
2155 1.1 matt * XXX other pmap modules claim it is safe to
2156 1.1 matt * XXX sleep here if it's a user pmap.
2157 1.1 matt */
2158 1.1 matt if (pmap == pmap_kernel())
2159 1.1 matt panic("pmap_enter: no free pages");
2160 1.1 matt else
2161 1.1 matt uvm_wait("pmap_enter");
2162 1.1 matt }
2163 1.1 matt
2164 1.1 matt /* Wire this page table into the L1. */
2165 1.1 matt l2pa = VM_PAGE_TO_PHYS(m);
2166 1.1 matt pmap_zero_page(l2pa);
2167 1.1 matt pmap_map_in_l1(pmap, va, l2pa);
2168 1.1 matt ++pmap->pm_stats.resident_count;
2169 1.16 chris m->flags &= ~PG_BUSY; /* never busy */
2170 1.16 chris m->wire_count = 1; /* no mappings yet */
2171 1.16 chris
2172 1.1 matt pte = pmap_pte(pmap, va);
2173 1.1 matt #ifdef DIAGNOSTIC
2174 1.1 matt if (!pte)
2175 1.1 matt panic("pmap_enter: no pte");
2176 1.1 matt #endif
2177 1.1 matt }
2178 1.1 matt
2179 1.1 matt nflags = 0;
2180 1.1 matt if (prot & VM_PROT_WRITE)
2181 1.1 matt nflags |= PT_Wr;
2182 1.1 matt if (wired)
2183 1.1 matt nflags |= PT_W;
2184 1.1 matt
2185 1.1 matt /* More debugging info */
2186 1.1 matt PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2187 1.1 matt *pte));
2188 1.1 matt
2189 1.1 matt /* Is the pte valid ? If so then this page is already mapped */
2190 1.1 matt if (pmap_pte_v(pte)) {
2191 1.1 matt /* Get the physical address of the current page mapped */
2192 1.1 matt opa = pmap_pte_pa(pte);
2193 1.1 matt
2194 1.1 matt #ifdef MYCROFT_HACK
2195 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2196 1.1 matt #endif
2197 1.1 matt
2198 1.1 matt /* Are we mapping the same page ? */
2199 1.1 matt if (opa == pa) {
2200 1.1 matt /* All we must be doing is changing the protection */
2201 1.1 matt PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2202 1.1 matt va, pa));
2203 1.1 matt
2204 1.1 matt /* Has the wiring changed ? */
2205 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2206 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2207 1.1 matt (void) pmap_modify_pv(pmap, va, pv,
2208 1.1 matt PT_Wr | PT_W, nflags);
2209 1.1 matt }
2210 1.1 matt } else {
2211 1.1 matt /* We are replacing the page with a new one. */
2212 1.1 matt cpu_cache_purgeID_rng(va, NBPG);
2213 1.1 matt
2214 1.1 matt PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2215 1.1 matt va, pa, opa));
2216 1.1 matt
2217 1.1 matt /*
2218 1.1 matt * If it is part of our managed memory then we
2219 1.1 matt * must remove it from the PV list
2220 1.1 matt */
2221 1.1 matt if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2222 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2223 1.1 matt pmap_remove_pv(pmap, va, pv);
2224 1.1 matt }
2225 1.1 matt
2226 1.1 matt goto enter;
2227 1.1 matt }
2228 1.1 matt } else {
2229 1.1 matt opa = 0;
2230 1.1 matt pmap_pte_addref(pmap, va);
2231 1.1 matt
2232 1.1 matt /* pte is not valid so we must be hooking in a new page */
2233 1.1 matt ++pmap->pm_stats.resident_count;
2234 1.1 matt
2235 1.1 matt enter:
2236 1.1 matt /*
2237 1.1 matt * Enter on the PV list if part of our managed memory
2238 1.1 matt */
2239 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2240 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2241 1.1 matt pmap_enter_pv(pmap, va, pv, nflags);
2242 1.1 matt }
2243 1.1 matt }
2244 1.1 matt
2245 1.1 matt #ifdef MYCROFT_HACK
2246 1.1 matt if (mycroft_hack)
2247 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2248 1.1 matt #endif
2249 1.1 matt
2250 1.1 matt /* Construct the pte, giving the correct access. */
2251 1.1 matt npte = (pa & PG_FRAME);
2252 1.1 matt
2253 1.1 matt /* VA 0 is magic. */
2254 1.1 matt if (pmap != pmap_kernel() && va != 0)
2255 1.1 matt npte |= PT_AP(AP_U);
2256 1.1 matt
2257 1.1 matt if (bank != -1) {
2258 1.1 matt #ifdef DIAGNOSTIC
2259 1.1 matt if ((flags & VM_PROT_ALL) & ~prot)
2260 1.1 matt panic("pmap_enter: access_type exceeds prot");
2261 1.1 matt #endif
2262 1.1 matt npte |= PT_C | PT_B;
2263 1.1 matt if (flags & VM_PROT_WRITE) {
2264 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2265 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2266 1.1 matt } else if (flags & VM_PROT_ALL) {
2267 1.1 matt npte |= L2_SPAGE;
2268 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2269 1.1 matt } else
2270 1.1 matt npte |= L2_INVAL;
2271 1.1 matt } else {
2272 1.1 matt if (prot & VM_PROT_WRITE)
2273 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2274 1.1 matt else if (prot & VM_PROT_ALL)
2275 1.1 matt npte |= L2_SPAGE;
2276 1.1 matt else
2277 1.1 matt npte |= L2_INVAL;
2278 1.1 matt }
2279 1.1 matt
2280 1.1 matt #ifdef MYCROFT_HACK
2281 1.1 matt if (mycroft_hack)
2282 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2283 1.1 matt #endif
2284 1.1 matt
2285 1.1 matt *pte = npte;
2286 1.1 matt
2287 1.1 matt if (bank != -1)
2288 1.11 chris {
2289 1.12 chris boolean_t pmap_active = FALSE;
2290 1.11 chris /* XXX this will change once the whole of pmap_enter uses
2291 1.11 chris * map_ptes
2292 1.11 chris */
2293 1.11 chris ptes = pmap_map_ptes(pmap);
2294 1.12 chris if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2295 1.15 chris || (pmap == pmap_kernel()))
2296 1.12 chris pmap_active = TRUE;
2297 1.12 chris pmap_vac_me_harder(pmap, pv, ptes, pmap_active);
2298 1.11 chris pmap_unmap_ptes(pmap);
2299 1.11 chris }
2300 1.1 matt
2301 1.1 matt /* Better flush the TLB ... */
2302 1.1 matt cpu_tlb_flushID_SE(va);
2303 1.1 matt
2304 1.1 matt PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2305 1.1 matt
2306 1.4 chs return 0;
2307 1.1 matt }
2308 1.1 matt
2309 1.1 matt void
2310 1.1 matt pmap_kenter_pa(va, pa, prot)
2311 1.1 matt vaddr_t va;
2312 1.1 matt paddr_t pa;
2313 1.1 matt vm_prot_t prot;
2314 1.1 matt {
2315 1.14 chs struct pmap *pmap = pmap_kernel();
2316 1.13 chris pt_entry_t *pte;
2317 1.14 chs struct vm_page *pg;
2318 1.13 chris
2319 1.14 chs if (!pmap_pde_v(pmap_pde(pmap, va))) {
2320 1.14 chs
2321 1.13 chris /*
2322 1.13 chris * For the kernel pmaps it would be better to ensure
2323 1.13 chris * that they are always present, and to grow the
2324 1.13 chris * kernel as required.
2325 1.13 chris */
2326 1.13 chris
2327 1.13 chris /* Allocate a page table */
2328 1.16 chris pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2329 1.14 chs UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2330 1.14 chs if (pg == NULL) {
2331 1.13 chris panic("pmap_kenter_pa: no free pages");
2332 1.13 chris }
2333 1.16 chris pg->flags &= ~PG_BUSY; /* never busy */
2334 1.13 chris
2335 1.13 chris /* Wire this page table into the L1. */
2336 1.14 chs pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg));
2337 1.13 chris }
2338 1.13 chris pte = vtopte(va);
2339 1.14 chs KASSERT(!pmap_pte_v(pte));
2340 1.13 chris *pte = L2_PTE(pa, AP_KRW);
2341 1.1 matt }
2342 1.1 matt
2343 1.1 matt void
2344 1.1 matt pmap_kremove(va, len)
2345 1.1 matt vaddr_t va;
2346 1.1 matt vsize_t len;
2347 1.1 matt {
2348 1.14 chs pt_entry_t *pte;
2349 1.14 chs
2350 1.1 matt for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2351 1.13 chris
2352 1.14 chs /*
2353 1.14 chs * We assume that we will only be called with small
2354 1.14 chs * regions of memory.
2355 1.14 chs */
2356 1.14 chs
2357 1.14 chs KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
2358 1.13 chris pte = vtopte(va);
2359 1.13 chris cpu_cache_purgeID_rng(va, PAGE_SIZE);
2360 1.13 chris *pte = 0;
2361 1.13 chris cpu_tlb_flushID_SE(va);
2362 1.1 matt }
2363 1.1 matt }
2364 1.1 matt
2365 1.1 matt /*
2366 1.1 matt * pmap_page_protect:
2367 1.1 matt *
2368 1.1 matt * Lower the permission for all mappings to a given page.
2369 1.1 matt */
2370 1.1 matt
2371 1.1 matt void
2372 1.1 matt pmap_page_protect(pg, prot)
2373 1.1 matt struct vm_page *pg;
2374 1.1 matt vm_prot_t prot;
2375 1.1 matt {
2376 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2377 1.1 matt
2378 1.1 matt PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2379 1.1 matt
2380 1.1 matt switch(prot) {
2381 1.1 matt case VM_PROT_READ:
2382 1.1 matt case VM_PROT_READ|VM_PROT_EXECUTE:
2383 1.1 matt pmap_copy_on_write(pa);
2384 1.1 matt break;
2385 1.1 matt
2386 1.1 matt case VM_PROT_ALL:
2387 1.1 matt break;
2388 1.1 matt
2389 1.1 matt default:
2390 1.1 matt pmap_remove_all(pa);
2391 1.1 matt break;
2392 1.1 matt }
2393 1.1 matt }
2394 1.1 matt
2395 1.1 matt
2396 1.1 matt /*
2397 1.1 matt * Routine: pmap_unwire
2398 1.1 matt * Function: Clear the wired attribute for a map/virtual-address
2399 1.1 matt * pair.
2400 1.1 matt * In/out conditions:
2401 1.1 matt * The mapping must already exist in the pmap.
2402 1.1 matt */
2403 1.1 matt
2404 1.1 matt void
2405 1.1 matt pmap_unwire(pmap, va)
2406 1.15 chris struct pmap *pmap;
2407 1.1 matt vaddr_t va;
2408 1.1 matt {
2409 1.1 matt pt_entry_t *pte;
2410 1.2 matt paddr_t pa;
2411 1.1 matt int bank, off;
2412 1.1 matt struct pv_entry *pv;
2413 1.1 matt
2414 1.1 matt /*
2415 1.1 matt * Make sure pmap is valid. -dct
2416 1.1 matt */
2417 1.1 matt if (pmap == NULL)
2418 1.1 matt return;
2419 1.1 matt
2420 1.1 matt /* Get the pte */
2421 1.1 matt pte = pmap_pte(pmap, va);
2422 1.1 matt if (!pte)
2423 1.1 matt return;
2424 1.1 matt
2425 1.1 matt /* Extract the physical address of the page */
2426 1.1 matt pa = pmap_pte_pa(pte);
2427 1.1 matt
2428 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2429 1.1 matt return;
2430 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2431 1.1 matt /* Update the wired bit in the pv entry for this page. */
2432 1.1 matt (void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
2433 1.1 matt }
2434 1.1 matt
2435 1.1 matt /*
2436 1.15 chris * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
2437 1.1 matt *
2438 1.1 matt * Return the pointer to a page table entry corresponding to the supplied
2439 1.1 matt * virtual address.
2440 1.1 matt *
2441 1.1 matt * The page directory is first checked to make sure that a page table
2442 1.1 matt * for the address in question exists and if it does a pointer to the
2443 1.1 matt * entry is returned.
2444 1.1 matt *
2445 1.1 matt * The way this works is that that the kernel page tables are mapped
2446 1.1 matt * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
2447 1.1 matt * This allows page tables to be located quickly.
2448 1.1 matt */
2449 1.1 matt pt_entry_t *
2450 1.1 matt pmap_pte(pmap, va)
2451 1.15 chris struct pmap *pmap;
2452 1.1 matt vaddr_t va;
2453 1.1 matt {
2454 1.1 matt pt_entry_t *ptp;
2455 1.1 matt pt_entry_t *result;
2456 1.1 matt
2457 1.1 matt /* The pmap must be valid */
2458 1.1 matt if (!pmap)
2459 1.1 matt return(NULL);
2460 1.1 matt
2461 1.1 matt /* Return the address of the pte */
2462 1.1 matt PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
2463 1.1 matt pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
2464 1.1 matt
2465 1.1 matt /* Do we have a valid pde ? If not we don't have a page table */
2466 1.1 matt if (!pmap_pde_v(pmap_pde(pmap, va))) {
2467 1.1 matt PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
2468 1.1 matt pmap_pde(pmap, va)));
2469 1.1 matt return(NULL);
2470 1.1 matt }
2471 1.1 matt
2472 1.1 matt PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
2473 1.1 matt pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2474 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2475 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
2476 1.1 matt
2477 1.1 matt /*
2478 1.1 matt * If the pmap is the kernel pmap or the pmap is the active one
2479 1.1 matt * then we can just return a pointer to entry relative to
2480 1.1 matt * PROCESS_PAGE_TBLS_BASE.
2481 1.1 matt * Otherwise we need to map the page tables to an alternative
2482 1.1 matt * address and reference them there.
2483 1.1 matt */
2484 1.15 chris if (pmap == pmap_kernel() || pmap->pm_pptpt
2485 1.1 matt == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2486 1.1 matt + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
2487 1.1 matt ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2488 1.1 matt ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2489 1.1 matt } else {
2490 1.1 matt struct proc *p = curproc;
2491 1.1 matt
2492 1.1 matt /* If we don't have a valid curproc use proc0 */
2493 1.1 matt /* Perhaps we should just use kernel_pmap instead */
2494 1.1 matt if (p == NULL)
2495 1.1 matt p = &proc0;
2496 1.1 matt #ifdef DIAGNOSTIC
2497 1.1 matt /*
2498 1.1 matt * The pmap should always be valid for the process so
2499 1.1 matt * panic if it is not.
2500 1.1 matt */
2501 1.1 matt if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
2502 1.1 matt printf("pmap_pte: va=%08lx p=%p vm=%p\n",
2503 1.1 matt va, p, p->p_vmspace);
2504 1.1 matt console_debugger();
2505 1.1 matt }
2506 1.1 matt /*
2507 1.1 matt * The pmap for the current process should be mapped. If it
2508 1.1 matt * is not then we have a problem.
2509 1.1 matt */
2510 1.1 matt if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
2511 1.1 matt (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2512 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2513 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2514 1.1 matt printf("pmap pagetable = P%08lx current = P%08x ",
2515 1.1 matt pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2516 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2517 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
2518 1.1 matt PG_FRAME));
2519 1.1 matt printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
2520 1.1 matt panic("pmap_pte: current and pmap mismatch\n");
2521 1.1 matt }
2522 1.1 matt #endif
2523 1.1 matt
2524 1.1 matt ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2525 1.1 matt pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2526 1.1 matt pmap->pm_pptpt);
2527 1.1 matt cpu_tlb_flushD();
2528 1.1 matt }
2529 1.1 matt PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
2530 1.1 matt ((va >> (PGSHIFT-2)) & ~3)));
2531 1.1 matt result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
2532 1.1 matt return(result);
2533 1.1 matt }
2534 1.1 matt
2535 1.1 matt /*
2536 1.1 matt * Routine: pmap_extract
2537 1.1 matt * Function:
2538 1.1 matt * Extract the physical page address associated
2539 1.1 matt * with the given map/virtual_address pair.
2540 1.1 matt */
2541 1.1 matt boolean_t
2542 1.1 matt pmap_extract(pmap, va, pap)
2543 1.15 chris struct pmap *pmap;
2544 1.1 matt vaddr_t va;
2545 1.1 matt paddr_t *pap;
2546 1.1 matt {
2547 1.11 chris pt_entry_t *pte, *ptes;
2548 1.1 matt paddr_t pa;
2549 1.1 matt
2550 1.1 matt PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2551 1.1 matt
2552 1.1 matt /*
2553 1.11 chris * Get the pte for this virtual address.
2554 1.1 matt */
2555 1.11 chris ptes = pmap_map_ptes(pmap);
2556 1.11 chris pte = &ptes[arm_byte_to_page(va)];
2557 1.1 matt
2558 1.11 chris /*
2559 1.11 chris * If there is no pte then there is no page table etc.
2560 1.11 chris * Is the pte valid ? If not then no paged is actually mapped here
2561 1.11 chris */
2562 1.11 chris if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
2563 1.11 chris pmap_unmap_ptes(pmap);
2564 1.11 chris return (FALSE);
2565 1.11 chris }
2566 1.1 matt
2567 1.1 matt /* Return the physical address depending on the PTE type */
2568 1.1 matt /* XXX What about L1 section mappings ? */
2569 1.1 matt if ((*(pte) & L2_MASK) == L2_LPAGE) {
2570 1.1 matt /* Extract the physical address from the pte */
2571 1.1 matt pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
2572 1.1 matt
2573 1.1 matt PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
2574 1.1 matt (pa | (va & (L2_LPAGE_SIZE - 1)))));
2575 1.1 matt
2576 1.1 matt if (pap != NULL)
2577 1.1 matt *pap = pa | (va & (L2_LPAGE_SIZE - 1));
2578 1.1 matt } else {
2579 1.1 matt /* Extract the physical address from the pte */
2580 1.1 matt pa = pmap_pte_pa(pte);
2581 1.1 matt
2582 1.1 matt PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
2583 1.1 matt (pa | (va & ~PG_FRAME))));
2584 1.1 matt
2585 1.1 matt if (pap != NULL)
2586 1.1 matt *pap = pa | (va & ~PG_FRAME);
2587 1.1 matt }
2588 1.11 chris pmap_unmap_ptes(pmap);
2589 1.11 chris return (TRUE);
2590 1.1 matt }
2591 1.1 matt
2592 1.1 matt
2593 1.1 matt /*
2594 1.1 matt * Copy the range specified by src_addr/len from the source map to the
2595 1.1 matt * range dst_addr/len in the destination map.
2596 1.1 matt *
2597 1.1 matt * This routine is only advisory and need not do anything.
2598 1.1 matt */
2599 1.1 matt
2600 1.1 matt void
2601 1.1 matt pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2602 1.15 chris struct pmap *dst_pmap;
2603 1.15 chris struct pmap *src_pmap;
2604 1.1 matt vaddr_t dst_addr;
2605 1.2 matt vsize_t len;
2606 1.1 matt vaddr_t src_addr;
2607 1.1 matt {
2608 1.1 matt PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
2609 1.1 matt dst_pmap, src_pmap, dst_addr, len, src_addr));
2610 1.1 matt }
2611 1.1 matt
2612 1.1 matt #if defined(PMAP_DEBUG)
2613 1.1 matt void
2614 1.1 matt pmap_dump_pvlist(phys, m)
2615 1.1 matt vaddr_t phys;
2616 1.1 matt char *m;
2617 1.1 matt {
2618 1.1 matt struct pv_entry *pv;
2619 1.1 matt int bank, off;
2620 1.1 matt
2621 1.1 matt if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
2622 1.1 matt printf("INVALID PA\n");
2623 1.1 matt return;
2624 1.1 matt }
2625 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2626 1.1 matt printf("%s %08lx:", m, phys);
2627 1.1 matt if (pv->pv_pmap == NULL) {
2628 1.1 matt printf(" no mappings\n");
2629 1.1 matt return;
2630 1.1 matt }
2631 1.1 matt
2632 1.1 matt for (; pv; pv = pv->pv_next)
2633 1.1 matt printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2634 1.1 matt pv->pv_va, pv->pv_flags);
2635 1.1 matt
2636 1.1 matt printf("\n");
2637 1.1 matt }
2638 1.1 matt
2639 1.1 matt #endif /* PMAP_DEBUG */
2640 1.1 matt
2641 1.1 matt boolean_t
2642 1.1 matt pmap_testbit(pa, setbits)
2643 1.2 matt paddr_t pa;
2644 1.1 matt int setbits;
2645 1.1 matt {
2646 1.1 matt int bank, off;
2647 1.1 matt
2648 1.1 matt PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
2649 1.1 matt
2650 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2651 1.1 matt return(FALSE);
2652 1.1 matt
2653 1.1 matt /*
2654 1.1 matt * Check saved info only
2655 1.1 matt */
2656 1.1 matt if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
2657 1.1 matt PDEBUG(0, printf("pmap_attributes = %02x\n",
2658 1.1 matt vm_physmem[bank].pmseg.attrs[off]));
2659 1.1 matt return(TRUE);
2660 1.1 matt }
2661 1.1 matt
2662 1.1 matt return(FALSE);
2663 1.1 matt }
2664 1.1 matt
2665 1.11 chris static pt_entry_t *
2666 1.11 chris pmap_map_ptes(struct pmap *pmap)
2667 1.11 chris {
2668 1.11 chris struct proc *p;
2669 1.11 chris
2670 1.11 chris /* the kernel's pmap is always accessible */
2671 1.11 chris if (pmap == pmap_kernel()) {
2672 1.11 chris return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
2673 1.11 chris }
2674 1.11 chris
2675 1.11 chris if (curproc &&
2676 1.11 chris curproc->p_vmspace->vm_map.pmap == pmap)
2677 1.11 chris return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2678 1.11 chris
2679 1.11 chris p = curproc;
2680 1.11 chris
2681 1.11 chris if (p == NULL)
2682 1.11 chris p = &proc0;
2683 1.11 chris
2684 1.11 chris pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2685 1.11 chris pmap->pm_pptpt);
2686 1.11 chris cpu_tlb_flushD();
2687 1.11 chris return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2688 1.11 chris }
2689 1.1 matt
2690 1.1 matt /*
2691 1.1 matt * Modify pte bits for all ptes corresponding to the given physical address.
2692 1.1 matt * We use `maskbits' rather than `clearbits' because we're always passing
2693 1.1 matt * constants and the latter would require an extra inversion at run-time.
2694 1.1 matt */
2695 1.1 matt
2696 1.1 matt void
2697 1.1 matt pmap_clearbit(pa, maskbits)
2698 1.2 matt paddr_t pa;
2699 1.1 matt int maskbits;
2700 1.1 matt {
2701 1.1 matt struct pv_entry *pv;
2702 1.1 matt pt_entry_t *pte;
2703 1.1 matt vaddr_t va;
2704 1.1 matt int bank, off;
2705 1.1 matt int s;
2706 1.1 matt
2707 1.1 matt PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2708 1.1 matt pa, maskbits));
2709 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2710 1.1 matt return;
2711 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2712 1.1 matt s = splvm();
2713 1.1 matt
2714 1.1 matt /*
2715 1.1 matt * Clear saved attributes (modify, reference)
2716 1.1 matt */
2717 1.1 matt vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
2718 1.1 matt
2719 1.1 matt if (pv->pv_pmap == NULL) {
2720 1.1 matt splx(s);
2721 1.1 matt return;
2722 1.1 matt }
2723 1.1 matt
2724 1.1 matt /*
2725 1.1 matt * Loop over all current mappings setting/clearing as appropos
2726 1.1 matt */
2727 1.1 matt for (; pv; pv = pv->pv_next) {
2728 1.1 matt va = pv->pv_va;
2729 1.1 matt
2730 1.1 matt /*
2731 1.1 matt * XXX don't write protect pager mappings
2732 1.1 matt */
2733 1.1 matt if (va >= uvm.pager_sva && va < uvm.pager_eva) {
2734 1.11 chris printf("pmap_clearbit: found page VA on pv_list\n");
2735 1.1 matt continue;
2736 1.1 matt }
2737 1.1 matt
2738 1.1 matt pv->pv_flags &= ~maskbits;
2739 1.1 matt pte = pmap_pte(pv->pv_pmap, va);
2740 1.1 matt if (maskbits & (PT_Wr|PT_M))
2741 1.1 matt *pte = *pte & ~PT_AP(AP_W);
2742 1.1 matt if (maskbits & PT_H)
2743 1.1 matt *pte = (*pte & ~L2_MASK) | L2_INVAL;
2744 1.1 matt }
2745 1.1 matt cpu_tlb_flushID();
2746 1.1 matt
2747 1.1 matt splx(s);
2748 1.1 matt }
2749 1.1 matt
2750 1.1 matt
2751 1.1 matt boolean_t
2752 1.1 matt pmap_clear_modify(pg)
2753 1.1 matt struct vm_page *pg;
2754 1.1 matt {
2755 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2756 1.1 matt boolean_t rv;
2757 1.1 matt
2758 1.1 matt PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
2759 1.1 matt rv = pmap_testbit(pa, PT_M);
2760 1.1 matt pmap_clearbit(pa, PT_M);
2761 1.1 matt return rv;
2762 1.1 matt }
2763 1.1 matt
2764 1.1 matt
2765 1.1 matt boolean_t
2766 1.1 matt pmap_clear_reference(pg)
2767 1.1 matt struct vm_page *pg;
2768 1.1 matt {
2769 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2770 1.1 matt boolean_t rv;
2771 1.1 matt
2772 1.1 matt PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
2773 1.1 matt rv = pmap_testbit(pa, PT_H);
2774 1.1 matt pmap_clearbit(pa, PT_H);
2775 1.1 matt return rv;
2776 1.1 matt }
2777 1.1 matt
2778 1.1 matt
2779 1.1 matt void
2780 1.1 matt pmap_copy_on_write(pa)
2781 1.2 matt paddr_t pa;
2782 1.1 matt {
2783 1.1 matt PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
2784 1.1 matt pmap_clearbit(pa, PT_Wr);
2785 1.1 matt }
2786 1.1 matt
2787 1.1 matt
2788 1.1 matt boolean_t
2789 1.1 matt pmap_is_modified(pg)
2790 1.1 matt struct vm_page *pg;
2791 1.1 matt {
2792 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2793 1.1 matt boolean_t result;
2794 1.1 matt
2795 1.1 matt result = pmap_testbit(pa, PT_M);
2796 1.1 matt PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
2797 1.1 matt return (result);
2798 1.1 matt }
2799 1.1 matt
2800 1.1 matt
2801 1.1 matt boolean_t
2802 1.1 matt pmap_is_referenced(pg)
2803 1.1 matt struct vm_page *pg;
2804 1.1 matt {
2805 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2806 1.1 matt boolean_t result;
2807 1.1 matt
2808 1.1 matt result = pmap_testbit(pa, PT_H);
2809 1.1 matt PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
2810 1.1 matt return (result);
2811 1.1 matt }
2812 1.1 matt
2813 1.1 matt
2814 1.1 matt int
2815 1.1 matt pmap_modified_emulation(pmap, va)
2816 1.15 chris struct pmap *pmap;
2817 1.1 matt vaddr_t va;
2818 1.1 matt {
2819 1.1 matt pt_entry_t *pte;
2820 1.2 matt paddr_t pa;
2821 1.1 matt int bank, off;
2822 1.1 matt struct pv_entry *pv;
2823 1.1 matt u_int flags;
2824 1.1 matt
2825 1.1 matt PDEBUG(2, printf("pmap_modified_emulation\n"));
2826 1.1 matt
2827 1.1 matt /* Get the pte */
2828 1.1 matt pte = pmap_pte(pmap, va);
2829 1.1 matt if (!pte) {
2830 1.1 matt PDEBUG(2, printf("no pte\n"));
2831 1.1 matt return(0);
2832 1.1 matt }
2833 1.1 matt
2834 1.1 matt PDEBUG(1, printf("*pte=%08x\n", *pte));
2835 1.1 matt
2836 1.1 matt /* Check for a zero pte */
2837 1.1 matt if (*pte == 0)
2838 1.1 matt return(0);
2839 1.1 matt
2840 1.1 matt /* This can happen if user code tries to access kernel memory. */
2841 1.1 matt if ((*pte & PT_AP(AP_W)) != 0)
2842 1.1 matt return (0);
2843 1.1 matt
2844 1.1 matt /* Extract the physical address of the page */
2845 1.1 matt pa = pmap_pte_pa(pte);
2846 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2847 1.1 matt return(0);
2848 1.1 matt
2849 1.1 matt /* Get the current flags for this page. */
2850 1.1 matt pv = &vm_physmem[bank].pmseg.pvent[off];
2851 1.1 matt flags = pmap_modify_pv(pmap, va, pv, 0, 0);
2852 1.1 matt PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
2853 1.1 matt
2854 1.1 matt /*
2855 1.1 matt * Do the flags say this page is writable ? If not then it is a
2856 1.1 matt * genuine write fault. If yes then the write fault is our fault
2857 1.1 matt * as we did not reflect the write access in the PTE. Now we know
2858 1.1 matt * a write has occurred we can correct this and also set the
2859 1.1 matt * modified bit
2860 1.1 matt */
2861 1.1 matt if (~flags & PT_Wr)
2862 1.1 matt return(0);
2863 1.1 matt
2864 1.1 matt PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
2865 1.1 matt va, pte, *pte));
2866 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2867 1.1 matt *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
2868 1.1 matt PDEBUG(0, printf("->(%08x)\n", *pte));
2869 1.1 matt
2870 1.1 matt /* Return, indicating the problem has been dealt with */
2871 1.1 matt cpu_tlb_flushID_SE(va);
2872 1.1 matt return(1);
2873 1.1 matt }
2874 1.1 matt
2875 1.1 matt
2876 1.1 matt int
2877 1.1 matt pmap_handled_emulation(pmap, va)
2878 1.15 chris struct pmap *pmap;
2879 1.1 matt vaddr_t va;
2880 1.1 matt {
2881 1.1 matt pt_entry_t *pte;
2882 1.2 matt paddr_t pa;
2883 1.1 matt int bank, off;
2884 1.1 matt
2885 1.1 matt PDEBUG(2, printf("pmap_handled_emulation\n"));
2886 1.1 matt
2887 1.1 matt /* Get the pte */
2888 1.1 matt pte = pmap_pte(pmap, va);
2889 1.1 matt if (!pte) {
2890 1.1 matt PDEBUG(2, printf("no pte\n"));
2891 1.1 matt return(0);
2892 1.1 matt }
2893 1.1 matt
2894 1.1 matt PDEBUG(1, printf("*pte=%08x\n", *pte));
2895 1.1 matt
2896 1.1 matt /* Check for a zero pte */
2897 1.1 matt if (*pte == 0)
2898 1.1 matt return(0);
2899 1.1 matt
2900 1.1 matt /* This can happen if user code tries to access kernel memory. */
2901 1.1 matt if ((*pte & L2_MASK) != L2_INVAL)
2902 1.1 matt return (0);
2903 1.1 matt
2904 1.1 matt /* Extract the physical address of the page */
2905 1.1 matt pa = pmap_pte_pa(pte);
2906 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2907 1.1 matt return(0);
2908 1.1 matt
2909 1.1 matt /*
2910 1.1 matt * Ok we just enable the pte and mark the attibs as handled
2911 1.1 matt */
2912 1.1 matt PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
2913 1.1 matt va, pte, *pte));
2914 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2915 1.1 matt *pte = (*pte & ~L2_MASK) | L2_SPAGE;
2916 1.1 matt PDEBUG(0, printf("->(%08x)\n", *pte));
2917 1.1 matt
2918 1.1 matt /* Return, indicating the problem has been dealt with */
2919 1.1 matt cpu_tlb_flushID_SE(va);
2920 1.1 matt return(1);
2921 1.1 matt }
2922 1.1 matt
2923 1.1 matt /*
2924 1.1 matt * pmap_collect: free resources held by a pmap
2925 1.1 matt *
2926 1.1 matt * => optional function.
2927 1.1 matt * => called when a process is swapped out to free memory.
2928 1.1 matt */
2929 1.1 matt
2930 1.1 matt void
2931 1.1 matt pmap_collect(pmap)
2932 1.15 chris struct pmap *pmap;
2933 1.1 matt {
2934 1.1 matt }
2935 1.1 matt
2936 1.1 matt /*
2937 1.1 matt * Routine: pmap_procwr
2938 1.1 matt *
2939 1.1 matt * Function:
2940 1.1 matt * Synchronize caches corresponding to [addr, addr+len) in p.
2941 1.1 matt *
2942 1.1 matt */
2943 1.1 matt void
2944 1.1 matt pmap_procwr(p, va, len)
2945 1.1 matt struct proc *p;
2946 1.1 matt vaddr_t va;
2947 1.3 matt int len;
2948 1.1 matt {
2949 1.1 matt /* We only need to do anything if it is the current process. */
2950 1.1 matt if (p == curproc)
2951 1.1 matt cpu_cache_syncI_rng(va, len);
2952 1.1 matt }
2953 1.1 matt
2954 1.1 matt /* End of pmap.c */
2955