Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.3
      1  1.3  matt /*	$NetBSD: pmap.c,v 1.3 2001/03/04 19:05:55 matt Exp $	*/
      2  1.1  matt 
      3  1.1  matt /*-
      4  1.1  matt  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  1.1  matt  * All rights reserved.
      6  1.1  matt  *
      7  1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  matt  * by Charles M. Hannum.
      9  1.1  matt  *
     10  1.1  matt  * Redistribution and use in source and binary forms, with or without
     11  1.1  matt  * modification, are permitted provided that the following conditions
     12  1.1  matt  * are met:
     13  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     14  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     15  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  matt  *    documentation and/or other materials provided with the distribution.
     18  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     19  1.1  matt  *    must display the following acknowledgement:
     20  1.1  matt  *        This product includes software developed by the NetBSD
     21  1.1  matt  *        Foundation, Inc. and its contributors.
     22  1.1  matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1  matt  *    contributors may be used to endorse or promote products derived
     24  1.1  matt  *    from this software without specific prior written permission.
     25  1.1  matt  *
     26  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     37  1.1  matt  */
     38  1.1  matt 
     39  1.1  matt /*
     40  1.1  matt  * Copyright (c) 1994-1998 Mark Brinicombe.
     41  1.1  matt  * Copyright (c) 1994 Brini.
     42  1.1  matt  * All rights reserved.
     43  1.1  matt  *
     44  1.1  matt  * This code is derived from software written for Brini by Mark Brinicombe
     45  1.1  matt  *
     46  1.1  matt  * Redistribution and use in source and binary forms, with or without
     47  1.1  matt  * modification, are permitted provided that the following conditions
     48  1.1  matt  * are met:
     49  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     50  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     51  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     52  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     53  1.1  matt  *    documentation and/or other materials provided with the distribution.
     54  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     55  1.1  matt  *    must display the following acknowledgement:
     56  1.1  matt  *	This product includes software developed by Mark Brinicombe.
     57  1.1  matt  * 4. The name of the author may not be used to endorse or promote products
     58  1.1  matt  *    derived from this software without specific prior written permission.
     59  1.1  matt  *
     60  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     61  1.1  matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     62  1.1  matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     63  1.1  matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     64  1.1  matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     65  1.1  matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     66  1.1  matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     67  1.1  matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     68  1.1  matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     69  1.1  matt  *
     70  1.1  matt  * RiscBSD kernel project
     71  1.1  matt  *
     72  1.1  matt  * pmap.c
     73  1.1  matt  *
     74  1.1  matt  * Machine dependant vm stuff
     75  1.1  matt  *
     76  1.1  matt  * Created      : 20/09/94
     77  1.1  matt  */
     78  1.1  matt 
     79  1.1  matt /*
     80  1.1  matt  * Performance improvements, UVM changes, overhauls and part-rewrites
     81  1.1  matt  * were contributed by Neil A. Carson <neil (at) causality.com>.
     82  1.1  matt  */
     83  1.1  matt 
     84  1.1  matt /*
     85  1.1  matt  * The dram block info is currently referenced from the bootconfig.
     86  1.1  matt  * This should be placed in a separate structure.
     87  1.1  matt  */
     88  1.1  matt 
     89  1.1  matt /*
     90  1.1  matt  * Special compilation symbols
     91  1.1  matt  * PMAP_DEBUG		- Build in pmap_debug_level code
     92  1.1  matt  */
     93  1.1  matt 
     94  1.1  matt /* Include header files */
     95  1.1  matt 
     96  1.1  matt #include "opt_pmap_debug.h"
     97  1.1  matt #include "opt_ddb.h"
     98  1.1  matt 
     99  1.1  matt #include <sys/types.h>
    100  1.1  matt #include <sys/param.h>
    101  1.1  matt #include <sys/kernel.h>
    102  1.1  matt #include <sys/systm.h>
    103  1.1  matt #include <sys/proc.h>
    104  1.1  matt #include <sys/malloc.h>
    105  1.1  matt #include <sys/user.h>
    106  1.1  matt 
    107  1.1  matt #include <uvm/uvm.h>
    108  1.1  matt 
    109  1.1  matt #include <machine/bootconfig.h>
    110  1.1  matt #include <machine/bus.h>
    111  1.1  matt #include <machine/pmap.h>
    112  1.1  matt #include <machine/pcb.h>
    113  1.1  matt #include <machine/param.h>
    114  1.1  matt #include <machine/katelib.h>
    115  1.1  matt 
    116  1.1  matt #ifdef PMAP_DEBUG
    117  1.1  matt #define	PDEBUG(_lev_,_stat_) \
    118  1.1  matt 	if (pmap_debug_level >= (_lev_)) \
    119  1.1  matt         	((_stat_))
    120  1.1  matt int pmap_debug_level = -2;
    121  1.1  matt #else	/* PMAP_DEBUG */
    122  1.1  matt #define	PDEBUG(_lev_,_stat_) /* Nothing */
    123  1.1  matt #endif	/* PMAP_DEBUG */
    124  1.1  matt 
    125  1.1  matt struct pmap     kernel_pmap_store;
    126  1.1  matt pmap_t          kernel_pmap;
    127  1.1  matt 
    128  1.1  matt pagehook_t page_hook0;
    129  1.1  matt pagehook_t page_hook1;
    130  1.1  matt char *memhook;
    131  1.1  matt pt_entry_t msgbufpte;
    132  1.1  matt extern caddr_t msgbufaddr;
    133  1.1  matt 
    134  1.1  matt #ifdef DIAGNOSTIC
    135  1.1  matt boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    136  1.1  matt #endif
    137  1.1  matt 
    138  1.1  matt TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
    139  1.1  matt 
    140  1.1  matt int pv_nfree = 0;
    141  1.1  matt 
    142  1.2  matt vsize_t npages;
    143  1.1  matt 
    144  1.2  matt extern paddr_t physical_start;
    145  1.2  matt extern paddr_t physical_freestart;
    146  1.2  matt extern paddr_t physical_end;
    147  1.2  matt extern paddr_t physical_freeend;
    148  1.1  matt extern unsigned int free_pages;
    149  1.1  matt extern int max_processes;
    150  1.1  matt 
    151  1.1  matt vaddr_t virtual_start;
    152  1.1  matt vaddr_t virtual_end;
    153  1.1  matt 
    154  1.1  matt vaddr_t avail_start;
    155  1.1  matt vaddr_t avail_end;
    156  1.1  matt 
    157  1.1  matt extern pv_addr_t systempage;
    158  1.1  matt 
    159  1.1  matt #define ALLOC_PAGE_HOOK(x, s) \
    160  1.1  matt 	x.va = virtual_start; \
    161  1.1  matt 	x.pte = (pt_entry_t *)pmap_pte(kernel_pmap, virtual_start); \
    162  1.1  matt 	virtual_start += s;
    163  1.1  matt 
    164  1.1  matt /* Variables used by the L1 page table queue code */
    165  1.1  matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
    166  1.1  matt struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    167  1.1  matt int l1pt_static_queue_count;		/* items in the static l1 queue */
    168  1.1  matt int l1pt_static_create_count;		/* static l1 items created */
    169  1.1  matt struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    170  1.1  matt int l1pt_queue_count;			/* items in the l1 queue */
    171  1.1  matt int l1pt_create_count;			/* stat - L1's create count */
    172  1.1  matt int l1pt_reuse_count;			/* stat - L1's reused count */
    173  1.1  matt 
    174  1.1  matt /* Local function prototypes (not used outside this file) */
    175  1.1  matt pt_entry_t *pmap_pte __P((pmap_t pmap, vaddr_t va));
    176  1.2  matt int pmap_page_index __P((paddr_t pa));
    177  1.1  matt void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
    178  1.2  matt     paddr_t pa, unsigned int flags));
    179  1.2  matt void pmap_copy_on_write __P((paddr_t pa));
    180  1.1  matt void pmap_pinit __P((pmap_t));
    181  1.1  matt void pmap_release __P((pmap_t));
    182  1.1  matt 
    183  1.1  matt /* Other function prototypes */
    184  1.1  matt extern void bzero_page __P((vaddr_t));
    185  1.1  matt extern void bcopy_page __P((vaddr_t, vaddr_t));
    186  1.1  matt 
    187  1.1  matt struct l1pt *pmap_alloc_l1pt __P((void));
    188  1.1  matt static __inline void pmap_map_in_l1 __P((pmap_t pmap, vaddr_t va,
    189  1.1  matt      vaddr_t l2pa));
    190  1.1  matt 
    191  1.1  matt #ifdef MYCROFT_HACK
    192  1.1  matt int mycroft_hack = 0;
    193  1.1  matt #endif
    194  1.1  matt 
    195  1.1  matt /* Function to set the debug level of the pmap code */
    196  1.1  matt 
    197  1.1  matt #ifdef PMAP_DEBUG
    198  1.1  matt void
    199  1.1  matt pmap_debug(level)
    200  1.1  matt 	int level;
    201  1.1  matt {
    202  1.1  matt 	pmap_debug_level = level;
    203  1.1  matt 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    204  1.1  matt }
    205  1.1  matt #endif	/* PMAP_DEBUG */
    206  1.1  matt 
    207  1.1  matt #include "isadma.h"
    208  1.1  matt 
    209  1.1  matt #if NISADMA > 0
    210  1.1  matt /*
    211  1.1  matt  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    212  1.1  matt  * pages into the system, memory intersects with any of these ranges,
    213  1.1  matt  * the intersecting memory will be loaded into a lower-priority free list.
    214  1.1  matt  */
    215  1.1  matt bus_dma_segment_t *pmap_isa_dma_ranges;
    216  1.1  matt int pmap_isa_dma_nranges;
    217  1.1  matt 
    218  1.2  matt boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    219  1.2  matt 	    paddr_t *, psize_t *));
    220  1.1  matt 
    221  1.1  matt /*
    222  1.1  matt  * Check if a memory range intersects with an ISA DMA range, and
    223  1.1  matt  * return the page-rounded intersection if it does.  The intersection
    224  1.1  matt  * will be placed on a lower-priority free list.
    225  1.1  matt  */
    226  1.1  matt boolean_t
    227  1.1  matt pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    228  1.2  matt 	paddr_t pa;
    229  1.2  matt 	psize_t size;
    230  1.2  matt 	paddr_t *pap;
    231  1.2  matt 	psize_t *sizep;
    232  1.1  matt {
    233  1.1  matt 	bus_dma_segment_t *ds;
    234  1.1  matt 	int i;
    235  1.1  matt 
    236  1.1  matt 	if (pmap_isa_dma_ranges == NULL)
    237  1.1  matt 		return (FALSE);
    238  1.1  matt 
    239  1.1  matt 	for (i = 0, ds = pmap_isa_dma_ranges;
    240  1.1  matt 	     i < pmap_isa_dma_nranges; i++, ds++) {
    241  1.1  matt 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    242  1.1  matt 			/*
    243  1.1  matt 			 * Beginning of region intersects with this range.
    244  1.1  matt 			 */
    245  1.1  matt 			*pap = trunc_page(pa);
    246  1.1  matt 			*sizep = round_page(min(pa + size,
    247  1.1  matt 			    ds->ds_addr + ds->ds_len) - pa);
    248  1.1  matt 			return (TRUE);
    249  1.1  matt 		}
    250  1.1  matt 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    251  1.1  matt 			/*
    252  1.1  matt 			 * End of region intersects with this range.
    253  1.1  matt 			 */
    254  1.1  matt 			*pap = trunc_page(ds->ds_addr);
    255  1.1  matt 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    256  1.1  matt 			    ds->ds_len));
    257  1.1  matt 			return (TRUE);
    258  1.1  matt 		}
    259  1.1  matt 	}
    260  1.1  matt 
    261  1.1  matt 	/*
    262  1.1  matt 	 * No intersection found.
    263  1.1  matt 	 */
    264  1.1  matt 	return (FALSE);
    265  1.1  matt }
    266  1.1  matt #endif /* NISADMA > 0 */
    267  1.1  matt 
    268  1.1  matt /*
    269  1.1  matt  * Functions for manipluation pv_entry structures. These are used to keep a
    270  1.1  matt  * record of the mappings of virtual addresses and the associated physical
    271  1.1  matt  * pages.
    272  1.1  matt  */
    273  1.1  matt 
    274  1.1  matt /*
    275  1.1  matt  * Allocate a new pv_entry structure from the freelist. If the list is
    276  1.1  matt  * empty allocate a new page and fill the freelist.
    277  1.1  matt  */
    278  1.1  matt struct pv_entry *
    279  1.1  matt pmap_alloc_pv()
    280  1.1  matt {
    281  1.1  matt 	struct pv_page *pvp;
    282  1.1  matt 	struct pv_entry *pv;
    283  1.1  matt 	int i;
    284  1.1  matt 
    285  1.1  matt 	/*
    286  1.1  matt 	 * Do we have any free pv_entry structures left ?
    287  1.1  matt 	 * If not allocate a page of them
    288  1.1  matt 	 */
    289  1.1  matt 
    290  1.1  matt 	if (pv_nfree == 0) {
    291  1.1  matt 		/* NOTE: can't lock kernel_map here */
    292  1.1  matt 		MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
    293  1.1  matt 		if (pvp == 0)
    294  1.1  matt 			panic("pmap_alloc_pv: kmem_alloc() failed");
    295  1.1  matt 		pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
    296  1.1  matt 		for (i = NPVPPG - 2; i; i--, pv++)
    297  1.1  matt 			pv->pv_next = pv + 1;
    298  1.1  matt 		pv->pv_next = 0;
    299  1.1  matt 		pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
    300  1.1  matt 		TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    301  1.1  matt 		pv = &pvp->pvp_pv[0];
    302  1.1  matt 	} else {
    303  1.1  matt 		--pv_nfree;
    304  1.1  matt 		pvp = pv_page_freelist.tqh_first;
    305  1.1  matt 		if (--pvp->pvp_pgi.pgi_nfree == 0) {
    306  1.1  matt 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    307  1.1  matt 		}
    308  1.1  matt 		pv = pvp->pvp_pgi.pgi_freelist;
    309  1.1  matt #ifdef DIAGNOSTIC
    310  1.1  matt 		if (pv == 0)
    311  1.1  matt 			panic("pmap_alloc_pv: pgi_nfree inconsistent");
    312  1.1  matt #endif	/* DIAGNOSTIC */
    313  1.1  matt 		pvp->pvp_pgi.pgi_freelist = pv->pv_next;
    314  1.1  matt 	}
    315  1.1  matt 	return pv;
    316  1.1  matt }
    317  1.1  matt 
    318  1.1  matt /*
    319  1.1  matt  * Release a pv_entry structure putting it back on the freelist.
    320  1.1  matt  */
    321  1.1  matt 
    322  1.1  matt void
    323  1.1  matt pmap_free_pv(pv)
    324  1.1  matt 	struct pv_entry *pv;
    325  1.1  matt {
    326  1.1  matt 	struct pv_page *pvp;
    327  1.1  matt 
    328  1.1  matt 	pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    329  1.1  matt 	switch (++pvp->pvp_pgi.pgi_nfree) {
    330  1.1  matt 	case 1:
    331  1.1  matt 		TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    332  1.1  matt 	default:
    333  1.1  matt 		pv->pv_next = pvp->pvp_pgi.pgi_freelist;
    334  1.1  matt 		pvp->pvp_pgi.pgi_freelist = pv;
    335  1.1  matt 		++pv_nfree;
    336  1.1  matt 		break;
    337  1.1  matt 	case NPVPPG:
    338  1.1  matt 		pv_nfree -= NPVPPG - 1;
    339  1.1  matt 		TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    340  1.1  matt 		FREE((vaddr_t)pvp, M_VMPVENT);
    341  1.1  matt 		break;
    342  1.1  matt 	}
    343  1.1  matt }
    344  1.1  matt 
    345  1.1  matt #if 0
    346  1.1  matt void
    347  1.1  matt pmap_collect_pv()
    348  1.1  matt {
    349  1.1  matt 	struct pv_page_list pv_page_collectlist;
    350  1.1  matt 	struct pv_page *pvp, *npvp;
    351  1.1  matt 	struct pv_entry *ph, *ppv, *pv, *npv;
    352  1.1  matt 	int s;
    353  1.1  matt 
    354  1.1  matt 	TAILQ_INIT(&pv_page_collectlist);
    355  1.1  matt 
    356  1.1  matt 	for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
    357  1.1  matt 		if (pv_nfree < NPVPPG)
    358  1.1  matt 			break;
    359  1.1  matt 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    360  1.1  matt 		if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
    361  1.1  matt 			TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
    362  1.1  matt 			TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
    363  1.1  matt 			    pvp_pgi.pgi_list);
    364  1.1  matt 			pv_nfree -= NPVPPG;
    365  1.1  matt 			pvp->pvp_pgi.pgi_nfree = -1;
    366  1.1  matt 		}
    367  1.1  matt 	}
    368  1.1  matt 
    369  1.1  matt 	if (pv_page_collectlist.tqh_first == 0)
    370  1.1  matt 		return;
    371  1.1  matt 
    372  1.1  matt 	for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
    373  1.1  matt 		if (ph->pv_pmap == 0)
    374  1.1  matt 			continue;
    375  1.1  matt 		s = splvm();
    376  1.1  matt 		for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
    377  1.1  matt 			pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
    378  1.1  matt 			if (pvp->pvp_pgi.pgi_nfree == -1) {
    379  1.1  matt 				pvp = pv_page_freelist.tqh_first;
    380  1.1  matt 				if (--pvp->pvp_pgi.pgi_nfree == 0) {
    381  1.1  matt 					TAILQ_REMOVE(&pv_page_freelist,
    382  1.1  matt 					    pvp, pvp_pgi.pgi_list);
    383  1.1  matt 				}
    384  1.1  matt 				npv = pvp->pvp_pgi.pgi_freelist;
    385  1.1  matt #ifdef DIAGNOSTIC
    386  1.1  matt 				if (npv == 0)
    387  1.1  matt 					panic("pmap_collect_pv: pgi_nfree inconsistent");
    388  1.1  matt #endif	/* DIAGNOSTIC */
    389  1.1  matt 				pvp->pvp_pgi.pgi_freelist = npv->pv_next;
    390  1.1  matt 				*npv = *pv;
    391  1.1  matt 				ppv->pv_next = npv;
    392  1.1  matt 				ppv = npv;
    393  1.1  matt 			} else
    394  1.1  matt 				ppv = pv;
    395  1.1  matt 		}
    396  1.1  matt 		splx(s);
    397  1.1  matt 	}
    398  1.1  matt 
    399  1.1  matt 	for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
    400  1.1  matt 		npvp = pvp->pvp_pgi.pgi_list.tqe_next;
    401  1.1  matt 		FREE((vaddr_t)pvp, M_VMPVENT);
    402  1.1  matt 	}
    403  1.1  matt }
    404  1.1  matt #endif
    405  1.1  matt 
    406  1.1  matt /*
    407  1.1  matt  * Enter a new physical-virtual mapping into the pv table
    408  1.1  matt  */
    409  1.1  matt 
    410  1.1  matt /*__inline*/ void
    411  1.1  matt pmap_enter_pv(pmap, va, pv, flags)
    412  1.1  matt 	pmap_t pmap;
    413  1.1  matt 	vaddr_t va;
    414  1.1  matt 	struct pv_entry *pv;
    415  1.1  matt 	u_int flags;
    416  1.1  matt {
    417  1.1  matt 	struct pv_entry *npv;
    418  1.1  matt 	u_int s;
    419  1.1  matt 
    420  1.1  matt #ifdef DIAGNOSTIC
    421  1.1  matt 	if (!pmap_initialized)
    422  1.1  matt 		panic("pmap_enter_pv: !pmap_initialized");
    423  1.1  matt #endif
    424  1.1  matt 
    425  1.1  matt 	s = splvm();
    426  1.1  matt 
    427  1.1  matt 	PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
    428  1.1  matt 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
    429  1.1  matt 
    430  1.1  matt 	if (pv->pv_pmap == NULL) {
    431  1.1  matt 		/*
    432  1.1  matt 		 * No entries yet, use header as the first entry
    433  1.1  matt 		 */
    434  1.1  matt 		pv->pv_va = va;
    435  1.1  matt 		pv->pv_pmap = pmap;
    436  1.1  matt 		pv->pv_next = NULL;
    437  1.1  matt 		pv->pv_flags = flags;
    438  1.1  matt 	} else {
    439  1.1  matt 		/*
    440  1.1  matt 		 * There is at least one other VA mapping this page.
    441  1.1  matt 		 * Place this entry after the header.
    442  1.1  matt 		 */
    443  1.1  matt #ifdef PMAP_DEBUG
    444  1.1  matt 		for (npv = pv; npv; npv = npv->pv_next)
    445  1.1  matt 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    446  1.1  matt 				panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
    447  1.1  matt 				    pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
    448  1.1  matt #endif
    449  1.1  matt 		npv = pmap_alloc_pv();
    450  1.1  matt 		npv->pv_va = va;
    451  1.1  matt 		npv->pv_pmap = pmap;
    452  1.1  matt 		npv->pv_flags = flags;
    453  1.1  matt 		npv->pv_next = pv->pv_next;
    454  1.1  matt 		pv->pv_next = npv;
    455  1.1  matt 	}
    456  1.1  matt 
    457  1.1  matt 	if (flags & PT_W)
    458  1.1  matt 		++pmap->pm_stats.wired_count;
    459  1.1  matt 
    460  1.1  matt 	splx(s);
    461  1.1  matt }
    462  1.1  matt 
    463  1.1  matt 
    464  1.1  matt /*
    465  1.1  matt  * Remove a physical-virtual mapping from the pv table
    466  1.1  matt  */
    467  1.1  matt 
    468  1.1  matt /*__inline*/ void
    469  1.1  matt pmap_remove_pv(pmap, va, pv)
    470  1.1  matt 	pmap_t pmap;
    471  1.1  matt 	vaddr_t va;
    472  1.1  matt 	struct pv_entry *pv;
    473  1.1  matt {
    474  1.1  matt 	struct pv_entry *npv;
    475  1.1  matt 	u_int s;
    476  1.1  matt 	u_int flags = 0;
    477  1.1  matt 
    478  1.1  matt #ifdef DIAGNOSTIC
    479  1.1  matt 	if (!pmap_initialized)
    480  1.1  matt 		panic("pmap_remove_pv: !pmap_initialized");
    481  1.1  matt #endif
    482  1.1  matt 
    483  1.1  matt 	s = splvm();
    484  1.1  matt 
    485  1.1  matt 	/*
    486  1.1  matt 	 * If it is the first entry on the list, it is actually
    487  1.1  matt 	 * in the header and we must copy the following entry up
    488  1.1  matt 	 * to the header.  Otherwise we must search the list for
    489  1.1  matt 	 * the entry.  In either case we free the now unused entry.
    490  1.1  matt 	 */
    491  1.1  matt 
    492  1.1  matt 	if (pmap == pv->pv_pmap && va == pv->pv_va) {
    493  1.1  matt 		npv = pv->pv_next;
    494  1.1  matt 		if (npv) {
    495  1.1  matt 			*pv = *npv;
    496  1.1  matt 			flags = npv->pv_flags;
    497  1.1  matt 			pmap_free_pv(npv);
    498  1.1  matt 		} else {
    499  1.1  matt 			flags = pv->pv_flags;
    500  1.1  matt 			pv->pv_pmap = NULL;
    501  1.1  matt 		}
    502  1.1  matt 	} else {
    503  1.1  matt 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
    504  1.1  matt 			if (pmap == npv->pv_pmap && va == npv->pv_va)
    505  1.1  matt 				break;
    506  1.1  matt 		}
    507  1.1  matt 		if (npv) {
    508  1.1  matt 			pv->pv_next = npv->pv_next;
    509  1.1  matt 			flags = npv->pv_flags;
    510  1.1  matt 			pmap_free_pv(npv);
    511  1.1  matt 		} else
    512  1.1  matt 			panic("pmap_remove_pv: lost entry");
    513  1.1  matt 	}
    514  1.1  matt 
    515  1.1  matt 	if (flags & PT_W)
    516  1.1  matt 		--pmap->pm_stats.wired_count;
    517  1.1  matt 
    518  1.1  matt 	splx(s);
    519  1.1  matt }
    520  1.1  matt 
    521  1.1  matt /*
    522  1.1  matt  * Modify a physical-virtual mapping in the pv table
    523  1.1  matt  */
    524  1.1  matt 
    525  1.1  matt /*__inline */ u_int
    526  1.1  matt pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
    527  1.1  matt 	pmap_t pmap;
    528  1.1  matt 	vaddr_t va;
    529  1.1  matt 	struct pv_entry *pv;
    530  1.1  matt 	u_int bic_mask;
    531  1.1  matt 	u_int eor_mask;
    532  1.1  matt {
    533  1.1  matt 	struct pv_entry *npv;
    534  1.1  matt 	u_int s;
    535  1.1  matt 	u_int flags, oflags;
    536  1.1  matt 
    537  1.1  matt 	PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
    538  1.1  matt 	    pmap, va, pv, bic_mask, eor_mask));
    539  1.1  matt 
    540  1.1  matt #ifdef DIAGNOSTIC
    541  1.1  matt 	if (!pmap_initialized)
    542  1.1  matt 		panic("pmap_modify_pv: !pmap_initialized");
    543  1.1  matt #endif
    544  1.1  matt 
    545  1.1  matt 	s = splvm();
    546  1.1  matt 
    547  1.1  matt 	PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
    548  1.1  matt 	    pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
    549  1.1  matt 
    550  1.1  matt 	/*
    551  1.1  matt 	 * There is at least one VA mapping this page.
    552  1.1  matt 	 */
    553  1.1  matt 
    554  1.1  matt 	for (npv = pv; npv; npv = npv->pv_next) {
    555  1.1  matt 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    556  1.1  matt 			oflags = npv->pv_flags;
    557  1.1  matt 			npv->pv_flags = flags =
    558  1.1  matt 			    ((oflags & ~bic_mask) ^ eor_mask);
    559  1.1  matt 			if ((flags ^ oflags) & PT_W) {
    560  1.1  matt 				if (flags & PT_W)
    561  1.1  matt 					++pmap->pm_stats.wired_count;
    562  1.1  matt 				else
    563  1.1  matt 					--pmap->pm_stats.wired_count;
    564  1.1  matt 			}
    565  1.1  matt 			PDEBUG(0, printf("done flags=%08x\n", flags));
    566  1.1  matt 			splx(s);
    567  1.1  matt 			return (oflags);
    568  1.1  matt 		}
    569  1.1  matt 	}
    570  1.1  matt 
    571  1.1  matt 	PDEBUG(0, printf("done.\n"));
    572  1.1  matt 	splx(s);
    573  1.1  matt 	return (0);
    574  1.1  matt }
    575  1.1  matt 
    576  1.1  matt 
    577  1.1  matt /*
    578  1.1  matt  * Map the specified level 2 pagetable into the level 1 page table for
    579  1.1  matt  * the given pmap to cover a chunk of virtual address space starting from the
    580  1.1  matt  * address specified.
    581  1.1  matt  */
    582  1.1  matt static /*__inline*/ void
    583  1.1  matt pmap_map_in_l1(pmap, va, l2pa)
    584  1.1  matt 	pmap_t pmap;
    585  1.1  matt 	vaddr_t va, l2pa;
    586  1.1  matt {
    587  1.1  matt 	vaddr_t ptva;
    588  1.1  matt 
    589  1.1  matt 	/* Calculate the index into the L1 page table. */
    590  1.1  matt 	ptva = (va >> PDSHIFT) & ~3;
    591  1.1  matt 
    592  1.1  matt 	PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    593  1.1  matt 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    594  1.1  matt 
    595  1.1  matt 	/* Map page table into the L1. */
    596  1.1  matt 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    597  1.1  matt 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    598  1.1  matt 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    599  1.1  matt 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    600  1.1  matt 
    601  1.1  matt 	PDEBUG(0, printf("pt self reference %lx in %lx\n",
    602  1.1  matt 	    L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    603  1.1  matt 
    604  1.1  matt 	/* Map the page table into the page table area. */
    605  1.1  matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
    606  1.1  matt 
    607  1.1  matt 	/* XXX should be a purge */
    608  1.1  matt /*	cpu_tlb_flushD();*/
    609  1.1  matt }
    610  1.1  matt 
    611  1.1  matt #if 0
    612  1.1  matt static /*__inline*/ void
    613  1.1  matt pmap_unmap_in_l1(pmap, va)
    614  1.1  matt 	pmap_t pmap;
    615  1.1  matt 	vaddr_t va;
    616  1.1  matt {
    617  1.1  matt 	vaddr_t ptva;
    618  1.1  matt 
    619  1.1  matt 	/* Calculate the index into the L1 page table. */
    620  1.1  matt 	ptva = (va >> PDSHIFT) & ~3;
    621  1.1  matt 
    622  1.1  matt 	/* Unmap page table from the L1. */
    623  1.1  matt 	pmap->pm_pdir[ptva + 0] = 0;
    624  1.1  matt 	pmap->pm_pdir[ptva + 1] = 0;
    625  1.1  matt 	pmap->pm_pdir[ptva + 2] = 0;
    626  1.1  matt 	pmap->pm_pdir[ptva + 3] = 0;
    627  1.1  matt 
    628  1.1  matt 	/* Unmap the page table from the page table area. */
    629  1.1  matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    630  1.1  matt 
    631  1.1  matt 	/* XXX should be a purge */
    632  1.1  matt /*	cpu_tlb_flushD();*/
    633  1.1  matt }
    634  1.1  matt #endif
    635  1.1  matt 
    636  1.1  matt 
    637  1.1  matt /*
    638  1.1  matt  *	Used to map a range of physical addresses into kernel
    639  1.1  matt  *	virtual address space.
    640  1.1  matt  *
    641  1.1  matt  *	For now, VM is already on, we only need to map the
    642  1.1  matt  *	specified memory.
    643  1.1  matt  */
    644  1.1  matt vaddr_t
    645  1.1  matt pmap_map(va, spa, epa, prot)
    646  1.1  matt 	vaddr_t va, spa, epa;
    647  1.1  matt 	int prot;
    648  1.1  matt {
    649  1.1  matt 	while (spa < epa) {
    650  1.1  matt 		pmap_enter(pmap_kernel(), va, spa, prot, 0);
    651  1.1  matt 		va += NBPG;
    652  1.1  matt 		spa += NBPG;
    653  1.1  matt 	}
    654  1.1  matt 	return(va);
    655  1.1  matt }
    656  1.1  matt 
    657  1.1  matt 
    658  1.1  matt /*
    659  1.3  matt  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    660  1.1  matt  *
    661  1.1  matt  * bootstrap the pmap system. This is called from initarm and allows
    662  1.1  matt  * the pmap system to initailise any structures it requires.
    663  1.1  matt  *
    664  1.1  matt  * Currently this sets up the kernel_pmap that is statically allocated
    665  1.1  matt  * and also allocated virtual addresses for certain page hooks.
    666  1.1  matt  * Currently the only one page hook is allocated that is used
    667  1.1  matt  * to zero physical pages of memory.
    668  1.1  matt  * It also initialises the start and end address of the kernel data space.
    669  1.1  matt  */
    670  1.2  matt extern paddr_t physical_freestart;
    671  1.2  matt extern paddr_t physical_freeend;
    672  1.1  matt 
    673  1.1  matt struct pv_entry *boot_pvent;
    674  1.1  matt char *boot_attrs;
    675  1.1  matt 
    676  1.1  matt void
    677  1.1  matt pmap_bootstrap(kernel_l1pt, kernel_ptpt)
    678  1.1  matt 	pd_entry_t *kernel_l1pt;
    679  1.1  matt 	pv_addr_t kernel_ptpt;
    680  1.1  matt {
    681  1.1  matt 	int loop;
    682  1.2  matt 	paddr_t start, end;
    683  1.1  matt #if NISADMA > 0
    684  1.2  matt 	paddr_t istart;
    685  1.2  matt 	psize_t isize;
    686  1.1  matt #endif
    687  1.1  matt 	vsize_t size;
    688  1.1  matt 
    689  1.1  matt 	kernel_pmap = &kernel_pmap_store;
    690  1.1  matt 
    691  1.1  matt 	kernel_pmap->pm_pdir = kernel_l1pt;
    692  1.1  matt 	kernel_pmap->pm_pptpt = kernel_ptpt.pv_pa;
    693  1.1  matt 	kernel_pmap->pm_vptpt = kernel_ptpt.pv_va;
    694  1.1  matt 	simple_lock_init(&kernel_pmap->pm_lock);
    695  1.1  matt 	kernel_pmap->pm_count = 1;
    696  1.1  matt 
    697  1.1  matt 	/*
    698  1.1  matt 	 * Initialize PAGE_SIZE-dependent variables.
    699  1.1  matt 	 */
    700  1.1  matt 	uvm_setpagesize();
    701  1.1  matt 
    702  1.1  matt 	npages = 0;
    703  1.1  matt 	loop = 0;
    704  1.1  matt 	while (loop < bootconfig.dramblocks) {
    705  1.2  matt 		start = (paddr_t)bootconfig.dram[loop].address;
    706  1.1  matt 		end = start + (bootconfig.dram[loop].pages * NBPG);
    707  1.1  matt 		if (start < physical_freestart)
    708  1.1  matt 			start = physical_freestart;
    709  1.1  matt 		if (end > physical_freeend)
    710  1.1  matt 			end = physical_freeend;
    711  1.1  matt #if 0
    712  1.1  matt 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
    713  1.1  matt #endif
    714  1.1  matt #if NISADMA > 0
    715  1.1  matt 		if (pmap_isa_dma_range_intersect(start, end - start,
    716  1.1  matt 		    &istart, &isize)) {
    717  1.1  matt 			/*
    718  1.1  matt 			 * Place the pages that intersect with the
    719  1.1  matt 			 * ISA DMA range onto the ISA DMA free list.
    720  1.1  matt 			 */
    721  1.1  matt #if 0
    722  1.1  matt 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
    723  1.1  matt 			    istart + isize - 1);
    724  1.1  matt #endif
    725  1.1  matt 			uvm_page_physload(atop(istart),
    726  1.1  matt 			    atop(istart + isize), atop(istart),
    727  1.1  matt 			    atop(istart + isize), VM_FREELIST_ISADMA);
    728  1.1  matt 			npages += atop(istart + isize) - atop(istart);
    729  1.1  matt 
    730  1.1  matt 			/*
    731  1.1  matt 			 * Load the pieces that come before
    732  1.1  matt 			 * the intersection into the default
    733  1.1  matt 			 * free list.
    734  1.1  matt 			 */
    735  1.1  matt 			if (start < istart) {
    736  1.1  matt #if 0
    737  1.1  matt 				printf("    BEFORE 0x%lx -> 0x%lx\n",
    738  1.1  matt 				    start, istart - 1);
    739  1.1  matt #endif
    740  1.1  matt 				uvm_page_physload(atop(start),
    741  1.1  matt 				    atop(istart), atop(start),
    742  1.1  matt 				    atop(istart), VM_FREELIST_DEFAULT);
    743  1.1  matt 				npages += atop(istart) - atop(start);
    744  1.1  matt 			}
    745  1.1  matt 
    746  1.1  matt 			/*
    747  1.1  matt 			 * Load the pieces that come after
    748  1.1  matt 			 * the intersection into the default
    749  1.1  matt 			 * free list.
    750  1.1  matt 			 */
    751  1.1  matt 			if ((istart + isize) < end) {
    752  1.1  matt #if 0
    753  1.1  matt 				printf("     AFTER 0x%lx -> 0x%lx\n",
    754  1.1  matt 				    (istart + isize), end - 1);
    755  1.1  matt #endif
    756  1.1  matt 				uvm_page_physload(atop(istart + isize),
    757  1.1  matt 				    atop(end), atop(istart + isize),
    758  1.1  matt 				    atop(end), VM_FREELIST_DEFAULT);
    759  1.1  matt 				npages += atop(end) - atop(istart + isize);
    760  1.1  matt 			}
    761  1.1  matt 		} else {
    762  1.1  matt 			uvm_page_physload(atop(start), atop(end),
    763  1.1  matt 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
    764  1.1  matt 			npages += atop(end) - atop(start);
    765  1.1  matt 		}
    766  1.1  matt #else	/* NISADMA > 0 */
    767  1.1  matt 		uvm_page_physload(atop(start), atop(end),
    768  1.1  matt 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
    769  1.1  matt 		npages += atop(end) - atop(start);
    770  1.1  matt #endif /* NISADMA > 0 */
    771  1.1  matt 		++loop;
    772  1.1  matt 	}
    773  1.1  matt 
    774  1.1  matt #ifdef MYCROFT_HACK
    775  1.1  matt 	printf("npages = %ld\n", npages);
    776  1.1  matt #endif
    777  1.1  matt 
    778  1.1  matt 	virtual_start = KERNEL_VM_BASE;
    779  1.1  matt 	virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
    780  1.1  matt 
    781  1.1  matt 	ALLOC_PAGE_HOOK(page_hook0, NBPG);
    782  1.1  matt 	ALLOC_PAGE_HOOK(page_hook1, NBPG);
    783  1.1  matt 
    784  1.1  matt 	/*
    785  1.1  matt 	 * The mem special device needs a virtual hook but we don't
    786  1.1  matt 	 * need a pte
    787  1.1  matt 	 */
    788  1.1  matt 	memhook = (char *)virtual_start;
    789  1.1  matt 	virtual_start += NBPG;
    790  1.1  matt 
    791  1.1  matt 	msgbufaddr = (caddr_t)virtual_start;
    792  1.1  matt 	msgbufpte = (pt_entry_t)pmap_pte(kernel_pmap, virtual_start);
    793  1.1  matt 	virtual_start += round_page(MSGBUFSIZE);
    794  1.1  matt 
    795  1.1  matt 	size = npages * sizeof(struct pv_entry);
    796  1.1  matt 	boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
    797  1.1  matt 	bzero(boot_pvent, size);
    798  1.1  matt 	size = npages * sizeof(char);
    799  1.1  matt 	boot_attrs = (char *)uvm_pageboot_alloc(size);
    800  1.1  matt 	bzero(boot_attrs, size);
    801  1.1  matt 
    802  1.1  matt 	cpu_cache_cleanD();
    803  1.1  matt }
    804  1.1  matt 
    805  1.1  matt /*
    806  1.1  matt  * void pmap_init(void)
    807  1.1  matt  *
    808  1.1  matt  * Initialize the pmap module.
    809  1.1  matt  * Called by vm_init() in vm/vm_init.c in order to initialise
    810  1.1  matt  * any structures that the pmap system needs to map virtual memory.
    811  1.1  matt  */
    812  1.1  matt 
    813  1.1  matt extern int physmem;
    814  1.1  matt 
    815  1.1  matt void
    816  1.1  matt pmap_init()
    817  1.1  matt {
    818  1.1  matt 	int lcv;
    819  1.1  matt 
    820  1.1  matt #ifdef MYCROFT_HACK
    821  1.1  matt 	printf("physmem = %d\n", physmem);
    822  1.1  matt #endif
    823  1.1  matt 
    824  1.1  matt 	/*
    825  1.1  matt 	 * Set the available memory vars - These do not map to real memory
    826  1.1  matt 	 * addresses and cannot as the physical memory is fragmented.
    827  1.1  matt 	 * They are used by ps for %mem calculations.
    828  1.1  matt 	 * One could argue whether this should be the entire memory or just
    829  1.1  matt 	 * the memory that is useable in a user process.
    830  1.1  matt 	 */
    831  1.1  matt 	avail_start = 0;
    832  1.1  matt 	avail_end = physmem * NBPG;
    833  1.1  matt 
    834  1.1  matt 	/* Set up pmap info for physsegs. */
    835  1.1  matt 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    836  1.1  matt 		vm_physmem[lcv].pmseg.pvent = boot_pvent;
    837  1.1  matt 		boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
    838  1.1  matt 		vm_physmem[lcv].pmseg.attrs = boot_attrs;
    839  1.1  matt 		boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
    840  1.1  matt 	}
    841  1.1  matt #ifdef MYCROFT_HACK
    842  1.1  matt 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    843  1.1  matt 		printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
    844  1.1  matt 		    lcv,
    845  1.1  matt 		    vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
    846  1.1  matt 		    vm_physmem[lcv].start, vm_physmem[lcv].end);
    847  1.1  matt 	}
    848  1.1  matt #endif
    849  1.1  matt 	TAILQ_INIT(&pv_page_freelist);
    850  1.1  matt 
    851  1.1  matt #ifdef DIAGNOSTIC
    852  1.1  matt 	/* Now it is safe to enable pv_entry recording. */
    853  1.1  matt 	pmap_initialized = TRUE;
    854  1.1  matt #endif
    855  1.1  matt 
    856  1.1  matt 	/* Initialise our L1 page table queues and counters */
    857  1.1  matt 	SIMPLEQ_INIT(&l1pt_static_queue);
    858  1.1  matt 	l1pt_static_queue_count = 0;
    859  1.1  matt 	l1pt_static_create_count = 0;
    860  1.1  matt 	SIMPLEQ_INIT(&l1pt_queue);
    861  1.1  matt 	l1pt_queue_count = 0;
    862  1.1  matt 	l1pt_create_count = 0;
    863  1.1  matt 	l1pt_reuse_count = 0;
    864  1.1  matt }
    865  1.1  matt 
    866  1.1  matt /*
    867  1.1  matt  * pmap_postinit()
    868  1.1  matt  *
    869  1.1  matt  * This routine is called after the vm and kmem subsystems have been
    870  1.1  matt  * initialised. This allows the pmap code to perform any initialisation
    871  1.1  matt  * that can only be done one the memory allocation is in place.
    872  1.1  matt  */
    873  1.1  matt 
    874  1.1  matt void
    875  1.1  matt pmap_postinit()
    876  1.1  matt {
    877  1.1  matt 	int loop;
    878  1.1  matt 	struct l1pt *pt;
    879  1.1  matt 
    880  1.1  matt #ifdef PMAP_STATIC_L1S
    881  1.1  matt 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
    882  1.1  matt #else	/* PMAP_STATIC_L1S */
    883  1.1  matt 	for (loop = 0; loop < max_processes; ++loop) {
    884  1.1  matt #endif	/* PMAP_STATIC_L1S */
    885  1.1  matt 		/* Allocate a L1 page table */
    886  1.1  matt 		pt = pmap_alloc_l1pt();
    887  1.1  matt 		if (!pt)
    888  1.1  matt 			panic("Cannot allocate static L1 page tables\n");
    889  1.1  matt 
    890  1.1  matt 		/* Clean it */
    891  1.1  matt 		bzero((void *)pt->pt_va, PD_SIZE);
    892  1.1  matt 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
    893  1.1  matt 		/* Add the page table to the queue */
    894  1.1  matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
    895  1.1  matt 		++l1pt_static_queue_count;
    896  1.1  matt 		++l1pt_static_create_count;
    897  1.1  matt 	}
    898  1.1  matt }
    899  1.1  matt 
    900  1.1  matt 
    901  1.1  matt /*
    902  1.1  matt  * Create and return a physical map.
    903  1.1  matt  *
    904  1.1  matt  * If the size specified for the map is zero, the map is an actual physical
    905  1.1  matt  * map, and may be referenced by the hardware.
    906  1.1  matt  *
    907  1.1  matt  * If the size specified is non-zero, the map will be used in software only,
    908  1.1  matt  * and is bounded by that size.
    909  1.1  matt  */
    910  1.1  matt 
    911  1.1  matt pmap_t
    912  1.1  matt pmap_create()
    913  1.1  matt {
    914  1.1  matt 	pmap_t pmap;
    915  1.1  matt 
    916  1.1  matt 	/* Allocate memory for pmap structure and zero it */
    917  1.1  matt 	pmap = (pmap_t) malloc(sizeof *pmap, M_VMPMAP, M_WAITOK);
    918  1.1  matt 	bzero(pmap, sizeof(*pmap));
    919  1.1  matt 
    920  1.1  matt 	/* Now init the machine part of the pmap */
    921  1.1  matt 	pmap_pinit(pmap);
    922  1.1  matt 	return(pmap);
    923  1.1  matt }
    924  1.1  matt 
    925  1.1  matt /*
    926  1.1  matt  * pmap_alloc_l1pt()
    927  1.1  matt  *
    928  1.1  matt  * This routine allocates physical and virtual memory for a L1 page table
    929  1.1  matt  * and wires it.
    930  1.1  matt  * A l1pt structure is returned to describe the allocated page table.
    931  1.1  matt  *
    932  1.1  matt  * This routine is allowed to fail if the required memory cannot be allocated.
    933  1.1  matt  * In this case NULL is returned.
    934  1.1  matt  */
    935  1.1  matt 
    936  1.1  matt struct l1pt *
    937  1.1  matt pmap_alloc_l1pt(void)
    938  1.1  matt {
    939  1.2  matt 	paddr_t pa;
    940  1.2  matt 	vaddr_t va;
    941  1.1  matt 	struct l1pt *pt;
    942  1.1  matt 	int error;
    943  1.1  matt 	vm_page_t m;
    944  1.1  matt 	pt_entry_t *pte;
    945  1.1  matt 
    946  1.1  matt 	/* Allocate virtual address space for the L1 page table */
    947  1.1  matt 	va = uvm_km_valloc(kernel_map, PD_SIZE);
    948  1.1  matt 	if (va == 0) {
    949  1.1  matt #ifdef DIAGNOSTIC
    950  1.1  matt 		printf("pmap: Cannot allocate pageable memory for L1\n");
    951  1.1  matt #endif	/* DIAGNOSTIC */
    952  1.1  matt 		return(NULL);
    953  1.1  matt 	}
    954  1.1  matt 
    955  1.1  matt 	/* Allocate memory for the l1pt structure */
    956  1.1  matt 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
    957  1.1  matt 
    958  1.1  matt 	/*
    959  1.1  matt 	 * Allocate pages from the VM system.
    960  1.1  matt 	 */
    961  1.1  matt 	TAILQ_INIT(&pt->pt_plist);
    962  1.1  matt 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
    963  1.1  matt 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
    964  1.1  matt 	if (error) {
    965  1.1  matt #ifdef DIAGNOSTIC
    966  1.1  matt 		printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
    967  1.1  matt 		    error);
    968  1.1  matt #endif	/* DIAGNOSTIC */
    969  1.1  matt 		/* Release the resources we already have claimed */
    970  1.1  matt 		free(pt, M_VMPMAP);
    971  1.1  matt 		uvm_km_free(kernel_map, va, PD_SIZE);
    972  1.1  matt 		return(NULL);
    973  1.1  matt 	}
    974  1.1  matt 
    975  1.1  matt 	/* Map our physical pages into our virtual space */
    976  1.1  matt 	pt->pt_va = va;
    977  1.1  matt 	m = pt->pt_plist.tqh_first;
    978  1.1  matt 	while (m && va < (pt->pt_va + PD_SIZE)) {
    979  1.1  matt 		pa = VM_PAGE_TO_PHYS(m);
    980  1.1  matt 
    981  1.1  matt 		pmap_enter(pmap_kernel(), va, pa,
    982  1.1  matt 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
    983  1.1  matt 
    984  1.1  matt 		/* Revoke cacheability and bufferability */
    985  1.1  matt 		/* XXX should be done better than this */
    986  1.1  matt 		pte = pmap_pte(pmap_kernel(), va);
    987  1.1  matt 		*pte = *pte & ~(PT_C | PT_B);
    988  1.1  matt 
    989  1.1  matt 		va += NBPG;
    990  1.1  matt 		m = m->pageq.tqe_next;
    991  1.1  matt 	}
    992  1.1  matt 
    993  1.1  matt #ifdef DIAGNOSTIC
    994  1.1  matt 	if (m)
    995  1.1  matt 		panic("pmap_alloc_l1pt: pglist not empty\n");
    996  1.1  matt #endif	/* DIAGNOSTIC */
    997  1.1  matt 
    998  1.1  matt 	pt->pt_flags = 0;
    999  1.1  matt 	return(pt);
   1000  1.1  matt }
   1001  1.1  matt 
   1002  1.1  matt /*
   1003  1.1  matt  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1004  1.1  matt  */
   1005  1.1  matt void
   1006  1.1  matt pmap_free_l1pt(pt)
   1007  1.1  matt 	struct l1pt *pt;
   1008  1.1  matt {
   1009  1.1  matt 	/* Separate the physical memory for the virtual space */
   1010  1.1  matt 	pmap_remove(kernel_pmap, pt->pt_va, pt->pt_va + PD_SIZE);
   1011  1.1  matt 
   1012  1.1  matt 	/* Return the physical memory */
   1013  1.1  matt 	uvm_pglistfree(&pt->pt_plist);
   1014  1.1  matt 
   1015  1.1  matt 	/* Free the virtual space */
   1016  1.1  matt 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1017  1.1  matt 
   1018  1.1  matt 	/* Free the l1pt structure */
   1019  1.1  matt 	free(pt, M_VMPMAP);
   1020  1.1  matt }
   1021  1.1  matt 
   1022  1.1  matt /*
   1023  1.1  matt  * Allocate a page directory.
   1024  1.1  matt  * This routine will either allocate a new page directory from the pool
   1025  1.1  matt  * of L1 page tables currently held by the kernel or it will allocate
   1026  1.1  matt  * a new one via pmap_alloc_l1pt().
   1027  1.1  matt  * It will then initialise the l1 page table for use.
   1028  1.1  matt  */
   1029  1.1  matt int
   1030  1.1  matt pmap_allocpagedir(pmap)
   1031  1.1  matt 	struct pmap *pmap;
   1032  1.1  matt {
   1033  1.2  matt 	paddr_t pa;
   1034  1.1  matt 	struct l1pt *pt;
   1035  1.1  matt 	pt_entry_t *pte;
   1036  1.1  matt 
   1037  1.1  matt 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1038  1.1  matt 
   1039  1.1  matt 	/* Do we have any spare L1's lying around ? */
   1040  1.1  matt 	if (l1pt_static_queue_count) {
   1041  1.1  matt 		--l1pt_static_queue_count;
   1042  1.1  matt 		pt = l1pt_static_queue.sqh_first;
   1043  1.1  matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1044  1.1  matt 	} else if (l1pt_queue_count) {
   1045  1.1  matt 		--l1pt_queue_count;
   1046  1.1  matt 		pt = l1pt_queue.sqh_first;
   1047  1.1  matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1048  1.1  matt 		++l1pt_reuse_count;
   1049  1.1  matt 	} else {
   1050  1.1  matt 		pt = pmap_alloc_l1pt();
   1051  1.1  matt 		if (!pt)
   1052  1.1  matt 			return(ENOMEM);
   1053  1.1  matt 		++l1pt_create_count;
   1054  1.1  matt 	}
   1055  1.1  matt 
   1056  1.1  matt 	/* Store the pointer to the l1 descriptor in the pmap. */
   1057  1.1  matt 	pmap->pm_l1pt = pt;
   1058  1.1  matt 
   1059  1.1  matt 	/* Get the physical address of the start of the l1 */
   1060  1.1  matt 	pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
   1061  1.1  matt 
   1062  1.1  matt 	/* Store the virtual address of the l1 in the pmap. */
   1063  1.1  matt 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1064  1.1  matt 
   1065  1.1  matt 	/* Clean the L1 if it is dirty */
   1066  1.1  matt 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1067  1.1  matt 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1068  1.1  matt 
   1069  1.1  matt 	/* Do we already have the kernel mappings ? */
   1070  1.1  matt 	if (!(pt->pt_flags & PTFLAG_KPT)) {
   1071  1.1  matt 		/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
   1072  1.1  matt 
   1073  1.1  matt 		bcopy((char *)kernel_pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1074  1.1  matt 		    (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1075  1.1  matt 		    KERNEL_PD_SIZE);
   1076  1.1  matt 		pt->pt_flags |= PTFLAG_KPT;
   1077  1.1  matt 	}
   1078  1.1  matt 
   1079  1.1  matt 	/* Allocate a page table to map all the page tables for this pmap */
   1080  1.1  matt 
   1081  1.1  matt #ifdef DIAGNOSTIC
   1082  1.1  matt 	if (pmap->pm_vptpt) {
   1083  1.1  matt 		/* XXX What if we have one already ? */
   1084  1.1  matt 		panic("pmap_allocpagedir: have pt already\n");
   1085  1.1  matt 	}
   1086  1.1  matt #endif	/* DIAGNOSTIC */
   1087  1.1  matt 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1088  1.1  matt 	(void) pmap_extract(kernel_pmap, pmap->pm_vptpt, &pmap->pm_pptpt);
   1089  1.1  matt 	pmap->pm_pptpt &= PG_FRAME;
   1090  1.1  matt 	/* Revoke cacheability and bufferability */
   1091  1.1  matt 	/* XXX should be done better than this */
   1092  1.1  matt 	pte = pmap_pte(kernel_pmap, pmap->pm_vptpt);
   1093  1.1  matt 	*pte = *pte & ~(PT_C | PT_B);
   1094  1.1  matt 
   1095  1.1  matt 	/* Wire in this page table */
   1096  1.1  matt 	pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
   1097  1.1  matt 
   1098  1.1  matt 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1099  1.1  matt 
   1100  1.1  matt 	/*
   1101  1.1  matt 	 * Map the kernel page tables for 0xf0000000 +
   1102  1.1  matt 	 * into the page table used to map the
   1103  1.1  matt 	 * pmap's page tables
   1104  1.1  matt 	 */
   1105  1.1  matt 	bcopy((char *)(PROCESS_PAGE_TBLS_BASE
   1106  1.1  matt 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
   1107  1.1  matt 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1108  1.1  matt 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1109  1.1  matt 	    (KERNEL_PD_SIZE >> 2));
   1110  1.1  matt 
   1111  1.1  matt 	pmap->pm_count = 1;
   1112  1.1  matt 	simple_lock_init(&pmap->pm_lock);
   1113  1.1  matt 
   1114  1.1  matt 	return(0);
   1115  1.1  matt }
   1116  1.1  matt 
   1117  1.1  matt 
   1118  1.1  matt /*
   1119  1.1  matt  * Initialize a preallocated and zeroed pmap structure,
   1120  1.1  matt  * such as one in a vmspace structure.
   1121  1.1  matt  */
   1122  1.1  matt 
   1123  1.1  matt static int pmap_pagedir_ident;	/* tsleep() ident */
   1124  1.1  matt 
   1125  1.1  matt void
   1126  1.1  matt pmap_pinit(pmap)
   1127  1.1  matt 	struct pmap *pmap;
   1128  1.1  matt {
   1129  1.1  matt 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1130  1.1  matt 
   1131  1.1  matt 	/* Keep looping until we succeed in allocating a page directory */
   1132  1.1  matt 	while (pmap_allocpagedir(pmap) != 0) {
   1133  1.1  matt 		/*
   1134  1.1  matt 		 * Ok we failed to allocate a suitable block of memory for an
   1135  1.1  matt 		 * L1 page table. This means that either:
   1136  1.1  matt 		 * 1. 16KB of virtual address space could not be allocated
   1137  1.1  matt 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1138  1.1  matt 		 *    could not be allocated.
   1139  1.1  matt 		 *
   1140  1.1  matt 		 * Since we cannot fail we will sleep for a while and try
   1141  1.1  matt 		 * again. Although we will be wakened when another page table
   1142  1.1  matt 		 * is freed other memory releasing and swapping may occur
   1143  1.1  matt 		 * that will mean we can succeed so we will keep trying
   1144  1.1  matt 		 * regularly just in case.
   1145  1.1  matt 		 */
   1146  1.1  matt 
   1147  1.1  matt 		if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
   1148  1.1  matt 		   "l1ptwait", 1000) == EWOULDBLOCK)
   1149  1.1  matt 			printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
   1150  1.1  matt 	}
   1151  1.1  matt 
   1152  1.1  matt 	/* Map zero page for the pmap. This will also map the L2 for it */
   1153  1.1  matt 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1154  1.1  matt 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1155  1.1  matt }
   1156  1.1  matt 
   1157  1.1  matt 
   1158  1.1  matt void
   1159  1.1  matt pmap_freepagedir(pmap)
   1160  1.1  matt 	pmap_t pmap;
   1161  1.1  matt {
   1162  1.1  matt 	/* Free the memory used for the page table mapping */
   1163  1.1  matt 	uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1164  1.1  matt 
   1165  1.1  matt 	/* junk the L1 page table */
   1166  1.1  matt 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1167  1.1  matt 		/* Add the page table to the queue */
   1168  1.1  matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1169  1.1  matt 		++l1pt_static_queue_count;
   1170  1.1  matt 		/* Wake up any sleeping processes waiting for a l1 page table */
   1171  1.1  matt 		wakeup((caddr_t)&pmap_pagedir_ident);
   1172  1.1  matt 	} else if (l1pt_queue_count < 8) {
   1173  1.1  matt 		/* Add the page table to the queue */
   1174  1.1  matt 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1175  1.1  matt 		++l1pt_queue_count;
   1176  1.1  matt 		/* Wake up any sleeping processes waiting for a l1 page table */
   1177  1.1  matt 		wakeup((caddr_t)&pmap_pagedir_ident);
   1178  1.1  matt 	} else
   1179  1.1  matt 		pmap_free_l1pt(pmap->pm_l1pt);
   1180  1.1  matt }
   1181  1.1  matt 
   1182  1.1  matt 
   1183  1.1  matt /*
   1184  1.1  matt  * Retire the given physical map from service.
   1185  1.1  matt  * Should only be called if the map contains no valid mappings.
   1186  1.1  matt  */
   1187  1.1  matt 
   1188  1.1  matt void
   1189  1.1  matt pmap_destroy(pmap)
   1190  1.1  matt 	pmap_t pmap;
   1191  1.1  matt {
   1192  1.1  matt 	int count;
   1193  1.1  matt 
   1194  1.1  matt 	if (pmap == NULL)
   1195  1.1  matt 		return;
   1196  1.1  matt 
   1197  1.1  matt 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1198  1.1  matt 	simple_lock(&pmap->pm_lock);
   1199  1.1  matt 	count = --pmap->pm_count;
   1200  1.1  matt 	simple_unlock(&pmap->pm_lock);
   1201  1.1  matt 	if (count == 0) {
   1202  1.1  matt 		pmap_release(pmap);
   1203  1.1  matt 		free((caddr_t)pmap, M_VMPMAP);
   1204  1.1  matt 	}
   1205  1.1  matt }
   1206  1.1  matt 
   1207  1.1  matt 
   1208  1.1  matt /*
   1209  1.1  matt  * Release any resources held by the given physical map.
   1210  1.1  matt  * Called when a pmap initialized by pmap_pinit is being released.
   1211  1.1  matt  * Should only be called if the map contains no valid mappings.
   1212  1.1  matt  */
   1213  1.1  matt 
   1214  1.1  matt void
   1215  1.1  matt pmap_release(pmap)
   1216  1.1  matt 	pmap_t pmap;
   1217  1.1  matt {
   1218  1.1  matt 	struct vm_page *page;
   1219  1.1  matt 	pt_entry_t *pte;
   1220  1.1  matt 	int loop;
   1221  1.1  matt 
   1222  1.1  matt 	PDEBUG(0, printf("pmap_release(%p)\n", pmap));
   1223  1.1  matt 
   1224  1.1  matt #if 0
   1225  1.1  matt 	if (pmap->pm_count != 1)		/* XXX: needs sorting */
   1226  1.1  matt 		panic("pmap_release count %d", pmap->pm_count);
   1227  1.1  matt #endif
   1228  1.1  matt 
   1229  1.1  matt 	/* Remove the zero page mapping */
   1230  1.1  matt 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1231  1.1  matt 
   1232  1.1  matt 	/*
   1233  1.1  matt 	 * Free any page tables still mapped
   1234  1.1  matt 	 * This is only temporay until pmap_enter can count the number
   1235  1.1  matt 	 * of mappings made in a page table. Then pmap_remove() can
   1236  1.1  matt 	 * reduce the count and free the pagetable when the count
   1237  1.1  matt 	 * reaches zero.
   1238  1.1  matt 	 */
   1239  1.1  matt 	for (loop = 0; loop < (((PD_SIZE - KERNEL_PD_SIZE) >> 4) - 1); ++loop) {
   1240  1.1  matt 		pte = (pt_entry_t *)(pmap->pm_vptpt + loop * 4);
   1241  1.1  matt 		if (*pte != 0) {
   1242  1.1  matt 			PDEBUG(0, printf("%x: pte=%p:%08x\n", loop, pte, *pte));
   1243  1.1  matt 			page = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
   1244  1.1  matt 			if (page == NULL)
   1245  1.1  matt 				panic("pmap_release: bad address for phys page");
   1246  1.1  matt 			uvm_pagefree(page);
   1247  1.1  matt 		}
   1248  1.1  matt 	}
   1249  1.1  matt 	/* Free the page dir */
   1250  1.1  matt 	pmap_freepagedir(pmap);
   1251  1.1  matt }
   1252  1.1  matt 
   1253  1.1  matt 
   1254  1.1  matt /*
   1255  1.1  matt  * void pmap_reference(pmap_t pmap)
   1256  1.1  matt  *
   1257  1.1  matt  * Add a reference to the specified pmap.
   1258  1.1  matt  */
   1259  1.1  matt 
   1260  1.1  matt void
   1261  1.1  matt pmap_reference(pmap)
   1262  1.1  matt 	pmap_t pmap;
   1263  1.1  matt {
   1264  1.1  matt 	if (pmap == NULL)
   1265  1.1  matt 		return;
   1266  1.1  matt 
   1267  1.1  matt 	simple_lock(&pmap->pm_lock);
   1268  1.1  matt 	pmap->pm_count++;
   1269  1.1  matt 	simple_unlock(&pmap->pm_lock);
   1270  1.1  matt }
   1271  1.1  matt 
   1272  1.1  matt /*
   1273  1.1  matt  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1274  1.1  matt  *
   1275  1.1  matt  * Return the start and end addresses of the kernel's virtual space.
   1276  1.1  matt  * These values are setup in pmap_bootstrap and are updated as pages
   1277  1.1  matt  * are allocated.
   1278  1.1  matt  */
   1279  1.1  matt 
   1280  1.1  matt void
   1281  1.1  matt pmap_virtual_space(start, end)
   1282  1.1  matt 	vaddr_t *start;
   1283  1.1  matt 	vaddr_t *end;
   1284  1.1  matt {
   1285  1.1  matt 	*start = virtual_start;
   1286  1.1  matt 	*end = virtual_end;
   1287  1.1  matt }
   1288  1.1  matt 
   1289  1.1  matt 
   1290  1.1  matt /*
   1291  1.1  matt  * Activate the address space for the specified process.  If the process
   1292  1.1  matt  * is the current process, load the new MMU context.
   1293  1.1  matt  */
   1294  1.1  matt void
   1295  1.1  matt pmap_activate(p)
   1296  1.1  matt 	struct proc *p;
   1297  1.1  matt {
   1298  1.1  matt 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   1299  1.1  matt 	struct pcb *pcb = &p->p_addr->u_pcb;
   1300  1.1  matt 
   1301  1.1  matt 	(void) pmap_extract(kernel_pmap, (vaddr_t)pmap->pm_pdir,
   1302  1.1  matt 	    (paddr_t *)&pcb->pcb_pagedir);
   1303  1.1  matt 
   1304  1.1  matt 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1305  1.1  matt 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1306  1.1  matt 
   1307  1.1  matt 	if (p == curproc) {
   1308  1.1  matt 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1309  1.1  matt 		setttb((u_int)pcb->pcb_pagedir);
   1310  1.1  matt 	}
   1311  1.1  matt #if 0
   1312  1.1  matt 	pmap->pm_pdchanged = FALSE;
   1313  1.1  matt #endif
   1314  1.1  matt }
   1315  1.1  matt 
   1316  1.1  matt 
   1317  1.1  matt /*
   1318  1.1  matt  * Deactivate the address space of the specified process.
   1319  1.1  matt  */
   1320  1.1  matt void
   1321  1.1  matt pmap_deactivate(p)
   1322  1.1  matt 	struct proc *p;
   1323  1.1  matt {
   1324  1.1  matt }
   1325  1.1  matt 
   1326  1.1  matt 
   1327  1.1  matt /*
   1328  1.1  matt  * pmap_clean_page()
   1329  1.1  matt  *
   1330  1.1  matt  * This is a local function used to work out the best strategy to clean
   1331  1.1  matt  * a single page referenced by its entry in the PV table. It's used by
   1332  1.1  matt  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1333  1.1  matt  *
   1334  1.1  matt  * Its policy is effectively:
   1335  1.1  matt  *  o If there are no mappings, we don't bother doing anything with the cache.
   1336  1.1  matt  *  o If there is one mapping, we clean just that page.
   1337  1.1  matt  *  o If there are multiple mappings, we clean the entire cache.
   1338  1.1  matt  *
   1339  1.1  matt  * So that some functions can be further optimised, it returns 0 if it didn't
   1340  1.1  matt  * clean the entire cache, or 1 if it did.
   1341  1.1  matt  *
   1342  1.1  matt  * XXX One bug in this routine is that if the pv_entry has a single page
   1343  1.1  matt  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1344  1.1  matt  * just the 1 page. Since this should not occur in everyday use and if it does
   1345  1.1  matt  * it will just result in not the most efficient clean for the page.
   1346  1.1  matt  */
   1347  1.1  matt static int
   1348  1.1  matt pmap_clean_page(pv)
   1349  1.1  matt 	struct pv_entry *pv;
   1350  1.1  matt {
   1351  1.1  matt 	int s;
   1352  1.1  matt 	int cache_needs_cleaning = 0;
   1353  1.1  matt 	vaddr_t page_to_clean = 0;
   1354  1.1  matt 
   1355  1.1  matt 	/* Go to splvm() so we get exclusive lock for a mo */
   1356  1.1  matt 	s = splvm();
   1357  1.1  matt 	if (pv->pv_pmap) {
   1358  1.1  matt 		cache_needs_cleaning = 1;
   1359  1.1  matt 		if (!pv->pv_next)
   1360  1.1  matt 			page_to_clean = pv->pv_va;
   1361  1.1  matt 	}
   1362  1.1  matt 	splx(s);
   1363  1.1  matt 
   1364  1.1  matt 	/* Do cache ops outside the splvm. */
   1365  1.1  matt 	if (page_to_clean)
   1366  1.1  matt 		cpu_cache_purgeID_rng(page_to_clean, NBPG);
   1367  1.1  matt 	else if (cache_needs_cleaning) {
   1368  1.1  matt 		cpu_cache_purgeID();
   1369  1.1  matt 		return (1);
   1370  1.1  matt 	}
   1371  1.1  matt 	return (0);
   1372  1.1  matt }
   1373  1.1  matt 
   1374  1.1  matt /*
   1375  1.1  matt  * pmap_find_pv()
   1376  1.1  matt  *
   1377  1.1  matt  * This is a local function that finds a PV entry for a given physical page.
   1378  1.1  matt  * This is a common op, and this function removes loads of ifdefs in the code.
   1379  1.1  matt  */
   1380  1.1  matt static __inline struct pv_entry *
   1381  1.1  matt pmap_find_pv(phys)
   1382  1.2  matt 	paddr_t phys;
   1383  1.1  matt {
   1384  1.1  matt 	int bank, off;
   1385  1.1  matt 	struct pv_entry *pv;
   1386  1.1  matt 
   1387  1.1  matt #ifdef DIAGNOSTIC
   1388  1.1  matt 	if (!pmap_initialized)
   1389  1.1  matt 		panic("pmap_find_pv: !pmap_initialized");
   1390  1.1  matt #endif
   1391  1.1  matt 
   1392  1.1  matt 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
   1393  1.1  matt 		panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
   1394  1.1  matt 	pv = &vm_physmem[bank].pmseg.pvent[off];
   1395  1.1  matt 	return (pv);
   1396  1.1  matt }
   1397  1.1  matt 
   1398  1.1  matt /*
   1399  1.1  matt  * pmap_zero_page()
   1400  1.1  matt  *
   1401  1.1  matt  * Zero a given physical page by mapping it at a page hook point.
   1402  1.1  matt  * In doing the zero page op, the page we zero is mapped cachable, as with
   1403  1.1  matt  * StrongARM accesses to non-cached pages are non-burst making writing
   1404  1.1  matt  * _any_ bulk data very slow.
   1405  1.1  matt  */
   1406  1.1  matt void
   1407  1.1  matt pmap_zero_page(phys)
   1408  1.2  matt 	paddr_t phys;
   1409  1.1  matt {
   1410  1.1  matt 	struct pv_entry *pv;
   1411  1.1  matt 
   1412  1.1  matt 	/* Get an entry for this page, and clean it it. */
   1413  1.1  matt 	pv = pmap_find_pv(phys);
   1414  1.1  matt 	pmap_clean_page(pv);
   1415  1.1  matt 
   1416  1.1  matt 	/*
   1417  1.1  matt 	 * Hook in the page, zero it, and purge the cache for that
   1418  1.1  matt 	 * zeroed page. Invalidate the TLB as needed.
   1419  1.1  matt 	 */
   1420  1.1  matt 	*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1421  1.1  matt 	cpu_tlb_flushD_SE(page_hook0.va);
   1422  1.1  matt 	bzero_page(page_hook0.va);
   1423  1.1  matt 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1424  1.1  matt }
   1425  1.1  matt 
   1426  1.1  matt /*
   1427  1.1  matt  * pmap_copy_page()
   1428  1.1  matt  *
   1429  1.1  matt  * Copy one physical page into another, by mapping the pages into
   1430  1.1  matt  * hook points. The same comment regarding cachability as in
   1431  1.1  matt  * pmap_zero_page also applies here.
   1432  1.1  matt  */
   1433  1.1  matt void
   1434  1.1  matt pmap_copy_page(src, dest)
   1435  1.2  matt 	paddr_t src;
   1436  1.2  matt 	paddr_t dest;
   1437  1.1  matt {
   1438  1.1  matt 	struct pv_entry *src_pv, *dest_pv;
   1439  1.1  matt 
   1440  1.1  matt 	/* Get PV entries for the pages, and clean them if needed. */
   1441  1.1  matt 	src_pv = pmap_find_pv(src);
   1442  1.1  matt 	dest_pv = pmap_find_pv(dest);
   1443  1.1  matt 	if (!pmap_clean_page(src_pv))
   1444  1.1  matt 		pmap_clean_page(dest_pv);
   1445  1.1  matt 
   1446  1.1  matt 	/*
   1447  1.1  matt 	 * Map the pages into the page hook points, copy them, and purge
   1448  1.1  matt 	 * the cache for the appropriate page. Invalidate the TLB
   1449  1.1  matt 	 * as required.
   1450  1.1  matt 	 */
   1451  1.1  matt 	*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1452  1.1  matt 	*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1453  1.1  matt 	cpu_tlb_flushD_SE(page_hook0.va);
   1454  1.1  matt 	cpu_tlb_flushD_SE(page_hook1.va);
   1455  1.1  matt 	bcopy_page(page_hook0.va, page_hook1.va);
   1456  1.1  matt 	cpu_cache_purgeD_rng(page_hook0.va, NBPG);
   1457  1.1  matt 	cpu_cache_purgeD_rng(page_hook1.va, NBPG);
   1458  1.1  matt }
   1459  1.1  matt 
   1460  1.1  matt /*
   1461  1.2  matt  * int pmap_next_phys_page(paddr_t *addr)
   1462  1.1  matt  *
   1463  1.1  matt  * Allocate another physical page returning true or false depending
   1464  1.1  matt  * on whether a page could be allocated.
   1465  1.1  matt  */
   1466  1.1  matt 
   1467  1.2  matt paddr_t
   1468  1.1  matt pmap_next_phys_page(addr)
   1469  1.2  matt 	paddr_t addr;
   1470  1.1  matt 
   1471  1.1  matt {
   1472  1.1  matt 	int loop;
   1473  1.1  matt 
   1474  1.1  matt 	if (addr < bootconfig.dram[0].address)
   1475  1.1  matt 		return(bootconfig.dram[0].address);
   1476  1.1  matt 
   1477  1.1  matt 	loop = 0;
   1478  1.1  matt 
   1479  1.1  matt 	while (bootconfig.dram[loop].address != 0
   1480  1.1  matt 	    && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
   1481  1.1  matt 		++loop;
   1482  1.1  matt 
   1483  1.1  matt 	if (bootconfig.dram[loop].address == 0)
   1484  1.1  matt 		return(0);
   1485  1.1  matt 
   1486  1.1  matt 	addr += NBPG;
   1487  1.1  matt 
   1488  1.1  matt 	if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
   1489  1.1  matt 		if (bootconfig.dram[loop + 1].address == 0)
   1490  1.1  matt 			return(0);
   1491  1.1  matt 		addr = bootconfig.dram[loop + 1].address;
   1492  1.1  matt 	}
   1493  1.1  matt 
   1494  1.1  matt 	return(addr);
   1495  1.1  matt }
   1496  1.1  matt 
   1497  1.1  matt #if 0
   1498  1.1  matt void
   1499  1.1  matt pmap_pte_addref(pmap, va)
   1500  1.1  matt 	pmap_t pmap;
   1501  1.1  matt 	vaddr_t va;
   1502  1.1  matt {
   1503  1.1  matt 	pd_entry_t *pde;
   1504  1.2  matt 	paddr_t pa;
   1505  1.1  matt 	struct vm_page *m;
   1506  1.1  matt 
   1507  1.1  matt 	if (pmap == pmap_kernel())
   1508  1.1  matt 		return;
   1509  1.1  matt 
   1510  1.1  matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1511  1.1  matt 	pa = pmap_pte_pa(pde);
   1512  1.1  matt 	m = PHYS_TO_VM_PAGE(pa);
   1513  1.1  matt 	++m->wire_count;
   1514  1.1  matt #ifdef MYCROFT_HACK
   1515  1.1  matt 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1516  1.1  matt 	    pmap, va, pde, pa, m, m->wire_count);
   1517  1.1  matt #endif
   1518  1.1  matt }
   1519  1.1  matt 
   1520  1.1  matt void
   1521  1.1  matt pmap_pte_delref(pmap, va)
   1522  1.1  matt 	pmap_t pmap;
   1523  1.1  matt 	vaddr_t va;
   1524  1.1  matt {
   1525  1.1  matt 	pd_entry_t *pde;
   1526  1.2  matt 	paddr_t pa;
   1527  1.1  matt 	struct vm_page *m;
   1528  1.1  matt 
   1529  1.1  matt 	if (pmap == pmap_kernel())
   1530  1.1  matt 		return;
   1531  1.1  matt 
   1532  1.1  matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1533  1.1  matt 	pa = pmap_pte_pa(pde);
   1534  1.1  matt 	m = PHYS_TO_VM_PAGE(pa);
   1535  1.1  matt 	--m->wire_count;
   1536  1.1  matt #ifdef MYCROFT_HACK
   1537  1.1  matt 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1538  1.1  matt 	    pmap, va, pde, pa, m, m->wire_count);
   1539  1.1  matt #endif
   1540  1.1  matt 	if (m->wire_count == 0) {
   1541  1.1  matt #ifdef MYCROFT_HACK
   1542  1.1  matt 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1543  1.1  matt 		    pmap, va, pde, pa, m);
   1544  1.1  matt #endif
   1545  1.1  matt 		pmap_unmap_in_l1(pmap, va);
   1546  1.1  matt 		uvm_pagefree(m);
   1547  1.1  matt 		--pmap->pm_stats.resident_count;
   1548  1.1  matt 	}
   1549  1.1  matt }
   1550  1.1  matt #else
   1551  1.1  matt #define	pmap_pte_addref(pmap, va)
   1552  1.1  matt #define	pmap_pte_delref(pmap, va)
   1553  1.1  matt #endif
   1554  1.1  matt 
   1555  1.1  matt /*
   1556  1.1  matt  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1557  1.1  matt  * there is more than one mapping and at least one of them is writable.
   1558  1.1  matt  * Since we purge the cache on every context switch, we only need to check for
   1559  1.1  matt  * other mappings within the same pmap, or kernel_pmap.
   1560  1.1  matt  * This function is also called when a page is unmapped, to possibly reenable
   1561  1.1  matt  * caching on any remaining mappings.
   1562  1.1  matt  */
   1563  1.1  matt void
   1564  1.1  matt pmap_vac_me_harder(pmap, pv)
   1565  1.1  matt 	pmap_t pmap;
   1566  1.1  matt 	struct pv_entry *pv;
   1567  1.1  matt {
   1568  1.1  matt 	struct pv_entry *npv;
   1569  1.1  matt 	pt_entry_t *pte;
   1570  1.1  matt 	int entries = 0;
   1571  1.1  matt 	int writeable = 0;
   1572  1.1  matt 
   1573  1.1  matt 	if (pv->pv_pmap == NULL)
   1574  1.1  matt 		return;
   1575  1.1  matt 
   1576  1.1  matt 	/*
   1577  1.1  matt 	 * Count mappings and writable mappings in this pmap.
   1578  1.1  matt 	 * Keep a pointer to the first one.
   1579  1.1  matt 	 */
   1580  1.1  matt 	for (npv = pv; npv; npv = npv->pv_next) {
   1581  1.1  matt 		/* Count mappings in the same pmap */
   1582  1.1  matt 		if (pmap == npv->pv_pmap) {
   1583  1.1  matt 			if (entries++ == 0)
   1584  1.1  matt 				pv = npv;
   1585  1.1  matt 			/* Writeable mappings */
   1586  1.1  matt 			if (npv->pv_flags & PT_Wr)
   1587  1.1  matt 				++writeable;
   1588  1.1  matt 		}
   1589  1.1  matt 	}
   1590  1.1  matt 
   1591  1.1  matt 	/*
   1592  1.1  matt 	 * Enable or disable caching as necessary.
   1593  1.1  matt 	 * We do a quick check of the first PTE to avoid walking the list if
   1594  1.1  matt 	 * we're already in the right state.
   1595  1.1  matt 	 */
   1596  1.1  matt 	if (entries > 1 && writeable) {
   1597  1.1  matt 		pte = pmap_pte(pmap, pv->pv_va);
   1598  1.1  matt 		if (~*pte & (PT_C | PT_B))
   1599  1.1  matt 			return;
   1600  1.1  matt 		*pte = *pte & ~(PT_C | PT_B);
   1601  1.1  matt 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1602  1.1  matt 			if (pmap == npv->pv_pmap) {
   1603  1.1  matt 				pte = pmap_pte(pmap, npv->pv_va);
   1604  1.1  matt 				*pte = *pte & ~(PT_C | PT_B);
   1605  1.1  matt 			}
   1606  1.1  matt 		}
   1607  1.1  matt 	} else if (entries > 0) {
   1608  1.1  matt 		pte = pmap_pte(pmap, pv->pv_va);
   1609  1.1  matt 		if (*pte & (PT_C | PT_B))
   1610  1.1  matt 			return;
   1611  1.1  matt 		*pte = *pte | (PT_C | PT_B);
   1612  1.1  matt 		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
   1613  1.1  matt 			if (pmap == npv->pv_pmap) {
   1614  1.1  matt 				pte = pmap_pte(pmap, npv->pv_va);
   1615  1.1  matt 				*pte = *pte | (PT_C | PT_B);
   1616  1.1  matt 			}
   1617  1.1  matt 		}
   1618  1.1  matt 	}
   1619  1.1  matt }
   1620  1.1  matt 
   1621  1.1  matt /*
   1622  1.1  matt  * pmap_remove()
   1623  1.1  matt  *
   1624  1.1  matt  * pmap_remove is responsible for nuking a number of mappings for a range
   1625  1.1  matt  * of virtual address space in the current pmap. To do this efficiently
   1626  1.1  matt  * is interesting, because in a number of cases a wide virtual address
   1627  1.1  matt  * range may be supplied that contains few actual mappings. So, the
   1628  1.1  matt  * optimisations are:
   1629  1.1  matt  *  1. Try and skip over hunks of address space for which an L1 entry
   1630  1.1  matt  *     does not exist.
   1631  1.1  matt  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   1632  1.1  matt  *     maybe do just a partial cache clean. This path of execution is
   1633  1.1  matt  *     complicated by the fact that the cache must be flushed _before_
   1634  1.1  matt  *     the PTE is nuked, being a VAC :-)
   1635  1.1  matt  *  3. Maybe later fast-case a single page, but I don't think this is
   1636  1.1  matt  *     going to make _that_ much difference overall.
   1637  1.1  matt  */
   1638  1.1  matt 
   1639  1.1  matt #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   1640  1.1  matt 
   1641  1.1  matt void
   1642  1.1  matt pmap_remove(pmap, sva, eva)
   1643  1.1  matt 	pmap_t pmap;
   1644  1.1  matt 	vaddr_t sva;
   1645  1.1  matt 	vaddr_t eva;
   1646  1.1  matt {
   1647  1.1  matt 	int cleanlist_idx = 0;
   1648  1.1  matt 	struct pagelist {
   1649  1.1  matt 		vaddr_t va;
   1650  1.1  matt 		pt_entry_t *pte;
   1651  1.1  matt 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   1652  1.1  matt 	pt_entry_t *pte = 0;
   1653  1.2  matt 	paddr_t pa;
   1654  1.1  matt 	int pmap_active;
   1655  1.1  matt 	struct pv_entry *pv;
   1656  1.1  matt 
   1657  1.1  matt 	/* Exit quick if there is no pmap */
   1658  1.1  matt 	if (!pmap)
   1659  1.1  matt 		return;
   1660  1.1  matt 
   1661  1.1  matt 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   1662  1.1  matt 
   1663  1.1  matt 	sva &= PG_FRAME;
   1664  1.1  matt 	eva &= PG_FRAME;
   1665  1.1  matt 
   1666  1.1  matt 	/* Get a page table pointer */
   1667  1.1  matt 	while (sva < eva) {
   1668  1.1  matt 		pte = pmap_pte(pmap, sva);
   1669  1.1  matt 		if (pte)
   1670  1.1  matt 			break;
   1671  1.1  matt 		sva = (sva & PD_MASK) + NBPD;
   1672  1.1  matt 	}
   1673  1.1  matt 
   1674  1.1  matt 	/* Note if the pmap is active thus require cache and tlb cleans */
   1675  1.1  matt 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
   1676  1.1  matt 	    || (pmap == kernel_pmap))
   1677  1.1  matt 		pmap_active = 1;
   1678  1.1  matt 	else
   1679  1.1  matt 		pmap_active = 0;
   1680  1.1  matt 
   1681  1.1  matt 	/* Now loop along */
   1682  1.1  matt 	while (sva < eva) {
   1683  1.1  matt 		/* Check if we can move to the next PDE (l1 chunk) */
   1684  1.1  matt 		if (!(sva & PT_MASK))
   1685  1.1  matt 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   1686  1.1  matt 				sva += NBPD;
   1687  1.1  matt 				pte += arm_byte_to_page(NBPD);
   1688  1.1  matt 				continue;
   1689  1.1  matt 			}
   1690  1.1  matt 
   1691  1.1  matt 		/* We've found a valid PTE, so this page of PTEs has to go. */
   1692  1.1  matt 		if (pmap_pte_v(pte)) {
   1693  1.1  matt 			int bank, off;
   1694  1.1  matt 
   1695  1.1  matt 			/* Update statistics */
   1696  1.1  matt 			--pmap->pm_stats.resident_count;
   1697  1.1  matt 
   1698  1.1  matt 			/*
   1699  1.1  matt 			 * Add this page to our cache remove list, if we can.
   1700  1.1  matt 			 * If, however the cache remove list is totally full,
   1701  1.1  matt 			 * then do a complete cache invalidation taking note
   1702  1.1  matt 			 * to backtrack the PTE table beforehand, and ignore
   1703  1.1  matt 			 * the lists in future because there's no longer any
   1704  1.1  matt 			 * point in bothering with them (we've paid the
   1705  1.1  matt 			 * penalty, so will carry on unhindered). Otherwise,
   1706  1.1  matt 			 * when we fall out, we just clean the list.
   1707  1.1  matt 			 */
   1708  1.1  matt 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   1709  1.1  matt 			pa = pmap_pte_pa(pte);
   1710  1.1  matt 
   1711  1.1  matt 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1712  1.1  matt 				/* Add to the clean list. */
   1713  1.1  matt 				cleanlist[cleanlist_idx].pte = pte;
   1714  1.1  matt 				cleanlist[cleanlist_idx].va = sva;
   1715  1.1  matt 				cleanlist_idx++;
   1716  1.1  matt 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1717  1.1  matt 				int cnt;
   1718  1.1  matt 
   1719  1.1  matt 				/* Nuke everything if needed. */
   1720  1.1  matt 				if (pmap_active) {
   1721  1.1  matt 					cpu_cache_purgeID();
   1722  1.1  matt 					cpu_tlb_flushID();
   1723  1.1  matt 				}
   1724  1.1  matt 
   1725  1.1  matt 				/*
   1726  1.1  matt 				 * Roll back the previous PTE list,
   1727  1.1  matt 				 * and zero out the current PTE.
   1728  1.1  matt 				 */
   1729  1.1  matt 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   1730  1.1  matt 					*cleanlist[cnt].pte = 0;
   1731  1.1  matt 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   1732  1.1  matt 				}
   1733  1.1  matt 				*pte = 0;
   1734  1.1  matt 				pmap_pte_delref(pmap, sva);
   1735  1.1  matt 				cleanlist_idx++;
   1736  1.1  matt 			} else {
   1737  1.1  matt 				/*
   1738  1.1  matt 				 * We've already nuked the cache and
   1739  1.1  matt 				 * TLB, so just carry on regardless,
   1740  1.1  matt 				 * and we won't need to do it again
   1741  1.1  matt 				 */
   1742  1.1  matt 				*pte = 0;
   1743  1.1  matt 				pmap_pte_delref(pmap, sva);
   1744  1.1  matt 			}
   1745  1.1  matt 
   1746  1.1  matt 			/*
   1747  1.1  matt 			 * Update flags. In a number of circumstances,
   1748  1.1  matt 			 * we could cluster a lot of these and do a
   1749  1.1  matt 			 * number of sequential pages in one go.
   1750  1.1  matt 			 */
   1751  1.1  matt 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   1752  1.1  matt 				pv = &vm_physmem[bank].pmseg.pvent[off];
   1753  1.1  matt 				pmap_remove_pv(pmap, sva, pv);
   1754  1.1  matt 				pmap_vac_me_harder(pmap, pv);
   1755  1.1  matt 			}
   1756  1.1  matt 		}
   1757  1.1  matt 		sva += NBPG;
   1758  1.1  matt 		pte++;
   1759  1.1  matt 	}
   1760  1.1  matt 
   1761  1.1  matt 	/*
   1762  1.1  matt 	 * Now, if we've fallen through down to here, chances are that there
   1763  1.1  matt 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   1764  1.1  matt 	 */
   1765  1.1  matt 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   1766  1.1  matt 		u_int cnt;
   1767  1.1  matt 
   1768  1.1  matt 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   1769  1.1  matt 			if (pmap_active) {
   1770  1.1  matt 				cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
   1771  1.1  matt 				*cleanlist[cnt].pte = 0;
   1772  1.1  matt 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   1773  1.1  matt 			} else
   1774  1.1  matt 				*cleanlist[cnt].pte = 0;
   1775  1.1  matt 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   1776  1.1  matt 		}
   1777  1.1  matt 	}
   1778  1.1  matt }
   1779  1.1  matt 
   1780  1.1  matt /*
   1781  1.1  matt  * Routine:	pmap_remove_all
   1782  1.1  matt  * Function:
   1783  1.1  matt  *		Removes this physical page from
   1784  1.1  matt  *		all physical maps in which it resides.
   1785  1.1  matt  *		Reflects back modify bits to the pager.
   1786  1.1  matt  */
   1787  1.1  matt 
   1788  1.1  matt void
   1789  1.1  matt pmap_remove_all(pa)
   1790  1.2  matt 	paddr_t pa;
   1791  1.1  matt {
   1792  1.1  matt 	struct pv_entry *ph, *pv, *npv;
   1793  1.1  matt 	pmap_t pmap;
   1794  1.1  matt 	pt_entry_t *pte;
   1795  1.1  matt 	int s;
   1796  1.1  matt 
   1797  1.1  matt 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
   1798  1.1  matt 
   1799  1.1  matt 	pv = ph = pmap_find_pv(pa);
   1800  1.1  matt 	pmap_clean_page(pv);
   1801  1.1  matt 
   1802  1.1  matt 	s = splvm();
   1803  1.1  matt 
   1804  1.1  matt 	if (ph->pv_pmap == NULL) {
   1805  1.1  matt 		PDEBUG(0, printf("free page\n"));
   1806  1.1  matt 		splx(s);
   1807  1.1  matt 		return;
   1808  1.1  matt 	}
   1809  1.1  matt 
   1810  1.1  matt 	while (pv) {
   1811  1.1  matt 		pmap = pv->pv_pmap;
   1812  1.1  matt 		pte = pmap_pte(pmap, pv->pv_va);
   1813  1.1  matt 
   1814  1.1  matt 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   1815  1.1  matt 		    pv->pv_va, pv->pv_flags));
   1816  1.1  matt #ifdef DEBUG
   1817  1.1  matt 		if (!pte || !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   1818  1.1  matt 			panic("pmap_remove_all: bad mapping");
   1819  1.1  matt #endif	/* DEBUG */
   1820  1.1  matt 
   1821  1.1  matt 		/*
   1822  1.1  matt 		 * Update statistics
   1823  1.1  matt 		 */
   1824  1.1  matt 		--pmap->pm_stats.resident_count;
   1825  1.1  matt 
   1826  1.1  matt 		/* Wired bit */
   1827  1.1  matt 		if (pv->pv_flags & PT_W)
   1828  1.1  matt 			--pmap->pm_stats.wired_count;
   1829  1.1  matt 
   1830  1.1  matt 		/*
   1831  1.1  matt 		 * Invalidate the PTEs.
   1832  1.1  matt 		 * XXX: should cluster them up and invalidate as many
   1833  1.1  matt 		 * as possible at once.
   1834  1.1  matt 		 */
   1835  1.1  matt 
   1836  1.1  matt #ifdef needednotdone
   1837  1.1  matt reduce wiring count on page table pages as references drop
   1838  1.1  matt #endif
   1839  1.1  matt 
   1840  1.1  matt 		*pte = 0;
   1841  1.1  matt 		pmap_pte_delref(pmap, pv->pv_va);
   1842  1.1  matt 
   1843  1.1  matt 		npv = pv->pv_next;
   1844  1.1  matt 		if (pv == ph)
   1845  1.1  matt 			ph->pv_pmap = NULL;
   1846  1.1  matt 		else
   1847  1.1  matt 			pmap_free_pv(pv);
   1848  1.1  matt 		pv = npv;
   1849  1.1  matt 	}
   1850  1.1  matt 
   1851  1.1  matt 	splx(s);
   1852  1.1  matt 
   1853  1.1  matt 	PDEBUG(0, printf("done\n"));
   1854  1.1  matt 	cpu_tlb_flushID();
   1855  1.1  matt }
   1856  1.1  matt 
   1857  1.1  matt 
   1858  1.1  matt /*
   1859  1.1  matt  * Set the physical protection on the specified range of this map as requested.
   1860  1.1  matt  */
   1861  1.1  matt 
   1862  1.1  matt void
   1863  1.1  matt pmap_protect(pmap, sva, eva, prot)
   1864  1.1  matt 	pmap_t pmap;
   1865  1.1  matt 	vaddr_t sva;
   1866  1.1  matt 	vaddr_t eva;
   1867  1.1  matt 	vm_prot_t prot;
   1868  1.1  matt {
   1869  1.1  matt 	pt_entry_t *pte = NULL;
   1870  1.1  matt 	int armprot;
   1871  1.1  matt 	int flush = 0;
   1872  1.2  matt 	paddr_t pa;
   1873  1.1  matt 	int bank, off;
   1874  1.1  matt 	struct pv_entry *pv;
   1875  1.1  matt 
   1876  1.1  matt 	/*
   1877  1.1  matt 	 * Make sure pmap is valid. -dct
   1878  1.1  matt 	 */
   1879  1.1  matt 	if (pmap == NULL)
   1880  1.1  matt 		return;
   1881  1.1  matt 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   1882  1.1  matt 	    pmap, sva, eva, prot));
   1883  1.1  matt 
   1884  1.1  matt 	if (~prot & VM_PROT_READ) {
   1885  1.1  matt 		/* Just remove the mappings. */
   1886  1.1  matt 		pmap_remove(pmap, sva, eva);
   1887  1.1  matt 		return;
   1888  1.1  matt 	}
   1889  1.1  matt 	if (prot & VM_PROT_WRITE) {
   1890  1.1  matt 		/*
   1891  1.1  matt 		 * If this is a read->write transition, just ignore it and let
   1892  1.1  matt 		 * uvm_fault() take care of it later.
   1893  1.1  matt 		 */
   1894  1.1  matt 		return;
   1895  1.1  matt 	}
   1896  1.1  matt 
   1897  1.1  matt 	sva &= PG_FRAME;
   1898  1.1  matt 	eva &= PG_FRAME;
   1899  1.1  matt 
   1900  1.1  matt 	/*
   1901  1.1  matt 	 * We need to acquire a pointer to a page table page before entering
   1902  1.1  matt 	 * the following loop.
   1903  1.1  matt 	 */
   1904  1.1  matt 	while (sva < eva) {
   1905  1.1  matt 		pte = pmap_pte(pmap, sva);
   1906  1.1  matt 		if (pte)
   1907  1.1  matt 			break;
   1908  1.1  matt 		sva = (sva & PD_MASK) + NBPD;
   1909  1.1  matt 	}
   1910  1.1  matt 
   1911  1.1  matt 	while (sva < eva) {
   1912  1.1  matt 		/* only check once in a while */
   1913  1.1  matt 		if ((sva & PT_MASK) == 0) {
   1914  1.1  matt 			if (!pmap_pde_v(pmap_pde(pmap, sva))) {
   1915  1.1  matt 				/* We can race ahead here, to the next pde. */
   1916  1.1  matt 				sva += NBPD;
   1917  1.1  matt 				pte += arm_byte_to_page(NBPD);
   1918  1.1  matt 				continue;
   1919  1.1  matt 			}
   1920  1.1  matt 		}
   1921  1.1  matt 
   1922  1.1  matt 		if (!pmap_pte_v(pte))
   1923  1.1  matt 			goto next;
   1924  1.1  matt 
   1925  1.1  matt 		flush = 1;
   1926  1.1  matt 
   1927  1.1  matt 		armprot = 0;
   1928  1.1  matt 		if (sva < VM_MAXUSER_ADDRESS)
   1929  1.1  matt 			armprot |= PT_AP(AP_U);
   1930  1.1  matt 		else if (sva < VM_MAX_ADDRESS)
   1931  1.1  matt 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   1932  1.1  matt 		*pte = (*pte & 0xfffff00f) | armprot;
   1933  1.1  matt 
   1934  1.1  matt 		pa = pmap_pte_pa(pte);
   1935  1.1  matt 
   1936  1.1  matt 		/* Get the physical page index */
   1937  1.1  matt 
   1938  1.1  matt 		/* Clear write flag */
   1939  1.1  matt 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   1940  1.1  matt 			pv = &vm_physmem[bank].pmseg.pvent[off];
   1941  1.1  matt 			(void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
   1942  1.1  matt 			pmap_vac_me_harder(pmap, pv);
   1943  1.1  matt 		}
   1944  1.1  matt 
   1945  1.1  matt next:
   1946  1.1  matt 		sva += NBPG;
   1947  1.1  matt 		pte++;
   1948  1.1  matt 	}
   1949  1.1  matt 
   1950  1.1  matt 	if (flush)
   1951  1.1  matt 		cpu_tlb_flushID();
   1952  1.1  matt }
   1953  1.1  matt 
   1954  1.1  matt /*
   1955  1.2  matt  * void pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   1956  1.1  matt  * int flags)
   1957  1.1  matt  *
   1958  1.1  matt  *      Insert the given physical page (p) at
   1959  1.1  matt  *      the specified virtual address (v) in the
   1960  1.1  matt  *      target physical map with the protection requested.
   1961  1.1  matt  *
   1962  1.1  matt  *      If specified, the page will be wired down, meaning
   1963  1.1  matt  *      that the related pte can not be reclaimed.
   1964  1.1  matt  *
   1965  1.1  matt  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   1966  1.1  matt  *      or lose information.  That is, this routine must actually
   1967  1.1  matt  *      insert this page into the given map NOW.
   1968  1.1  matt  */
   1969  1.1  matt 
   1970  1.1  matt int
   1971  1.1  matt pmap_enter(pmap, va, pa, prot, flags)
   1972  1.1  matt 	pmap_t pmap;
   1973  1.1  matt 	vaddr_t va;
   1974  1.2  matt 	paddr_t pa;
   1975  1.1  matt 	vm_prot_t prot;
   1976  1.1  matt 	int flags;
   1977  1.1  matt {
   1978  1.1  matt 	pt_entry_t *pte;
   1979  1.1  matt 	u_int npte;
   1980  1.1  matt 	int bank, off;
   1981  1.1  matt 	struct pv_entry *pv = NULL;
   1982  1.2  matt 	paddr_t opa;
   1983  1.1  matt 	int nflags;
   1984  1.1  matt 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   1985  1.1  matt 
   1986  1.1  matt 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   1987  1.1  matt 	    va, pa, pmap, prot, wired));
   1988  1.1  matt 
   1989  1.1  matt 	/* Valid pmap ? */
   1990  1.1  matt 	if (pmap == NULL)
   1991  1.1  matt 		return (KERN_SUCCESS);
   1992  1.1  matt 
   1993  1.1  matt #ifdef DIAGNOSTIC
   1994  1.1  matt 	/* Valid address ? */
   1995  1.1  matt 	if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
   1996  1.1  matt 		panic("pmap_enter: too big");
   1997  1.1  matt 	if (pmap != pmap_kernel() && va != 0) {
   1998  1.1  matt 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   1999  1.1  matt 			panic("pmap_enter: kernel page in user map");
   2000  1.1  matt 	} else {
   2001  1.1  matt 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2002  1.1  matt 			panic("pmap_enter: user page in kernel map");
   2003  1.1  matt 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2004  1.1  matt 			panic("pmap_enter: entering PT page");
   2005  1.1  matt 	}
   2006  1.1  matt #endif
   2007  1.1  matt 
   2008  1.1  matt 	/*
   2009  1.1  matt 	 * Get a pointer to the pte for this virtual address. If the
   2010  1.1  matt 	 * pte pointer is NULL then we are missing the L2 page table
   2011  1.1  matt 	 * so we need to create one.
   2012  1.1  matt 	 */
   2013  1.1  matt 	pte = pmap_pte(pmap, va);
   2014  1.1  matt 	if (!pte) {
   2015  1.2  matt 		paddr_t l2pa;
   2016  1.1  matt 		struct vm_page *m;
   2017  1.1  matt 
   2018  1.1  matt 		/* Allocate a page table */
   2019  1.1  matt 		for (;;) {
   2020  1.1  matt 			m = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   2021  1.1  matt 			if (m != NULL)
   2022  1.1  matt 				break;
   2023  1.1  matt 
   2024  1.1  matt 			/*
   2025  1.1  matt 			 * No page available.  If we're the kernel
   2026  1.1  matt 			 * pmap, we die, since we might not have
   2027  1.1  matt 			 * a valid thread context.  For user pmaps,
   2028  1.1  matt 			 * we assume that we _do_ have a valid thread
   2029  1.1  matt 			 * context, so we wait here for the pagedaemon
   2030  1.1  matt 			 * to free up some pages.
   2031  1.1  matt 			 *
   2032  1.1  matt 			 * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
   2033  1.1  matt 			 * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
   2034  1.1  matt 			 * XXX SO THIS IS PROBABLY SAFE.  In any case,
   2035  1.1  matt 			 * XXX other pmap modules claim it is safe to
   2036  1.1  matt 			 * XXX sleep here if it's a user pmap.
   2037  1.1  matt 			 */
   2038  1.1  matt 			if (pmap == pmap_kernel())
   2039  1.1  matt 				panic("pmap_enter: no free pages");
   2040  1.1  matt 			else
   2041  1.1  matt 				uvm_wait("pmap_enter");
   2042  1.1  matt 		}
   2043  1.1  matt 
   2044  1.1  matt 		/* Wire this page table into the L1. */
   2045  1.1  matt 		l2pa = VM_PAGE_TO_PHYS(m);
   2046  1.1  matt 		pmap_zero_page(l2pa);
   2047  1.1  matt 		pmap_map_in_l1(pmap, va, l2pa);
   2048  1.1  matt 		++pmap->pm_stats.resident_count;
   2049  1.1  matt 
   2050  1.1  matt 		pte = pmap_pte(pmap, va);
   2051  1.1  matt #ifdef DIAGNOSTIC
   2052  1.1  matt 		if (!pte)
   2053  1.1  matt 			panic("pmap_enter: no pte");
   2054  1.1  matt #endif
   2055  1.1  matt 	}
   2056  1.1  matt 
   2057  1.1  matt 	nflags = 0;
   2058  1.1  matt 	if (prot & VM_PROT_WRITE)
   2059  1.1  matt 		nflags |= PT_Wr;
   2060  1.1  matt 	if (wired)
   2061  1.1  matt 		nflags |= PT_W;
   2062  1.1  matt 
   2063  1.1  matt 	/* More debugging info */
   2064  1.1  matt 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2065  1.1  matt 	    *pte));
   2066  1.1  matt 
   2067  1.1  matt 	/* Is the pte valid ? If so then this page is already mapped */
   2068  1.1  matt 	if (pmap_pte_v(pte)) {
   2069  1.1  matt 		/* Get the physical address of the current page mapped */
   2070  1.1  matt 		opa = pmap_pte_pa(pte);
   2071  1.1  matt 
   2072  1.1  matt #ifdef MYCROFT_HACK
   2073  1.1  matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2074  1.1  matt #endif
   2075  1.1  matt 
   2076  1.1  matt 		/* Are we mapping the same page ? */
   2077  1.1  matt 		if (opa == pa) {
   2078  1.1  matt 			/* All we must be doing is changing the protection */
   2079  1.1  matt 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2080  1.1  matt 			    va, pa));
   2081  1.1  matt 
   2082  1.1  matt 			/* Has the wiring changed ? */
   2083  1.1  matt 			if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2084  1.1  matt 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2085  1.1  matt 				(void) pmap_modify_pv(pmap, va, pv,
   2086  1.1  matt 				    PT_Wr | PT_W, nflags);
   2087  1.1  matt  			}
   2088  1.1  matt 		} else {
   2089  1.1  matt 			/* We are replacing the page with a new one. */
   2090  1.1  matt 			cpu_cache_purgeID_rng(va, NBPG);
   2091  1.1  matt 
   2092  1.1  matt 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2093  1.1  matt 			    va, pa, opa));
   2094  1.1  matt 
   2095  1.1  matt 			/*
   2096  1.1  matt 			 * If it is part of our managed memory then we
   2097  1.1  matt 			 * must remove it from the PV list
   2098  1.1  matt 			 */
   2099  1.1  matt 			if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
   2100  1.1  matt 				pv = &vm_physmem[bank].pmseg.pvent[off];
   2101  1.1  matt 				pmap_remove_pv(pmap, va, pv);
   2102  1.1  matt 			}
   2103  1.1  matt 
   2104  1.1  matt 			goto enter;
   2105  1.1  matt 		}
   2106  1.1  matt 	} else {
   2107  1.1  matt 		opa = 0;
   2108  1.1  matt 		pmap_pte_addref(pmap, va);
   2109  1.1  matt 
   2110  1.1  matt 		/* pte is not valid so we must be hooking in a new page */
   2111  1.1  matt 		++pmap->pm_stats.resident_count;
   2112  1.1  matt 
   2113  1.1  matt 	enter:
   2114  1.1  matt 		/*
   2115  1.1  matt 		 * Enter on the PV list if part of our managed memory
   2116  1.1  matt 		 */
   2117  1.1  matt 		if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
   2118  1.1  matt 			pv = &vm_physmem[bank].pmseg.pvent[off];
   2119  1.1  matt 			pmap_enter_pv(pmap, va, pv, nflags);
   2120  1.1  matt 		}
   2121  1.1  matt 	}
   2122  1.1  matt 
   2123  1.1  matt #ifdef MYCROFT_HACK
   2124  1.1  matt 	if (mycroft_hack)
   2125  1.1  matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2126  1.1  matt #endif
   2127  1.1  matt 
   2128  1.1  matt 	/* Construct the pte, giving the correct access. */
   2129  1.1  matt 	npte = (pa & PG_FRAME);
   2130  1.1  matt 
   2131  1.1  matt 	/* VA 0 is magic. */
   2132  1.1  matt 	if (pmap != pmap_kernel() && va != 0)
   2133  1.1  matt 		npte |= PT_AP(AP_U);
   2134  1.1  matt 
   2135  1.1  matt 	if (bank != -1) {
   2136  1.1  matt #ifdef DIAGNOSTIC
   2137  1.1  matt 		if ((flags & VM_PROT_ALL) & ~prot)
   2138  1.1  matt 			panic("pmap_enter: access_type exceeds prot");
   2139  1.1  matt #endif
   2140  1.1  matt 		npte |= PT_C | PT_B;
   2141  1.1  matt 		if (flags & VM_PROT_WRITE) {
   2142  1.1  matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2143  1.1  matt 			vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2144  1.1  matt 		} else if (flags & VM_PROT_ALL) {
   2145  1.1  matt 			npte |= L2_SPAGE;
   2146  1.1  matt 			vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2147  1.1  matt 		} else
   2148  1.1  matt 			npte |= L2_INVAL;
   2149  1.1  matt 	} else {
   2150  1.1  matt 		if (prot & VM_PROT_WRITE)
   2151  1.1  matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2152  1.1  matt 		else if (prot & VM_PROT_ALL)
   2153  1.1  matt 			npte |= L2_SPAGE;
   2154  1.1  matt 		else
   2155  1.1  matt 			npte |= L2_INVAL;
   2156  1.1  matt 	}
   2157  1.1  matt 
   2158  1.1  matt #ifdef MYCROFT_HACK
   2159  1.1  matt 	if (mycroft_hack)
   2160  1.1  matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2161  1.1  matt #endif
   2162  1.1  matt 
   2163  1.1  matt 	*pte = npte;
   2164  1.1  matt 
   2165  1.1  matt 	if (bank != -1)
   2166  1.1  matt 		pmap_vac_me_harder(pmap, pv);
   2167  1.1  matt 
   2168  1.1  matt 	/* Better flush the TLB ... */
   2169  1.1  matt 	cpu_tlb_flushID_SE(va);
   2170  1.1  matt 
   2171  1.1  matt 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2172  1.1  matt 
   2173  1.1  matt 	return (KERN_SUCCESS);
   2174  1.1  matt }
   2175  1.1  matt 
   2176  1.1  matt void
   2177  1.1  matt pmap_kenter_pa(va, pa, prot)
   2178  1.1  matt 	vaddr_t va;
   2179  1.1  matt 	paddr_t pa;
   2180  1.1  matt 	vm_prot_t prot;
   2181  1.1  matt {
   2182  1.1  matt 	pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
   2183  1.1  matt }
   2184  1.1  matt 
   2185  1.1  matt void
   2186  1.1  matt pmap_kenter_pgs(va, pgs, npgs)
   2187  1.1  matt 	vaddr_t va;
   2188  1.1  matt 	struct vm_page **pgs;
   2189  1.1  matt 	int npgs;
   2190  1.1  matt {
   2191  1.1  matt 	int i;
   2192  1.1  matt 
   2193  1.1  matt 	for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
   2194  1.1  matt 		pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
   2195  1.1  matt 				VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
   2196  1.1  matt 	}
   2197  1.1  matt }
   2198  1.1  matt 
   2199  1.1  matt void
   2200  1.1  matt pmap_kremove(va, len)
   2201  1.1  matt 	vaddr_t va;
   2202  1.1  matt 	vsize_t len;
   2203  1.1  matt {
   2204  1.1  matt 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2205  1.1  matt 		pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   2206  1.1  matt 	}
   2207  1.1  matt }
   2208  1.1  matt 
   2209  1.1  matt /*
   2210  1.1  matt  * pmap_page_protect:
   2211  1.1  matt  *
   2212  1.1  matt  * Lower the permission for all mappings to a given page.
   2213  1.1  matt  */
   2214  1.1  matt 
   2215  1.1  matt void
   2216  1.1  matt pmap_page_protect(pg, prot)
   2217  1.1  matt 	struct vm_page *pg;
   2218  1.1  matt 	vm_prot_t prot;
   2219  1.1  matt {
   2220  1.1  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2221  1.1  matt 
   2222  1.1  matt 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
   2223  1.1  matt 
   2224  1.1  matt 	switch(prot) {
   2225  1.1  matt 	case VM_PROT_READ:
   2226  1.1  matt 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2227  1.1  matt 		pmap_copy_on_write(pa);
   2228  1.1  matt 		break;
   2229  1.1  matt 
   2230  1.1  matt 	case VM_PROT_ALL:
   2231  1.1  matt 		break;
   2232  1.1  matt 
   2233  1.1  matt 	default:
   2234  1.1  matt 		pmap_remove_all(pa);
   2235  1.1  matt 		break;
   2236  1.1  matt 	}
   2237  1.1  matt }
   2238  1.1  matt 
   2239  1.1  matt 
   2240  1.1  matt /*
   2241  1.1  matt  * Routine:	pmap_unwire
   2242  1.1  matt  * Function:	Clear the wired attribute for a map/virtual-address
   2243  1.1  matt  *		pair.
   2244  1.1  matt  * In/out conditions:
   2245  1.1  matt  *		The mapping must already exist in the pmap.
   2246  1.1  matt  */
   2247  1.1  matt 
   2248  1.1  matt void
   2249  1.1  matt pmap_unwire(pmap, va)
   2250  1.1  matt 	pmap_t pmap;
   2251  1.1  matt 	vaddr_t va;
   2252  1.1  matt {
   2253  1.1  matt 	pt_entry_t *pte;
   2254  1.2  matt 	paddr_t pa;
   2255  1.1  matt 	int bank, off;
   2256  1.1  matt 	struct pv_entry *pv;
   2257  1.1  matt 
   2258  1.1  matt 	/*
   2259  1.1  matt 	 * Make sure pmap is valid. -dct
   2260  1.1  matt 	 */
   2261  1.1  matt 	if (pmap == NULL)
   2262  1.1  matt 		return;
   2263  1.1  matt 
   2264  1.1  matt 	/* Get the pte */
   2265  1.1  matt 	pte = pmap_pte(pmap, va);
   2266  1.1  matt 	if (!pte)
   2267  1.1  matt 		return;
   2268  1.1  matt 
   2269  1.1  matt 	/* Extract the physical address of the page */
   2270  1.1  matt 	pa = pmap_pte_pa(pte);
   2271  1.1  matt 
   2272  1.1  matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2273  1.1  matt 		return;
   2274  1.1  matt 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2275  1.1  matt 	/* Update the wired bit in the pv entry for this page. */
   2276  1.1  matt 	(void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
   2277  1.1  matt }
   2278  1.1  matt 
   2279  1.1  matt /*
   2280  1.1  matt  * pt_entry_t *pmap_pte(pmap_t pmap, vaddr_t va)
   2281  1.1  matt  *
   2282  1.1  matt  * Return the pointer to a page table entry corresponding to the supplied
   2283  1.1  matt  * virtual address.
   2284  1.1  matt  *
   2285  1.1  matt  * The page directory is first checked to make sure that a page table
   2286  1.1  matt  * for the address in question exists and if it does a pointer to the
   2287  1.1  matt  * entry is returned.
   2288  1.1  matt  *
   2289  1.1  matt  * The way this works is that that the kernel page tables are mapped
   2290  1.1  matt  * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
   2291  1.1  matt  * This allows page tables to be located quickly.
   2292  1.1  matt  */
   2293  1.1  matt pt_entry_t *
   2294  1.1  matt pmap_pte(pmap, va)
   2295  1.1  matt 	pmap_t pmap;
   2296  1.1  matt 	vaddr_t va;
   2297  1.1  matt {
   2298  1.1  matt 	pt_entry_t *ptp;
   2299  1.1  matt 	pt_entry_t *result;
   2300  1.1  matt 
   2301  1.1  matt 	/* The pmap must be valid */
   2302  1.1  matt 	if (!pmap)
   2303  1.1  matt 		return(NULL);
   2304  1.1  matt 
   2305  1.1  matt 	/* Return the address of the pte */
   2306  1.1  matt 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2307  1.1  matt 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2308  1.1  matt 
   2309  1.1  matt 	/* Do we have a valid pde ? If not we don't have a page table */
   2310  1.1  matt 	if (!pmap_pde_v(pmap_pde(pmap, va))) {
   2311  1.1  matt 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2312  1.1  matt 		    pmap_pde(pmap, va)));
   2313  1.1  matt 		return(NULL);
   2314  1.1  matt 	}
   2315  1.1  matt 
   2316  1.1  matt 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2317  1.1  matt 	    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2318  1.1  matt 	    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2319  1.1  matt 	    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
   2320  1.1  matt 
   2321  1.1  matt 	/*
   2322  1.1  matt 	 * If the pmap is the kernel pmap or the pmap is the active one
   2323  1.1  matt 	 * then we can just return a pointer to entry relative to
   2324  1.1  matt 	 * PROCESS_PAGE_TBLS_BASE.
   2325  1.1  matt 	 * Otherwise we need to map the page tables to an alternative
   2326  1.1  matt 	 * address and reference them there.
   2327  1.1  matt 	 */
   2328  1.1  matt 	if (pmap == kernel_pmap || pmap->pm_pptpt
   2329  1.1  matt 	    == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2330  1.1  matt 	    + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
   2331  1.1  matt 	    ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2332  1.1  matt 		ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
   2333  1.1  matt 	} else {
   2334  1.1  matt 		struct proc *p = curproc;
   2335  1.1  matt 
   2336  1.1  matt 		/* If we don't have a valid curproc use proc0 */
   2337  1.1  matt 		/* Perhaps we should just use kernel_pmap instead */
   2338  1.1  matt 		if (p == NULL)
   2339  1.1  matt 			p = &proc0;
   2340  1.1  matt #ifdef DIAGNOSTIC
   2341  1.1  matt 		/*
   2342  1.1  matt 		 * The pmap should always be valid for the process so
   2343  1.1  matt 		 * panic if it is not.
   2344  1.1  matt 		 */
   2345  1.1  matt 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2346  1.1  matt 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2347  1.1  matt 			    va, p, p->p_vmspace);
   2348  1.1  matt 			console_debugger();
   2349  1.1  matt 		}
   2350  1.1  matt 		/*
   2351  1.1  matt 		 * The pmap for the current process should be mapped. If it
   2352  1.1  matt 		 * is not then we have a problem.
   2353  1.1  matt 		 */
   2354  1.1  matt 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   2355  1.1  matt 		    (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2356  1.1  matt 		    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2357  1.1  matt 		    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
   2358  1.1  matt 			printf("pmap pagetable = P%08lx current = P%08x ",
   2359  1.1  matt 			    pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
   2360  1.1  matt 			    + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
   2361  1.1  matt 			    (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
   2362  1.1  matt 			    PG_FRAME));
   2363  1.1  matt 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   2364  1.1  matt 			panic("pmap_pte: current and pmap mismatch\n");
   2365  1.1  matt 		}
   2366  1.1  matt #endif
   2367  1.1  matt 
   2368  1.1  matt 		ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
   2369  1.1  matt 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
   2370  1.1  matt 		    pmap->pm_pptpt);
   2371  1.1  matt 		cpu_tlb_flushD();
   2372  1.1  matt 	}
   2373  1.1  matt 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   2374  1.1  matt 	    ((va >> (PGSHIFT-2)) & ~3)));
   2375  1.1  matt 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   2376  1.1  matt 	return(result);
   2377  1.1  matt }
   2378  1.1  matt 
   2379  1.1  matt /*
   2380  1.1  matt  * Routine:  pmap_extract
   2381  1.1  matt  * Function:
   2382  1.1  matt  *           Extract the physical page address associated
   2383  1.1  matt  *           with the given map/virtual_address pair.
   2384  1.1  matt  */
   2385  1.1  matt boolean_t
   2386  1.1  matt pmap_extract(pmap, va, pap)
   2387  1.1  matt 	pmap_t pmap;
   2388  1.1  matt 	vaddr_t va;
   2389  1.1  matt 	paddr_t *pap;
   2390  1.1  matt {
   2391  1.1  matt 	pt_entry_t *pte;
   2392  1.1  matt 	paddr_t pa;
   2393  1.1  matt 
   2394  1.1  matt 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2395  1.1  matt 
   2396  1.1  matt 	/*
   2397  1.1  matt 	 * Get the pte for this virtual address. If there is no pte
   2398  1.1  matt 	 * then there is no page table etc.
   2399  1.1  matt 	 */
   2400  1.1  matt 
   2401  1.1  matt 	pte = pmap_pte(pmap, va);
   2402  1.1  matt 	if (!pte)
   2403  1.1  matt 		return(FALSE);
   2404  1.1  matt 
   2405  1.1  matt 	/* Is the pte valid ? If not then no paged is actually mapped here */
   2406  1.1  matt 	if (!pmap_pte_v(pte))
   2407  1.1  matt 		return(FALSE);
   2408  1.1  matt 
   2409  1.1  matt 	/* Return the physical address depending on the PTE type */
   2410  1.1  matt 	/* XXX What about L1 section mappings ? */
   2411  1.1  matt 	if ((*(pte) & L2_MASK) == L2_LPAGE) {
   2412  1.1  matt 		/* Extract the physical address from the pte */
   2413  1.1  matt 		pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
   2414  1.1  matt 
   2415  1.1  matt 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   2416  1.1  matt 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   2417  1.1  matt 
   2418  1.1  matt 		if (pap != NULL)
   2419  1.1  matt 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   2420  1.1  matt 		return (TRUE);
   2421  1.1  matt 	} else {
   2422  1.1  matt 		/* Extract the physical address from the pte */
   2423  1.1  matt 		pa = pmap_pte_pa(pte);
   2424  1.1  matt 
   2425  1.1  matt 		PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   2426  1.1  matt 		    (pa | (va & ~PG_FRAME))));
   2427  1.1  matt 
   2428  1.1  matt 		if (pap != NULL)
   2429  1.1  matt 			*pap = pa | (va & ~PG_FRAME);
   2430  1.1  matt 		return (TRUE);
   2431  1.1  matt 	}
   2432  1.1  matt }
   2433  1.1  matt 
   2434  1.1  matt 
   2435  1.1  matt /*
   2436  1.1  matt  * Copy the range specified by src_addr/len from the source map to the
   2437  1.1  matt  * range dst_addr/len in the destination map.
   2438  1.1  matt  *
   2439  1.1  matt  * This routine is only advisory and need not do anything.
   2440  1.1  matt  */
   2441  1.1  matt 
   2442  1.1  matt void
   2443  1.1  matt pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   2444  1.1  matt 	pmap_t dst_pmap;
   2445  1.1  matt 	pmap_t src_pmap;
   2446  1.1  matt 	vaddr_t dst_addr;
   2447  1.2  matt 	vsize_t len;
   2448  1.1  matt 	vaddr_t src_addr;
   2449  1.1  matt {
   2450  1.1  matt 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   2451  1.1  matt 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   2452  1.1  matt }
   2453  1.1  matt 
   2454  1.1  matt #if defined(PMAP_DEBUG)
   2455  1.1  matt void
   2456  1.1  matt pmap_dump_pvlist(phys, m)
   2457  1.1  matt 	vaddr_t phys;
   2458  1.1  matt 	char *m;
   2459  1.1  matt {
   2460  1.1  matt 	struct pv_entry *pv;
   2461  1.1  matt 	int bank, off;
   2462  1.1  matt 
   2463  1.1  matt 	if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
   2464  1.1  matt 		printf("INVALID PA\n");
   2465  1.1  matt 		return;
   2466  1.1  matt 	}
   2467  1.1  matt 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2468  1.1  matt 	printf("%s %08lx:", m, phys);
   2469  1.1  matt 	if (pv->pv_pmap == NULL) {
   2470  1.1  matt 		printf(" no mappings\n");
   2471  1.1  matt 		return;
   2472  1.1  matt 	}
   2473  1.1  matt 
   2474  1.1  matt 	for (; pv; pv = pv->pv_next)
   2475  1.1  matt 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   2476  1.1  matt 		    pv->pv_va, pv->pv_flags);
   2477  1.1  matt 
   2478  1.1  matt 	printf("\n");
   2479  1.1  matt }
   2480  1.1  matt 
   2481  1.1  matt #endif	/* PMAP_DEBUG */
   2482  1.1  matt 
   2483  1.1  matt boolean_t
   2484  1.1  matt pmap_testbit(pa, setbits)
   2485  1.2  matt 	paddr_t pa;
   2486  1.1  matt 	int setbits;
   2487  1.1  matt {
   2488  1.1  matt 	int bank, off;
   2489  1.1  matt 
   2490  1.1  matt 	PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
   2491  1.1  matt 
   2492  1.1  matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2493  1.1  matt 		return(FALSE);
   2494  1.1  matt 
   2495  1.1  matt 	/*
   2496  1.1  matt 	 * Check saved info only
   2497  1.1  matt 	 */
   2498  1.1  matt 	if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
   2499  1.1  matt 		PDEBUG(0, printf("pmap_attributes = %02x\n",
   2500  1.1  matt 		    vm_physmem[bank].pmseg.attrs[off]));
   2501  1.1  matt 		return(TRUE);
   2502  1.1  matt 	}
   2503  1.1  matt 
   2504  1.1  matt 	return(FALSE);
   2505  1.1  matt }
   2506  1.1  matt 
   2507  1.1  matt 
   2508  1.1  matt /*
   2509  1.1  matt  * Modify pte bits for all ptes corresponding to the given physical address.
   2510  1.1  matt  * We use `maskbits' rather than `clearbits' because we're always passing
   2511  1.1  matt  * constants and the latter would require an extra inversion at run-time.
   2512  1.1  matt  */
   2513  1.1  matt 
   2514  1.1  matt void
   2515  1.1  matt pmap_clearbit(pa, maskbits)
   2516  1.2  matt 	paddr_t pa;
   2517  1.1  matt 	int maskbits;
   2518  1.1  matt {
   2519  1.1  matt 	struct pv_entry *pv;
   2520  1.1  matt 	pt_entry_t *pte;
   2521  1.1  matt 	vaddr_t va;
   2522  1.1  matt 	int bank, off;
   2523  1.1  matt 	int s;
   2524  1.1  matt 
   2525  1.1  matt 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   2526  1.1  matt 	    pa, maskbits));
   2527  1.1  matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2528  1.1  matt 		return;
   2529  1.1  matt 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2530  1.1  matt 	s = splvm();
   2531  1.1  matt 
   2532  1.1  matt 	/*
   2533  1.1  matt 	 * Clear saved attributes (modify, reference)
   2534  1.1  matt 	 */
   2535  1.1  matt 	vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
   2536  1.1  matt 
   2537  1.1  matt 	if (pv->pv_pmap == NULL) {
   2538  1.1  matt 		splx(s);
   2539  1.1  matt 		return;
   2540  1.1  matt 	}
   2541  1.1  matt 
   2542  1.1  matt 	/*
   2543  1.1  matt 	 * Loop over all current mappings setting/clearing as appropos
   2544  1.1  matt 	 */
   2545  1.1  matt 	for (; pv; pv = pv->pv_next) {
   2546  1.1  matt 		va = pv->pv_va;
   2547  1.1  matt 
   2548  1.1  matt 		/*
   2549  1.1  matt 		 * XXX don't write protect pager mappings
   2550  1.1  matt 		 */
   2551  1.1  matt 		if (va >= uvm.pager_sva && va < uvm.pager_eva) {
   2552  1.1  matt 			printf("pmap_clearbit: bogon alpha\n");
   2553  1.1  matt 			continue;
   2554  1.1  matt 		}
   2555  1.1  matt 
   2556  1.1  matt 		pv->pv_flags &= ~maskbits;
   2557  1.1  matt 		pte = pmap_pte(pv->pv_pmap, va);
   2558  1.1  matt 		if (maskbits & (PT_Wr|PT_M))
   2559  1.1  matt 			*pte = *pte & ~PT_AP(AP_W);
   2560  1.1  matt 		if (maskbits & PT_H)
   2561  1.1  matt 			*pte = (*pte & ~L2_MASK) | L2_INVAL;
   2562  1.1  matt 	}
   2563  1.1  matt 	cpu_tlb_flushID();
   2564  1.1  matt 
   2565  1.1  matt 	splx(s);
   2566  1.1  matt }
   2567  1.1  matt 
   2568  1.1  matt 
   2569  1.1  matt boolean_t
   2570  1.1  matt pmap_clear_modify(pg)
   2571  1.1  matt 	struct vm_page *pg;
   2572  1.1  matt {
   2573  1.1  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2574  1.1  matt 	boolean_t rv;
   2575  1.1  matt 
   2576  1.1  matt 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
   2577  1.1  matt 	rv = pmap_testbit(pa, PT_M);
   2578  1.1  matt 	pmap_clearbit(pa, PT_M);
   2579  1.1  matt 	return rv;
   2580  1.1  matt }
   2581  1.1  matt 
   2582  1.1  matt 
   2583  1.1  matt boolean_t
   2584  1.1  matt pmap_clear_reference(pg)
   2585  1.1  matt 	struct vm_page *pg;
   2586  1.1  matt {
   2587  1.1  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2588  1.1  matt 	boolean_t rv;
   2589  1.1  matt 
   2590  1.1  matt 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
   2591  1.1  matt 	rv = pmap_testbit(pa, PT_H);
   2592  1.1  matt 	pmap_clearbit(pa, PT_H);
   2593  1.1  matt 	return rv;
   2594  1.1  matt }
   2595  1.1  matt 
   2596  1.1  matt 
   2597  1.1  matt void
   2598  1.1  matt pmap_copy_on_write(pa)
   2599  1.2  matt 	paddr_t pa;
   2600  1.1  matt {
   2601  1.1  matt 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
   2602  1.1  matt 	pmap_clearbit(pa, PT_Wr);
   2603  1.1  matt }
   2604  1.1  matt 
   2605  1.1  matt 
   2606  1.1  matt boolean_t
   2607  1.1  matt pmap_is_modified(pg)
   2608  1.1  matt 	struct vm_page *pg;
   2609  1.1  matt {
   2610  1.1  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2611  1.1  matt 	boolean_t result;
   2612  1.1  matt 
   2613  1.1  matt 	result = pmap_testbit(pa, PT_M);
   2614  1.1  matt 	PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
   2615  1.1  matt 	return (result);
   2616  1.1  matt }
   2617  1.1  matt 
   2618  1.1  matt 
   2619  1.1  matt boolean_t
   2620  1.1  matt pmap_is_referenced(pg)
   2621  1.1  matt 	struct vm_page *pg;
   2622  1.1  matt {
   2623  1.1  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2624  1.1  matt 	boolean_t result;
   2625  1.1  matt 
   2626  1.1  matt 	result = pmap_testbit(pa, PT_H);
   2627  1.1  matt 	PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
   2628  1.1  matt 	return (result);
   2629  1.1  matt }
   2630  1.1  matt 
   2631  1.1  matt 
   2632  1.1  matt int
   2633  1.1  matt pmap_modified_emulation(pmap, va)
   2634  1.1  matt 	pmap_t pmap;
   2635  1.1  matt 	vaddr_t va;
   2636  1.1  matt {
   2637  1.1  matt 	pt_entry_t *pte;
   2638  1.2  matt 	paddr_t pa;
   2639  1.1  matt 	int bank, off;
   2640  1.1  matt 	struct pv_entry *pv;
   2641  1.1  matt 	u_int flags;
   2642  1.1  matt 
   2643  1.1  matt 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   2644  1.1  matt 
   2645  1.1  matt 	/* Get the pte */
   2646  1.1  matt 	pte = pmap_pte(pmap, va);
   2647  1.1  matt 	if (!pte) {
   2648  1.1  matt 		PDEBUG(2, printf("no pte\n"));
   2649  1.1  matt 		return(0);
   2650  1.1  matt 	}
   2651  1.1  matt 
   2652  1.1  matt 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2653  1.1  matt 
   2654  1.1  matt 	/* Check for a zero pte */
   2655  1.1  matt 	if (*pte == 0)
   2656  1.1  matt 		return(0);
   2657  1.1  matt 
   2658  1.1  matt 	/* This can happen if user code tries to access kernel memory. */
   2659  1.1  matt 	if ((*pte & PT_AP(AP_W)) != 0)
   2660  1.1  matt 		return (0);
   2661  1.1  matt 
   2662  1.1  matt 	/* Extract the physical address of the page */
   2663  1.1  matt 	pa = pmap_pte_pa(pte);
   2664  1.1  matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2665  1.1  matt 		return(0);
   2666  1.1  matt 
   2667  1.1  matt 	/* Get the current flags for this page. */
   2668  1.1  matt 	pv = &vm_physmem[bank].pmseg.pvent[off];
   2669  1.1  matt 	flags = pmap_modify_pv(pmap, va, pv, 0, 0);
   2670  1.1  matt 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   2671  1.1  matt 
   2672  1.1  matt 	/*
   2673  1.1  matt 	 * Do the flags say this page is writable ? If not then it is a
   2674  1.1  matt 	 * genuine write fault. If yes then the write fault is our fault
   2675  1.1  matt 	 * as we did not reflect the write access in the PTE. Now we know
   2676  1.1  matt 	 * a write has occurred we can correct this and also set the
   2677  1.1  matt 	 * modified bit
   2678  1.1  matt 	 */
   2679  1.1  matt 	if (~flags & PT_Wr)
   2680  1.1  matt 		return(0);
   2681  1.1  matt 
   2682  1.1  matt 	PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
   2683  1.1  matt 	    va, pte, *pte));
   2684  1.1  matt 	vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
   2685  1.1  matt 	*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   2686  1.1  matt 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2687  1.1  matt 
   2688  1.1  matt 	/* Return, indicating the problem has been dealt with */
   2689  1.1  matt 	cpu_tlb_flushID_SE(va);
   2690  1.1  matt 	return(1);
   2691  1.1  matt }
   2692  1.1  matt 
   2693  1.1  matt 
   2694  1.1  matt int
   2695  1.1  matt pmap_handled_emulation(pmap, va)
   2696  1.1  matt 	pmap_t pmap;
   2697  1.1  matt 	vaddr_t va;
   2698  1.1  matt {
   2699  1.1  matt 	pt_entry_t *pte;
   2700  1.2  matt 	paddr_t pa;
   2701  1.1  matt 	int bank, off;
   2702  1.1  matt 
   2703  1.1  matt 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   2704  1.1  matt 
   2705  1.1  matt 	/* Get the pte */
   2706  1.1  matt 	pte = pmap_pte(pmap, va);
   2707  1.1  matt 	if (!pte) {
   2708  1.1  matt 		PDEBUG(2, printf("no pte\n"));
   2709  1.1  matt 		return(0);
   2710  1.1  matt 	}
   2711  1.1  matt 
   2712  1.1  matt 	PDEBUG(1, printf("*pte=%08x\n", *pte));
   2713  1.1  matt 
   2714  1.1  matt 	/* Check for a zero pte */
   2715  1.1  matt 	if (*pte == 0)
   2716  1.1  matt 		return(0);
   2717  1.1  matt 
   2718  1.1  matt 	/* This can happen if user code tries to access kernel memory. */
   2719  1.1  matt 	if ((*pte & L2_MASK) != L2_INVAL)
   2720  1.1  matt 		return (0);
   2721  1.1  matt 
   2722  1.1  matt 	/* Extract the physical address of the page */
   2723  1.1  matt 	pa = pmap_pte_pa(pte);
   2724  1.1  matt 	if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
   2725  1.1  matt 		return(0);
   2726  1.1  matt 
   2727  1.1  matt 	/*
   2728  1.1  matt 	 * Ok we just enable the pte and mark the attibs as handled
   2729  1.1  matt 	 */
   2730  1.1  matt 	PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
   2731  1.1  matt 	    va, pte, *pte));
   2732  1.1  matt 	vm_physmem[bank].pmseg.attrs[off] |= PT_H;
   2733  1.1  matt 	*pte = (*pte & ~L2_MASK) | L2_SPAGE;
   2734  1.1  matt 	PDEBUG(0, printf("->(%08x)\n", *pte));
   2735  1.1  matt 
   2736  1.1  matt 	/* Return, indicating the problem has been dealt with */
   2737  1.1  matt 	cpu_tlb_flushID_SE(va);
   2738  1.1  matt 	return(1);
   2739  1.1  matt }
   2740  1.1  matt 
   2741  1.1  matt /*
   2742  1.1  matt  * pmap_collect: free resources held by a pmap
   2743  1.1  matt  *
   2744  1.1  matt  * => optional function.
   2745  1.1  matt  * => called when a process is swapped out to free memory.
   2746  1.1  matt  */
   2747  1.1  matt 
   2748  1.1  matt void
   2749  1.1  matt pmap_collect(pmap)
   2750  1.1  matt 	pmap_t pmap;
   2751  1.1  matt {
   2752  1.1  matt }
   2753  1.1  matt 
   2754  1.1  matt /*
   2755  1.1  matt  * Routine:	pmap_procwr
   2756  1.1  matt  *
   2757  1.1  matt  * Function:
   2758  1.1  matt  *	Synchronize caches corresponding to [addr, addr+len) in p.
   2759  1.1  matt  *
   2760  1.1  matt  */
   2761  1.1  matt void
   2762  1.1  matt pmap_procwr(p, va, len)
   2763  1.1  matt 	struct proc	*p;
   2764  1.1  matt 	vaddr_t		va;
   2765  1.3  matt 	int		len;
   2766  1.1  matt {
   2767  1.1  matt 	/* We only need to do anything if it is the current process. */
   2768  1.1  matt 	if (p == curproc)
   2769  1.1  matt 		cpu_cache_syncI_rng(va, len);
   2770  1.1  matt }
   2771  1.1  matt 
   2772  1.1  matt /* End of pmap.c */
   2773