pmap.c revision 1.32 1 1.32 thorpej /* $NetBSD: pmap.c,v 1.32 2001/11/22 18:24:43 thorpej Exp $ */
2 1.12 chris
3 1.12 chris /*
4 1.12 chris * Copyright (c) 2001 Richard Earnshaw
5 1.12 chris * Copyright (c) 2001 Christopher Gilbert
6 1.12 chris * All rights reserved.
7 1.12 chris *
8 1.12 chris * 1. Redistributions of source code must retain the above copyright
9 1.12 chris * notice, this list of conditions and the following disclaimer.
10 1.12 chris * 2. Redistributions in binary form must reproduce the above copyright
11 1.12 chris * notice, this list of conditions and the following disclaimer in the
12 1.12 chris * documentation and/or other materials provided with the distribution.
13 1.12 chris * 3. The name of the company nor the name of the author may be used to
14 1.12 chris * endorse or promote products derived from this software without specific
15 1.12 chris * prior written permission.
16 1.12 chris *
17 1.12 chris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 1.12 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 1.12 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.12 chris * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
21 1.12 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 1.12 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 1.12 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.12 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.12 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.12 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.12 chris * SUCH DAMAGE.
28 1.12 chris */
29 1.1 matt
30 1.1 matt /*-
31 1.1 matt * Copyright (c) 1999 The NetBSD Foundation, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
35 1.1 matt * by Charles M. Hannum.
36 1.1 matt *
37 1.1 matt * Redistribution and use in source and binary forms, with or without
38 1.1 matt * modification, are permitted provided that the following conditions
39 1.1 matt * are met:
40 1.1 matt * 1. Redistributions of source code must retain the above copyright
41 1.1 matt * notice, this list of conditions and the following disclaimer.
42 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 matt * notice, this list of conditions and the following disclaimer in the
44 1.1 matt * documentation and/or other materials provided with the distribution.
45 1.1 matt * 3. All advertising materials mentioning features or use of this software
46 1.1 matt * must display the following acknowledgement:
47 1.1 matt * This product includes software developed by the NetBSD
48 1.1 matt * Foundation, Inc. and its contributors.
49 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
50 1.1 matt * contributors may be used to endorse or promote products derived
51 1.1 matt * from this software without specific prior written permission.
52 1.1 matt *
53 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
64 1.1 matt */
65 1.1 matt
66 1.1 matt /*
67 1.1 matt * Copyright (c) 1994-1998 Mark Brinicombe.
68 1.1 matt * Copyright (c) 1994 Brini.
69 1.1 matt * All rights reserved.
70 1.1 matt *
71 1.1 matt * This code is derived from software written for Brini by Mark Brinicombe
72 1.1 matt *
73 1.1 matt * Redistribution and use in source and binary forms, with or without
74 1.1 matt * modification, are permitted provided that the following conditions
75 1.1 matt * are met:
76 1.1 matt * 1. Redistributions of source code must retain the above copyright
77 1.1 matt * notice, this list of conditions and the following disclaimer.
78 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
79 1.1 matt * notice, this list of conditions and the following disclaimer in the
80 1.1 matt * documentation and/or other materials provided with the distribution.
81 1.1 matt * 3. All advertising materials mentioning features or use of this software
82 1.1 matt * must display the following acknowledgement:
83 1.1 matt * This product includes software developed by Mark Brinicombe.
84 1.1 matt * 4. The name of the author may not be used to endorse or promote products
85 1.1 matt * derived from this software without specific prior written permission.
86 1.1 matt *
87 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
88 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
89 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
90 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
91 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
92 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
93 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
94 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
95 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
96 1.1 matt *
97 1.1 matt * RiscBSD kernel project
98 1.1 matt *
99 1.1 matt * pmap.c
100 1.1 matt *
101 1.1 matt * Machine dependant vm stuff
102 1.1 matt *
103 1.1 matt * Created : 20/09/94
104 1.1 matt */
105 1.1 matt
106 1.1 matt /*
107 1.1 matt * Performance improvements, UVM changes, overhauls and part-rewrites
108 1.1 matt * were contributed by Neil A. Carson <neil (at) causality.com>.
109 1.1 matt */
110 1.1 matt
111 1.1 matt /*
112 1.1 matt * The dram block info is currently referenced from the bootconfig.
113 1.1 matt * This should be placed in a separate structure.
114 1.1 matt */
115 1.1 matt
116 1.1 matt /*
117 1.1 matt * Special compilation symbols
118 1.1 matt * PMAP_DEBUG - Build in pmap_debug_level code
119 1.1 matt */
120 1.1 matt
121 1.1 matt /* Include header files */
122 1.1 matt
123 1.1 matt #include "opt_pmap_debug.h"
124 1.1 matt #include "opt_ddb.h"
125 1.1 matt
126 1.1 matt #include <sys/types.h>
127 1.1 matt #include <sys/param.h>
128 1.1 matt #include <sys/kernel.h>
129 1.1 matt #include <sys/systm.h>
130 1.1 matt #include <sys/proc.h>
131 1.1 matt #include <sys/malloc.h>
132 1.1 matt #include <sys/user.h>
133 1.10 chris #include <sys/pool.h>
134 1.16 chris #include <sys/cdefs.h>
135 1.16 chris
136 1.1 matt #include <uvm/uvm.h>
137 1.1 matt
138 1.1 matt #include <machine/bootconfig.h>
139 1.1 matt #include <machine/bus.h>
140 1.1 matt #include <machine/pmap.h>
141 1.1 matt #include <machine/pcb.h>
142 1.1 matt #include <machine/param.h>
143 1.32 thorpej #include <arm/arm32/katelib.h>
144 1.16 chris
145 1.32 thorpej __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.32 2001/11/22 18:24:43 thorpej Exp $");
146 1.1 matt #ifdef PMAP_DEBUG
147 1.1 matt #define PDEBUG(_lev_,_stat_) \
148 1.1 matt if (pmap_debug_level >= (_lev_)) \
149 1.1 matt ((_stat_))
150 1.1 matt int pmap_debug_level = -2;
151 1.17 chris
152 1.17 chris /*
153 1.17 chris * for switching to potentially finer grained debugging
154 1.17 chris */
155 1.17 chris #define PDB_FOLLOW 0x0001
156 1.17 chris #define PDB_INIT 0x0002
157 1.17 chris #define PDB_ENTER 0x0004
158 1.17 chris #define PDB_REMOVE 0x0008
159 1.17 chris #define PDB_CREATE 0x0010
160 1.17 chris #define PDB_PTPAGE 0x0020
161 1.17 chris #define PDB_ASN 0x0040
162 1.17 chris #define PDB_BITS 0x0080
163 1.17 chris #define PDB_COLLECT 0x0100
164 1.17 chris #define PDB_PROTECT 0x0200
165 1.17 chris #define PDB_BOOTSTRAP 0x1000
166 1.17 chris #define PDB_PARANOIA 0x2000
167 1.17 chris #define PDB_WIRING 0x4000
168 1.17 chris #define PDB_PVDUMP 0x8000
169 1.17 chris
170 1.17 chris int debugmap = 0;
171 1.17 chris int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
172 1.17 chris #define NPDEBUG(_lev_,_stat_) \
173 1.17 chris if (pmapdebug & (_lev_)) \
174 1.17 chris ((_stat_))
175 1.17 chris
176 1.1 matt #else /* PMAP_DEBUG */
177 1.1 matt #define PDEBUG(_lev_,_stat_) /* Nothing */
178 1.17 chris #define PDEBUG(_lev_,_stat_) /* Nothing */
179 1.1 matt #endif /* PMAP_DEBUG */
180 1.1 matt
181 1.1 matt struct pmap kernel_pmap_store;
182 1.1 matt
183 1.10 chris /*
184 1.10 chris * pool that pmap structures are allocated from
185 1.10 chris */
186 1.10 chris
187 1.10 chris struct pool pmap_pmap_pool;
188 1.10 chris
189 1.1 matt pagehook_t page_hook0;
190 1.1 matt pagehook_t page_hook1;
191 1.1 matt char *memhook;
192 1.1 matt pt_entry_t msgbufpte;
193 1.1 matt extern caddr_t msgbufaddr;
194 1.1 matt
195 1.1 matt boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
196 1.17 chris /*
197 1.17 chris * locking data structures
198 1.17 chris */
199 1.1 matt
200 1.17 chris static struct lock pmap_main_lock;
201 1.17 chris static struct simplelock pvalloc_lock;
202 1.17 chris #ifdef LOCKDEBUG
203 1.17 chris #define PMAP_MAP_TO_HEAD_LOCK() \
204 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
205 1.17 chris #define PMAP_MAP_TO_HEAD_UNLOCK() \
206 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
207 1.17 chris
208 1.17 chris #define PMAP_HEAD_TO_MAP_LOCK() \
209 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
210 1.17 chris #define PMAP_HEAD_TO_MAP_UNLOCK() \
211 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
212 1.17 chris #else
213 1.17 chris #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
214 1.17 chris #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
215 1.17 chris #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
216 1.17 chris #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
217 1.17 chris #endif /* LOCKDEBUG */
218 1.17 chris
219 1.17 chris /*
220 1.17 chris * pv_page management structures: locked by pvalloc_lock
221 1.17 chris */
222 1.1 matt
223 1.17 chris TAILQ_HEAD(pv_pagelist, pv_page);
224 1.17 chris static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
225 1.17 chris static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
226 1.17 chris static int pv_nfpvents; /* # of free pv entries */
227 1.17 chris static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
228 1.17 chris static vaddr_t pv_cachedva; /* cached VA for later use */
229 1.17 chris
230 1.17 chris #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
231 1.17 chris #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
232 1.17 chris /* high water mark */
233 1.17 chris
234 1.17 chris /*
235 1.17 chris * local prototypes
236 1.17 chris */
237 1.17 chris
238 1.17 chris static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
239 1.17 chris static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
240 1.17 chris #define ALLOCPV_NEED 0 /* need PV now */
241 1.17 chris #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
242 1.17 chris #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
243 1.17 chris static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
244 1.17 chris static void pmap_enter_pv __P((struct pv_head *,
245 1.17 chris struct pv_entry *, struct pmap *,
246 1.17 chris vaddr_t, struct vm_page *, int));
247 1.17 chris static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
248 1.17 chris static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
249 1.17 chris static void pmap_free_pv_doit __P((struct pv_entry *));
250 1.17 chris static void pmap_free_pvpage __P((void));
251 1.17 chris static boolean_t pmap_is_curpmap __P((struct pmap *));
252 1.17 chris static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
253 1.17 chris vaddr_t));
254 1.17 chris #define PMAP_REMOVE_ALL 0 /* remove all mappings */
255 1.17 chris #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
256 1.1 matt
257 1.2 matt vsize_t npages;
258 1.1 matt
259 1.17 chris static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
260 1.17 chris static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
261 1.22 chris __inline static void pmap_clearbit __P((paddr_t, unsigned int));
262 1.22 chris __inline static boolean_t pmap_testbit __P((paddr_t, unsigned int));
263 1.17 chris
264 1.2 matt extern paddr_t physical_start;
265 1.2 matt extern paddr_t physical_freestart;
266 1.2 matt extern paddr_t physical_end;
267 1.2 matt extern paddr_t physical_freeend;
268 1.1 matt extern unsigned int free_pages;
269 1.1 matt extern int max_processes;
270 1.1 matt
271 1.1 matt vaddr_t virtual_start;
272 1.1 matt vaddr_t virtual_end;
273 1.1 matt
274 1.1 matt vaddr_t avail_start;
275 1.1 matt vaddr_t avail_end;
276 1.1 matt
277 1.1 matt extern pv_addr_t systempage;
278 1.1 matt
279 1.1 matt #define ALLOC_PAGE_HOOK(x, s) \
280 1.1 matt x.va = virtual_start; \
281 1.15 chris x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
282 1.1 matt virtual_start += s;
283 1.1 matt
284 1.1 matt /* Variables used by the L1 page table queue code */
285 1.1 matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
286 1.1 matt struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
287 1.1 matt int l1pt_static_queue_count; /* items in the static l1 queue */
288 1.1 matt int l1pt_static_create_count; /* static l1 items created */
289 1.1 matt struct l1pt_queue l1pt_queue; /* head of our l1 queue */
290 1.1 matt int l1pt_queue_count; /* items in the l1 queue */
291 1.1 matt int l1pt_create_count; /* stat - L1's create count */
292 1.1 matt int l1pt_reuse_count; /* stat - L1's reused count */
293 1.1 matt
294 1.1 matt /* Local function prototypes (not used outside this file) */
295 1.15 chris pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
296 1.1 matt void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
297 1.2 matt paddr_t pa, unsigned int flags));
298 1.2 matt void pmap_copy_on_write __P((paddr_t pa));
299 1.15 chris void pmap_pinit __P((struct pmap *));
300 1.15 chris void pmap_freepagedir __P((struct pmap *));
301 1.1 matt
302 1.1 matt /* Other function prototypes */
303 1.1 matt extern void bzero_page __P((vaddr_t));
304 1.1 matt extern void bcopy_page __P((vaddr_t, vaddr_t));
305 1.1 matt
306 1.1 matt struct l1pt *pmap_alloc_l1pt __P((void));
307 1.15 chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
308 1.17 chris vaddr_t l2pa, boolean_t));
309 1.1 matt
310 1.11 chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
311 1.17 chris static void pmap_unmap_ptes __P((struct pmap *));
312 1.11 chris
313 1.25 rearnsha __inline static void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
314 1.25 rearnsha pt_entry_t *, boolean_t));
315 1.25 rearnsha static void pmap_vac_me_kpmap __P((struct pmap *, struct pv_head *,
316 1.25 rearnsha pt_entry_t *, boolean_t));
317 1.25 rearnsha static void pmap_vac_me_user __P((struct pmap *, struct pv_head *,
318 1.25 rearnsha pt_entry_t *, boolean_t));
319 1.11 chris
320 1.17 chris /*
321 1.27 rearnsha * Cache enable bits in PTE to use on pages that are cacheable.
322 1.27 rearnsha * On most machines this is cacheable/bufferable, but on some, eg arm10, we
323 1.27 rearnsha * can chose between write-through and write-back cacheing.
324 1.27 rearnsha */
325 1.27 rearnsha pt_entry_t pte_cache_mode = (PT_C | PT_B);
326 1.27 rearnsha
327 1.27 rearnsha /*
328 1.17 chris * real definition of pv_entry.
329 1.17 chris */
330 1.17 chris
331 1.17 chris struct pv_entry {
332 1.17 chris struct pv_entry *pv_next; /* next pv_entry */
333 1.17 chris struct pmap *pv_pmap; /* pmap where mapping lies */
334 1.17 chris vaddr_t pv_va; /* virtual address for mapping */
335 1.17 chris int pv_flags; /* flags */
336 1.17 chris struct vm_page *pv_ptp; /* vm_page for the ptp */
337 1.17 chris };
338 1.17 chris
339 1.17 chris /*
340 1.17 chris * pv_entrys are dynamically allocated in chunks from a single page.
341 1.17 chris * we keep track of how many pv_entrys are in use for each page and
342 1.17 chris * we can free pv_entry pages if needed. there is one lock for the
343 1.17 chris * entire allocation system.
344 1.17 chris */
345 1.17 chris
346 1.17 chris struct pv_page_info {
347 1.17 chris TAILQ_ENTRY(pv_page) pvpi_list;
348 1.17 chris struct pv_entry *pvpi_pvfree;
349 1.17 chris int pvpi_nfree;
350 1.17 chris };
351 1.17 chris
352 1.17 chris /*
353 1.17 chris * number of pv_entry's in a pv_page
354 1.17 chris * (note: won't work on systems where NPBG isn't a constant)
355 1.17 chris */
356 1.17 chris
357 1.17 chris #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
358 1.17 chris sizeof(struct pv_entry))
359 1.17 chris
360 1.17 chris /*
361 1.17 chris * a pv_page: where pv_entrys are allocated from
362 1.17 chris */
363 1.17 chris
364 1.17 chris struct pv_page {
365 1.17 chris struct pv_page_info pvinfo;
366 1.17 chris struct pv_entry pvents[PVE_PER_PVPAGE];
367 1.17 chris };
368 1.17 chris
369 1.1 matt #ifdef MYCROFT_HACK
370 1.1 matt int mycroft_hack = 0;
371 1.1 matt #endif
372 1.1 matt
373 1.1 matt /* Function to set the debug level of the pmap code */
374 1.1 matt
375 1.1 matt #ifdef PMAP_DEBUG
376 1.1 matt void
377 1.1 matt pmap_debug(level)
378 1.1 matt int level;
379 1.1 matt {
380 1.1 matt pmap_debug_level = level;
381 1.1 matt printf("pmap_debug: level=%d\n", pmap_debug_level);
382 1.1 matt }
383 1.1 matt #endif /* PMAP_DEBUG */
384 1.1 matt
385 1.22 chris __inline static boolean_t
386 1.17 chris pmap_is_curpmap(struct pmap *pmap)
387 1.17 chris {
388 1.17 chris if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
389 1.17 chris || (pmap == pmap_kernel()))
390 1.17 chris return (TRUE);
391 1.17 chris return (FALSE);
392 1.17 chris }
393 1.1 matt #include "isadma.h"
394 1.1 matt
395 1.1 matt #if NISADMA > 0
396 1.1 matt /*
397 1.1 matt * Used to protect memory for ISA DMA bounce buffers. If, when loading
398 1.1 matt * pages into the system, memory intersects with any of these ranges,
399 1.1 matt * the intersecting memory will be loaded into a lower-priority free list.
400 1.1 matt */
401 1.1 matt bus_dma_segment_t *pmap_isa_dma_ranges;
402 1.1 matt int pmap_isa_dma_nranges;
403 1.1 matt
404 1.2 matt boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
405 1.2 matt paddr_t *, psize_t *));
406 1.1 matt
407 1.1 matt /*
408 1.1 matt * Check if a memory range intersects with an ISA DMA range, and
409 1.1 matt * return the page-rounded intersection if it does. The intersection
410 1.1 matt * will be placed on a lower-priority free list.
411 1.1 matt */
412 1.1 matt boolean_t
413 1.1 matt pmap_isa_dma_range_intersect(pa, size, pap, sizep)
414 1.2 matt paddr_t pa;
415 1.2 matt psize_t size;
416 1.2 matt paddr_t *pap;
417 1.2 matt psize_t *sizep;
418 1.1 matt {
419 1.1 matt bus_dma_segment_t *ds;
420 1.1 matt int i;
421 1.1 matt
422 1.1 matt if (pmap_isa_dma_ranges == NULL)
423 1.1 matt return (FALSE);
424 1.1 matt
425 1.1 matt for (i = 0, ds = pmap_isa_dma_ranges;
426 1.1 matt i < pmap_isa_dma_nranges; i++, ds++) {
427 1.1 matt if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
428 1.1 matt /*
429 1.1 matt * Beginning of region intersects with this range.
430 1.1 matt */
431 1.1 matt *pap = trunc_page(pa);
432 1.1 matt *sizep = round_page(min(pa + size,
433 1.1 matt ds->ds_addr + ds->ds_len) - pa);
434 1.1 matt return (TRUE);
435 1.1 matt }
436 1.1 matt if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
437 1.1 matt /*
438 1.1 matt * End of region intersects with this range.
439 1.1 matt */
440 1.1 matt *pap = trunc_page(ds->ds_addr);
441 1.1 matt *sizep = round_page(min((pa + size) - ds->ds_addr,
442 1.1 matt ds->ds_len));
443 1.1 matt return (TRUE);
444 1.1 matt }
445 1.1 matt }
446 1.1 matt
447 1.1 matt /*
448 1.1 matt * No intersection found.
449 1.1 matt */
450 1.1 matt return (FALSE);
451 1.1 matt }
452 1.1 matt #endif /* NISADMA > 0 */
453 1.1 matt
454 1.1 matt /*
455 1.17 chris * p v _ e n t r y f u n c t i o n s
456 1.17 chris */
457 1.17 chris
458 1.17 chris /*
459 1.17 chris * pv_entry allocation functions:
460 1.17 chris * the main pv_entry allocation functions are:
461 1.17 chris * pmap_alloc_pv: allocate a pv_entry structure
462 1.17 chris * pmap_free_pv: free one pv_entry
463 1.17 chris * pmap_free_pvs: free a list of pv_entrys
464 1.17 chris *
465 1.17 chris * the rest are helper functions
466 1.1 matt */
467 1.1 matt
468 1.1 matt /*
469 1.17 chris * pmap_alloc_pv: inline function to allocate a pv_entry structure
470 1.17 chris * => we lock pvalloc_lock
471 1.17 chris * => if we fail, we call out to pmap_alloc_pvpage
472 1.17 chris * => 3 modes:
473 1.17 chris * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
474 1.17 chris * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
475 1.17 chris * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
476 1.17 chris * one now
477 1.17 chris *
478 1.17 chris * "try" is for optional functions like pmap_copy().
479 1.1 matt */
480 1.17 chris
481 1.17 chris __inline static struct pv_entry *
482 1.17 chris pmap_alloc_pv(pmap, mode)
483 1.17 chris struct pmap *pmap;
484 1.17 chris int mode;
485 1.1 matt {
486 1.17 chris struct pv_page *pvpage;
487 1.17 chris struct pv_entry *pv;
488 1.17 chris
489 1.17 chris simple_lock(&pvalloc_lock);
490 1.17 chris
491 1.17 chris if (pv_freepages.tqh_first != NULL) {
492 1.17 chris pvpage = pv_freepages.tqh_first;
493 1.17 chris pvpage->pvinfo.pvpi_nfree--;
494 1.17 chris if (pvpage->pvinfo.pvpi_nfree == 0) {
495 1.17 chris /* nothing left in this one? */
496 1.17 chris TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
497 1.17 chris }
498 1.17 chris pv = pvpage->pvinfo.pvpi_pvfree;
499 1.17 chris #ifdef DIAGNOSTIC
500 1.17 chris if (pv == NULL)
501 1.17 chris panic("pmap_alloc_pv: pvpi_nfree off");
502 1.17 chris #endif
503 1.17 chris pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
504 1.17 chris pv_nfpvents--; /* took one from pool */
505 1.17 chris } else {
506 1.17 chris pv = NULL; /* need more of them */
507 1.17 chris }
508 1.17 chris
509 1.17 chris /*
510 1.17 chris * if below low water mark or we didn't get a pv_entry we try and
511 1.17 chris * create more pv_entrys ...
512 1.17 chris */
513 1.17 chris
514 1.17 chris if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
515 1.17 chris if (pv == NULL)
516 1.17 chris pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
517 1.17 chris mode : ALLOCPV_NEED);
518 1.17 chris else
519 1.17 chris (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
520 1.17 chris }
521 1.17 chris
522 1.17 chris simple_unlock(&pvalloc_lock);
523 1.17 chris return(pv);
524 1.17 chris }
525 1.17 chris
526 1.17 chris /*
527 1.17 chris * pmap_alloc_pvpage: maybe allocate a new pvpage
528 1.17 chris *
529 1.17 chris * if need_entry is false: try and allocate a new pv_page
530 1.17 chris * if need_entry is true: try and allocate a new pv_page and return a
531 1.17 chris * new pv_entry from it. if we are unable to allocate a pv_page
532 1.17 chris * we make a last ditch effort to steal a pv_page from some other
533 1.17 chris * mapping. if that fails, we panic...
534 1.17 chris *
535 1.17 chris * => we assume that the caller holds pvalloc_lock
536 1.17 chris */
537 1.17 chris
538 1.17 chris static struct pv_entry *
539 1.17 chris pmap_alloc_pvpage(pmap, mode)
540 1.17 chris struct pmap *pmap;
541 1.17 chris int mode;
542 1.17 chris {
543 1.17 chris struct vm_page *pg;
544 1.17 chris struct pv_page *pvpage;
545 1.1 matt struct pv_entry *pv;
546 1.17 chris int s;
547 1.17 chris
548 1.17 chris /*
549 1.17 chris * if we need_entry and we've got unused pv_pages, allocate from there
550 1.17 chris */
551 1.17 chris
552 1.17 chris if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
553 1.17 chris
554 1.17 chris /* move it to pv_freepages list */
555 1.17 chris pvpage = pv_unusedpgs.tqh_first;
556 1.17 chris TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
557 1.17 chris TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
558 1.17 chris
559 1.17 chris /* allocate a pv_entry */
560 1.17 chris pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
561 1.17 chris pv = pvpage->pvinfo.pvpi_pvfree;
562 1.17 chris #ifdef DIAGNOSTIC
563 1.17 chris if (pv == NULL)
564 1.17 chris panic("pmap_alloc_pvpage: pvpi_nfree off");
565 1.17 chris #endif
566 1.17 chris pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
567 1.17 chris
568 1.17 chris pv_nfpvents--; /* took one from pool */
569 1.17 chris return(pv);
570 1.17 chris }
571 1.1 matt
572 1.1 matt /*
573 1.17 chris * see if we've got a cached unmapped VA that we can map a page in.
574 1.17 chris * if not, try to allocate one.
575 1.1 matt */
576 1.1 matt
577 1.23 chs
578 1.17 chris if (pv_cachedva == 0) {
579 1.23 chs s = splvm();
580 1.23 chs pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
581 1.17 chris PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
582 1.23 chs splx(s);
583 1.17 chris if (pv_cachedva == 0) {
584 1.17 chris return (NULL);
585 1.1 matt }
586 1.1 matt }
587 1.17 chris
588 1.23 chs pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
589 1.23 chs UVM_PGA_USERESERVE);
590 1.17 chris if (pg)
591 1.17 chris pg->flags &= ~PG_BUSY; /* never busy */
592 1.17 chris
593 1.17 chris if (pg == NULL)
594 1.17 chris return (NULL);
595 1.17 chris
596 1.17 chris /*
597 1.17 chris * add a mapping for our new pv_page and free its entrys (save one!)
598 1.17 chris *
599 1.17 chris * NOTE: If we are allocating a PV page for the kernel pmap, the
600 1.17 chris * pmap is already locked! (...but entering the mapping is safe...)
601 1.17 chris */
602 1.17 chris
603 1.17 chris pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
604 1.19 chris pmap_update(pmap_kernel());
605 1.17 chris pvpage = (struct pv_page *) pv_cachedva;
606 1.17 chris pv_cachedva = 0;
607 1.17 chris return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
608 1.1 matt }
609 1.1 matt
610 1.1 matt /*
611 1.17 chris * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
612 1.17 chris *
613 1.17 chris * => caller must hold pvalloc_lock
614 1.17 chris * => if need_entry is true, we allocate and return one pv_entry
615 1.1 matt */
616 1.1 matt
617 1.17 chris static struct pv_entry *
618 1.17 chris pmap_add_pvpage(pvp, need_entry)
619 1.17 chris struct pv_page *pvp;
620 1.17 chris boolean_t need_entry;
621 1.1 matt {
622 1.17 chris int tofree, lcv;
623 1.17 chris
624 1.17 chris /* do we need to return one? */
625 1.17 chris tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
626 1.1 matt
627 1.17 chris pvp->pvinfo.pvpi_pvfree = NULL;
628 1.17 chris pvp->pvinfo.pvpi_nfree = tofree;
629 1.17 chris for (lcv = 0 ; lcv < tofree ; lcv++) {
630 1.17 chris pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
631 1.17 chris pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
632 1.1 matt }
633 1.17 chris if (need_entry)
634 1.17 chris TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
635 1.17 chris else
636 1.17 chris TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
637 1.17 chris pv_nfpvents += tofree;
638 1.17 chris return((need_entry) ? &pvp->pvents[lcv] : NULL);
639 1.1 matt }
640 1.1 matt
641 1.17 chris /*
642 1.17 chris * pmap_free_pv_doit: actually free a pv_entry
643 1.17 chris *
644 1.17 chris * => do not call this directly! instead use either
645 1.17 chris * 1. pmap_free_pv ==> free a single pv_entry
646 1.17 chris * 2. pmap_free_pvs => free a list of pv_entrys
647 1.17 chris * => we must be holding pvalloc_lock
648 1.17 chris */
649 1.17 chris
650 1.17 chris __inline static void
651 1.17 chris pmap_free_pv_doit(pv)
652 1.17 chris struct pv_entry *pv;
653 1.1 matt {
654 1.17 chris struct pv_page *pvp;
655 1.1 matt
656 1.17 chris pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
657 1.17 chris pv_nfpvents++;
658 1.17 chris pvp->pvinfo.pvpi_nfree++;
659 1.1 matt
660 1.17 chris /* nfree == 1 => fully allocated page just became partly allocated */
661 1.17 chris if (pvp->pvinfo.pvpi_nfree == 1) {
662 1.17 chris TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
663 1.1 matt }
664 1.1 matt
665 1.17 chris /* free it */
666 1.17 chris pv->pv_next = pvp->pvinfo.pvpi_pvfree;
667 1.17 chris pvp->pvinfo.pvpi_pvfree = pv;
668 1.1 matt
669 1.17 chris /*
670 1.17 chris * are all pv_page's pv_entry's free? move it to unused queue.
671 1.17 chris */
672 1.1 matt
673 1.17 chris if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
674 1.17 chris TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
675 1.17 chris TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
676 1.1 matt }
677 1.1 matt }
678 1.1 matt
679 1.1 matt /*
680 1.17 chris * pmap_free_pv: free a single pv_entry
681 1.17 chris *
682 1.17 chris * => we gain the pvalloc_lock
683 1.1 matt */
684 1.1 matt
685 1.17 chris __inline static void
686 1.17 chris pmap_free_pv(pmap, pv)
687 1.15 chris struct pmap *pmap;
688 1.1 matt struct pv_entry *pv;
689 1.1 matt {
690 1.17 chris simple_lock(&pvalloc_lock);
691 1.17 chris pmap_free_pv_doit(pv);
692 1.17 chris
693 1.17 chris /*
694 1.17 chris * Can't free the PV page if the PV entries were associated with
695 1.17 chris * the kernel pmap; the pmap is already locked.
696 1.17 chris */
697 1.17 chris if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
698 1.17 chris pmap != pmap_kernel())
699 1.17 chris pmap_free_pvpage();
700 1.17 chris
701 1.17 chris simple_unlock(&pvalloc_lock);
702 1.17 chris }
703 1.1 matt
704 1.17 chris /*
705 1.17 chris * pmap_free_pvs: free a list of pv_entrys
706 1.17 chris *
707 1.17 chris * => we gain the pvalloc_lock
708 1.17 chris */
709 1.1 matt
710 1.17 chris __inline static void
711 1.17 chris pmap_free_pvs(pmap, pvs)
712 1.17 chris struct pmap *pmap;
713 1.17 chris struct pv_entry *pvs;
714 1.17 chris {
715 1.17 chris struct pv_entry *nextpv;
716 1.1 matt
717 1.17 chris simple_lock(&pvalloc_lock);
718 1.1 matt
719 1.17 chris for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
720 1.17 chris nextpv = pvs->pv_next;
721 1.17 chris pmap_free_pv_doit(pvs);
722 1.1 matt }
723 1.1 matt
724 1.17 chris /*
725 1.17 chris * Can't free the PV page if the PV entries were associated with
726 1.17 chris * the kernel pmap; the pmap is already locked.
727 1.17 chris */
728 1.17 chris if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
729 1.17 chris pmap != pmap_kernel())
730 1.17 chris pmap_free_pvpage();
731 1.1 matt
732 1.17 chris simple_unlock(&pvalloc_lock);
733 1.1 matt }
734 1.1 matt
735 1.1 matt
736 1.1 matt /*
737 1.17 chris * pmap_free_pvpage: try and free an unused pv_page structure
738 1.17 chris *
739 1.17 chris * => assume caller is holding the pvalloc_lock and that
740 1.17 chris * there is a page on the pv_unusedpgs list
741 1.17 chris * => if we can't get a lock on the kmem_map we try again later
742 1.17 chris * => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
743 1.17 chris * that if we can lock the kmem_map then we are not already
744 1.17 chris * holding kmem_object's lock.
745 1.1 matt */
746 1.1 matt
747 1.17 chris static void
748 1.17 chris pmap_free_pvpage()
749 1.1 matt {
750 1.17 chris int s;
751 1.17 chris struct vm_map *map;
752 1.17 chris struct vm_map_entry *dead_entries;
753 1.17 chris struct pv_page *pvp;
754 1.17 chris
755 1.17 chris s = splvm(); /* protect kmem_map */
756 1.1 matt
757 1.17 chris pvp = pv_unusedpgs.tqh_first;
758 1.1 matt
759 1.1 matt /*
760 1.17 chris * note: watch out for pv_initpage which is allocated out of
761 1.17 chris * kernel_map rather than kmem_map.
762 1.1 matt */
763 1.17 chris if (pvp == pv_initpage)
764 1.17 chris map = kernel_map;
765 1.17 chris else
766 1.17 chris map = kmem_map;
767 1.17 chris
768 1.17 chris if (vm_map_lock_try(map)) {
769 1.17 chris
770 1.17 chris /* remove pvp from pv_unusedpgs */
771 1.17 chris TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
772 1.17 chris
773 1.17 chris /* unmap the page */
774 1.17 chris dead_entries = NULL;
775 1.17 chris uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
776 1.17 chris &dead_entries);
777 1.17 chris vm_map_unlock(map);
778 1.17 chris
779 1.17 chris if (dead_entries != NULL)
780 1.17 chris uvm_unmap_detach(dead_entries, 0);
781 1.1 matt
782 1.17 chris pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
783 1.1 matt }
784 1.1 matt
785 1.17 chris if (pvp == pv_initpage)
786 1.17 chris /* no more initpage, we've freed it */
787 1.17 chris pv_initpage = NULL;
788 1.1 matt
789 1.1 matt splx(s);
790 1.1 matt }
791 1.1 matt
792 1.1 matt /*
793 1.17 chris * main pv_entry manipulation functions:
794 1.17 chris * pmap_enter_pv: enter a mapping onto a pv_head list
795 1.17 chris * pmap_remove_pv: remove a mappiing from a pv_head list
796 1.17 chris *
797 1.17 chris * NOTE: pmap_enter_pv expects to lock the pvh itself
798 1.17 chris * pmap_remove_pv expects te caller to lock the pvh before calling
799 1.17 chris */
800 1.17 chris
801 1.17 chris /*
802 1.17 chris * pmap_enter_pv: enter a mapping onto a pv_head lst
803 1.17 chris *
804 1.17 chris * => caller should hold the proper lock on pmap_main_lock
805 1.17 chris * => caller should have pmap locked
806 1.17 chris * => we will gain the lock on the pv_head and allocate the new pv_entry
807 1.17 chris * => caller should adjust ptp's wire_count before calling
808 1.17 chris * => caller should not adjust pmap's wire_count
809 1.17 chris */
810 1.17 chris
811 1.17 chris __inline static void
812 1.17 chris pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
813 1.17 chris struct pv_head *pvh;
814 1.17 chris struct pv_entry *pve; /* preallocated pve for us to use */
815 1.17 chris struct pmap *pmap;
816 1.17 chris vaddr_t va;
817 1.17 chris struct vm_page *ptp; /* PTP in pmap that maps this VA */
818 1.17 chris int flags;
819 1.17 chris {
820 1.17 chris pve->pv_pmap = pmap;
821 1.17 chris pve->pv_va = va;
822 1.17 chris pve->pv_ptp = ptp; /* NULL for kernel pmap */
823 1.17 chris pve->pv_flags = flags;
824 1.17 chris simple_lock(&pvh->pvh_lock); /* lock pv_head */
825 1.17 chris pve->pv_next = pvh->pvh_list; /* add to ... */
826 1.17 chris pvh->pvh_list = pve; /* ... locked list */
827 1.17 chris simple_unlock(&pvh->pvh_lock); /* unlock, done! */
828 1.17 chris if (pve->pv_flags & PT_W)
829 1.17 chris ++pmap->pm_stats.wired_count;
830 1.17 chris }
831 1.17 chris
832 1.17 chris /*
833 1.17 chris * pmap_remove_pv: try to remove a mapping from a pv_list
834 1.17 chris *
835 1.17 chris * => caller should hold proper lock on pmap_main_lock
836 1.17 chris * => pmap should be locked
837 1.17 chris * => caller should hold lock on pv_head [so that attrs can be adjusted]
838 1.17 chris * => caller should adjust ptp's wire_count and free PTP if needed
839 1.17 chris * => caller should NOT adjust pmap's wire_count
840 1.17 chris * => we return the removed pve
841 1.17 chris */
842 1.17 chris
843 1.17 chris __inline static struct pv_entry *
844 1.17 chris pmap_remove_pv(pvh, pmap, va)
845 1.17 chris struct pv_head *pvh;
846 1.17 chris struct pmap *pmap;
847 1.17 chris vaddr_t va;
848 1.17 chris {
849 1.17 chris struct pv_entry *pve, **prevptr;
850 1.17 chris
851 1.17 chris prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
852 1.17 chris pve = *prevptr;
853 1.17 chris while (pve) {
854 1.17 chris if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
855 1.17 chris *prevptr = pve->pv_next; /* remove it! */
856 1.17 chris if (pve->pv_flags & PT_W)
857 1.17 chris --pmap->pm_stats.wired_count;
858 1.17 chris break;
859 1.17 chris }
860 1.17 chris prevptr = &pve->pv_next; /* previous pointer */
861 1.17 chris pve = pve->pv_next; /* advance */
862 1.17 chris }
863 1.17 chris return(pve); /* return removed pve */
864 1.17 chris }
865 1.17 chris
866 1.17 chris /*
867 1.17 chris *
868 1.17 chris * pmap_modify_pv: Update pv flags
869 1.17 chris *
870 1.17 chris * => caller should hold lock on pv_head [so that attrs can be adjusted]
871 1.17 chris * => caller should NOT adjust pmap's wire_count
872 1.29 rearnsha * => caller must call pmap_vac_me_harder() if writable status of a page
873 1.29 rearnsha * may have changed.
874 1.17 chris * => we return the old flags
875 1.17 chris *
876 1.1 matt * Modify a physical-virtual mapping in the pv table
877 1.1 matt */
878 1.1 matt
879 1.1 matt /*__inline */ u_int
880 1.17 chris pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
881 1.15 chris struct pmap *pmap;
882 1.1 matt vaddr_t va;
883 1.17 chris struct pv_head *pvh;
884 1.1 matt u_int bic_mask;
885 1.1 matt u_int eor_mask;
886 1.1 matt {
887 1.1 matt struct pv_entry *npv;
888 1.1 matt u_int flags, oflags;
889 1.1 matt
890 1.1 matt /*
891 1.1 matt * There is at least one VA mapping this page.
892 1.1 matt */
893 1.1 matt
894 1.17 chris for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
895 1.1 matt if (pmap == npv->pv_pmap && va == npv->pv_va) {
896 1.1 matt oflags = npv->pv_flags;
897 1.1 matt npv->pv_flags = flags =
898 1.1 matt ((oflags & ~bic_mask) ^ eor_mask);
899 1.1 matt if ((flags ^ oflags) & PT_W) {
900 1.1 matt if (flags & PT_W)
901 1.1 matt ++pmap->pm_stats.wired_count;
902 1.1 matt else
903 1.1 matt --pmap->pm_stats.wired_count;
904 1.1 matt }
905 1.1 matt return (oflags);
906 1.1 matt }
907 1.1 matt }
908 1.1 matt return (0);
909 1.1 matt }
910 1.1 matt
911 1.1 matt /*
912 1.1 matt * Map the specified level 2 pagetable into the level 1 page table for
913 1.1 matt * the given pmap to cover a chunk of virtual address space starting from the
914 1.1 matt * address specified.
915 1.1 matt */
916 1.1 matt static /*__inline*/ void
917 1.17 chris pmap_map_in_l1(pmap, va, l2pa, selfref)
918 1.15 chris struct pmap *pmap;
919 1.1 matt vaddr_t va, l2pa;
920 1.17 chris boolean_t selfref;
921 1.1 matt {
922 1.1 matt vaddr_t ptva;
923 1.1 matt
924 1.1 matt /* Calculate the index into the L1 page table. */
925 1.1 matt ptva = (va >> PDSHIFT) & ~3;
926 1.1 matt
927 1.1 matt PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
928 1.1 matt pmap->pm_pdir, L1_PTE(l2pa), ptva));
929 1.1 matt
930 1.1 matt /* Map page table into the L1. */
931 1.1 matt pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
932 1.1 matt pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
933 1.1 matt pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
934 1.1 matt pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
935 1.1 matt
936 1.1 matt PDEBUG(0, printf("pt self reference %lx in %lx\n",
937 1.1 matt L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
938 1.1 matt
939 1.1 matt /* Map the page table into the page table area. */
940 1.17 chris if (selfref) {
941 1.17 chris *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
942 1.17 chris L2_PTE_NC_NB(l2pa, AP_KRW);
943 1.17 chris }
944 1.1 matt /* XXX should be a purge */
945 1.1 matt /* cpu_tlb_flushD();*/
946 1.1 matt }
947 1.1 matt
948 1.1 matt #if 0
949 1.1 matt static /*__inline*/ void
950 1.1 matt pmap_unmap_in_l1(pmap, va)
951 1.15 chris struct pmap *pmap;
952 1.1 matt vaddr_t va;
953 1.1 matt {
954 1.1 matt vaddr_t ptva;
955 1.1 matt
956 1.1 matt /* Calculate the index into the L1 page table. */
957 1.1 matt ptva = (va >> PDSHIFT) & ~3;
958 1.1 matt
959 1.1 matt /* Unmap page table from the L1. */
960 1.1 matt pmap->pm_pdir[ptva + 0] = 0;
961 1.1 matt pmap->pm_pdir[ptva + 1] = 0;
962 1.1 matt pmap->pm_pdir[ptva + 2] = 0;
963 1.1 matt pmap->pm_pdir[ptva + 3] = 0;
964 1.1 matt
965 1.1 matt /* Unmap the page table from the page table area. */
966 1.1 matt *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
967 1.1 matt
968 1.1 matt /* XXX should be a purge */
969 1.1 matt /* cpu_tlb_flushD();*/
970 1.1 matt }
971 1.1 matt #endif
972 1.1 matt
973 1.1 matt /*
974 1.1 matt * Used to map a range of physical addresses into kernel
975 1.1 matt * virtual address space.
976 1.1 matt *
977 1.1 matt * For now, VM is already on, we only need to map the
978 1.1 matt * specified memory.
979 1.1 matt */
980 1.1 matt vaddr_t
981 1.1 matt pmap_map(va, spa, epa, prot)
982 1.1 matt vaddr_t va, spa, epa;
983 1.1 matt int prot;
984 1.1 matt {
985 1.1 matt while (spa < epa) {
986 1.20 chris pmap_kenter_pa(va, spa, prot);
987 1.1 matt va += NBPG;
988 1.1 matt spa += NBPG;
989 1.1 matt }
990 1.19 chris pmap_update(pmap_kernel());
991 1.1 matt return(va);
992 1.1 matt }
993 1.1 matt
994 1.1 matt
995 1.1 matt /*
996 1.3 matt * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
997 1.1 matt *
998 1.1 matt * bootstrap the pmap system. This is called from initarm and allows
999 1.1 matt * the pmap system to initailise any structures it requires.
1000 1.1 matt *
1001 1.1 matt * Currently this sets up the kernel_pmap that is statically allocated
1002 1.1 matt * and also allocated virtual addresses for certain page hooks.
1003 1.1 matt * Currently the only one page hook is allocated that is used
1004 1.1 matt * to zero physical pages of memory.
1005 1.1 matt * It also initialises the start and end address of the kernel data space.
1006 1.1 matt */
1007 1.2 matt extern paddr_t physical_freestart;
1008 1.2 matt extern paddr_t physical_freeend;
1009 1.1 matt
1010 1.17 chris char *boot_head;
1011 1.1 matt
1012 1.1 matt void
1013 1.1 matt pmap_bootstrap(kernel_l1pt, kernel_ptpt)
1014 1.1 matt pd_entry_t *kernel_l1pt;
1015 1.1 matt pv_addr_t kernel_ptpt;
1016 1.1 matt {
1017 1.1 matt int loop;
1018 1.2 matt paddr_t start, end;
1019 1.1 matt #if NISADMA > 0
1020 1.2 matt paddr_t istart;
1021 1.2 matt psize_t isize;
1022 1.1 matt #endif
1023 1.1 matt
1024 1.15 chris pmap_kernel()->pm_pdir = kernel_l1pt;
1025 1.15 chris pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1026 1.15 chris pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1027 1.15 chris simple_lock_init(&pmap_kernel()->pm_lock);
1028 1.16 chris pmap_kernel()->pm_obj.pgops = NULL;
1029 1.16 chris TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1030 1.16 chris pmap_kernel()->pm_obj.uo_npages = 0;
1031 1.16 chris pmap_kernel()->pm_obj.uo_refs = 1;
1032 1.16 chris
1033 1.1 matt /*
1034 1.1 matt * Initialize PAGE_SIZE-dependent variables.
1035 1.1 matt */
1036 1.1 matt uvm_setpagesize();
1037 1.1 matt
1038 1.1 matt npages = 0;
1039 1.1 matt loop = 0;
1040 1.1 matt while (loop < bootconfig.dramblocks) {
1041 1.2 matt start = (paddr_t)bootconfig.dram[loop].address;
1042 1.1 matt end = start + (bootconfig.dram[loop].pages * NBPG);
1043 1.1 matt if (start < physical_freestart)
1044 1.1 matt start = physical_freestart;
1045 1.1 matt if (end > physical_freeend)
1046 1.1 matt end = physical_freeend;
1047 1.1 matt #if 0
1048 1.1 matt printf("%d: %lx -> %lx\n", loop, start, end - 1);
1049 1.1 matt #endif
1050 1.1 matt #if NISADMA > 0
1051 1.1 matt if (pmap_isa_dma_range_intersect(start, end - start,
1052 1.1 matt &istart, &isize)) {
1053 1.1 matt /*
1054 1.1 matt * Place the pages that intersect with the
1055 1.1 matt * ISA DMA range onto the ISA DMA free list.
1056 1.1 matt */
1057 1.1 matt #if 0
1058 1.1 matt printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1059 1.1 matt istart + isize - 1);
1060 1.1 matt #endif
1061 1.1 matt uvm_page_physload(atop(istart),
1062 1.1 matt atop(istart + isize), atop(istart),
1063 1.1 matt atop(istart + isize), VM_FREELIST_ISADMA);
1064 1.1 matt npages += atop(istart + isize) - atop(istart);
1065 1.1 matt
1066 1.1 matt /*
1067 1.1 matt * Load the pieces that come before
1068 1.1 matt * the intersection into the default
1069 1.1 matt * free list.
1070 1.1 matt */
1071 1.1 matt if (start < istart) {
1072 1.1 matt #if 0
1073 1.1 matt printf(" BEFORE 0x%lx -> 0x%lx\n",
1074 1.1 matt start, istart - 1);
1075 1.1 matt #endif
1076 1.1 matt uvm_page_physload(atop(start),
1077 1.1 matt atop(istart), atop(start),
1078 1.1 matt atop(istart), VM_FREELIST_DEFAULT);
1079 1.1 matt npages += atop(istart) - atop(start);
1080 1.1 matt }
1081 1.1 matt
1082 1.1 matt /*
1083 1.1 matt * Load the pieces that come after
1084 1.1 matt * the intersection into the default
1085 1.1 matt * free list.
1086 1.1 matt */
1087 1.1 matt if ((istart + isize) < end) {
1088 1.1 matt #if 0
1089 1.1 matt printf(" AFTER 0x%lx -> 0x%lx\n",
1090 1.1 matt (istart + isize), end - 1);
1091 1.1 matt #endif
1092 1.1 matt uvm_page_physload(atop(istart + isize),
1093 1.1 matt atop(end), atop(istart + isize),
1094 1.1 matt atop(end), VM_FREELIST_DEFAULT);
1095 1.1 matt npages += atop(end) - atop(istart + isize);
1096 1.1 matt }
1097 1.1 matt } else {
1098 1.1 matt uvm_page_physload(atop(start), atop(end),
1099 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
1100 1.1 matt npages += atop(end) - atop(start);
1101 1.1 matt }
1102 1.1 matt #else /* NISADMA > 0 */
1103 1.1 matt uvm_page_physload(atop(start), atop(end),
1104 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
1105 1.1 matt npages += atop(end) - atop(start);
1106 1.1 matt #endif /* NISADMA > 0 */
1107 1.1 matt ++loop;
1108 1.1 matt }
1109 1.1 matt
1110 1.1 matt #ifdef MYCROFT_HACK
1111 1.1 matt printf("npages = %ld\n", npages);
1112 1.1 matt #endif
1113 1.1 matt
1114 1.1 matt virtual_start = KERNEL_VM_BASE;
1115 1.1 matt virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
1116 1.1 matt
1117 1.1 matt ALLOC_PAGE_HOOK(page_hook0, NBPG);
1118 1.1 matt ALLOC_PAGE_HOOK(page_hook1, NBPG);
1119 1.1 matt
1120 1.1 matt /*
1121 1.1 matt * The mem special device needs a virtual hook but we don't
1122 1.1 matt * need a pte
1123 1.1 matt */
1124 1.1 matt memhook = (char *)virtual_start;
1125 1.1 matt virtual_start += NBPG;
1126 1.1 matt
1127 1.1 matt msgbufaddr = (caddr_t)virtual_start;
1128 1.15 chris msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
1129 1.1 matt virtual_start += round_page(MSGBUFSIZE);
1130 1.1 matt
1131 1.17 chris /*
1132 1.17 chris * init the static-global locks and global lists.
1133 1.17 chris */
1134 1.17 chris spinlockinit(&pmap_main_lock, "pmaplk", 0);
1135 1.17 chris simple_lock_init(&pvalloc_lock);
1136 1.17 chris TAILQ_INIT(&pv_freepages);
1137 1.17 chris TAILQ_INIT(&pv_unusedpgs);
1138 1.1 matt
1139 1.10 chris /*
1140 1.17 chris * compute the number of pages we have and then allocate RAM
1141 1.17 chris * for each pages' pv_head and saved attributes.
1142 1.17 chris */
1143 1.17 chris {
1144 1.17 chris int npages, lcv;
1145 1.17 chris vsize_t s;
1146 1.17 chris
1147 1.17 chris npages = 0;
1148 1.17 chris for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
1149 1.17 chris npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
1150 1.17 chris s = (vsize_t) (sizeof(struct pv_head) * npages +
1151 1.17 chris sizeof(char) * npages);
1152 1.17 chris s = round_page(s); /* round up */
1153 1.17 chris boot_head = (char *)uvm_pageboot_alloc(s);
1154 1.17 chris bzero((char *)boot_head, s);
1155 1.17 chris if (boot_head == 0)
1156 1.17 chris panic("pmap_init: unable to allocate pv_heads");
1157 1.17 chris }
1158 1.17 chris
1159 1.17 chris /*
1160 1.10 chris * initialize the pmap pool.
1161 1.10 chris */
1162 1.10 chris
1163 1.10 chris pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1164 1.10 chris 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1165 1.10 chris
1166 1.1 matt cpu_cache_cleanD();
1167 1.1 matt }
1168 1.1 matt
1169 1.1 matt /*
1170 1.1 matt * void pmap_init(void)
1171 1.1 matt *
1172 1.1 matt * Initialize the pmap module.
1173 1.1 matt * Called by vm_init() in vm/vm_init.c in order to initialise
1174 1.1 matt * any structures that the pmap system needs to map virtual memory.
1175 1.1 matt */
1176 1.1 matt
1177 1.1 matt extern int physmem;
1178 1.1 matt
1179 1.1 matt void
1180 1.1 matt pmap_init()
1181 1.1 matt {
1182 1.17 chris int lcv, i;
1183 1.1 matt
1184 1.1 matt #ifdef MYCROFT_HACK
1185 1.1 matt printf("physmem = %d\n", physmem);
1186 1.1 matt #endif
1187 1.1 matt
1188 1.1 matt /*
1189 1.1 matt * Set the available memory vars - These do not map to real memory
1190 1.1 matt * addresses and cannot as the physical memory is fragmented.
1191 1.1 matt * They are used by ps for %mem calculations.
1192 1.1 matt * One could argue whether this should be the entire memory or just
1193 1.1 matt * the memory that is useable in a user process.
1194 1.1 matt */
1195 1.1 matt avail_start = 0;
1196 1.1 matt avail_end = physmem * NBPG;
1197 1.1 matt
1198 1.17 chris /* allocate pv_head stuff first */
1199 1.17 chris for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1200 1.17 chris vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
1201 1.17 chris boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
1202 1.17 chris (vm_physmem[lcv].end - vm_physmem[lcv].start));
1203 1.17 chris for (i = 0;
1204 1.17 chris i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
1205 1.17 chris simple_lock_init(
1206 1.17 chris &vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
1207 1.17 chris }
1208 1.1 matt }
1209 1.17 chris
1210 1.17 chris /* now allocate attrs */
1211 1.17 chris for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1212 1.17 chris vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
1213 1.17 chris boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
1214 1.17 chris (vm_physmem[lcv].end - vm_physmem[lcv].start));
1215 1.17 chris }
1216 1.17 chris
1217 1.17 chris /*
1218 1.17 chris * now we need to free enough pv_entry structures to allow us to get
1219 1.17 chris * the kmem_map/kmem_object allocated and inited (done after this
1220 1.17 chris * function is finished). to do this we allocate one bootstrap page out
1221 1.17 chris * of kernel_map and use it to provide an initial pool of pv_entry
1222 1.17 chris * structures. we never free this page.
1223 1.17 chris */
1224 1.17 chris
1225 1.17 chris pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1226 1.17 chris if (pv_initpage == NULL)
1227 1.17 chris panic("pmap_init: pv_initpage");
1228 1.17 chris pv_cachedva = 0; /* a VA we have allocated but not used yet */
1229 1.17 chris pv_nfpvents = 0;
1230 1.17 chris (void) pmap_add_pvpage(pv_initpage, FALSE);
1231 1.17 chris
1232 1.1 matt #ifdef MYCROFT_HACK
1233 1.1 matt for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
1234 1.1 matt printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
1235 1.1 matt lcv,
1236 1.1 matt vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
1237 1.1 matt vm_physmem[lcv].start, vm_physmem[lcv].end);
1238 1.1 matt }
1239 1.1 matt #endif
1240 1.1 matt pmap_initialized = TRUE;
1241 1.1 matt
1242 1.1 matt /* Initialise our L1 page table queues and counters */
1243 1.1 matt SIMPLEQ_INIT(&l1pt_static_queue);
1244 1.1 matt l1pt_static_queue_count = 0;
1245 1.1 matt l1pt_static_create_count = 0;
1246 1.1 matt SIMPLEQ_INIT(&l1pt_queue);
1247 1.1 matt l1pt_queue_count = 0;
1248 1.1 matt l1pt_create_count = 0;
1249 1.1 matt l1pt_reuse_count = 0;
1250 1.1 matt }
1251 1.1 matt
1252 1.1 matt /*
1253 1.1 matt * pmap_postinit()
1254 1.1 matt *
1255 1.1 matt * This routine is called after the vm and kmem subsystems have been
1256 1.1 matt * initialised. This allows the pmap code to perform any initialisation
1257 1.1 matt * that can only be done one the memory allocation is in place.
1258 1.1 matt */
1259 1.1 matt
1260 1.1 matt void
1261 1.1 matt pmap_postinit()
1262 1.1 matt {
1263 1.1 matt int loop;
1264 1.1 matt struct l1pt *pt;
1265 1.1 matt
1266 1.1 matt #ifdef PMAP_STATIC_L1S
1267 1.1 matt for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1268 1.1 matt #else /* PMAP_STATIC_L1S */
1269 1.1 matt for (loop = 0; loop < max_processes; ++loop) {
1270 1.1 matt #endif /* PMAP_STATIC_L1S */
1271 1.1 matt /* Allocate a L1 page table */
1272 1.1 matt pt = pmap_alloc_l1pt();
1273 1.1 matt if (!pt)
1274 1.1 matt panic("Cannot allocate static L1 page tables\n");
1275 1.1 matt
1276 1.1 matt /* Clean it */
1277 1.1 matt bzero((void *)pt->pt_va, PD_SIZE);
1278 1.1 matt pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1279 1.1 matt /* Add the page table to the queue */
1280 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1281 1.1 matt ++l1pt_static_queue_count;
1282 1.1 matt ++l1pt_static_create_count;
1283 1.1 matt }
1284 1.1 matt }
1285 1.1 matt
1286 1.1 matt
1287 1.1 matt /*
1288 1.1 matt * Create and return a physical map.
1289 1.1 matt *
1290 1.1 matt * If the size specified for the map is zero, the map is an actual physical
1291 1.1 matt * map, and may be referenced by the hardware.
1292 1.1 matt *
1293 1.1 matt * If the size specified is non-zero, the map will be used in software only,
1294 1.1 matt * and is bounded by that size.
1295 1.1 matt */
1296 1.1 matt
1297 1.1 matt pmap_t
1298 1.1 matt pmap_create()
1299 1.1 matt {
1300 1.15 chris struct pmap *pmap;
1301 1.1 matt
1302 1.10 chris /*
1303 1.10 chris * Fetch pmap entry from the pool
1304 1.10 chris */
1305 1.10 chris
1306 1.10 chris pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1307 1.17 chris /* XXX is this really needed! */
1308 1.17 chris memset(pmap, 0, sizeof(*pmap));
1309 1.1 matt
1310 1.16 chris simple_lock_init(&pmap->pm_obj.vmobjlock);
1311 1.16 chris pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1312 1.16 chris TAILQ_INIT(&pmap->pm_obj.memq);
1313 1.16 chris pmap->pm_obj.uo_npages = 0;
1314 1.16 chris pmap->pm_obj.uo_refs = 1;
1315 1.16 chris pmap->pm_stats.wired_count = 0;
1316 1.16 chris pmap->pm_stats.resident_count = 1;
1317 1.16 chris
1318 1.1 matt /* Now init the machine part of the pmap */
1319 1.1 matt pmap_pinit(pmap);
1320 1.1 matt return(pmap);
1321 1.1 matt }
1322 1.1 matt
1323 1.1 matt /*
1324 1.1 matt * pmap_alloc_l1pt()
1325 1.1 matt *
1326 1.1 matt * This routine allocates physical and virtual memory for a L1 page table
1327 1.1 matt * and wires it.
1328 1.1 matt * A l1pt structure is returned to describe the allocated page table.
1329 1.1 matt *
1330 1.1 matt * This routine is allowed to fail if the required memory cannot be allocated.
1331 1.1 matt * In this case NULL is returned.
1332 1.1 matt */
1333 1.1 matt
1334 1.1 matt struct l1pt *
1335 1.1 matt pmap_alloc_l1pt(void)
1336 1.1 matt {
1337 1.2 matt paddr_t pa;
1338 1.2 matt vaddr_t va;
1339 1.1 matt struct l1pt *pt;
1340 1.1 matt int error;
1341 1.9 chs struct vm_page *m;
1342 1.11 chris pt_entry_t *ptes;
1343 1.1 matt
1344 1.1 matt /* Allocate virtual address space for the L1 page table */
1345 1.1 matt va = uvm_km_valloc(kernel_map, PD_SIZE);
1346 1.1 matt if (va == 0) {
1347 1.1 matt #ifdef DIAGNOSTIC
1348 1.26 rearnsha PDEBUG(0,
1349 1.26 rearnsha printf("pmap: Cannot allocate pageable memory for L1\n"));
1350 1.1 matt #endif /* DIAGNOSTIC */
1351 1.1 matt return(NULL);
1352 1.1 matt }
1353 1.1 matt
1354 1.1 matt /* Allocate memory for the l1pt structure */
1355 1.1 matt pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1356 1.1 matt
1357 1.1 matt /*
1358 1.1 matt * Allocate pages from the VM system.
1359 1.1 matt */
1360 1.1 matt TAILQ_INIT(&pt->pt_plist);
1361 1.1 matt error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1362 1.1 matt PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1363 1.1 matt if (error) {
1364 1.1 matt #ifdef DIAGNOSTIC
1365 1.26 rearnsha PDEBUG(0,
1366 1.26 rearnsha printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1367 1.26 rearnsha error));
1368 1.1 matt #endif /* DIAGNOSTIC */
1369 1.1 matt /* Release the resources we already have claimed */
1370 1.1 matt free(pt, M_VMPMAP);
1371 1.1 matt uvm_km_free(kernel_map, va, PD_SIZE);
1372 1.1 matt return(NULL);
1373 1.1 matt }
1374 1.1 matt
1375 1.1 matt /* Map our physical pages into our virtual space */
1376 1.1 matt pt->pt_va = va;
1377 1.1 matt m = pt->pt_plist.tqh_first;
1378 1.11 chris ptes = pmap_map_ptes(pmap_kernel());
1379 1.1 matt while (m && va < (pt->pt_va + PD_SIZE)) {
1380 1.1 matt pa = VM_PAGE_TO_PHYS(m);
1381 1.1 matt
1382 1.20 chris pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1383 1.1 matt
1384 1.1 matt /* Revoke cacheability and bufferability */
1385 1.1 matt /* XXX should be done better than this */
1386 1.11 chris ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
1387 1.1 matt
1388 1.1 matt va += NBPG;
1389 1.1 matt m = m->pageq.tqe_next;
1390 1.1 matt }
1391 1.11 chris pmap_unmap_ptes(pmap_kernel());
1392 1.19 chris pmap_update(pmap_kernel());
1393 1.1 matt
1394 1.1 matt #ifdef DIAGNOSTIC
1395 1.1 matt if (m)
1396 1.1 matt panic("pmap_alloc_l1pt: pglist not empty\n");
1397 1.1 matt #endif /* DIAGNOSTIC */
1398 1.1 matt
1399 1.1 matt pt->pt_flags = 0;
1400 1.1 matt return(pt);
1401 1.1 matt }
1402 1.1 matt
1403 1.1 matt /*
1404 1.1 matt * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1405 1.1 matt */
1406 1.1 matt void
1407 1.1 matt pmap_free_l1pt(pt)
1408 1.1 matt struct l1pt *pt;
1409 1.1 matt {
1410 1.1 matt /* Separate the physical memory for the virtual space */
1411 1.20 chris pmap_kremove(pt->pt_va, PD_SIZE);
1412 1.19 chris pmap_update(pmap_kernel());
1413 1.1 matt
1414 1.1 matt /* Return the physical memory */
1415 1.1 matt uvm_pglistfree(&pt->pt_plist);
1416 1.1 matt
1417 1.1 matt /* Free the virtual space */
1418 1.1 matt uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1419 1.1 matt
1420 1.1 matt /* Free the l1pt structure */
1421 1.1 matt free(pt, M_VMPMAP);
1422 1.1 matt }
1423 1.1 matt
1424 1.1 matt /*
1425 1.1 matt * Allocate a page directory.
1426 1.1 matt * This routine will either allocate a new page directory from the pool
1427 1.1 matt * of L1 page tables currently held by the kernel or it will allocate
1428 1.1 matt * a new one via pmap_alloc_l1pt().
1429 1.1 matt * It will then initialise the l1 page table for use.
1430 1.1 matt */
1431 1.1 matt int
1432 1.1 matt pmap_allocpagedir(pmap)
1433 1.1 matt struct pmap *pmap;
1434 1.1 matt {
1435 1.2 matt paddr_t pa;
1436 1.1 matt struct l1pt *pt;
1437 1.1 matt pt_entry_t *pte;
1438 1.1 matt
1439 1.1 matt PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1440 1.1 matt
1441 1.1 matt /* Do we have any spare L1's lying around ? */
1442 1.1 matt if (l1pt_static_queue_count) {
1443 1.1 matt --l1pt_static_queue_count;
1444 1.1 matt pt = l1pt_static_queue.sqh_first;
1445 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1446 1.1 matt } else if (l1pt_queue_count) {
1447 1.1 matt --l1pt_queue_count;
1448 1.1 matt pt = l1pt_queue.sqh_first;
1449 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1450 1.1 matt ++l1pt_reuse_count;
1451 1.1 matt } else {
1452 1.1 matt pt = pmap_alloc_l1pt();
1453 1.1 matt if (!pt)
1454 1.1 matt return(ENOMEM);
1455 1.1 matt ++l1pt_create_count;
1456 1.1 matt }
1457 1.1 matt
1458 1.1 matt /* Store the pointer to the l1 descriptor in the pmap. */
1459 1.1 matt pmap->pm_l1pt = pt;
1460 1.1 matt
1461 1.1 matt /* Get the physical address of the start of the l1 */
1462 1.1 matt pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1463 1.1 matt
1464 1.1 matt /* Store the virtual address of the l1 in the pmap. */
1465 1.1 matt pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1466 1.1 matt
1467 1.1 matt /* Clean the L1 if it is dirty */
1468 1.1 matt if (!(pt->pt_flags & PTFLAG_CLEAN))
1469 1.1 matt bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1470 1.1 matt
1471 1.1 matt /* Do we already have the kernel mappings ? */
1472 1.1 matt if (!(pt->pt_flags & PTFLAG_KPT)) {
1473 1.1 matt /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1474 1.1 matt
1475 1.15 chris bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1476 1.1 matt (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1477 1.1 matt KERNEL_PD_SIZE);
1478 1.1 matt pt->pt_flags |= PTFLAG_KPT;
1479 1.1 matt }
1480 1.1 matt
1481 1.1 matt /* Allocate a page table to map all the page tables for this pmap */
1482 1.1 matt
1483 1.1 matt #ifdef DIAGNOSTIC
1484 1.1 matt if (pmap->pm_vptpt) {
1485 1.1 matt /* XXX What if we have one already ? */
1486 1.1 matt panic("pmap_allocpagedir: have pt already\n");
1487 1.1 matt }
1488 1.1 matt #endif /* DIAGNOSTIC */
1489 1.1 matt pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1490 1.5 toshii if (pmap->pm_vptpt == 0) {
1491 1.5 toshii pmap_freepagedir(pmap);
1492 1.5 toshii return(ENOMEM);
1493 1.5 toshii }
1494 1.5 toshii
1495 1.15 chris (void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
1496 1.1 matt pmap->pm_pptpt &= PG_FRAME;
1497 1.1 matt /* Revoke cacheability and bufferability */
1498 1.1 matt /* XXX should be done better than this */
1499 1.15 chris pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
1500 1.1 matt *pte = *pte & ~(PT_C | PT_B);
1501 1.1 matt
1502 1.1 matt /* Wire in this page table */
1503 1.17 chris pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
1504 1.1 matt
1505 1.1 matt pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1506 1.1 matt
1507 1.1 matt /*
1508 1.1 matt * Map the kernel page tables for 0xf0000000 +
1509 1.1 matt * into the page table used to map the
1510 1.1 matt * pmap's page tables
1511 1.1 matt */
1512 1.1 matt bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1513 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1514 1.1 matt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1515 1.1 matt (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1516 1.1 matt (KERNEL_PD_SIZE >> 2));
1517 1.1 matt
1518 1.1 matt return(0);
1519 1.1 matt }
1520 1.1 matt
1521 1.1 matt
1522 1.1 matt /*
1523 1.1 matt * Initialize a preallocated and zeroed pmap structure,
1524 1.1 matt * such as one in a vmspace structure.
1525 1.1 matt */
1526 1.1 matt
1527 1.1 matt void
1528 1.1 matt pmap_pinit(pmap)
1529 1.1 matt struct pmap *pmap;
1530 1.1 matt {
1531 1.26 rearnsha int backoff = 6;
1532 1.26 rearnsha int retry = 10;
1533 1.26 rearnsha
1534 1.1 matt PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1535 1.1 matt
1536 1.1 matt /* Keep looping until we succeed in allocating a page directory */
1537 1.1 matt while (pmap_allocpagedir(pmap) != 0) {
1538 1.1 matt /*
1539 1.1 matt * Ok we failed to allocate a suitable block of memory for an
1540 1.1 matt * L1 page table. This means that either:
1541 1.1 matt * 1. 16KB of virtual address space could not be allocated
1542 1.1 matt * 2. 16KB of physically contiguous memory on a 16KB boundary
1543 1.1 matt * could not be allocated.
1544 1.1 matt *
1545 1.1 matt * Since we cannot fail we will sleep for a while and try
1546 1.17 chris * again.
1547 1.26 rearnsha *
1548 1.26 rearnsha * Searching for a suitable L1 PT is expensive:
1549 1.26 rearnsha * to avoid hogging the system when memory is really
1550 1.26 rearnsha * scarce, use an exponential back-off so that
1551 1.26 rearnsha * eventually we won't retry more than once every 8
1552 1.26 rearnsha * seconds. This should allow other processes to run
1553 1.26 rearnsha * to completion and free up resources.
1554 1.1 matt */
1555 1.26 rearnsha (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1556 1.26 rearnsha NULL);
1557 1.26 rearnsha if (--retry == 0) {
1558 1.26 rearnsha retry = 10;
1559 1.26 rearnsha if (backoff)
1560 1.26 rearnsha --backoff;
1561 1.26 rearnsha }
1562 1.1 matt }
1563 1.1 matt
1564 1.1 matt /* Map zero page for the pmap. This will also map the L2 for it */
1565 1.1 matt pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1566 1.1 matt VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1567 1.19 chris pmap_update(pmap);
1568 1.1 matt }
1569 1.1 matt
1570 1.1 matt
1571 1.1 matt void
1572 1.1 matt pmap_freepagedir(pmap)
1573 1.15 chris struct pmap *pmap;
1574 1.1 matt {
1575 1.1 matt /* Free the memory used for the page table mapping */
1576 1.5 toshii if (pmap->pm_vptpt != 0)
1577 1.5 toshii uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1578 1.1 matt
1579 1.1 matt /* junk the L1 page table */
1580 1.1 matt if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1581 1.1 matt /* Add the page table to the queue */
1582 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1583 1.1 matt ++l1pt_static_queue_count;
1584 1.1 matt } else if (l1pt_queue_count < 8) {
1585 1.1 matt /* Add the page table to the queue */
1586 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1587 1.1 matt ++l1pt_queue_count;
1588 1.1 matt } else
1589 1.1 matt pmap_free_l1pt(pmap->pm_l1pt);
1590 1.1 matt }
1591 1.1 matt
1592 1.1 matt
1593 1.1 matt /*
1594 1.1 matt * Retire the given physical map from service.
1595 1.1 matt * Should only be called if the map contains no valid mappings.
1596 1.1 matt */
1597 1.1 matt
1598 1.1 matt void
1599 1.1 matt pmap_destroy(pmap)
1600 1.15 chris struct pmap *pmap;
1601 1.1 matt {
1602 1.17 chris struct vm_page *page;
1603 1.1 matt int count;
1604 1.1 matt
1605 1.1 matt if (pmap == NULL)
1606 1.1 matt return;
1607 1.1 matt
1608 1.1 matt PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1609 1.17 chris
1610 1.17 chris /*
1611 1.17 chris * Drop reference count
1612 1.17 chris */
1613 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
1614 1.16 chris count = --pmap->pm_obj.uo_refs;
1615 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
1616 1.17 chris if (count > 0) {
1617 1.17 chris return;
1618 1.1 matt }
1619 1.1 matt
1620 1.17 chris /*
1621 1.17 chris * reference count is zero, free pmap resources and then free pmap.
1622 1.17 chris */
1623 1.17 chris
1624 1.1 matt /* Remove the zero page mapping */
1625 1.1 matt pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1626 1.19 chris pmap_update(pmap);
1627 1.1 matt
1628 1.1 matt /*
1629 1.1 matt * Free any page tables still mapped
1630 1.1 matt * This is only temporay until pmap_enter can count the number
1631 1.1 matt * of mappings made in a page table. Then pmap_remove() can
1632 1.1 matt * reduce the count and free the pagetable when the count
1633 1.16 chris * reaches zero. Note that entries in this list should match the
1634 1.16 chris * contents of the ptpt, however this is faster than walking a 1024
1635 1.16 chris * entries looking for pt's
1636 1.16 chris * taken from i386 pmap.c
1637 1.1 matt */
1638 1.16 chris while (pmap->pm_obj.memq.tqh_first != NULL) {
1639 1.16 chris page = pmap->pm_obj.memq.tqh_first;
1640 1.16 chris #ifdef DIAGNOSTIC
1641 1.16 chris if (page->flags & PG_BUSY)
1642 1.16 chris panic("pmap_release: busy page table page");
1643 1.16 chris #endif
1644 1.16 chris /* pmap_page_protect? currently no need for it. */
1645 1.16 chris
1646 1.16 chris page->wire_count = 0;
1647 1.16 chris uvm_pagefree(page);
1648 1.1 matt }
1649 1.16 chris
1650 1.1 matt /* Free the page dir */
1651 1.1 matt pmap_freepagedir(pmap);
1652 1.17 chris
1653 1.17 chris /* return the pmap to the pool */
1654 1.17 chris pool_put(&pmap_pmap_pool, pmap);
1655 1.1 matt }
1656 1.1 matt
1657 1.1 matt
1658 1.1 matt /*
1659 1.15 chris * void pmap_reference(struct pmap *pmap)
1660 1.1 matt *
1661 1.1 matt * Add a reference to the specified pmap.
1662 1.1 matt */
1663 1.1 matt
1664 1.1 matt void
1665 1.1 matt pmap_reference(pmap)
1666 1.15 chris struct pmap *pmap;
1667 1.1 matt {
1668 1.1 matt if (pmap == NULL)
1669 1.1 matt return;
1670 1.1 matt
1671 1.1 matt simple_lock(&pmap->pm_lock);
1672 1.16 chris pmap->pm_obj.uo_refs++;
1673 1.1 matt simple_unlock(&pmap->pm_lock);
1674 1.1 matt }
1675 1.1 matt
1676 1.1 matt /*
1677 1.1 matt * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1678 1.1 matt *
1679 1.1 matt * Return the start and end addresses of the kernel's virtual space.
1680 1.1 matt * These values are setup in pmap_bootstrap and are updated as pages
1681 1.1 matt * are allocated.
1682 1.1 matt */
1683 1.1 matt
1684 1.1 matt void
1685 1.1 matt pmap_virtual_space(start, end)
1686 1.1 matt vaddr_t *start;
1687 1.1 matt vaddr_t *end;
1688 1.1 matt {
1689 1.1 matt *start = virtual_start;
1690 1.1 matt *end = virtual_end;
1691 1.1 matt }
1692 1.1 matt
1693 1.1 matt
1694 1.1 matt /*
1695 1.1 matt * Activate the address space for the specified process. If the process
1696 1.1 matt * is the current process, load the new MMU context.
1697 1.1 matt */
1698 1.1 matt void
1699 1.1 matt pmap_activate(p)
1700 1.1 matt struct proc *p;
1701 1.1 matt {
1702 1.15 chris struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1703 1.1 matt struct pcb *pcb = &p->p_addr->u_pcb;
1704 1.1 matt
1705 1.15 chris (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1706 1.1 matt (paddr_t *)&pcb->pcb_pagedir);
1707 1.1 matt
1708 1.1 matt PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1709 1.1 matt p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1710 1.1 matt
1711 1.1 matt if (p == curproc) {
1712 1.1 matt PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1713 1.1 matt setttb((u_int)pcb->pcb_pagedir);
1714 1.1 matt }
1715 1.1 matt #if 0
1716 1.1 matt pmap->pm_pdchanged = FALSE;
1717 1.1 matt #endif
1718 1.1 matt }
1719 1.1 matt
1720 1.1 matt
1721 1.1 matt /*
1722 1.1 matt * Deactivate the address space of the specified process.
1723 1.1 matt */
1724 1.1 matt void
1725 1.1 matt pmap_deactivate(p)
1726 1.1 matt struct proc *p;
1727 1.1 matt {
1728 1.1 matt }
1729 1.1 matt
1730 1.31 thorpej /*
1731 1.31 thorpej * Perform any deferred pmap operations.
1732 1.31 thorpej */
1733 1.31 thorpej void
1734 1.31 thorpej pmap_update(struct pmap *pmap)
1735 1.31 thorpej {
1736 1.31 thorpej
1737 1.31 thorpej /*
1738 1.31 thorpej * We haven't deferred any pmap operations, but we do need to
1739 1.31 thorpej * make sure TLB/cache operations have completed.
1740 1.31 thorpej */
1741 1.31 thorpej cpu_cpwait();
1742 1.31 thorpej }
1743 1.1 matt
1744 1.1 matt /*
1745 1.1 matt * pmap_clean_page()
1746 1.1 matt *
1747 1.1 matt * This is a local function used to work out the best strategy to clean
1748 1.1 matt * a single page referenced by its entry in the PV table. It's used by
1749 1.1 matt * pmap_copy_page, pmap_zero page and maybe some others later on.
1750 1.1 matt *
1751 1.1 matt * Its policy is effectively:
1752 1.1 matt * o If there are no mappings, we don't bother doing anything with the cache.
1753 1.1 matt * o If there is one mapping, we clean just that page.
1754 1.1 matt * o If there are multiple mappings, we clean the entire cache.
1755 1.1 matt *
1756 1.1 matt * So that some functions can be further optimised, it returns 0 if it didn't
1757 1.1 matt * clean the entire cache, or 1 if it did.
1758 1.1 matt *
1759 1.1 matt * XXX One bug in this routine is that if the pv_entry has a single page
1760 1.1 matt * mapped at 0x00000000 a whole cache clean will be performed rather than
1761 1.1 matt * just the 1 page. Since this should not occur in everyday use and if it does
1762 1.1 matt * it will just result in not the most efficient clean for the page.
1763 1.1 matt */
1764 1.1 matt static int
1765 1.17 chris pmap_clean_page(pv, is_src)
1766 1.1 matt struct pv_entry *pv;
1767 1.17 chris boolean_t is_src;
1768 1.1 matt {
1769 1.17 chris struct pmap *pmap;
1770 1.17 chris struct pv_entry *npv;
1771 1.1 matt int cache_needs_cleaning = 0;
1772 1.1 matt vaddr_t page_to_clean = 0;
1773 1.1 matt
1774 1.17 chris if (pv == NULL)
1775 1.17 chris /* nothing mapped in so nothing to flush */
1776 1.17 chris return (0);
1777 1.17 chris
1778 1.17 chris /* Since we flush the cache each time we change curproc, we
1779 1.17 chris * only need to flush the page if it is in the current pmap.
1780 1.17 chris */
1781 1.17 chris if (curproc)
1782 1.17 chris pmap = curproc->p_vmspace->vm_map.pmap;
1783 1.17 chris else
1784 1.17 chris pmap = pmap_kernel();
1785 1.17 chris
1786 1.17 chris for (npv = pv; npv; npv = npv->pv_next) {
1787 1.17 chris if (npv->pv_pmap == pmap) {
1788 1.17 chris /* The page is mapped non-cacheable in
1789 1.17 chris * this map. No need to flush the cache.
1790 1.17 chris */
1791 1.17 chris if (npv->pv_flags & PT_NC) {
1792 1.17 chris #ifdef DIAGNOSTIC
1793 1.17 chris if (cache_needs_cleaning)
1794 1.17 chris panic("pmap_clean_page: "
1795 1.17 chris "cache inconsistency");
1796 1.17 chris #endif
1797 1.17 chris break;
1798 1.17 chris }
1799 1.17 chris #if 0
1800 1.17 chris /* This doesn't work, because pmap_protect
1801 1.17 chris doesn't flush changes on pages that it
1802 1.17 chris has write-protected. */
1803 1.21 chris
1804 1.25 rearnsha /* If the page is not writable and this
1805 1.17 chris is the source, then there is no need
1806 1.17 chris to flush it from the cache. */
1807 1.17 chris else if (is_src && ! (npv->pv_flags & PT_Wr))
1808 1.17 chris continue;
1809 1.17 chris #endif
1810 1.17 chris if (cache_needs_cleaning){
1811 1.17 chris page_to_clean = 0;
1812 1.17 chris break;
1813 1.17 chris }
1814 1.17 chris else
1815 1.17 chris page_to_clean = npv->pv_va;
1816 1.17 chris cache_needs_cleaning = 1;
1817 1.17 chris }
1818 1.1 matt }
1819 1.1 matt
1820 1.1 matt if (page_to_clean)
1821 1.1 matt cpu_cache_purgeID_rng(page_to_clean, NBPG);
1822 1.1 matt else if (cache_needs_cleaning) {
1823 1.1 matt cpu_cache_purgeID();
1824 1.1 matt return (1);
1825 1.1 matt }
1826 1.1 matt return (0);
1827 1.1 matt }
1828 1.1 matt
1829 1.1 matt /*
1830 1.1 matt * pmap_find_pv()
1831 1.1 matt *
1832 1.17 chris * This is a local function that finds a PV head for a given physical page.
1833 1.1 matt * This is a common op, and this function removes loads of ifdefs in the code.
1834 1.1 matt */
1835 1.17 chris static __inline struct pv_head *
1836 1.17 chris pmap_find_pvh(phys)
1837 1.2 matt paddr_t phys;
1838 1.1 matt {
1839 1.1 matt int bank, off;
1840 1.17 chris struct pv_head *pvh;
1841 1.1 matt
1842 1.1 matt if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1843 1.1 matt panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1844 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
1845 1.17 chris return (pvh);
1846 1.1 matt }
1847 1.1 matt
1848 1.1 matt /*
1849 1.1 matt * pmap_zero_page()
1850 1.1 matt *
1851 1.1 matt * Zero a given physical page by mapping it at a page hook point.
1852 1.1 matt * In doing the zero page op, the page we zero is mapped cachable, as with
1853 1.1 matt * StrongARM accesses to non-cached pages are non-burst making writing
1854 1.1 matt * _any_ bulk data very slow.
1855 1.1 matt */
1856 1.1 matt void
1857 1.1 matt pmap_zero_page(phys)
1858 1.2 matt paddr_t phys;
1859 1.1 matt {
1860 1.17 chris struct pv_head *pvh;
1861 1.1 matt
1862 1.1 matt /* Get an entry for this page, and clean it it. */
1863 1.17 chris pvh = pmap_find_pvh(phys);
1864 1.17 chris simple_lock(&pvh->pvh_lock);
1865 1.17 chris pmap_clean_page(pvh->pvh_list, FALSE);
1866 1.17 chris simple_unlock(&pvh->pvh_lock);
1867 1.17 chris
1868 1.1 matt /*
1869 1.1 matt * Hook in the page, zero it, and purge the cache for that
1870 1.1 matt * zeroed page. Invalidate the TLB as needed.
1871 1.1 matt */
1872 1.1 matt *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1873 1.1 matt cpu_tlb_flushD_SE(page_hook0.va);
1874 1.32 thorpej cpu_cpwait();
1875 1.1 matt bzero_page(page_hook0.va);
1876 1.1 matt cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1877 1.1 matt }
1878 1.1 matt
1879 1.17 chris /* pmap_pageidlezero()
1880 1.17 chris *
1881 1.17 chris * The same as above, except that we assume that the page is not
1882 1.17 chris * mapped. This means we never have to flush the cache first. Called
1883 1.17 chris * from the idle loop.
1884 1.17 chris */
1885 1.17 chris boolean_t
1886 1.17 chris pmap_pageidlezero(phys)
1887 1.17 chris paddr_t phys;
1888 1.17 chris {
1889 1.17 chris int i, *ptr;
1890 1.17 chris boolean_t rv = TRUE;
1891 1.17 chris
1892 1.17 chris #ifdef DIAGNOSTIC
1893 1.17 chris struct pv_head *pvh;
1894 1.17 chris
1895 1.17 chris pvh = pmap_find_pvh(phys);
1896 1.17 chris if (pvh->pvh_list != NULL)
1897 1.17 chris panic("pmap_pageidlezero: zeroing mapped page\n");
1898 1.17 chris #endif
1899 1.17 chris
1900 1.17 chris /*
1901 1.17 chris * Hook in the page, zero it, and purge the cache for that
1902 1.17 chris * zeroed page. Invalidate the TLB as needed.
1903 1.17 chris */
1904 1.17 chris *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1905 1.17 chris cpu_tlb_flushD_SE(page_hook0.va);
1906 1.32 thorpej cpu_cpwait();
1907 1.32 thorpej
1908 1.17 chris for (i = 0, ptr = (int *)page_hook0.va;
1909 1.17 chris i < (NBPG / sizeof(int)); i++) {
1910 1.17 chris if (sched_whichqs != 0) {
1911 1.17 chris /*
1912 1.17 chris * A process has become ready. Abort now,
1913 1.17 chris * so we don't keep it waiting while we
1914 1.17 chris * do slow memory access to finish this
1915 1.17 chris * page.
1916 1.17 chris */
1917 1.17 chris rv = FALSE;
1918 1.17 chris break;
1919 1.17 chris }
1920 1.17 chris *ptr++ = 0;
1921 1.17 chris }
1922 1.17 chris
1923 1.17 chris if (rv)
1924 1.17 chris /*
1925 1.17 chris * if we aborted we'll rezero this page again later so don't
1926 1.17 chris * purge it unless we finished it
1927 1.17 chris */
1928 1.17 chris cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1929 1.17 chris return (rv);
1930 1.17 chris }
1931 1.17 chris
1932 1.1 matt /*
1933 1.1 matt * pmap_copy_page()
1934 1.1 matt *
1935 1.1 matt * Copy one physical page into another, by mapping the pages into
1936 1.1 matt * hook points. The same comment regarding cachability as in
1937 1.1 matt * pmap_zero_page also applies here.
1938 1.1 matt */
1939 1.1 matt void
1940 1.1 matt pmap_copy_page(src, dest)
1941 1.2 matt paddr_t src;
1942 1.2 matt paddr_t dest;
1943 1.1 matt {
1944 1.17 chris struct pv_head *src_pvh, *dest_pvh;
1945 1.20 chris boolean_t cleanedcache;
1946 1.1 matt
1947 1.1 matt /* Get PV entries for the pages, and clean them if needed. */
1948 1.17 chris src_pvh = pmap_find_pvh(src);
1949 1.20 chris
1950 1.17 chris simple_lock(&src_pvh->pvh_lock);
1951 1.20 chris cleanedcache = pmap_clean_page(src_pvh->pvh_list, TRUE);
1952 1.17 chris simple_unlock(&src_pvh->pvh_lock);
1953 1.1 matt
1954 1.20 chris if (cleanedcache == 0) {
1955 1.20 chris dest_pvh = pmap_find_pvh(dest);
1956 1.20 chris simple_lock(&dest_pvh->pvh_lock);
1957 1.20 chris pmap_clean_page(dest_pvh->pvh_list, FALSE);
1958 1.20 chris simple_unlock(&dest_pvh->pvh_lock);
1959 1.20 chris }
1960 1.1 matt /*
1961 1.1 matt * Map the pages into the page hook points, copy them, and purge
1962 1.1 matt * the cache for the appropriate page. Invalidate the TLB
1963 1.1 matt * as required.
1964 1.1 matt */
1965 1.1 matt *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1966 1.1 matt *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1967 1.1 matt cpu_tlb_flushD_SE(page_hook0.va);
1968 1.1 matt cpu_tlb_flushD_SE(page_hook1.va);
1969 1.32 thorpej cpu_cpwait();
1970 1.1 matt bcopy_page(page_hook0.va, page_hook1.va);
1971 1.1 matt cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1972 1.1 matt cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1973 1.1 matt }
1974 1.1 matt
1975 1.1 matt /*
1976 1.2 matt * int pmap_next_phys_page(paddr_t *addr)
1977 1.1 matt *
1978 1.1 matt * Allocate another physical page returning true or false depending
1979 1.1 matt * on whether a page could be allocated.
1980 1.1 matt */
1981 1.1 matt
1982 1.2 matt paddr_t
1983 1.1 matt pmap_next_phys_page(addr)
1984 1.2 matt paddr_t addr;
1985 1.1 matt
1986 1.1 matt {
1987 1.1 matt int loop;
1988 1.1 matt
1989 1.1 matt if (addr < bootconfig.dram[0].address)
1990 1.1 matt return(bootconfig.dram[0].address);
1991 1.1 matt
1992 1.1 matt loop = 0;
1993 1.1 matt
1994 1.1 matt while (bootconfig.dram[loop].address != 0
1995 1.1 matt && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1996 1.1 matt ++loop;
1997 1.1 matt
1998 1.1 matt if (bootconfig.dram[loop].address == 0)
1999 1.1 matt return(0);
2000 1.1 matt
2001 1.1 matt addr += NBPG;
2002 1.1 matt
2003 1.1 matt if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
2004 1.1 matt if (bootconfig.dram[loop + 1].address == 0)
2005 1.1 matt return(0);
2006 1.1 matt addr = bootconfig.dram[loop + 1].address;
2007 1.1 matt }
2008 1.1 matt
2009 1.1 matt return(addr);
2010 1.1 matt }
2011 1.1 matt
2012 1.1 matt #if 0
2013 1.1 matt void
2014 1.1 matt pmap_pte_addref(pmap, va)
2015 1.15 chris struct pmap *pmap;
2016 1.1 matt vaddr_t va;
2017 1.1 matt {
2018 1.1 matt pd_entry_t *pde;
2019 1.2 matt paddr_t pa;
2020 1.1 matt struct vm_page *m;
2021 1.1 matt
2022 1.1 matt if (pmap == pmap_kernel())
2023 1.1 matt return;
2024 1.1 matt
2025 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2026 1.1 matt pa = pmap_pte_pa(pde);
2027 1.1 matt m = PHYS_TO_VM_PAGE(pa);
2028 1.1 matt ++m->wire_count;
2029 1.1 matt #ifdef MYCROFT_HACK
2030 1.1 matt printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2031 1.1 matt pmap, va, pde, pa, m, m->wire_count);
2032 1.1 matt #endif
2033 1.1 matt }
2034 1.1 matt
2035 1.1 matt void
2036 1.1 matt pmap_pte_delref(pmap, va)
2037 1.15 chris struct pmap *pmap;
2038 1.1 matt vaddr_t va;
2039 1.1 matt {
2040 1.1 matt pd_entry_t *pde;
2041 1.2 matt paddr_t pa;
2042 1.1 matt struct vm_page *m;
2043 1.1 matt
2044 1.1 matt if (pmap == pmap_kernel())
2045 1.1 matt return;
2046 1.1 matt
2047 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
2048 1.1 matt pa = pmap_pte_pa(pde);
2049 1.1 matt m = PHYS_TO_VM_PAGE(pa);
2050 1.1 matt --m->wire_count;
2051 1.1 matt #ifdef MYCROFT_HACK
2052 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2053 1.1 matt pmap, va, pde, pa, m, m->wire_count);
2054 1.1 matt #endif
2055 1.1 matt if (m->wire_count == 0) {
2056 1.1 matt #ifdef MYCROFT_HACK
2057 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2058 1.1 matt pmap, va, pde, pa, m);
2059 1.1 matt #endif
2060 1.1 matt pmap_unmap_in_l1(pmap, va);
2061 1.1 matt uvm_pagefree(m);
2062 1.1 matt --pmap->pm_stats.resident_count;
2063 1.1 matt }
2064 1.1 matt }
2065 1.1 matt #else
2066 1.1 matt #define pmap_pte_addref(pmap, va)
2067 1.1 matt #define pmap_pte_delref(pmap, va)
2068 1.1 matt #endif
2069 1.1 matt
2070 1.1 matt /*
2071 1.1 matt * Since we have a virtually indexed cache, we may need to inhibit caching if
2072 1.1 matt * there is more than one mapping and at least one of them is writable.
2073 1.1 matt * Since we purge the cache on every context switch, we only need to check for
2074 1.1 matt * other mappings within the same pmap, or kernel_pmap.
2075 1.1 matt * This function is also called when a page is unmapped, to possibly reenable
2076 1.1 matt * caching on any remaining mappings.
2077 1.28 rearnsha *
2078 1.28 rearnsha * The code implements the following logic, where:
2079 1.28 rearnsha *
2080 1.28 rearnsha * KW = # of kernel read/write pages
2081 1.28 rearnsha * KR = # of kernel read only pages
2082 1.28 rearnsha * UW = # of user read/write pages
2083 1.28 rearnsha * UR = # of user read only pages
2084 1.28 rearnsha * OW = # of user read/write pages in another pmap, then
2085 1.28 rearnsha *
2086 1.28 rearnsha * KC = kernel mapping is cacheable
2087 1.28 rearnsha * UC = user mapping is cacheable
2088 1.28 rearnsha *
2089 1.28 rearnsha * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2090 1.28 rearnsha * +---------------------------------------------
2091 1.28 rearnsha * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2092 1.28 rearnsha * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2093 1.28 rearnsha * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2094 1.28 rearnsha * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2095 1.28 rearnsha * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2096 1.11 chris *
2097 1.11 chris * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2098 1.1 matt */
2099 1.25 rearnsha __inline static void
2100 1.17 chris pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2101 1.12 chris boolean_t clear_cache)
2102 1.1 matt {
2103 1.25 rearnsha if (pmap == pmap_kernel())
2104 1.25 rearnsha pmap_vac_me_kpmap(pmap, pvh, ptes, clear_cache);
2105 1.25 rearnsha else
2106 1.25 rearnsha pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2107 1.25 rearnsha }
2108 1.25 rearnsha
2109 1.25 rearnsha static void
2110 1.25 rearnsha pmap_vac_me_kpmap(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2111 1.25 rearnsha boolean_t clear_cache)
2112 1.25 rearnsha {
2113 1.25 rearnsha int user_entries = 0;
2114 1.25 rearnsha int user_writable = 0;
2115 1.25 rearnsha int user_cacheable = 0;
2116 1.25 rearnsha int kernel_entries = 0;
2117 1.25 rearnsha int kernel_writable = 0;
2118 1.25 rearnsha int kernel_cacheable = 0;
2119 1.25 rearnsha struct pv_entry *pv;
2120 1.25 rearnsha struct pmap *last_pmap = pmap;
2121 1.25 rearnsha
2122 1.25 rearnsha #ifdef DIAGNOSTIC
2123 1.25 rearnsha if (pmap != pmap_kernel())
2124 1.25 rearnsha panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2125 1.25 rearnsha #endif
2126 1.25 rearnsha
2127 1.25 rearnsha /*
2128 1.25 rearnsha * Pass one, see if there are both kernel and user pmaps for
2129 1.25 rearnsha * this page. Calculate whether there are user-writable or
2130 1.25 rearnsha * kernel-writable pages.
2131 1.25 rearnsha */
2132 1.25 rearnsha for (pv = pvh->pvh_list; pv != NULL; pv = pv->pv_next) {
2133 1.25 rearnsha if (pv->pv_pmap != pmap) {
2134 1.25 rearnsha user_entries++;
2135 1.25 rearnsha if (pv->pv_flags & PT_Wr)
2136 1.25 rearnsha user_writable++;
2137 1.25 rearnsha if ((pv->pv_flags & PT_NC) == 0)
2138 1.25 rearnsha user_cacheable++;
2139 1.25 rearnsha } else {
2140 1.25 rearnsha kernel_entries++;
2141 1.25 rearnsha if (pv->pv_flags & PT_Wr)
2142 1.25 rearnsha kernel_writable++;
2143 1.25 rearnsha if ((pv->pv_flags & PT_NC) == 0)
2144 1.25 rearnsha kernel_cacheable++;
2145 1.25 rearnsha }
2146 1.25 rearnsha }
2147 1.25 rearnsha
2148 1.25 rearnsha /*
2149 1.25 rearnsha * We know we have just been updating a kernel entry, so if
2150 1.25 rearnsha * all user pages are already cacheable, then there is nothing
2151 1.25 rearnsha * further to do.
2152 1.25 rearnsha */
2153 1.25 rearnsha if (kernel_entries == 0 &&
2154 1.25 rearnsha user_cacheable == user_entries)
2155 1.25 rearnsha return;
2156 1.25 rearnsha
2157 1.25 rearnsha if (user_entries) {
2158 1.25 rearnsha /*
2159 1.25 rearnsha * Scan over the list again, for each entry, if it
2160 1.25 rearnsha * might not be set correctly, call pmap_vac_me_user
2161 1.25 rearnsha * to recalculate the settings.
2162 1.25 rearnsha */
2163 1.25 rearnsha for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
2164 1.25 rearnsha /*
2165 1.25 rearnsha * We know kernel mappings will get set
2166 1.25 rearnsha * correctly in other calls. We also know
2167 1.25 rearnsha * that if the pmap is the same as last_pmap
2168 1.25 rearnsha * then we've just handled this entry.
2169 1.25 rearnsha */
2170 1.25 rearnsha if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2171 1.25 rearnsha continue;
2172 1.25 rearnsha /*
2173 1.25 rearnsha * If there are kernel entries and this page
2174 1.25 rearnsha * is writable but non-cacheable, then we can
2175 1.25 rearnsha * skip this entry also.
2176 1.25 rearnsha */
2177 1.25 rearnsha if (kernel_entries > 0 &&
2178 1.25 rearnsha (pv->pv_flags & (PT_NC | PT_Wr)) ==
2179 1.25 rearnsha (PT_NC | PT_Wr))
2180 1.25 rearnsha continue;
2181 1.25 rearnsha /*
2182 1.25 rearnsha * Similarly if there are no kernel-writable
2183 1.25 rearnsha * entries and the page is already
2184 1.25 rearnsha * read-only/cacheable.
2185 1.25 rearnsha */
2186 1.25 rearnsha if (kernel_writable == 0 &&
2187 1.25 rearnsha (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2188 1.25 rearnsha continue;
2189 1.25 rearnsha /*
2190 1.25 rearnsha * For some of the remaining cases, we know
2191 1.25 rearnsha * that we must recalculate, but for others we
2192 1.25 rearnsha * can't tell if they are correct or not, so
2193 1.25 rearnsha * we recalculate anyway.
2194 1.25 rearnsha */
2195 1.25 rearnsha pmap_unmap_ptes(last_pmap);
2196 1.25 rearnsha last_pmap = pv->pv_pmap;
2197 1.25 rearnsha ptes = pmap_map_ptes(last_pmap);
2198 1.25 rearnsha pmap_vac_me_user(last_pmap, pvh, ptes,
2199 1.25 rearnsha pmap_is_curpmap(last_pmap));
2200 1.25 rearnsha }
2201 1.25 rearnsha /* Restore the pte mapping that was passed to us. */
2202 1.25 rearnsha if (last_pmap != pmap) {
2203 1.25 rearnsha pmap_unmap_ptes(last_pmap);
2204 1.25 rearnsha ptes = pmap_map_ptes(pmap);
2205 1.25 rearnsha }
2206 1.25 rearnsha if (kernel_entries == 0)
2207 1.25 rearnsha return;
2208 1.25 rearnsha }
2209 1.25 rearnsha
2210 1.25 rearnsha pmap_vac_me_user(pmap, pvh, ptes, clear_cache);
2211 1.25 rearnsha return;
2212 1.25 rearnsha }
2213 1.25 rearnsha
2214 1.25 rearnsha static void
2215 1.25 rearnsha pmap_vac_me_user(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
2216 1.25 rearnsha boolean_t clear_cache)
2217 1.25 rearnsha {
2218 1.25 rearnsha struct pmap *kpmap = pmap_kernel();
2219 1.17 chris struct pv_entry *pv, *npv;
2220 1.1 matt int entries = 0;
2221 1.25 rearnsha int writable = 0;
2222 1.12 chris int cacheable_entries = 0;
2223 1.25 rearnsha int kern_cacheable = 0;
2224 1.25 rearnsha int other_writable = 0;
2225 1.1 matt
2226 1.17 chris pv = pvh->pvh_list;
2227 1.11 chris KASSERT(ptes != NULL);
2228 1.1 matt
2229 1.1 matt /*
2230 1.1 matt * Count mappings and writable mappings in this pmap.
2231 1.25 rearnsha * Include kernel mappings as part of our own.
2232 1.1 matt * Keep a pointer to the first one.
2233 1.1 matt */
2234 1.1 matt for (npv = pv; npv; npv = npv->pv_next) {
2235 1.1 matt /* Count mappings in the same pmap */
2236 1.25 rearnsha if (pmap == npv->pv_pmap ||
2237 1.25 rearnsha kpmap == npv->pv_pmap) {
2238 1.1 matt if (entries++ == 0)
2239 1.1 matt pv = npv;
2240 1.12 chris /* Cacheable mappings */
2241 1.25 rearnsha if ((npv->pv_flags & PT_NC) == 0) {
2242 1.12 chris cacheable_entries++;
2243 1.25 rearnsha if (kpmap == npv->pv_pmap)
2244 1.25 rearnsha kern_cacheable++;
2245 1.25 rearnsha }
2246 1.25 rearnsha /* Writable mappings */
2247 1.1 matt if (npv->pv_flags & PT_Wr)
2248 1.25 rearnsha ++writable;
2249 1.25 rearnsha } else if (npv->pv_flags & PT_Wr)
2250 1.25 rearnsha other_writable = 1;
2251 1.1 matt }
2252 1.1 matt
2253 1.12 chris PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2254 1.25 rearnsha "writable %d cacheable %d %s\n", pmap, entries, writable,
2255 1.12 chris cacheable_entries, clear_cache ? "clean" : "no clean"));
2256 1.12 chris
2257 1.1 matt /*
2258 1.1 matt * Enable or disable caching as necessary.
2259 1.25 rearnsha * Note: the first entry might be part of the kernel pmap,
2260 1.25 rearnsha * so we can't assume this is indicative of the state of the
2261 1.25 rearnsha * other (maybe non-kpmap) entries.
2262 1.1 matt */
2263 1.25 rearnsha if ((entries > 1 && writable) ||
2264 1.25 rearnsha (entries > 0 && pmap == kpmap && other_writable)) {
2265 1.12 chris if (cacheable_entries == 0)
2266 1.12 chris return;
2267 1.25 rearnsha for (npv = pv; npv; npv = npv->pv_next) {
2268 1.25 rearnsha if ((pmap == npv->pv_pmap
2269 1.25 rearnsha || kpmap == npv->pv_pmap) &&
2270 1.12 chris (npv->pv_flags & PT_NC) == 0) {
2271 1.12 chris ptes[arm_byte_to_page(npv->pv_va)] &=
2272 1.11 chris ~(PT_C | PT_B);
2273 1.12 chris npv->pv_flags |= PT_NC;
2274 1.25 rearnsha /*
2275 1.25 rearnsha * If this page needs flushing from the
2276 1.25 rearnsha * cache, and we aren't going to do it
2277 1.25 rearnsha * below, do it now.
2278 1.25 rearnsha */
2279 1.25 rearnsha if ((cacheable_entries < 4 &&
2280 1.25 rearnsha (clear_cache || npv->pv_pmap == kpmap)) ||
2281 1.25 rearnsha (npv->pv_pmap == kpmap &&
2282 1.25 rearnsha !clear_cache && kern_cacheable < 4)) {
2283 1.12 chris cpu_cache_purgeID_rng(npv->pv_va,
2284 1.12 chris NBPG);
2285 1.12 chris cpu_tlb_flushID_SE(npv->pv_va);
2286 1.12 chris }
2287 1.1 matt }
2288 1.1 matt }
2289 1.25 rearnsha if ((clear_cache && cacheable_entries >= 4) ||
2290 1.25 rearnsha kern_cacheable >= 4) {
2291 1.12 chris cpu_cache_purgeID();
2292 1.12 chris cpu_tlb_flushID();
2293 1.12 chris }
2294 1.32 thorpej cpu_cpwait();
2295 1.1 matt } else if (entries > 0) {
2296 1.25 rearnsha /*
2297 1.25 rearnsha * Turn cacheing back on for some pages. If it is a kernel
2298 1.25 rearnsha * page, only do so if there are no other writable pages.
2299 1.25 rearnsha */
2300 1.25 rearnsha for (npv = pv; npv; npv = npv->pv_next) {
2301 1.25 rearnsha if ((pmap == npv->pv_pmap ||
2302 1.25 rearnsha (kpmap == npv->pv_pmap && other_writable == 0)) &&
2303 1.25 rearnsha (npv->pv_flags & PT_NC)) {
2304 1.11 chris ptes[arm_byte_to_page(npv->pv_va)] |=
2305 1.27 rearnsha pte_cache_mode;
2306 1.12 chris npv->pv_flags &= ~PT_NC;
2307 1.1 matt }
2308 1.1 matt }
2309 1.1 matt }
2310 1.1 matt }
2311 1.1 matt
2312 1.1 matt /*
2313 1.1 matt * pmap_remove()
2314 1.1 matt *
2315 1.1 matt * pmap_remove is responsible for nuking a number of mappings for a range
2316 1.1 matt * of virtual address space in the current pmap. To do this efficiently
2317 1.1 matt * is interesting, because in a number of cases a wide virtual address
2318 1.1 matt * range may be supplied that contains few actual mappings. So, the
2319 1.1 matt * optimisations are:
2320 1.1 matt * 1. Try and skip over hunks of address space for which an L1 entry
2321 1.1 matt * does not exist.
2322 1.1 matt * 2. Build up a list of pages we've hit, up to a maximum, so we can
2323 1.1 matt * maybe do just a partial cache clean. This path of execution is
2324 1.1 matt * complicated by the fact that the cache must be flushed _before_
2325 1.1 matt * the PTE is nuked, being a VAC :-)
2326 1.1 matt * 3. Maybe later fast-case a single page, but I don't think this is
2327 1.1 matt * going to make _that_ much difference overall.
2328 1.1 matt */
2329 1.1 matt
2330 1.1 matt #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2331 1.1 matt
2332 1.1 matt void
2333 1.1 matt pmap_remove(pmap, sva, eva)
2334 1.15 chris struct pmap *pmap;
2335 1.1 matt vaddr_t sva;
2336 1.1 matt vaddr_t eva;
2337 1.1 matt {
2338 1.1 matt int cleanlist_idx = 0;
2339 1.1 matt struct pagelist {
2340 1.1 matt vaddr_t va;
2341 1.1 matt pt_entry_t *pte;
2342 1.1 matt } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2343 1.11 chris pt_entry_t *pte = 0, *ptes;
2344 1.2 matt paddr_t pa;
2345 1.1 matt int pmap_active;
2346 1.17 chris struct pv_head *pvh;
2347 1.1 matt
2348 1.1 matt /* Exit quick if there is no pmap */
2349 1.1 matt if (!pmap)
2350 1.1 matt return;
2351 1.1 matt
2352 1.1 matt PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2353 1.1 matt
2354 1.1 matt sva &= PG_FRAME;
2355 1.1 matt eva &= PG_FRAME;
2356 1.1 matt
2357 1.17 chris /*
2358 1.17 chris * we lock in the pmap => pv_head direction
2359 1.17 chris */
2360 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2361 1.17 chris
2362 1.11 chris ptes = pmap_map_ptes(pmap);
2363 1.1 matt /* Get a page table pointer */
2364 1.1 matt while (sva < eva) {
2365 1.30 rearnsha if (pmap_pde_page(pmap_pde(pmap, sva)))
2366 1.1 matt break;
2367 1.1 matt sva = (sva & PD_MASK) + NBPD;
2368 1.1 matt }
2369 1.11 chris
2370 1.11 chris pte = &ptes[arm_byte_to_page(sva)];
2371 1.1 matt /* Note if the pmap is active thus require cache and tlb cleans */
2372 1.1 matt if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2373 1.15 chris || (pmap == pmap_kernel()))
2374 1.1 matt pmap_active = 1;
2375 1.1 matt else
2376 1.1 matt pmap_active = 0;
2377 1.1 matt
2378 1.1 matt /* Now loop along */
2379 1.1 matt while (sva < eva) {
2380 1.1 matt /* Check if we can move to the next PDE (l1 chunk) */
2381 1.1 matt if (!(sva & PT_MASK))
2382 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2383 1.1 matt sva += NBPD;
2384 1.1 matt pte += arm_byte_to_page(NBPD);
2385 1.1 matt continue;
2386 1.1 matt }
2387 1.1 matt
2388 1.1 matt /* We've found a valid PTE, so this page of PTEs has to go. */
2389 1.1 matt if (pmap_pte_v(pte)) {
2390 1.1 matt int bank, off;
2391 1.1 matt
2392 1.1 matt /* Update statistics */
2393 1.1 matt --pmap->pm_stats.resident_count;
2394 1.1 matt
2395 1.1 matt /*
2396 1.1 matt * Add this page to our cache remove list, if we can.
2397 1.1 matt * If, however the cache remove list is totally full,
2398 1.1 matt * then do a complete cache invalidation taking note
2399 1.1 matt * to backtrack the PTE table beforehand, and ignore
2400 1.1 matt * the lists in future because there's no longer any
2401 1.1 matt * point in bothering with them (we've paid the
2402 1.1 matt * penalty, so will carry on unhindered). Otherwise,
2403 1.1 matt * when we fall out, we just clean the list.
2404 1.1 matt */
2405 1.1 matt PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2406 1.1 matt pa = pmap_pte_pa(pte);
2407 1.1 matt
2408 1.1 matt if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2409 1.1 matt /* Add to the clean list. */
2410 1.1 matt cleanlist[cleanlist_idx].pte = pte;
2411 1.1 matt cleanlist[cleanlist_idx].va = sva;
2412 1.1 matt cleanlist_idx++;
2413 1.1 matt } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2414 1.1 matt int cnt;
2415 1.1 matt
2416 1.1 matt /* Nuke everything if needed. */
2417 1.1 matt if (pmap_active) {
2418 1.1 matt cpu_cache_purgeID();
2419 1.1 matt cpu_tlb_flushID();
2420 1.1 matt }
2421 1.1 matt
2422 1.1 matt /*
2423 1.1 matt * Roll back the previous PTE list,
2424 1.1 matt * and zero out the current PTE.
2425 1.1 matt */
2426 1.1 matt for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2427 1.1 matt *cleanlist[cnt].pte = 0;
2428 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
2429 1.1 matt }
2430 1.1 matt *pte = 0;
2431 1.1 matt pmap_pte_delref(pmap, sva);
2432 1.1 matt cleanlist_idx++;
2433 1.1 matt } else {
2434 1.1 matt /*
2435 1.1 matt * We've already nuked the cache and
2436 1.1 matt * TLB, so just carry on regardless,
2437 1.1 matt * and we won't need to do it again
2438 1.1 matt */
2439 1.1 matt *pte = 0;
2440 1.1 matt pmap_pte_delref(pmap, sva);
2441 1.1 matt }
2442 1.1 matt
2443 1.1 matt /*
2444 1.1 matt * Update flags. In a number of circumstances,
2445 1.1 matt * we could cluster a lot of these and do a
2446 1.1 matt * number of sequential pages in one go.
2447 1.1 matt */
2448 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2449 1.17 chris struct pv_entry *pve;
2450 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
2451 1.17 chris simple_lock(&pvh->pvh_lock);
2452 1.17 chris pve = pmap_remove_pv(pvh, pmap, sva);
2453 1.17 chris pmap_free_pv(pmap, pve);
2454 1.17 chris pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2455 1.17 chris simple_unlock(&pvh->pvh_lock);
2456 1.1 matt }
2457 1.1 matt }
2458 1.1 matt sva += NBPG;
2459 1.1 matt pte++;
2460 1.1 matt }
2461 1.1 matt
2462 1.11 chris pmap_unmap_ptes(pmap);
2463 1.1 matt /*
2464 1.1 matt * Now, if we've fallen through down to here, chances are that there
2465 1.1 matt * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2466 1.1 matt */
2467 1.1 matt if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2468 1.1 matt u_int cnt;
2469 1.1 matt
2470 1.1 matt for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2471 1.1 matt if (pmap_active) {
2472 1.1 matt cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
2473 1.1 matt *cleanlist[cnt].pte = 0;
2474 1.1 matt cpu_tlb_flushID_SE(cleanlist[cnt].va);
2475 1.1 matt } else
2476 1.1 matt *cleanlist[cnt].pte = 0;
2477 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
2478 1.1 matt }
2479 1.1 matt }
2480 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2481 1.1 matt }
2482 1.1 matt
2483 1.1 matt /*
2484 1.1 matt * Routine: pmap_remove_all
2485 1.1 matt * Function:
2486 1.1 matt * Removes this physical page from
2487 1.1 matt * all physical maps in which it resides.
2488 1.1 matt * Reflects back modify bits to the pager.
2489 1.1 matt */
2490 1.1 matt
2491 1.1 matt void
2492 1.1 matt pmap_remove_all(pa)
2493 1.2 matt paddr_t pa;
2494 1.1 matt {
2495 1.17 chris struct pv_entry *pv, *npv;
2496 1.17 chris struct pv_head *pvh;
2497 1.15 chris struct pmap *pmap;
2498 1.11 chris pt_entry_t *pte, *ptes;
2499 1.1 matt
2500 1.1 matt PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
2501 1.1 matt
2502 1.17 chris /* set pv_head => pmap locking */
2503 1.17 chris PMAP_HEAD_TO_MAP_LOCK();
2504 1.1 matt
2505 1.17 chris pvh = pmap_find_pvh(pa);
2506 1.17 chris simple_lock(&pvh->pvh_lock);
2507 1.17 chris
2508 1.17 chris pv = pvh->pvh_list;
2509 1.17 chris if (pv == NULL)
2510 1.17 chris {
2511 1.17 chris PDEBUG(0, printf("free page\n"));
2512 1.17 chris simple_unlock(&pvh->pvh_lock);
2513 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
2514 1.17 chris return;
2515 1.1 matt }
2516 1.17 chris pmap_clean_page(pv, FALSE);
2517 1.1 matt
2518 1.1 matt while (pv) {
2519 1.1 matt pmap = pv->pv_pmap;
2520 1.11 chris ptes = pmap_map_ptes(pmap);
2521 1.11 chris pte = &ptes[arm_byte_to_page(pv->pv_va)];
2522 1.1 matt
2523 1.1 matt PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2524 1.1 matt pv->pv_va, pv->pv_flags));
2525 1.1 matt #ifdef DEBUG
2526 1.32 thorpej if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2527 1.30 rearnsha !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2528 1.1 matt panic("pmap_remove_all: bad mapping");
2529 1.1 matt #endif /* DEBUG */
2530 1.1 matt
2531 1.1 matt /*
2532 1.1 matt * Update statistics
2533 1.1 matt */
2534 1.1 matt --pmap->pm_stats.resident_count;
2535 1.1 matt
2536 1.1 matt /* Wired bit */
2537 1.1 matt if (pv->pv_flags & PT_W)
2538 1.1 matt --pmap->pm_stats.wired_count;
2539 1.1 matt
2540 1.1 matt /*
2541 1.1 matt * Invalidate the PTEs.
2542 1.1 matt * XXX: should cluster them up and invalidate as many
2543 1.1 matt * as possible at once.
2544 1.1 matt */
2545 1.1 matt
2546 1.1 matt #ifdef needednotdone
2547 1.1 matt reduce wiring count on page table pages as references drop
2548 1.1 matt #endif
2549 1.1 matt
2550 1.1 matt *pte = 0;
2551 1.1 matt pmap_pte_delref(pmap, pv->pv_va);
2552 1.1 matt
2553 1.1 matt npv = pv->pv_next;
2554 1.17 chris pmap_free_pv(pmap, pv);
2555 1.1 matt pv = npv;
2556 1.11 chris pmap_unmap_ptes(pmap);
2557 1.1 matt }
2558 1.17 chris pvh->pvh_list = NULL;
2559 1.17 chris simple_unlock(&pvh->pvh_lock);
2560 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
2561 1.1 matt
2562 1.1 matt PDEBUG(0, printf("done\n"));
2563 1.1 matt cpu_tlb_flushID();
2564 1.32 thorpej cpu_cpwait();
2565 1.1 matt }
2566 1.1 matt
2567 1.1 matt
2568 1.1 matt /*
2569 1.1 matt * Set the physical protection on the specified range of this map as requested.
2570 1.1 matt */
2571 1.1 matt
2572 1.1 matt void
2573 1.1 matt pmap_protect(pmap, sva, eva, prot)
2574 1.15 chris struct pmap *pmap;
2575 1.1 matt vaddr_t sva;
2576 1.1 matt vaddr_t eva;
2577 1.1 matt vm_prot_t prot;
2578 1.1 matt {
2579 1.11 chris pt_entry_t *pte = NULL, *ptes;
2580 1.1 matt int armprot;
2581 1.1 matt int flush = 0;
2582 1.2 matt paddr_t pa;
2583 1.1 matt int bank, off;
2584 1.17 chris struct pv_head *pvh;
2585 1.1 matt
2586 1.1 matt PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2587 1.1 matt pmap, sva, eva, prot));
2588 1.1 matt
2589 1.1 matt if (~prot & VM_PROT_READ) {
2590 1.1 matt /* Just remove the mappings. */
2591 1.1 matt pmap_remove(pmap, sva, eva);
2592 1.1 matt return;
2593 1.1 matt }
2594 1.1 matt if (prot & VM_PROT_WRITE) {
2595 1.1 matt /*
2596 1.1 matt * If this is a read->write transition, just ignore it and let
2597 1.1 matt * uvm_fault() take care of it later.
2598 1.1 matt */
2599 1.1 matt return;
2600 1.1 matt }
2601 1.1 matt
2602 1.1 matt sva &= PG_FRAME;
2603 1.1 matt eva &= PG_FRAME;
2604 1.1 matt
2605 1.17 chris /* Need to lock map->head */
2606 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2607 1.17 chris
2608 1.11 chris ptes = pmap_map_ptes(pmap);
2609 1.1 matt /*
2610 1.1 matt * We need to acquire a pointer to a page table page before entering
2611 1.1 matt * the following loop.
2612 1.1 matt */
2613 1.1 matt while (sva < eva) {
2614 1.30 rearnsha if (pmap_pde_page(pmap_pde(pmap, sva)))
2615 1.1 matt break;
2616 1.1 matt sva = (sva & PD_MASK) + NBPD;
2617 1.1 matt }
2618 1.11 chris
2619 1.11 chris pte = &ptes[arm_byte_to_page(sva)];
2620 1.17 chris
2621 1.1 matt while (sva < eva) {
2622 1.1 matt /* only check once in a while */
2623 1.1 matt if ((sva & PT_MASK) == 0) {
2624 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2625 1.1 matt /* We can race ahead here, to the next pde. */
2626 1.1 matt sva += NBPD;
2627 1.1 matt pte += arm_byte_to_page(NBPD);
2628 1.1 matt continue;
2629 1.1 matt }
2630 1.1 matt }
2631 1.1 matt
2632 1.1 matt if (!pmap_pte_v(pte))
2633 1.1 matt goto next;
2634 1.1 matt
2635 1.1 matt flush = 1;
2636 1.1 matt
2637 1.1 matt armprot = 0;
2638 1.1 matt if (sva < VM_MAXUSER_ADDRESS)
2639 1.1 matt armprot |= PT_AP(AP_U);
2640 1.1 matt else if (sva < VM_MAX_ADDRESS)
2641 1.1 matt armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2642 1.1 matt *pte = (*pte & 0xfffff00f) | armprot;
2643 1.1 matt
2644 1.1 matt pa = pmap_pte_pa(pte);
2645 1.1 matt
2646 1.1 matt /* Get the physical page index */
2647 1.1 matt
2648 1.1 matt /* Clear write flag */
2649 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2650 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
2651 1.17 chris simple_lock(&pvh->pvh_lock);
2652 1.17 chris (void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
2653 1.17 chris pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
2654 1.17 chris simple_unlock(&pvh->pvh_lock);
2655 1.1 matt }
2656 1.1 matt
2657 1.1 matt next:
2658 1.1 matt sva += NBPG;
2659 1.1 matt pte++;
2660 1.1 matt }
2661 1.11 chris pmap_unmap_ptes(pmap);
2662 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2663 1.1 matt if (flush)
2664 1.1 matt cpu_tlb_flushID();
2665 1.1 matt }
2666 1.1 matt
2667 1.1 matt /*
2668 1.15 chris * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2669 1.1 matt * int flags)
2670 1.1 matt *
2671 1.1 matt * Insert the given physical page (p) at
2672 1.1 matt * the specified virtual address (v) in the
2673 1.1 matt * target physical map with the protection requested.
2674 1.1 matt *
2675 1.1 matt * If specified, the page will be wired down, meaning
2676 1.1 matt * that the related pte can not be reclaimed.
2677 1.1 matt *
2678 1.1 matt * NB: This is the only routine which MAY NOT lazy-evaluate
2679 1.1 matt * or lose information. That is, this routine must actually
2680 1.1 matt * insert this page into the given map NOW.
2681 1.1 matt */
2682 1.1 matt
2683 1.1 matt int
2684 1.1 matt pmap_enter(pmap, va, pa, prot, flags)
2685 1.15 chris struct pmap *pmap;
2686 1.1 matt vaddr_t va;
2687 1.2 matt paddr_t pa;
2688 1.1 matt vm_prot_t prot;
2689 1.1 matt int flags;
2690 1.1 matt {
2691 1.11 chris pt_entry_t *pte, *ptes;
2692 1.1 matt u_int npte;
2693 1.1 matt int bank, off;
2694 1.2 matt paddr_t opa;
2695 1.1 matt int nflags;
2696 1.1 matt boolean_t wired = (flags & PMAP_WIRED) != 0;
2697 1.17 chris struct pv_entry *pve;
2698 1.17 chris struct pv_head *pvh;
2699 1.17 chris int error;
2700 1.1 matt
2701 1.1 matt PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2702 1.1 matt va, pa, pmap, prot, wired));
2703 1.1 matt
2704 1.1 matt #ifdef DIAGNOSTIC
2705 1.1 matt /* Valid address ? */
2706 1.1 matt if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2707 1.1 matt panic("pmap_enter: too big");
2708 1.1 matt if (pmap != pmap_kernel() && va != 0) {
2709 1.1 matt if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2710 1.1 matt panic("pmap_enter: kernel page in user map");
2711 1.1 matt } else {
2712 1.1 matt if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2713 1.1 matt panic("pmap_enter: user page in kernel map");
2714 1.1 matt if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2715 1.1 matt panic("pmap_enter: entering PT page");
2716 1.1 matt }
2717 1.1 matt #endif
2718 1.17 chris /* get lock */
2719 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2720 1.1 matt /*
2721 1.1 matt * Get a pointer to the pte for this virtual address. If the
2722 1.1 matt * pte pointer is NULL then we are missing the L2 page table
2723 1.1 matt * so we need to create one.
2724 1.1 matt */
2725 1.24 chris /* XXX horrible hack to get us working with lockdebug */
2726 1.24 chris simple_lock(&pmap->pm_obj.vmobjlock);
2727 1.1 matt pte = pmap_pte(pmap, va);
2728 1.1 matt if (!pte) {
2729 1.17 chris struct vm_page *ptp;
2730 1.17 chris
2731 1.17 chris /* if failure is allowed then don't try too hard */
2732 1.17 chris ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
2733 1.17 chris if (ptp == NULL) {
2734 1.17 chris if (flags & PMAP_CANFAIL) {
2735 1.17 chris error = ENOMEM;
2736 1.17 chris goto out;
2737 1.17 chris }
2738 1.17 chris panic("pmap_enter: get ptp failed");
2739 1.1 matt }
2740 1.16 chris
2741 1.1 matt pte = pmap_pte(pmap, va);
2742 1.1 matt #ifdef DIAGNOSTIC
2743 1.1 matt if (!pte)
2744 1.1 matt panic("pmap_enter: no pte");
2745 1.1 matt #endif
2746 1.1 matt }
2747 1.1 matt
2748 1.1 matt nflags = 0;
2749 1.1 matt if (prot & VM_PROT_WRITE)
2750 1.1 matt nflags |= PT_Wr;
2751 1.1 matt if (wired)
2752 1.1 matt nflags |= PT_W;
2753 1.1 matt
2754 1.1 matt /* More debugging info */
2755 1.1 matt PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2756 1.1 matt *pte));
2757 1.1 matt
2758 1.1 matt /* Is the pte valid ? If so then this page is already mapped */
2759 1.1 matt if (pmap_pte_v(pte)) {
2760 1.1 matt /* Get the physical address of the current page mapped */
2761 1.1 matt opa = pmap_pte_pa(pte);
2762 1.1 matt
2763 1.1 matt #ifdef MYCROFT_HACK
2764 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2765 1.1 matt #endif
2766 1.1 matt
2767 1.1 matt /* Are we mapping the same page ? */
2768 1.1 matt if (opa == pa) {
2769 1.1 matt /* All we must be doing is changing the protection */
2770 1.1 matt PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2771 1.1 matt va, pa));
2772 1.1 matt
2773 1.1 matt /* Has the wiring changed ? */
2774 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2775 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
2776 1.17 chris simple_lock(&pvh->pvh_lock);
2777 1.17 chris (void) pmap_modify_pv(pmap, va, pvh,
2778 1.1 matt PT_Wr | PT_W, nflags);
2779 1.17 chris simple_unlock(&pvh->pvh_lock);
2780 1.17 chris } else {
2781 1.17 chris pvh = NULL;
2782 1.17 chris }
2783 1.1 matt } else {
2784 1.1 matt /* We are replacing the page with a new one. */
2785 1.1 matt cpu_cache_purgeID_rng(va, NBPG);
2786 1.1 matt
2787 1.1 matt PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2788 1.1 matt va, pa, opa));
2789 1.1 matt
2790 1.1 matt /*
2791 1.1 matt * If it is part of our managed memory then we
2792 1.1 matt * must remove it from the PV list
2793 1.1 matt */
2794 1.1 matt if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2795 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
2796 1.17 chris simple_lock(&pvh->pvh_lock);
2797 1.17 chris pve = pmap_remove_pv(pvh, pmap, va);
2798 1.17 chris simple_unlock(&pvh->pvh_lock);
2799 1.17 chris } else {
2800 1.17 chris pve = NULL;
2801 1.1 matt }
2802 1.1 matt
2803 1.1 matt goto enter;
2804 1.1 matt }
2805 1.1 matt } else {
2806 1.1 matt opa = 0;
2807 1.17 chris pve = NULL;
2808 1.1 matt pmap_pte_addref(pmap, va);
2809 1.1 matt
2810 1.1 matt /* pte is not valid so we must be hooking in a new page */
2811 1.1 matt ++pmap->pm_stats.resident_count;
2812 1.1 matt
2813 1.1 matt enter:
2814 1.1 matt /*
2815 1.1 matt * Enter on the PV list if part of our managed memory
2816 1.1 matt */
2817 1.17 chris bank = vm_physseg_find(atop(pa), &off);
2818 1.17 chris
2819 1.17 chris if (pmap_initialized && (bank != -1)) {
2820 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
2821 1.17 chris if (pve == NULL) {
2822 1.17 chris pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2823 1.17 chris if (pve == NULL) {
2824 1.17 chris if (flags & PMAP_CANFAIL) {
2825 1.17 chris error = ENOMEM;
2826 1.17 chris goto out;
2827 1.17 chris }
2828 1.17 chris panic("pmap_enter: no pv entries available");
2829 1.17 chris }
2830 1.17 chris }
2831 1.17 chris /* enter_pv locks pvh when adding */
2832 1.17 chris pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
2833 1.17 chris } else {
2834 1.17 chris pvh = NULL;
2835 1.17 chris if (pve != NULL)
2836 1.17 chris pmap_free_pv(pmap, pve);
2837 1.1 matt }
2838 1.1 matt }
2839 1.1 matt
2840 1.1 matt #ifdef MYCROFT_HACK
2841 1.1 matt if (mycroft_hack)
2842 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2843 1.1 matt #endif
2844 1.1 matt
2845 1.1 matt /* Construct the pte, giving the correct access. */
2846 1.1 matt npte = (pa & PG_FRAME);
2847 1.1 matt
2848 1.1 matt /* VA 0 is magic. */
2849 1.1 matt if (pmap != pmap_kernel() && va != 0)
2850 1.1 matt npte |= PT_AP(AP_U);
2851 1.1 matt
2852 1.17 chris if (pmap_initialized && bank != -1) {
2853 1.1 matt #ifdef DIAGNOSTIC
2854 1.1 matt if ((flags & VM_PROT_ALL) & ~prot)
2855 1.1 matt panic("pmap_enter: access_type exceeds prot");
2856 1.1 matt #endif
2857 1.27 rearnsha npte |= pte_cache_mode;
2858 1.1 matt if (flags & VM_PROT_WRITE) {
2859 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2860 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2861 1.1 matt } else if (flags & VM_PROT_ALL) {
2862 1.1 matt npte |= L2_SPAGE;
2863 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2864 1.1 matt } else
2865 1.1 matt npte |= L2_INVAL;
2866 1.1 matt } else {
2867 1.1 matt if (prot & VM_PROT_WRITE)
2868 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2869 1.1 matt else if (prot & VM_PROT_ALL)
2870 1.1 matt npte |= L2_SPAGE;
2871 1.1 matt else
2872 1.1 matt npte |= L2_INVAL;
2873 1.1 matt }
2874 1.1 matt
2875 1.1 matt #ifdef MYCROFT_HACK
2876 1.1 matt if (mycroft_hack)
2877 1.1 matt printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2878 1.1 matt #endif
2879 1.1 matt
2880 1.1 matt *pte = npte;
2881 1.1 matt
2882 1.17 chris if (pmap_initialized && bank != -1)
2883 1.11 chris {
2884 1.12 chris boolean_t pmap_active = FALSE;
2885 1.11 chris /* XXX this will change once the whole of pmap_enter uses
2886 1.11 chris * map_ptes
2887 1.11 chris */
2888 1.11 chris ptes = pmap_map_ptes(pmap);
2889 1.12 chris if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
2890 1.15 chris || (pmap == pmap_kernel()))
2891 1.12 chris pmap_active = TRUE;
2892 1.17 chris simple_lock(&pvh->pvh_lock);
2893 1.17 chris pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
2894 1.17 chris simple_unlock(&pvh->pvh_lock);
2895 1.11 chris pmap_unmap_ptes(pmap);
2896 1.11 chris }
2897 1.1 matt
2898 1.1 matt /* Better flush the TLB ... */
2899 1.1 matt cpu_tlb_flushID_SE(va);
2900 1.17 chris error = 0;
2901 1.17 chris out:
2902 1.24 chris simple_unlock(&pmap->pm_obj.vmobjlock);
2903 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2904 1.1 matt PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2905 1.1 matt
2906 1.17 chris return error;
2907 1.1 matt }
2908 1.1 matt
2909 1.1 matt void
2910 1.1 matt pmap_kenter_pa(va, pa, prot)
2911 1.1 matt vaddr_t va;
2912 1.1 matt paddr_t pa;
2913 1.1 matt vm_prot_t prot;
2914 1.1 matt {
2915 1.14 chs struct pmap *pmap = pmap_kernel();
2916 1.13 chris pt_entry_t *pte;
2917 1.14 chs struct vm_page *pg;
2918 1.13 chris
2919 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, va))) {
2920 1.14 chs
2921 1.30 rearnsha #ifdef DIAGNOSTIC
2922 1.30 rearnsha if (pmap_pde_v(pmap_pde(pmap, va)))
2923 1.30 rearnsha panic("Trying to map kernel page into section mapping"
2924 1.30 rearnsha " VA=%lx PA=%lx", va, pa);
2925 1.30 rearnsha #endif
2926 1.13 chris /*
2927 1.13 chris * For the kernel pmaps it would be better to ensure
2928 1.13 chris * that they are always present, and to grow the
2929 1.13 chris * kernel as required.
2930 1.13 chris */
2931 1.13 chris
2932 1.24 chris /* must lock the pmap */
2933 1.24 chris simple_lock(&(pmap_kernel()->pm_obj.vmobjlock));
2934 1.13 chris /* Allocate a page table */
2935 1.16 chris pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
2936 1.14 chs UVM_PGA_USERESERVE | UVM_PGA_ZERO);
2937 1.14 chs if (pg == NULL) {
2938 1.13 chris panic("pmap_kenter_pa: no free pages");
2939 1.13 chris }
2940 1.16 chris pg->flags &= ~PG_BUSY; /* never busy */
2941 1.13 chris
2942 1.13 chris /* Wire this page table into the L1. */
2943 1.17 chris pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
2944 1.24 chris simple_unlock(&(pmap_kernel()->pm_obj.vmobjlock));
2945 1.13 chris }
2946 1.13 chris pte = vtopte(va);
2947 1.14 chs KASSERT(!pmap_pte_v(pte));
2948 1.13 chris *pte = L2_PTE(pa, AP_KRW);
2949 1.1 matt }
2950 1.1 matt
2951 1.1 matt void
2952 1.1 matt pmap_kremove(va, len)
2953 1.1 matt vaddr_t va;
2954 1.1 matt vsize_t len;
2955 1.1 matt {
2956 1.14 chs pt_entry_t *pte;
2957 1.14 chs
2958 1.1 matt for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2959 1.13 chris
2960 1.14 chs /*
2961 1.14 chs * We assume that we will only be called with small
2962 1.14 chs * regions of memory.
2963 1.14 chs */
2964 1.14 chs
2965 1.30 rearnsha KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2966 1.13 chris pte = vtopte(va);
2967 1.13 chris cpu_cache_purgeID_rng(va, PAGE_SIZE);
2968 1.13 chris *pte = 0;
2969 1.13 chris cpu_tlb_flushID_SE(va);
2970 1.1 matt }
2971 1.1 matt }
2972 1.1 matt
2973 1.1 matt /*
2974 1.1 matt * pmap_page_protect:
2975 1.1 matt *
2976 1.1 matt * Lower the permission for all mappings to a given page.
2977 1.1 matt */
2978 1.1 matt
2979 1.1 matt void
2980 1.1 matt pmap_page_protect(pg, prot)
2981 1.1 matt struct vm_page *pg;
2982 1.1 matt vm_prot_t prot;
2983 1.1 matt {
2984 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
2985 1.1 matt
2986 1.1 matt PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2987 1.1 matt
2988 1.1 matt switch(prot) {
2989 1.17 chris case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2990 1.17 chris case VM_PROT_READ|VM_PROT_WRITE:
2991 1.17 chris return;
2992 1.17 chris
2993 1.1 matt case VM_PROT_READ:
2994 1.1 matt case VM_PROT_READ|VM_PROT_EXECUTE:
2995 1.1 matt pmap_copy_on_write(pa);
2996 1.1 matt break;
2997 1.1 matt
2998 1.1 matt default:
2999 1.1 matt pmap_remove_all(pa);
3000 1.1 matt break;
3001 1.1 matt }
3002 1.1 matt }
3003 1.1 matt
3004 1.1 matt
3005 1.1 matt /*
3006 1.1 matt * Routine: pmap_unwire
3007 1.1 matt * Function: Clear the wired attribute for a map/virtual-address
3008 1.1 matt * pair.
3009 1.1 matt * In/out conditions:
3010 1.1 matt * The mapping must already exist in the pmap.
3011 1.1 matt */
3012 1.1 matt
3013 1.1 matt void
3014 1.1 matt pmap_unwire(pmap, va)
3015 1.15 chris struct pmap *pmap;
3016 1.1 matt vaddr_t va;
3017 1.1 matt {
3018 1.1 matt pt_entry_t *pte;
3019 1.2 matt paddr_t pa;
3020 1.1 matt int bank, off;
3021 1.17 chris struct pv_head *pvh;
3022 1.1 matt
3023 1.1 matt /*
3024 1.1 matt * Make sure pmap is valid. -dct
3025 1.1 matt */
3026 1.1 matt if (pmap == NULL)
3027 1.1 matt return;
3028 1.1 matt
3029 1.1 matt /* Get the pte */
3030 1.1 matt pte = pmap_pte(pmap, va);
3031 1.1 matt if (!pte)
3032 1.1 matt return;
3033 1.1 matt
3034 1.1 matt /* Extract the physical address of the page */
3035 1.1 matt pa = pmap_pte_pa(pte);
3036 1.1 matt
3037 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3038 1.1 matt return;
3039 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
3040 1.17 chris simple_lock(&pvh->pvh_lock);
3041 1.1 matt /* Update the wired bit in the pv entry for this page. */
3042 1.17 chris (void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
3043 1.17 chris simple_unlock(&pvh->pvh_lock);
3044 1.1 matt }
3045 1.1 matt
3046 1.1 matt /*
3047 1.15 chris * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
3048 1.1 matt *
3049 1.1 matt * Return the pointer to a page table entry corresponding to the supplied
3050 1.1 matt * virtual address.
3051 1.1 matt *
3052 1.1 matt * The page directory is first checked to make sure that a page table
3053 1.1 matt * for the address in question exists and if it does a pointer to the
3054 1.1 matt * entry is returned.
3055 1.1 matt *
3056 1.1 matt * The way this works is that that the kernel page tables are mapped
3057 1.1 matt * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
3058 1.1 matt * This allows page tables to be located quickly.
3059 1.1 matt */
3060 1.1 matt pt_entry_t *
3061 1.1 matt pmap_pte(pmap, va)
3062 1.15 chris struct pmap *pmap;
3063 1.1 matt vaddr_t va;
3064 1.1 matt {
3065 1.1 matt pt_entry_t *ptp;
3066 1.1 matt pt_entry_t *result;
3067 1.1 matt
3068 1.1 matt /* The pmap must be valid */
3069 1.1 matt if (!pmap)
3070 1.1 matt return(NULL);
3071 1.1 matt
3072 1.1 matt /* Return the address of the pte */
3073 1.1 matt PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
3074 1.1 matt pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
3075 1.1 matt
3076 1.1 matt /* Do we have a valid pde ? If not we don't have a page table */
3077 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, va))) {
3078 1.1 matt PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
3079 1.1 matt pmap_pde(pmap, va)));
3080 1.1 matt return(NULL);
3081 1.1 matt }
3082 1.1 matt
3083 1.1 matt PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
3084 1.1 matt pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3085 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3086 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
3087 1.1 matt
3088 1.1 matt /*
3089 1.1 matt * If the pmap is the kernel pmap or the pmap is the active one
3090 1.1 matt * then we can just return a pointer to entry relative to
3091 1.1 matt * PROCESS_PAGE_TBLS_BASE.
3092 1.1 matt * Otherwise we need to map the page tables to an alternative
3093 1.1 matt * address and reference them there.
3094 1.1 matt */
3095 1.15 chris if (pmap == pmap_kernel() || pmap->pm_pptpt
3096 1.1 matt == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3097 1.1 matt + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
3098 1.1 matt ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3099 1.1 matt ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3100 1.1 matt } else {
3101 1.1 matt struct proc *p = curproc;
3102 1.1 matt
3103 1.1 matt /* If we don't have a valid curproc use proc0 */
3104 1.1 matt /* Perhaps we should just use kernel_pmap instead */
3105 1.1 matt if (p == NULL)
3106 1.1 matt p = &proc0;
3107 1.1 matt #ifdef DIAGNOSTIC
3108 1.1 matt /*
3109 1.1 matt * The pmap should always be valid for the process so
3110 1.1 matt * panic if it is not.
3111 1.1 matt */
3112 1.1 matt if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
3113 1.1 matt printf("pmap_pte: va=%08lx p=%p vm=%p\n",
3114 1.1 matt va, p, p->p_vmspace);
3115 1.1 matt console_debugger();
3116 1.1 matt }
3117 1.1 matt /*
3118 1.1 matt * The pmap for the current process should be mapped. If it
3119 1.1 matt * is not then we have a problem.
3120 1.1 matt */
3121 1.1 matt if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
3122 1.1 matt (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3123 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3124 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
3125 1.1 matt printf("pmap pagetable = P%08lx current = P%08x ",
3126 1.1 matt pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
3127 1.1 matt + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
3128 1.1 matt (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
3129 1.1 matt PG_FRAME));
3130 1.1 matt printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
3131 1.1 matt panic("pmap_pte: current and pmap mismatch\n");
3132 1.1 matt }
3133 1.1 matt #endif
3134 1.1 matt
3135 1.1 matt ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3136 1.1 matt pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3137 1.17 chris pmap->pm_pptpt, FALSE);
3138 1.1 matt cpu_tlb_flushD();
3139 1.32 thorpej cpu_cpwait();
3140 1.1 matt }
3141 1.1 matt PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
3142 1.1 matt ((va >> (PGSHIFT-2)) & ~3)));
3143 1.1 matt result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
3144 1.1 matt return(result);
3145 1.1 matt }
3146 1.1 matt
3147 1.1 matt /*
3148 1.1 matt * Routine: pmap_extract
3149 1.1 matt * Function:
3150 1.1 matt * Extract the physical page address associated
3151 1.1 matt * with the given map/virtual_address pair.
3152 1.1 matt */
3153 1.1 matt boolean_t
3154 1.1 matt pmap_extract(pmap, va, pap)
3155 1.15 chris struct pmap *pmap;
3156 1.1 matt vaddr_t va;
3157 1.1 matt paddr_t *pap;
3158 1.1 matt {
3159 1.11 chris pt_entry_t *pte, *ptes;
3160 1.1 matt paddr_t pa;
3161 1.1 matt
3162 1.1 matt PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
3163 1.1 matt
3164 1.1 matt /*
3165 1.11 chris * Get the pte for this virtual address.
3166 1.1 matt */
3167 1.11 chris ptes = pmap_map_ptes(pmap);
3168 1.11 chris pte = &ptes[arm_byte_to_page(va)];
3169 1.1 matt
3170 1.11 chris /*
3171 1.11 chris * If there is no pte then there is no page table etc.
3172 1.11 chris * Is the pte valid ? If not then no paged is actually mapped here
3173 1.30 rearnsha * XXX Should we handle section mappings?
3174 1.11 chris */
3175 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
3176 1.11 chris pmap_unmap_ptes(pmap);
3177 1.11 chris return (FALSE);
3178 1.11 chris }
3179 1.1 matt
3180 1.1 matt /* Return the physical address depending on the PTE type */
3181 1.1 matt /* XXX What about L1 section mappings ? */
3182 1.1 matt if ((*(pte) & L2_MASK) == L2_LPAGE) {
3183 1.1 matt /* Extract the physical address from the pte */
3184 1.1 matt pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
3185 1.1 matt
3186 1.1 matt PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
3187 1.1 matt (pa | (va & (L2_LPAGE_SIZE - 1)))));
3188 1.1 matt
3189 1.1 matt if (pap != NULL)
3190 1.1 matt *pap = pa | (va & (L2_LPAGE_SIZE - 1));
3191 1.1 matt } else {
3192 1.1 matt /* Extract the physical address from the pte */
3193 1.1 matt pa = pmap_pte_pa(pte);
3194 1.1 matt
3195 1.1 matt PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
3196 1.1 matt (pa | (va & ~PG_FRAME))));
3197 1.1 matt
3198 1.1 matt if (pap != NULL)
3199 1.1 matt *pap = pa | (va & ~PG_FRAME);
3200 1.1 matt }
3201 1.11 chris pmap_unmap_ptes(pmap);
3202 1.11 chris return (TRUE);
3203 1.1 matt }
3204 1.1 matt
3205 1.1 matt
3206 1.1 matt /*
3207 1.1 matt * Copy the range specified by src_addr/len from the source map to the
3208 1.1 matt * range dst_addr/len in the destination map.
3209 1.1 matt *
3210 1.1 matt * This routine is only advisory and need not do anything.
3211 1.1 matt */
3212 1.1 matt
3213 1.1 matt void
3214 1.1 matt pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
3215 1.15 chris struct pmap *dst_pmap;
3216 1.15 chris struct pmap *src_pmap;
3217 1.1 matt vaddr_t dst_addr;
3218 1.2 matt vsize_t len;
3219 1.1 matt vaddr_t src_addr;
3220 1.1 matt {
3221 1.1 matt PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
3222 1.1 matt dst_pmap, src_pmap, dst_addr, len, src_addr));
3223 1.1 matt }
3224 1.1 matt
3225 1.1 matt #if defined(PMAP_DEBUG)
3226 1.1 matt void
3227 1.1 matt pmap_dump_pvlist(phys, m)
3228 1.1 matt vaddr_t phys;
3229 1.1 matt char *m;
3230 1.1 matt {
3231 1.17 chris struct pv_head *pvh;
3232 1.1 matt struct pv_entry *pv;
3233 1.1 matt int bank, off;
3234 1.1 matt
3235 1.1 matt if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
3236 1.1 matt printf("INVALID PA\n");
3237 1.1 matt return;
3238 1.1 matt }
3239 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
3240 1.17 chris simple_lock(&pvh->pvh_lock);
3241 1.1 matt printf("%s %08lx:", m, phys);
3242 1.17 chris if (pvh->pvh_list == NULL) {
3243 1.1 matt printf(" no mappings\n");
3244 1.1 matt return;
3245 1.1 matt }
3246 1.1 matt
3247 1.17 chris for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
3248 1.1 matt printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3249 1.1 matt pv->pv_va, pv->pv_flags);
3250 1.1 matt
3251 1.1 matt printf("\n");
3252 1.17 chris simple_unlock(&pvh->pvh_lock);
3253 1.1 matt }
3254 1.1 matt
3255 1.1 matt #endif /* PMAP_DEBUG */
3256 1.1 matt
3257 1.22 chris __inline static boolean_t
3258 1.1 matt pmap_testbit(pa, setbits)
3259 1.2 matt paddr_t pa;
3260 1.22 chris unsigned int setbits;
3261 1.1 matt {
3262 1.1 matt int bank, off;
3263 1.1 matt
3264 1.1 matt PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
3265 1.1 matt
3266 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3267 1.1 matt return(FALSE);
3268 1.1 matt
3269 1.1 matt /*
3270 1.1 matt * Check saved info only
3271 1.1 matt */
3272 1.1 matt if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
3273 1.1 matt PDEBUG(0, printf("pmap_attributes = %02x\n",
3274 1.1 matt vm_physmem[bank].pmseg.attrs[off]));
3275 1.1 matt return(TRUE);
3276 1.1 matt }
3277 1.1 matt
3278 1.1 matt return(FALSE);
3279 1.1 matt }
3280 1.1 matt
3281 1.11 chris static pt_entry_t *
3282 1.11 chris pmap_map_ptes(struct pmap *pmap)
3283 1.11 chris {
3284 1.17 chris struct proc *p;
3285 1.17 chris
3286 1.17 chris /* the kernel's pmap is always accessible */
3287 1.17 chris if (pmap == pmap_kernel()) {
3288 1.17 chris return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
3289 1.17 chris }
3290 1.17 chris
3291 1.17 chris if (pmap_is_curpmap(pmap)) {
3292 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
3293 1.17 chris return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
3294 1.17 chris }
3295 1.17 chris
3296 1.17 chris p = curproc;
3297 1.17 chris
3298 1.17 chris if (p == NULL)
3299 1.17 chris p = &proc0;
3300 1.17 chris
3301 1.17 chris /* need to lock both curpmap and pmap: use ordered locking */
3302 1.17 chris if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
3303 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
3304 1.17 chris simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3305 1.17 chris } else {
3306 1.17 chris simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3307 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
3308 1.17 chris }
3309 1.11 chris
3310 1.17 chris pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
3311 1.17 chris pmap->pm_pptpt, FALSE);
3312 1.17 chris cpu_tlb_flushD();
3313 1.32 thorpej cpu_cpwait();
3314 1.17 chris return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
3315 1.17 chris }
3316 1.17 chris
3317 1.17 chris /*
3318 1.17 chris * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3319 1.17 chris */
3320 1.17 chris
3321 1.17 chris static void
3322 1.17 chris pmap_unmap_ptes(pmap)
3323 1.17 chris struct pmap *pmap;
3324 1.17 chris {
3325 1.17 chris if (pmap == pmap_kernel()) {
3326 1.17 chris return;
3327 1.17 chris }
3328 1.17 chris if (pmap_is_curpmap(pmap)) {
3329 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
3330 1.17 chris } else {
3331 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
3332 1.17 chris simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3333 1.17 chris }
3334 1.11 chris }
3335 1.1 matt
3336 1.1 matt /*
3337 1.1 matt * Modify pte bits for all ptes corresponding to the given physical address.
3338 1.1 matt * We use `maskbits' rather than `clearbits' because we're always passing
3339 1.1 matt * constants and the latter would require an extra inversion at run-time.
3340 1.1 matt */
3341 1.1 matt
3342 1.22 chris static void
3343 1.1 matt pmap_clearbit(pa, maskbits)
3344 1.2 matt paddr_t pa;
3345 1.22 chris unsigned int maskbits;
3346 1.1 matt {
3347 1.1 matt struct pv_entry *pv;
3348 1.17 chris struct pv_head *pvh;
3349 1.1 matt pt_entry_t *pte;
3350 1.1 matt vaddr_t va;
3351 1.21 chris int bank, off, tlbentry;
3352 1.1 matt
3353 1.1 matt PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3354 1.1 matt pa, maskbits));
3355 1.21 chris
3356 1.21 chris tlbentry = 0;
3357 1.21 chris
3358 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3359 1.1 matt return;
3360 1.17 chris PMAP_HEAD_TO_MAP_LOCK();
3361 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
3362 1.17 chris simple_lock(&pvh->pvh_lock);
3363 1.17 chris
3364 1.1 matt /*
3365 1.1 matt * Clear saved attributes (modify, reference)
3366 1.1 matt */
3367 1.1 matt vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
3368 1.1 matt
3369 1.17 chris if (pvh->pvh_list == NULL) {
3370 1.17 chris simple_unlock(&pvh->pvh_lock);
3371 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
3372 1.1 matt return;
3373 1.1 matt }
3374 1.1 matt
3375 1.1 matt /*
3376 1.1 matt * Loop over all current mappings setting/clearing as appropos
3377 1.1 matt */
3378 1.17 chris for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
3379 1.1 matt va = pv->pv_va;
3380 1.1 matt pv->pv_flags &= ~maskbits;
3381 1.1 matt pte = pmap_pte(pv->pv_pmap, va);
3382 1.17 chris KASSERT(pte != NULL);
3383 1.29 rearnsha if (maskbits & (PT_Wr|PT_M)) {
3384 1.29 rearnsha if ((pv->pv_flags & PT_NC)) {
3385 1.29 rearnsha /*
3386 1.29 rearnsha * Entry is not cacheable: reenable
3387 1.29 rearnsha * the cache, nothing to flush
3388 1.29 rearnsha *
3389 1.29 rearnsha * Don't turn caching on again if this
3390 1.29 rearnsha * is a modified emulation. This
3391 1.29 rearnsha * would be inconsitent with the
3392 1.29 rearnsha * settings created by
3393 1.29 rearnsha * pmap_vac_me_harder().
3394 1.29 rearnsha *
3395 1.29 rearnsha * There's no need to call
3396 1.29 rearnsha * pmap_vac_me_harder() here: all
3397 1.29 rearnsha * pages are loosing their write
3398 1.29 rearnsha * permission.
3399 1.29 rearnsha *
3400 1.29 rearnsha */
3401 1.29 rearnsha if (maskbits & PT_Wr) {
3402 1.29 rearnsha *pte |= pte_cache_mode;
3403 1.29 rearnsha pv->pv_flags &= ~PT_NC;
3404 1.29 rearnsha }
3405 1.29 rearnsha } else if (pmap_is_curpmap(pv->pv_pmap))
3406 1.29 rearnsha /*
3407 1.29 rearnsha * Entry is cacheable: check if pmap is
3408 1.29 rearnsha * current if it is flush it,
3409 1.29 rearnsha * otherwise it won't be in the cache
3410 1.29 rearnsha */
3411 1.29 rearnsha cpu_cache_purgeID_rng(pv->pv_va, NBPG);
3412 1.29 rearnsha
3413 1.29 rearnsha /* make the pte read only */
3414 1.29 rearnsha *pte &= ~PT_AP(AP_W);
3415 1.29 rearnsha }
3416 1.29 rearnsha
3417 1.29 rearnsha if (maskbits & PT_H)
3418 1.29 rearnsha *pte = (*pte & ~L2_MASK) | L2_INVAL;
3419 1.21 chris
3420 1.29 rearnsha if (pmap_is_curpmap(pv->pv_pmap))
3421 1.21 chris /*
3422 1.29 rearnsha * if we had cacheable pte's we'd clean the
3423 1.29 rearnsha * pte out to memory here
3424 1.29 rearnsha *
3425 1.21 chris * flush tlb entry as it's in the current pmap
3426 1.21 chris */
3427 1.21 chris cpu_tlb_flushID_SE(pv->pv_va);
3428 1.29 rearnsha }
3429 1.32 thorpej cpu_cpwait();
3430 1.21 chris
3431 1.17 chris simple_unlock(&pvh->pvh_lock);
3432 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
3433 1.1 matt }
3434 1.1 matt
3435 1.1 matt
3436 1.1 matt boolean_t
3437 1.1 matt pmap_clear_modify(pg)
3438 1.1 matt struct vm_page *pg;
3439 1.1 matt {
3440 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
3441 1.1 matt boolean_t rv;
3442 1.1 matt
3443 1.1 matt PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
3444 1.1 matt rv = pmap_testbit(pa, PT_M);
3445 1.1 matt pmap_clearbit(pa, PT_M);
3446 1.1 matt return rv;
3447 1.1 matt }
3448 1.1 matt
3449 1.1 matt
3450 1.1 matt boolean_t
3451 1.1 matt pmap_clear_reference(pg)
3452 1.1 matt struct vm_page *pg;
3453 1.1 matt {
3454 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
3455 1.1 matt boolean_t rv;
3456 1.1 matt
3457 1.1 matt PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
3458 1.1 matt rv = pmap_testbit(pa, PT_H);
3459 1.1 matt pmap_clearbit(pa, PT_H);
3460 1.1 matt return rv;
3461 1.1 matt }
3462 1.1 matt
3463 1.1 matt
3464 1.1 matt void
3465 1.1 matt pmap_copy_on_write(pa)
3466 1.2 matt paddr_t pa;
3467 1.1 matt {
3468 1.1 matt PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
3469 1.1 matt pmap_clearbit(pa, PT_Wr);
3470 1.1 matt }
3471 1.1 matt
3472 1.1 matt
3473 1.1 matt boolean_t
3474 1.1 matt pmap_is_modified(pg)
3475 1.1 matt struct vm_page *pg;
3476 1.1 matt {
3477 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
3478 1.1 matt boolean_t result;
3479 1.1 matt
3480 1.1 matt result = pmap_testbit(pa, PT_M);
3481 1.17 chris PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
3482 1.1 matt return (result);
3483 1.1 matt }
3484 1.1 matt
3485 1.1 matt
3486 1.1 matt boolean_t
3487 1.1 matt pmap_is_referenced(pg)
3488 1.1 matt struct vm_page *pg;
3489 1.1 matt {
3490 1.1 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
3491 1.1 matt boolean_t result;
3492 1.1 matt
3493 1.1 matt result = pmap_testbit(pa, PT_H);
3494 1.1 matt PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
3495 1.1 matt return (result);
3496 1.1 matt }
3497 1.1 matt
3498 1.1 matt
3499 1.1 matt int
3500 1.1 matt pmap_modified_emulation(pmap, va)
3501 1.15 chris struct pmap *pmap;
3502 1.1 matt vaddr_t va;
3503 1.1 matt {
3504 1.1 matt pt_entry_t *pte;
3505 1.2 matt paddr_t pa;
3506 1.1 matt int bank, off;
3507 1.17 chris struct pv_head *pvh;
3508 1.1 matt u_int flags;
3509 1.1 matt
3510 1.1 matt PDEBUG(2, printf("pmap_modified_emulation\n"));
3511 1.1 matt
3512 1.1 matt /* Get the pte */
3513 1.1 matt pte = pmap_pte(pmap, va);
3514 1.1 matt if (!pte) {
3515 1.1 matt PDEBUG(2, printf("no pte\n"));
3516 1.1 matt return(0);
3517 1.1 matt }
3518 1.1 matt
3519 1.1 matt PDEBUG(1, printf("*pte=%08x\n", *pte));
3520 1.1 matt
3521 1.1 matt /* Check for a zero pte */
3522 1.1 matt if (*pte == 0)
3523 1.1 matt return(0);
3524 1.1 matt
3525 1.1 matt /* This can happen if user code tries to access kernel memory. */
3526 1.1 matt if ((*pte & PT_AP(AP_W)) != 0)
3527 1.1 matt return (0);
3528 1.1 matt
3529 1.1 matt /* Extract the physical address of the page */
3530 1.1 matt pa = pmap_pte_pa(pte);
3531 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3532 1.1 matt return(0);
3533 1.1 matt
3534 1.17 chris PMAP_HEAD_TO_MAP_LOCK();
3535 1.1 matt /* Get the current flags for this page. */
3536 1.17 chris pvh = &vm_physmem[bank].pmseg.pvhead[off];
3537 1.17 chris /* XXX: needed if we hold head->map lock? */
3538 1.17 chris simple_lock(&pvh->pvh_lock);
3539 1.17 chris
3540 1.17 chris flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
3541 1.1 matt PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3542 1.1 matt
3543 1.1 matt /*
3544 1.1 matt * Do the flags say this page is writable ? If not then it is a
3545 1.1 matt * genuine write fault. If yes then the write fault is our fault
3546 1.1 matt * as we did not reflect the write access in the PTE. Now we know
3547 1.1 matt * a write has occurred we can correct this and also set the
3548 1.1 matt * modified bit
3549 1.1 matt */
3550 1.17 chris if (~flags & PT_Wr) {
3551 1.17 chris simple_unlock(&pvh->pvh_lock);
3552 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
3553 1.1 matt return(0);
3554 1.17 chris }
3555 1.1 matt
3556 1.1 matt PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
3557 1.1 matt va, pte, *pte));
3558 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
3559 1.29 rearnsha
3560 1.29 rearnsha /*
3561 1.29 rearnsha * Re-enable write permissions for the page. No need to call
3562 1.29 rearnsha * pmap_vac_me_harder(), since this is just a
3563 1.29 rearnsha * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3564 1.29 rearnsha * already set the cacheable bits based on the assumption that we
3565 1.29 rearnsha * can write to this page.
3566 1.29 rearnsha */
3567 1.1 matt *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3568 1.1 matt PDEBUG(0, printf("->(%08x)\n", *pte));
3569 1.1 matt
3570 1.17 chris simple_unlock(&pvh->pvh_lock);
3571 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
3572 1.1 matt /* Return, indicating the problem has been dealt with */
3573 1.1 matt cpu_tlb_flushID_SE(va);
3574 1.32 thorpej cpu_cpwait();
3575 1.1 matt return(1);
3576 1.1 matt }
3577 1.1 matt
3578 1.1 matt
3579 1.1 matt int
3580 1.1 matt pmap_handled_emulation(pmap, va)
3581 1.15 chris struct pmap *pmap;
3582 1.1 matt vaddr_t va;
3583 1.1 matt {
3584 1.1 matt pt_entry_t *pte;
3585 1.2 matt paddr_t pa;
3586 1.1 matt int bank, off;
3587 1.1 matt
3588 1.1 matt PDEBUG(2, printf("pmap_handled_emulation\n"));
3589 1.1 matt
3590 1.1 matt /* Get the pte */
3591 1.1 matt pte = pmap_pte(pmap, va);
3592 1.1 matt if (!pte) {
3593 1.1 matt PDEBUG(2, printf("no pte\n"));
3594 1.1 matt return(0);
3595 1.1 matt }
3596 1.1 matt
3597 1.1 matt PDEBUG(1, printf("*pte=%08x\n", *pte));
3598 1.1 matt
3599 1.1 matt /* Check for a zero pte */
3600 1.1 matt if (*pte == 0)
3601 1.1 matt return(0);
3602 1.1 matt
3603 1.1 matt /* This can happen if user code tries to access kernel memory. */
3604 1.1 matt if ((*pte & L2_MASK) != L2_INVAL)
3605 1.1 matt return (0);
3606 1.1 matt
3607 1.1 matt /* Extract the physical address of the page */
3608 1.1 matt pa = pmap_pte_pa(pte);
3609 1.1 matt if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
3610 1.1 matt return(0);
3611 1.1 matt
3612 1.1 matt /*
3613 1.1 matt * Ok we just enable the pte and mark the attibs as handled
3614 1.1 matt */
3615 1.1 matt PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
3616 1.1 matt va, pte, *pte));
3617 1.1 matt vm_physmem[bank].pmseg.attrs[off] |= PT_H;
3618 1.1 matt *pte = (*pte & ~L2_MASK) | L2_SPAGE;
3619 1.1 matt PDEBUG(0, printf("->(%08x)\n", *pte));
3620 1.1 matt
3621 1.1 matt /* Return, indicating the problem has been dealt with */
3622 1.1 matt cpu_tlb_flushID_SE(va);
3623 1.32 thorpej cpu_cpwait();
3624 1.1 matt return(1);
3625 1.1 matt }
3626 1.1 matt
3627 1.17 chris
3628 1.17 chris
3629 1.17 chris
3630 1.1 matt /*
3631 1.1 matt * pmap_collect: free resources held by a pmap
3632 1.1 matt *
3633 1.1 matt * => optional function.
3634 1.1 matt * => called when a process is swapped out to free memory.
3635 1.1 matt */
3636 1.1 matt
3637 1.1 matt void
3638 1.1 matt pmap_collect(pmap)
3639 1.15 chris struct pmap *pmap;
3640 1.1 matt {
3641 1.1 matt }
3642 1.1 matt
3643 1.1 matt /*
3644 1.1 matt * Routine: pmap_procwr
3645 1.1 matt *
3646 1.1 matt * Function:
3647 1.1 matt * Synchronize caches corresponding to [addr, addr+len) in p.
3648 1.1 matt *
3649 1.1 matt */
3650 1.1 matt void
3651 1.1 matt pmap_procwr(p, va, len)
3652 1.1 matt struct proc *p;
3653 1.1 matt vaddr_t va;
3654 1.3 matt int len;
3655 1.1 matt {
3656 1.1 matt /* We only need to do anything if it is the current process. */
3657 1.1 matt if (p == curproc)
3658 1.1 matt cpu_cache_syncI_rng(va, len);
3659 1.17 chris }
3660 1.17 chris /*
3661 1.17 chris * PTP functions
3662 1.17 chris */
3663 1.17 chris
3664 1.17 chris /*
3665 1.17 chris * pmap_steal_ptp: Steal a PTP from somewhere else.
3666 1.17 chris *
3667 1.17 chris * This is just a placeholder, for now we never steal.
3668 1.17 chris */
3669 1.17 chris
3670 1.17 chris static struct vm_page *
3671 1.17 chris pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
3672 1.17 chris {
3673 1.17 chris return (NULL);
3674 1.17 chris }
3675 1.17 chris
3676 1.17 chris /*
3677 1.17 chris * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3678 1.17 chris *
3679 1.17 chris * => pmap should NOT be pmap_kernel()
3680 1.17 chris * => pmap should be locked
3681 1.17 chris */
3682 1.17 chris
3683 1.17 chris static struct vm_page *
3684 1.17 chris pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3685 1.17 chris {
3686 1.17 chris struct vm_page *ptp;
3687 1.17 chris
3688 1.30 rearnsha if (pmap_pde_page(pmap_pde(pmap, va))) {
3689 1.17 chris
3690 1.17 chris /* valid... check hint (saves us a PA->PG lookup) */
3691 1.17 chris #if 0
3692 1.17 chris if (pmap->pm_ptphint &&
3693 1.17 chris ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
3694 1.17 chris VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3695 1.17 chris return (pmap->pm_ptphint);
3696 1.17 chris #endif
3697 1.17 chris ptp = uvm_pagelookup(&pmap->pm_obj, va);
3698 1.17 chris #ifdef DIAGNOSTIC
3699 1.17 chris if (ptp == NULL)
3700 1.17 chris panic("pmap_get_ptp: unmanaged user PTP");
3701 1.17 chris #endif
3702 1.17 chris // pmap->pm_ptphint = ptp;
3703 1.17 chris return(ptp);
3704 1.17 chris }
3705 1.17 chris
3706 1.17 chris /* allocate a new PTP (updates ptphint) */
3707 1.17 chris return(pmap_alloc_ptp(pmap, va, just_try));
3708 1.17 chris }
3709 1.17 chris
3710 1.17 chris /*
3711 1.17 chris * pmap_alloc_ptp: allocate a PTP for a PMAP
3712 1.17 chris *
3713 1.17 chris * => pmap should already be locked by caller
3714 1.17 chris * => we use the ptp's wire_count to count the number of active mappings
3715 1.17 chris * in the PTP (we start it at one to prevent any chance this PTP
3716 1.17 chris * will ever leak onto the active/inactive queues)
3717 1.17 chris */
3718 1.17 chris
3719 1.17 chris /*__inline */ static struct vm_page *
3720 1.17 chris pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
3721 1.17 chris {
3722 1.17 chris struct vm_page *ptp;
3723 1.17 chris
3724 1.17 chris ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3725 1.17 chris UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3726 1.17 chris if (ptp == NULL) {
3727 1.17 chris if (just_try)
3728 1.17 chris return (NULL);
3729 1.17 chris
3730 1.17 chris ptp = pmap_steal_ptp(pmap, va);
3731 1.17 chris
3732 1.17 chris if (ptp == NULL)
3733 1.17 chris return (NULL);
3734 1.17 chris /* Stole a page, zero it. */
3735 1.17 chris pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
3736 1.17 chris }
3737 1.17 chris
3738 1.17 chris /* got one! */
3739 1.17 chris ptp->flags &= ~PG_BUSY; /* never busy */
3740 1.17 chris ptp->wire_count = 1; /* no mappings yet */
3741 1.17 chris pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3742 1.17 chris pmap->pm_stats.resident_count++; /* count PTP as resident */
3743 1.17 chris // pmap->pm_ptphint = ptp;
3744 1.17 chris return (ptp);
3745 1.1 matt }
3746 1.1 matt
3747 1.1 matt /* End of pmap.c */
3748