Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.64
      1  1.64   thorpej /*	$NetBSD: pmap.c,v 1.64 2002/03/24 06:07:00 thorpej Exp $	*/
      2  1.12     chris 
      3  1.12     chris /*
      4  1.49   thorpej  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  1.12     chris  * Copyright (c) 2001 Richard Earnshaw
      6  1.12     chris  * Copyright (c) 2001 Christopher Gilbert
      7  1.12     chris  * All rights reserved.
      8  1.12     chris  *
      9  1.12     chris  * 1. Redistributions of source code must retain the above copyright
     10  1.12     chris  *    notice, this list of conditions and the following disclaimer.
     11  1.12     chris  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.12     chris  *    notice, this list of conditions and the following disclaimer in the
     13  1.12     chris  *    documentation and/or other materials provided with the distribution.
     14  1.12     chris  * 3. The name of the company nor the name of the author may be used to
     15  1.12     chris  *    endorse or promote products derived from this software without specific
     16  1.12     chris  *    prior written permission.
     17  1.12     chris  *
     18  1.12     chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  1.12     chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  1.12     chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  1.12     chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  1.12     chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  1.12     chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  1.12     chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.12     chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.12     chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.12     chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.12     chris  * SUCH DAMAGE.
     29  1.12     chris  */
     30   1.1      matt 
     31   1.1      matt /*-
     32   1.1      matt  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33   1.1      matt  * All rights reserved.
     34   1.1      matt  *
     35   1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
     36   1.1      matt  * by Charles M. Hannum.
     37   1.1      matt  *
     38   1.1      matt  * Redistribution and use in source and binary forms, with or without
     39   1.1      matt  * modification, are permitted provided that the following conditions
     40   1.1      matt  * are met:
     41   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     42   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     43   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     44   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     45   1.1      matt  *    documentation and/or other materials provided with the distribution.
     46   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     47   1.1      matt  *    must display the following acknowledgement:
     48   1.1      matt  *        This product includes software developed by the NetBSD
     49   1.1      matt  *        Foundation, Inc. and its contributors.
     50   1.1      matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51   1.1      matt  *    contributors may be used to endorse or promote products derived
     52   1.1      matt  *    from this software without specific prior written permission.
     53   1.1      matt  *
     54   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55   1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     65   1.1      matt  */
     66   1.1      matt 
     67   1.1      matt /*
     68   1.1      matt  * Copyright (c) 1994-1998 Mark Brinicombe.
     69   1.1      matt  * Copyright (c) 1994 Brini.
     70   1.1      matt  * All rights reserved.
     71   1.1      matt  *
     72   1.1      matt  * This code is derived from software written for Brini by Mark Brinicombe
     73   1.1      matt  *
     74   1.1      matt  * Redistribution and use in source and binary forms, with or without
     75   1.1      matt  * modification, are permitted provided that the following conditions
     76   1.1      matt  * are met:
     77   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     78   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     79   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     80   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     81   1.1      matt  *    documentation and/or other materials provided with the distribution.
     82   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     83   1.1      matt  *    must display the following acknowledgement:
     84   1.1      matt  *	This product includes software developed by Mark Brinicombe.
     85   1.1      matt  * 4. The name of the author may not be used to endorse or promote products
     86   1.1      matt  *    derived from this software without specific prior written permission.
     87   1.1      matt  *
     88   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89   1.1      matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90   1.1      matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91   1.1      matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92   1.1      matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93   1.1      matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94   1.1      matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95   1.1      matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96   1.1      matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97   1.1      matt  *
     98   1.1      matt  * RiscBSD kernel project
     99   1.1      matt  *
    100   1.1      matt  * pmap.c
    101   1.1      matt  *
    102   1.1      matt  * Machine dependant vm stuff
    103   1.1      matt  *
    104   1.1      matt  * Created      : 20/09/94
    105   1.1      matt  */
    106   1.1      matt 
    107   1.1      matt /*
    108   1.1      matt  * Performance improvements, UVM changes, overhauls and part-rewrites
    109   1.1      matt  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110   1.1      matt  */
    111   1.1      matt 
    112   1.1      matt /*
    113   1.1      matt  * The dram block info is currently referenced from the bootconfig.
    114   1.1      matt  * This should be placed in a separate structure.
    115   1.1      matt  */
    116   1.1      matt 
    117   1.1      matt /*
    118   1.1      matt  * Special compilation symbols
    119   1.1      matt  * PMAP_DEBUG		- Build in pmap_debug_level code
    120   1.1      matt  */
    121   1.1      matt 
    122   1.1      matt /* Include header files */
    123   1.1      matt 
    124   1.1      matt #include "opt_pmap_debug.h"
    125   1.1      matt #include "opt_ddb.h"
    126   1.1      matt 
    127   1.1      matt #include <sys/types.h>
    128   1.1      matt #include <sys/param.h>
    129   1.1      matt #include <sys/kernel.h>
    130   1.1      matt #include <sys/systm.h>
    131   1.1      matt #include <sys/proc.h>
    132   1.1      matt #include <sys/malloc.h>
    133   1.1      matt #include <sys/user.h>
    134  1.10     chris #include <sys/pool.h>
    135  1.16     chris #include <sys/cdefs.h>
    136  1.16     chris 
    137   1.1      matt #include <uvm/uvm.h>
    138   1.1      matt 
    139   1.1      matt #include <machine/bootconfig.h>
    140   1.1      matt #include <machine/bus.h>
    141   1.1      matt #include <machine/pmap.h>
    142   1.1      matt #include <machine/pcb.h>
    143   1.1      matt #include <machine/param.h>
    144  1.32   thorpej #include <arm/arm32/katelib.h>
    145  1.16     chris 
    146  1.64   thorpej __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.64 2002/03/24 06:07:00 thorpej Exp $");
    147   1.1      matt #ifdef PMAP_DEBUG
    148   1.1      matt #define	PDEBUG(_lev_,_stat_) \
    149   1.1      matt 	if (pmap_debug_level >= (_lev_)) \
    150   1.1      matt         	((_stat_))
    151   1.1      matt int pmap_debug_level = -2;
    152  1.48     chris void pmap_dump_pvlist(vaddr_t phys, char *m);
    153  1.17     chris 
    154  1.17     chris /*
    155  1.17     chris  * for switching to potentially finer grained debugging
    156  1.17     chris  */
    157  1.17     chris #define	PDB_FOLLOW	0x0001
    158  1.17     chris #define	PDB_INIT	0x0002
    159  1.17     chris #define	PDB_ENTER	0x0004
    160  1.17     chris #define	PDB_REMOVE	0x0008
    161  1.17     chris #define	PDB_CREATE	0x0010
    162  1.17     chris #define	PDB_PTPAGE	0x0020
    163  1.48     chris #define	PDB_GROWKERN	0x0040
    164  1.17     chris #define	PDB_BITS	0x0080
    165  1.17     chris #define	PDB_COLLECT	0x0100
    166  1.17     chris #define	PDB_PROTECT	0x0200
    167  1.48     chris #define	PDB_MAP_L1	0x0400
    168  1.17     chris #define	PDB_BOOTSTRAP	0x1000
    169  1.17     chris #define	PDB_PARANOIA	0x2000
    170  1.17     chris #define	PDB_WIRING	0x4000
    171  1.17     chris #define	PDB_PVDUMP	0x8000
    172  1.17     chris 
    173  1.17     chris int debugmap = 0;
    174  1.17     chris int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175  1.17     chris #define	NPDEBUG(_lev_,_stat_) \
    176  1.17     chris 	if (pmapdebug & (_lev_)) \
    177  1.17     chris         	((_stat_))
    178  1.17     chris 
    179   1.1      matt #else	/* PMAP_DEBUG */
    180   1.1      matt #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181  1.48     chris #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182   1.1      matt #endif	/* PMAP_DEBUG */
    183   1.1      matt 
    184   1.1      matt struct pmap     kernel_pmap_store;
    185   1.1      matt 
    186  1.10     chris /*
    187  1.48     chris  * linked list of all non-kernel pmaps
    188  1.48     chris  */
    189  1.48     chris 
    190  1.48     chris static struct pmap_head pmaps;
    191  1.48     chris 
    192  1.48     chris /*
    193  1.10     chris  * pool that pmap structures are allocated from
    194  1.10     chris  */
    195  1.10     chris 
    196  1.10     chris struct pool pmap_pmap_pool;
    197  1.10     chris 
    198  1.54   thorpej static pt_entry_t *csrc_pte, *cdst_pte;
    199  1.54   thorpej static vaddr_t csrcp, cdstp;
    200  1.54   thorpej 
    201   1.1      matt char *memhook;
    202   1.1      matt extern caddr_t msgbufaddr;
    203   1.1      matt 
    204   1.1      matt boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205  1.17     chris /*
    206  1.17     chris  * locking data structures
    207  1.17     chris  */
    208   1.1      matt 
    209  1.17     chris static struct lock pmap_main_lock;
    210  1.17     chris static struct simplelock pvalloc_lock;
    211  1.48     chris static struct simplelock pmaps_lock;
    212  1.17     chris #ifdef LOCKDEBUG
    213  1.17     chris #define PMAP_MAP_TO_HEAD_LOCK() \
    214  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215  1.17     chris #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217  1.17     chris 
    218  1.17     chris #define PMAP_HEAD_TO_MAP_LOCK() \
    219  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220  1.17     chris #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222  1.17     chris #else
    223  1.17     chris #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224  1.17     chris #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225  1.17     chris #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226  1.17     chris #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227  1.17     chris #endif /* LOCKDEBUG */
    228  1.17     chris 
    229  1.17     chris /*
    230  1.17     chris  * pv_page management structures: locked by pvalloc_lock
    231  1.17     chris  */
    232   1.1      matt 
    233  1.17     chris TAILQ_HEAD(pv_pagelist, pv_page);
    234  1.17     chris static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235  1.17     chris static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236  1.17     chris static int pv_nfpvents;			/* # of free pv entries */
    237  1.17     chris static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238  1.17     chris static vaddr_t pv_cachedva;		/* cached VA for later use */
    239  1.17     chris 
    240  1.17     chris #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241  1.17     chris #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242  1.17     chris 					/* high water mark */
    243  1.17     chris 
    244  1.17     chris /*
    245  1.17     chris  * local prototypes
    246  1.17     chris  */
    247  1.17     chris 
    248  1.17     chris static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249  1.17     chris static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250  1.17     chris #define ALLOCPV_NEED	0	/* need PV now */
    251  1.17     chris #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252  1.17     chris #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253  1.17     chris static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254  1.49   thorpej static void		 pmap_enter_pv __P((struct vm_page *,
    255  1.17     chris 					    struct pv_entry *, struct pmap *,
    256  1.17     chris 					    vaddr_t, struct vm_page *, int));
    257  1.17     chris static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258  1.17     chris static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259  1.17     chris static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260  1.17     chris static void		 pmap_free_pvpage __P((void));
    261  1.17     chris static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262  1.49   thorpej static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263  1.17     chris 			vaddr_t));
    264  1.17     chris #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265  1.17     chris #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266   1.1      matt 
    267  1.49   thorpej static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268  1.33     chris 	u_int, u_int));
    269  1.33     chris 
    270  1.33     chris static void pmap_free_l1pt __P((struct l1pt *));
    271  1.33     chris static int pmap_allocpagedir __P((struct pmap *));
    272  1.33     chris static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    273  1.49   thorpej static void pmap_remove_all __P((struct vm_page *));
    274  1.33     chris 
    275  1.33     chris 
    276   1.2      matt vsize_t npages;
    277   1.1      matt 
    278  1.57   thorpej static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    279  1.57   thorpej static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    280  1.49   thorpej __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    281  1.17     chris 
    282   1.2      matt extern paddr_t physical_start;
    283   1.2      matt extern paddr_t physical_freestart;
    284   1.2      matt extern paddr_t physical_end;
    285   1.2      matt extern paddr_t physical_freeend;
    286   1.1      matt extern unsigned int free_pages;
    287   1.1      matt extern int max_processes;
    288   1.1      matt 
    289  1.54   thorpej vaddr_t virtual_avail;
    290   1.1      matt vaddr_t virtual_end;
    291  1.48     chris vaddr_t pmap_curmaxkvaddr;
    292   1.1      matt 
    293   1.1      matt vaddr_t avail_start;
    294   1.1      matt vaddr_t avail_end;
    295   1.1      matt 
    296   1.1      matt extern pv_addr_t systempage;
    297   1.1      matt 
    298   1.1      matt /* Variables used by the L1 page table queue code */
    299   1.1      matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
    300   1.1      matt struct l1pt_queue l1pt_static_queue;	/* head of our static l1 queue */
    301   1.1      matt int l1pt_static_queue_count;		/* items in the static l1 queue */
    302   1.1      matt int l1pt_static_create_count;		/* static l1 items created */
    303   1.1      matt struct l1pt_queue l1pt_queue;		/* head of our l1 queue */
    304   1.1      matt int l1pt_queue_count;			/* items in the l1 queue */
    305   1.1      matt int l1pt_create_count;			/* stat - L1's create count */
    306   1.1      matt int l1pt_reuse_count;			/* stat - L1's reused count */
    307   1.1      matt 
    308   1.1      matt /* Local function prototypes (not used outside this file) */
    309  1.15     chris pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
    310  1.49   thorpej void pmap_copy_on_write __P((struct vm_page *));
    311  1.15     chris void pmap_pinit __P((struct pmap *));
    312  1.15     chris void pmap_freepagedir __P((struct pmap *));
    313   1.1      matt 
    314   1.1      matt /* Other function prototypes */
    315   1.1      matt extern void bzero_page __P((vaddr_t));
    316   1.1      matt extern void bcopy_page __P((vaddr_t, vaddr_t));
    317   1.1      matt 
    318   1.1      matt struct l1pt *pmap_alloc_l1pt __P((void));
    319  1.15     chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    320  1.17     chris      vaddr_t l2pa, boolean_t));
    321   1.1      matt 
    322  1.11     chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    323  1.17     chris static void pmap_unmap_ptes __P((struct pmap *));
    324  1.11     chris 
    325  1.49   thorpej __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    326  1.25  rearnsha     pt_entry_t *, boolean_t));
    327  1.49   thorpej static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    328  1.25  rearnsha     pt_entry_t *, boolean_t));
    329  1.49   thorpej static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    330  1.25  rearnsha     pt_entry_t *, boolean_t));
    331  1.11     chris 
    332  1.17     chris /*
    333  1.27  rearnsha  * Cache enable bits in PTE to use on pages that are cacheable.
    334  1.27  rearnsha  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    335  1.27  rearnsha  * can chose between write-through and write-back cacheing.
    336  1.27  rearnsha  */
    337  1.27  rearnsha pt_entry_t pte_cache_mode = (PT_C | PT_B);
    338  1.27  rearnsha 
    339  1.27  rearnsha /*
    340  1.17     chris  * real definition of pv_entry.
    341  1.17     chris  */
    342  1.17     chris 
    343  1.17     chris struct pv_entry {
    344  1.17     chris 	struct pv_entry *pv_next;       /* next pv_entry */
    345  1.17     chris 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    346  1.17     chris 	vaddr_t         pv_va;          /* virtual address for mapping */
    347  1.17     chris 	int             pv_flags;       /* flags */
    348  1.17     chris 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    349  1.17     chris };
    350  1.17     chris 
    351  1.17     chris /*
    352  1.17     chris  * pv_entrys are dynamically allocated in chunks from a single page.
    353  1.17     chris  * we keep track of how many pv_entrys are in use for each page and
    354  1.17     chris  * we can free pv_entry pages if needed.  there is one lock for the
    355  1.17     chris  * entire allocation system.
    356  1.17     chris  */
    357  1.17     chris 
    358  1.17     chris struct pv_page_info {
    359  1.17     chris 	TAILQ_ENTRY(pv_page) pvpi_list;
    360  1.17     chris 	struct pv_entry *pvpi_pvfree;
    361  1.17     chris 	int pvpi_nfree;
    362  1.17     chris };
    363  1.17     chris 
    364  1.17     chris /*
    365  1.17     chris  * number of pv_entry's in a pv_page
    366  1.17     chris  * (note: won't work on systems where NPBG isn't a constant)
    367  1.17     chris  */
    368  1.17     chris 
    369  1.17     chris #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    370  1.17     chris 			sizeof(struct pv_entry))
    371  1.17     chris 
    372  1.17     chris /*
    373  1.17     chris  * a pv_page: where pv_entrys are allocated from
    374  1.17     chris  */
    375  1.17     chris 
    376  1.17     chris struct pv_page {
    377  1.17     chris 	struct pv_page_info pvinfo;
    378  1.17     chris 	struct pv_entry pvents[PVE_PER_PVPAGE];
    379  1.17     chris };
    380  1.17     chris 
    381   1.1      matt #ifdef MYCROFT_HACK
    382   1.1      matt int mycroft_hack = 0;
    383   1.1      matt #endif
    384   1.1      matt 
    385   1.1      matt /* Function to set the debug level of the pmap code */
    386   1.1      matt 
    387   1.1      matt #ifdef PMAP_DEBUG
    388   1.1      matt void
    389   1.1      matt pmap_debug(level)
    390   1.1      matt 	int level;
    391   1.1      matt {
    392   1.1      matt 	pmap_debug_level = level;
    393   1.1      matt 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    394   1.1      matt }
    395   1.1      matt #endif	/* PMAP_DEBUG */
    396   1.1      matt 
    397  1.22     chris __inline static boolean_t
    398  1.17     chris pmap_is_curpmap(struct pmap *pmap)
    399  1.17     chris {
    400  1.58   thorpej 
    401  1.58   thorpej 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    402  1.58   thorpej 	    pmap == pmap_kernel())
    403  1.58   thorpej 		return (TRUE);
    404  1.58   thorpej 
    405  1.58   thorpej 	return (FALSE);
    406  1.17     chris }
    407  1.58   thorpej 
    408   1.1      matt #include "isadma.h"
    409   1.1      matt 
    410   1.1      matt #if NISADMA > 0
    411   1.1      matt /*
    412   1.1      matt  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    413   1.1      matt  * pages into the system, memory intersects with any of these ranges,
    414   1.1      matt  * the intersecting memory will be loaded into a lower-priority free list.
    415   1.1      matt  */
    416   1.1      matt bus_dma_segment_t *pmap_isa_dma_ranges;
    417   1.1      matt int pmap_isa_dma_nranges;
    418   1.1      matt 
    419   1.2      matt boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
    420   1.2      matt 	    paddr_t *, psize_t *));
    421   1.1      matt 
    422   1.1      matt /*
    423   1.1      matt  * Check if a memory range intersects with an ISA DMA range, and
    424   1.1      matt  * return the page-rounded intersection if it does.  The intersection
    425   1.1      matt  * will be placed on a lower-priority free list.
    426   1.1      matt  */
    427   1.1      matt boolean_t
    428   1.1      matt pmap_isa_dma_range_intersect(pa, size, pap, sizep)
    429   1.2      matt 	paddr_t pa;
    430   1.2      matt 	psize_t size;
    431   1.2      matt 	paddr_t *pap;
    432   1.2      matt 	psize_t *sizep;
    433   1.1      matt {
    434   1.1      matt 	bus_dma_segment_t *ds;
    435   1.1      matt 	int i;
    436   1.1      matt 
    437   1.1      matt 	if (pmap_isa_dma_ranges == NULL)
    438   1.1      matt 		return (FALSE);
    439   1.1      matt 
    440   1.1      matt 	for (i = 0, ds = pmap_isa_dma_ranges;
    441   1.1      matt 	     i < pmap_isa_dma_nranges; i++, ds++) {
    442   1.1      matt 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    443   1.1      matt 			/*
    444   1.1      matt 			 * Beginning of region intersects with this range.
    445   1.1      matt 			 */
    446   1.1      matt 			*pap = trunc_page(pa);
    447   1.1      matt 			*sizep = round_page(min(pa + size,
    448   1.1      matt 			    ds->ds_addr + ds->ds_len) - pa);
    449   1.1      matt 			return (TRUE);
    450   1.1      matt 		}
    451   1.1      matt 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    452   1.1      matt 			/*
    453   1.1      matt 			 * End of region intersects with this range.
    454   1.1      matt 			 */
    455   1.1      matt 			*pap = trunc_page(ds->ds_addr);
    456   1.1      matt 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    457   1.1      matt 			    ds->ds_len));
    458   1.1      matt 			return (TRUE);
    459   1.1      matt 		}
    460   1.1      matt 	}
    461   1.1      matt 
    462   1.1      matt 	/*
    463   1.1      matt 	 * No intersection found.
    464   1.1      matt 	 */
    465   1.1      matt 	return (FALSE);
    466   1.1      matt }
    467   1.1      matt #endif /* NISADMA > 0 */
    468   1.1      matt 
    469   1.1      matt /*
    470  1.17     chris  * p v _ e n t r y   f u n c t i o n s
    471  1.17     chris  */
    472  1.17     chris 
    473  1.17     chris /*
    474  1.17     chris  * pv_entry allocation functions:
    475  1.17     chris  *   the main pv_entry allocation functions are:
    476  1.17     chris  *     pmap_alloc_pv: allocate a pv_entry structure
    477  1.17     chris  *     pmap_free_pv: free one pv_entry
    478  1.17     chris  *     pmap_free_pvs: free a list of pv_entrys
    479  1.17     chris  *
    480  1.17     chris  * the rest are helper functions
    481   1.1      matt  */
    482   1.1      matt 
    483   1.1      matt /*
    484  1.17     chris  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    485  1.17     chris  * => we lock pvalloc_lock
    486  1.17     chris  * => if we fail, we call out to pmap_alloc_pvpage
    487  1.17     chris  * => 3 modes:
    488  1.17     chris  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    489  1.17     chris  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    490  1.17     chris  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    491  1.17     chris  *			one now
    492  1.17     chris  *
    493  1.17     chris  * "try" is for optional functions like pmap_copy().
    494   1.1      matt  */
    495  1.17     chris 
    496  1.17     chris __inline static struct pv_entry *
    497  1.17     chris pmap_alloc_pv(pmap, mode)
    498  1.17     chris 	struct pmap *pmap;
    499  1.17     chris 	int mode;
    500   1.1      matt {
    501  1.17     chris 	struct pv_page *pvpage;
    502  1.17     chris 	struct pv_entry *pv;
    503  1.17     chris 
    504  1.17     chris 	simple_lock(&pvalloc_lock);
    505  1.17     chris 
    506  1.51     chris 	pvpage = TAILQ_FIRST(&pv_freepages);
    507  1.51     chris 
    508  1.51     chris 	if (pvpage != NULL) {
    509  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;
    510  1.17     chris 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    511  1.17     chris 			/* nothing left in this one? */
    512  1.17     chris 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    513  1.17     chris 		}
    514  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    515  1.51     chris 		KASSERT(pv);
    516  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    517  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    518  1.17     chris 	} else {
    519  1.17     chris 		pv = NULL;		/* need more of them */
    520  1.17     chris 	}
    521  1.17     chris 
    522  1.17     chris 	/*
    523  1.17     chris 	 * if below low water mark or we didn't get a pv_entry we try and
    524  1.17     chris 	 * create more pv_entrys ...
    525  1.17     chris 	 */
    526  1.17     chris 
    527  1.17     chris 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    528  1.17     chris 		if (pv == NULL)
    529  1.17     chris 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    530  1.17     chris 					       mode : ALLOCPV_NEED);
    531  1.17     chris 		else
    532  1.17     chris 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    533  1.17     chris 	}
    534  1.17     chris 
    535  1.17     chris 	simple_unlock(&pvalloc_lock);
    536  1.17     chris 	return(pv);
    537  1.17     chris }
    538  1.17     chris 
    539  1.17     chris /*
    540  1.17     chris  * pmap_alloc_pvpage: maybe allocate a new pvpage
    541  1.17     chris  *
    542  1.17     chris  * if need_entry is false: try and allocate a new pv_page
    543  1.17     chris  * if need_entry is true: try and allocate a new pv_page and return a
    544  1.17     chris  *	new pv_entry from it.   if we are unable to allocate a pv_page
    545  1.17     chris  *	we make a last ditch effort to steal a pv_page from some other
    546  1.17     chris  *	mapping.    if that fails, we panic...
    547  1.17     chris  *
    548  1.17     chris  * => we assume that the caller holds pvalloc_lock
    549  1.17     chris  */
    550  1.17     chris 
    551  1.17     chris static struct pv_entry *
    552  1.17     chris pmap_alloc_pvpage(pmap, mode)
    553  1.17     chris 	struct pmap *pmap;
    554  1.17     chris 	int mode;
    555  1.17     chris {
    556  1.17     chris 	struct vm_page *pg;
    557  1.17     chris 	struct pv_page *pvpage;
    558   1.1      matt 	struct pv_entry *pv;
    559  1.17     chris 	int s;
    560  1.17     chris 
    561  1.17     chris 	/*
    562  1.17     chris 	 * if we need_entry and we've got unused pv_pages, allocate from there
    563  1.17     chris 	 */
    564  1.17     chris 
    565  1.51     chris 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    566  1.51     chris 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    567  1.17     chris 
    568  1.17     chris 		/* move it to pv_freepages list */
    569  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    570  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    571  1.17     chris 
    572  1.17     chris 		/* allocate a pv_entry */
    573  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    574  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    575  1.51     chris 		KASSERT(pv);
    576  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    577  1.17     chris 
    578  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    579  1.17     chris 		return(pv);
    580  1.17     chris 	}
    581   1.1      matt 
    582   1.1      matt 	/*
    583  1.17     chris 	 *  see if we've got a cached unmapped VA that we can map a page in.
    584  1.17     chris 	 * if not, try to allocate one.
    585   1.1      matt 	 */
    586   1.1      matt 
    587  1.23       chs 
    588  1.17     chris 	if (pv_cachedva == 0) {
    589  1.23       chs 		s = splvm();
    590  1.23       chs 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    591  1.17     chris 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    592  1.23       chs 		splx(s);
    593  1.17     chris 		if (pv_cachedva == 0) {
    594  1.17     chris 			return (NULL);
    595   1.1      matt 		}
    596   1.1      matt 	}
    597  1.17     chris 
    598  1.23       chs 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    599  1.23       chs 	    UVM_PGA_USERESERVE);
    600  1.17     chris 
    601  1.17     chris 	if (pg == NULL)
    602  1.17     chris 		return (NULL);
    603  1.51     chris 	pg->flags &= ~PG_BUSY;	/* never busy */
    604  1.17     chris 
    605  1.17     chris 	/*
    606  1.17     chris 	 * add a mapping for our new pv_page and free its entrys (save one!)
    607  1.17     chris 	 *
    608  1.17     chris 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    609  1.17     chris 	 * pmap is already locked!  (...but entering the mapping is safe...)
    610  1.17     chris 	 */
    611  1.17     chris 
    612  1.51     chris 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    613  1.51     chris 		VM_PROT_READ|VM_PROT_WRITE);
    614  1.19     chris 	pmap_update(pmap_kernel());
    615  1.17     chris 	pvpage = (struct pv_page *) pv_cachedva;
    616  1.17     chris 	pv_cachedva = 0;
    617  1.17     chris 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    618   1.1      matt }
    619   1.1      matt 
    620   1.1      matt /*
    621  1.17     chris  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    622  1.17     chris  *
    623  1.17     chris  * => caller must hold pvalloc_lock
    624  1.17     chris  * => if need_entry is true, we allocate and return one pv_entry
    625   1.1      matt  */
    626   1.1      matt 
    627  1.17     chris static struct pv_entry *
    628  1.17     chris pmap_add_pvpage(pvp, need_entry)
    629  1.17     chris 	struct pv_page *pvp;
    630  1.17     chris 	boolean_t need_entry;
    631   1.1      matt {
    632  1.17     chris 	int tofree, lcv;
    633  1.17     chris 
    634  1.17     chris 	/* do we need to return one? */
    635  1.17     chris 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    636   1.1      matt 
    637  1.17     chris 	pvp->pvinfo.pvpi_pvfree = NULL;
    638  1.17     chris 	pvp->pvinfo.pvpi_nfree = tofree;
    639  1.17     chris 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    640  1.17     chris 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    641  1.17     chris 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    642   1.1      matt 	}
    643  1.17     chris 	if (need_entry)
    644  1.17     chris 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    645  1.17     chris 	else
    646  1.17     chris 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    647  1.17     chris 	pv_nfpvents += tofree;
    648  1.17     chris 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    649   1.1      matt }
    650   1.1      matt 
    651  1.17     chris /*
    652  1.17     chris  * pmap_free_pv_doit: actually free a pv_entry
    653  1.17     chris  *
    654  1.17     chris  * => do not call this directly!  instead use either
    655  1.17     chris  *    1. pmap_free_pv ==> free a single pv_entry
    656  1.17     chris  *    2. pmap_free_pvs => free a list of pv_entrys
    657  1.17     chris  * => we must be holding pvalloc_lock
    658  1.17     chris  */
    659  1.17     chris 
    660  1.17     chris __inline static void
    661  1.17     chris pmap_free_pv_doit(pv)
    662  1.17     chris 	struct pv_entry *pv;
    663   1.1      matt {
    664  1.17     chris 	struct pv_page *pvp;
    665   1.1      matt 
    666  1.17     chris 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    667  1.17     chris 	pv_nfpvents++;
    668  1.17     chris 	pvp->pvinfo.pvpi_nfree++;
    669   1.1      matt 
    670  1.17     chris 	/* nfree == 1 => fully allocated page just became partly allocated */
    671  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == 1) {
    672  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    673   1.1      matt 	}
    674   1.1      matt 
    675  1.17     chris 	/* free it */
    676  1.17     chris 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    677  1.17     chris 	pvp->pvinfo.pvpi_pvfree = pv;
    678   1.1      matt 
    679  1.17     chris 	/*
    680  1.17     chris 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    681  1.17     chris 	 */
    682   1.1      matt 
    683  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    684  1.17     chris 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    685  1.17     chris 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    686   1.1      matt 	}
    687   1.1      matt }
    688   1.1      matt 
    689   1.1      matt /*
    690  1.17     chris  * pmap_free_pv: free a single pv_entry
    691  1.17     chris  *
    692  1.17     chris  * => we gain the pvalloc_lock
    693   1.1      matt  */
    694   1.1      matt 
    695  1.17     chris __inline static void
    696  1.17     chris pmap_free_pv(pmap, pv)
    697  1.15     chris 	struct pmap *pmap;
    698   1.1      matt 	struct pv_entry *pv;
    699   1.1      matt {
    700  1.17     chris 	simple_lock(&pvalloc_lock);
    701  1.17     chris 	pmap_free_pv_doit(pv);
    702  1.17     chris 
    703  1.17     chris 	/*
    704  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    705  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    706  1.17     chris 	 */
    707  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    708  1.17     chris 	    pmap != pmap_kernel())
    709  1.17     chris 		pmap_free_pvpage();
    710  1.17     chris 
    711  1.17     chris 	simple_unlock(&pvalloc_lock);
    712  1.17     chris }
    713   1.1      matt 
    714  1.17     chris /*
    715  1.17     chris  * pmap_free_pvs: free a list of pv_entrys
    716  1.17     chris  *
    717  1.17     chris  * => we gain the pvalloc_lock
    718  1.17     chris  */
    719   1.1      matt 
    720  1.17     chris __inline static void
    721  1.17     chris pmap_free_pvs(pmap, pvs)
    722  1.17     chris 	struct pmap *pmap;
    723  1.17     chris 	struct pv_entry *pvs;
    724  1.17     chris {
    725  1.17     chris 	struct pv_entry *nextpv;
    726   1.1      matt 
    727  1.17     chris 	simple_lock(&pvalloc_lock);
    728   1.1      matt 
    729  1.17     chris 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    730  1.17     chris 		nextpv = pvs->pv_next;
    731  1.17     chris 		pmap_free_pv_doit(pvs);
    732   1.1      matt 	}
    733   1.1      matt 
    734  1.17     chris 	/*
    735  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    736  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    737  1.17     chris 	 */
    738  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    739  1.17     chris 	    pmap != pmap_kernel())
    740  1.17     chris 		pmap_free_pvpage();
    741   1.1      matt 
    742  1.17     chris 	simple_unlock(&pvalloc_lock);
    743   1.1      matt }
    744   1.1      matt 
    745   1.1      matt 
    746   1.1      matt /*
    747  1.17     chris  * pmap_free_pvpage: try and free an unused pv_page structure
    748  1.17     chris  *
    749  1.17     chris  * => assume caller is holding the pvalloc_lock and that
    750  1.17     chris  *	there is a page on the pv_unusedpgs list
    751  1.17     chris  * => if we can't get a lock on the kmem_map we try again later
    752   1.1      matt  */
    753   1.1      matt 
    754  1.17     chris static void
    755  1.17     chris pmap_free_pvpage()
    756   1.1      matt {
    757  1.17     chris 	int s;
    758  1.17     chris 	struct vm_map *map;
    759  1.17     chris 	struct vm_map_entry *dead_entries;
    760  1.17     chris 	struct pv_page *pvp;
    761  1.17     chris 
    762  1.17     chris 	s = splvm(); /* protect kmem_map */
    763   1.1      matt 
    764  1.51     chris 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    765   1.1      matt 
    766   1.1      matt 	/*
    767  1.17     chris 	 * note: watch out for pv_initpage which is allocated out of
    768  1.17     chris 	 * kernel_map rather than kmem_map.
    769   1.1      matt 	 */
    770  1.17     chris 	if (pvp == pv_initpage)
    771  1.17     chris 		map = kernel_map;
    772  1.17     chris 	else
    773  1.17     chris 		map = kmem_map;
    774  1.17     chris 	if (vm_map_lock_try(map)) {
    775  1.17     chris 
    776  1.17     chris 		/* remove pvp from pv_unusedpgs */
    777  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    778  1.17     chris 
    779  1.17     chris 		/* unmap the page */
    780  1.17     chris 		dead_entries = NULL;
    781  1.17     chris 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    782  1.17     chris 		    &dead_entries);
    783  1.17     chris 		vm_map_unlock(map);
    784  1.17     chris 
    785  1.17     chris 		if (dead_entries != NULL)
    786  1.17     chris 			uvm_unmap_detach(dead_entries, 0);
    787   1.1      matt 
    788  1.17     chris 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    789   1.1      matt 	}
    790  1.17     chris 	if (pvp == pv_initpage)
    791  1.17     chris 		/* no more initpage, we've freed it */
    792  1.17     chris 		pv_initpage = NULL;
    793   1.1      matt 
    794   1.1      matt 	splx(s);
    795   1.1      matt }
    796   1.1      matt 
    797   1.1      matt /*
    798  1.17     chris  * main pv_entry manipulation functions:
    799  1.49   thorpej  *   pmap_enter_pv: enter a mapping onto a vm_page list
    800  1.49   thorpej  *   pmap_remove_pv: remove a mappiing from a vm_page list
    801  1.17     chris  *
    802  1.17     chris  * NOTE: pmap_enter_pv expects to lock the pvh itself
    803  1.17     chris  *       pmap_remove_pv expects te caller to lock the pvh before calling
    804  1.17     chris  */
    805  1.17     chris 
    806  1.17     chris /*
    807  1.49   thorpej  * pmap_enter_pv: enter a mapping onto a vm_page lst
    808  1.17     chris  *
    809  1.17     chris  * => caller should hold the proper lock on pmap_main_lock
    810  1.17     chris  * => caller should have pmap locked
    811  1.49   thorpej  * => we will gain the lock on the vm_page and allocate the new pv_entry
    812  1.17     chris  * => caller should adjust ptp's wire_count before calling
    813  1.17     chris  * => caller should not adjust pmap's wire_count
    814  1.17     chris  */
    815  1.17     chris 
    816  1.17     chris __inline static void
    817  1.49   thorpej pmap_enter_pv(pg, pve, pmap, va, ptp, flags)
    818  1.49   thorpej 	struct vm_page *pg;
    819  1.17     chris 	struct pv_entry *pve;	/* preallocated pve for us to use */
    820  1.17     chris 	struct pmap *pmap;
    821  1.17     chris 	vaddr_t va;
    822  1.17     chris 	struct vm_page *ptp;	/* PTP in pmap that maps this VA */
    823  1.17     chris 	int flags;
    824  1.17     chris {
    825  1.17     chris 	pve->pv_pmap = pmap;
    826  1.17     chris 	pve->pv_va = va;
    827  1.17     chris 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    828  1.17     chris 	pve->pv_flags = flags;
    829  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    830  1.49   thorpej 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    831  1.49   thorpej 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    832  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    833  1.17     chris 	if (pve->pv_flags & PT_W)
    834  1.17     chris 		++pmap->pm_stats.wired_count;
    835  1.17     chris }
    836  1.17     chris 
    837  1.17     chris /*
    838  1.17     chris  * pmap_remove_pv: try to remove a mapping from a pv_list
    839  1.17     chris  *
    840  1.17     chris  * => caller should hold proper lock on pmap_main_lock
    841  1.17     chris  * => pmap should be locked
    842  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    843  1.17     chris  * => caller should adjust ptp's wire_count and free PTP if needed
    844  1.17     chris  * => caller should NOT adjust pmap's wire_count
    845  1.17     chris  * => we return the removed pve
    846  1.17     chris  */
    847  1.17     chris 
    848  1.17     chris __inline static struct pv_entry *
    849  1.49   thorpej pmap_remove_pv(pg, pmap, va)
    850  1.49   thorpej 	struct vm_page *pg;
    851  1.17     chris 	struct pmap *pmap;
    852  1.17     chris 	vaddr_t va;
    853  1.17     chris {
    854  1.17     chris 	struct pv_entry *pve, **prevptr;
    855  1.17     chris 
    856  1.49   thorpej 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    857  1.17     chris 	pve = *prevptr;
    858  1.17     chris 	while (pve) {
    859  1.17     chris 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    860  1.17     chris 			*prevptr = pve->pv_next;		/* remove it! */
    861  1.17     chris 			if (pve->pv_flags & PT_W)
    862  1.17     chris 			    --pmap->pm_stats.wired_count;
    863  1.17     chris 			break;
    864  1.17     chris 		}
    865  1.17     chris 		prevptr = &pve->pv_next;		/* previous pointer */
    866  1.17     chris 		pve = pve->pv_next;			/* advance */
    867  1.17     chris 	}
    868  1.17     chris 	return(pve);				/* return removed pve */
    869  1.17     chris }
    870  1.17     chris 
    871  1.17     chris /*
    872  1.17     chris  *
    873  1.17     chris  * pmap_modify_pv: Update pv flags
    874  1.17     chris  *
    875  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    876  1.17     chris  * => caller should NOT adjust pmap's wire_count
    877  1.29  rearnsha  * => caller must call pmap_vac_me_harder() if writable status of a page
    878  1.29  rearnsha  *    may have changed.
    879  1.17     chris  * => we return the old flags
    880  1.17     chris  *
    881   1.1      matt  * Modify a physical-virtual mapping in the pv table
    882   1.1      matt  */
    883   1.1      matt 
    884  1.33     chris /*__inline */
    885  1.33     chris static u_int
    886  1.49   thorpej pmap_modify_pv(pmap, va, pg, bic_mask, eor_mask)
    887  1.15     chris 	struct pmap *pmap;
    888   1.1      matt 	vaddr_t va;
    889  1.49   thorpej 	struct vm_page *pg;
    890   1.1      matt 	u_int bic_mask;
    891   1.1      matt 	u_int eor_mask;
    892   1.1      matt {
    893   1.1      matt 	struct pv_entry *npv;
    894   1.1      matt 	u_int flags, oflags;
    895   1.1      matt 
    896   1.1      matt 	/*
    897   1.1      matt 	 * There is at least one VA mapping this page.
    898   1.1      matt 	 */
    899   1.1      matt 
    900  1.49   thorpej 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    901   1.1      matt 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    902   1.1      matt 			oflags = npv->pv_flags;
    903   1.1      matt 			npv->pv_flags = flags =
    904   1.1      matt 			    ((oflags & ~bic_mask) ^ eor_mask);
    905   1.1      matt 			if ((flags ^ oflags) & PT_W) {
    906   1.1      matt 				if (flags & PT_W)
    907   1.1      matt 					++pmap->pm_stats.wired_count;
    908   1.1      matt 				else
    909   1.1      matt 					--pmap->pm_stats.wired_count;
    910   1.1      matt 			}
    911   1.1      matt 			return (oflags);
    912   1.1      matt 		}
    913   1.1      matt 	}
    914   1.1      matt 	return (0);
    915   1.1      matt }
    916   1.1      matt 
    917   1.1      matt /*
    918   1.1      matt  * Map the specified level 2 pagetable into the level 1 page table for
    919   1.1      matt  * the given pmap to cover a chunk of virtual address space starting from the
    920   1.1      matt  * address specified.
    921   1.1      matt  */
    922   1.1      matt static /*__inline*/ void
    923  1.17     chris pmap_map_in_l1(pmap, va, l2pa, selfref)
    924  1.15     chris 	struct pmap *pmap;
    925   1.1      matt 	vaddr_t va, l2pa;
    926  1.17     chris 	boolean_t selfref;
    927   1.1      matt {
    928   1.1      matt 	vaddr_t ptva;
    929   1.1      matt 
    930   1.1      matt 	/* Calculate the index into the L1 page table. */
    931   1.1      matt 	ptva = (va >> PDSHIFT) & ~3;
    932   1.1      matt 
    933  1.48     chris 	NPDEBUG(PDB_MAP_L1, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
    934   1.1      matt 	    pmap->pm_pdir, L1_PTE(l2pa), ptva));
    935   1.1      matt 
    936   1.1      matt 	/* Map page table into the L1. */
    937   1.1      matt 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    938   1.1      matt 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    939   1.1      matt 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    940   1.1      matt 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    941   1.1      matt 
    942   1.1      matt 	/* Map the page table into the page table area. */
    943  1.17     chris 	if (selfref) {
    944  1.48     chris 	    NPDEBUG(PDB_MAP_L1, printf("pt self reference %lx in %lx\n",
    945  1.48     chris 			L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
    946  1.48     chris 	    *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    947  1.48     chris 		L2_PTE_NC_NB(l2pa, AP_KRW);
    948  1.17     chris 	}
    949   1.1      matt 	/* XXX should be a purge */
    950   1.1      matt /*	cpu_tlb_flushD();*/
    951   1.1      matt }
    952   1.1      matt 
    953   1.1      matt #if 0
    954   1.1      matt static /*__inline*/ void
    955   1.1      matt pmap_unmap_in_l1(pmap, va)
    956  1.15     chris 	struct pmap *pmap;
    957   1.1      matt 	vaddr_t va;
    958   1.1      matt {
    959   1.1      matt 	vaddr_t ptva;
    960   1.1      matt 
    961   1.1      matt 	/* Calculate the index into the L1 page table. */
    962   1.1      matt 	ptva = (va >> PDSHIFT) & ~3;
    963   1.1      matt 
    964   1.1      matt 	/* Unmap page table from the L1. */
    965   1.1      matt 	pmap->pm_pdir[ptva + 0] = 0;
    966   1.1      matt 	pmap->pm_pdir[ptva + 1] = 0;
    967   1.1      matt 	pmap->pm_pdir[ptva + 2] = 0;
    968   1.1      matt 	pmap->pm_pdir[ptva + 3] = 0;
    969   1.1      matt 
    970   1.1      matt 	/* Unmap the page table from the page table area. */
    971   1.1      matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    972   1.1      matt 
    973   1.1      matt 	/* XXX should be a purge */
    974   1.1      matt /*	cpu_tlb_flushD();*/
    975   1.1      matt }
    976   1.1      matt #endif
    977   1.1      matt 
    978   1.1      matt /*
    979   1.1      matt  *	Used to map a range of physical addresses into kernel
    980   1.1      matt  *	virtual address space.
    981   1.1      matt  *
    982   1.1      matt  *	For now, VM is already on, we only need to map the
    983   1.1      matt  *	specified memory.
    984   1.1      matt  */
    985   1.1      matt vaddr_t
    986   1.1      matt pmap_map(va, spa, epa, prot)
    987   1.1      matt 	vaddr_t va, spa, epa;
    988   1.1      matt 	int prot;
    989   1.1      matt {
    990   1.1      matt 	while (spa < epa) {
    991  1.20     chris 		pmap_kenter_pa(va, spa, prot);
    992   1.1      matt 		va += NBPG;
    993   1.1      matt 		spa += NBPG;
    994   1.1      matt 	}
    995  1.19     chris 	pmap_update(pmap_kernel());
    996   1.1      matt 	return(va);
    997   1.1      matt }
    998   1.1      matt 
    999   1.1      matt 
   1000   1.1      matt /*
   1001   1.3      matt  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1002   1.1      matt  *
   1003   1.1      matt  * bootstrap the pmap system. This is called from initarm and allows
   1004   1.1      matt  * the pmap system to initailise any structures it requires.
   1005   1.1      matt  *
   1006   1.1      matt  * Currently this sets up the kernel_pmap that is statically allocated
   1007   1.1      matt  * and also allocated virtual addresses for certain page hooks.
   1008   1.1      matt  * Currently the only one page hook is allocated that is used
   1009   1.1      matt  * to zero physical pages of memory.
   1010   1.1      matt  * It also initialises the start and end address of the kernel data space.
   1011   1.1      matt  */
   1012   1.2      matt extern paddr_t physical_freestart;
   1013   1.2      matt extern paddr_t physical_freeend;
   1014   1.1      matt 
   1015  1.17     chris char *boot_head;
   1016   1.1      matt 
   1017   1.1      matt void
   1018   1.1      matt pmap_bootstrap(kernel_l1pt, kernel_ptpt)
   1019   1.1      matt 	pd_entry_t *kernel_l1pt;
   1020   1.1      matt 	pv_addr_t kernel_ptpt;
   1021   1.1      matt {
   1022  1.54   thorpej 	pt_entry_t *pte;
   1023   1.1      matt 	int loop;
   1024   1.2      matt 	paddr_t start, end;
   1025   1.1      matt #if NISADMA > 0
   1026   1.2      matt 	paddr_t istart;
   1027   1.2      matt 	psize_t isize;
   1028   1.1      matt #endif
   1029   1.1      matt 
   1030  1.15     chris 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1031  1.15     chris 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1032  1.15     chris 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1033  1.15     chris 	simple_lock_init(&pmap_kernel()->pm_lock);
   1034  1.16     chris 	pmap_kernel()->pm_obj.pgops = NULL;
   1035  1.16     chris 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1036  1.16     chris 	pmap_kernel()->pm_obj.uo_npages = 0;
   1037  1.16     chris 	pmap_kernel()->pm_obj.uo_refs = 1;
   1038  1.16     chris 
   1039   1.1      matt 	/*
   1040   1.1      matt 	 * Initialize PAGE_SIZE-dependent variables.
   1041   1.1      matt 	 */
   1042   1.1      matt 	uvm_setpagesize();
   1043   1.1      matt 
   1044   1.1      matt 	npages = 0;
   1045   1.1      matt 	loop = 0;
   1046   1.1      matt 	while (loop < bootconfig.dramblocks) {
   1047   1.2      matt 		start = (paddr_t)bootconfig.dram[loop].address;
   1048   1.1      matt 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1049   1.1      matt 		if (start < physical_freestart)
   1050   1.1      matt 			start = physical_freestart;
   1051   1.1      matt 		if (end > physical_freeend)
   1052   1.1      matt 			end = physical_freeend;
   1053   1.1      matt #if 0
   1054   1.1      matt 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1055   1.1      matt #endif
   1056   1.1      matt #if NISADMA > 0
   1057   1.1      matt 		if (pmap_isa_dma_range_intersect(start, end - start,
   1058   1.1      matt 		    &istart, &isize)) {
   1059   1.1      matt 			/*
   1060   1.1      matt 			 * Place the pages that intersect with the
   1061   1.1      matt 			 * ISA DMA range onto the ISA DMA free list.
   1062   1.1      matt 			 */
   1063   1.1      matt #if 0
   1064   1.1      matt 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1065   1.1      matt 			    istart + isize - 1);
   1066   1.1      matt #endif
   1067   1.1      matt 			uvm_page_physload(atop(istart),
   1068   1.1      matt 			    atop(istart + isize), atop(istart),
   1069   1.1      matt 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1070   1.1      matt 			npages += atop(istart + isize) - atop(istart);
   1071   1.1      matt 
   1072   1.1      matt 			/*
   1073   1.1      matt 			 * Load the pieces that come before
   1074   1.1      matt 			 * the intersection into the default
   1075   1.1      matt 			 * free list.
   1076   1.1      matt 			 */
   1077   1.1      matt 			if (start < istart) {
   1078   1.1      matt #if 0
   1079   1.1      matt 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1080   1.1      matt 				    start, istart - 1);
   1081   1.1      matt #endif
   1082   1.1      matt 				uvm_page_physload(atop(start),
   1083   1.1      matt 				    atop(istart), atop(start),
   1084   1.1      matt 				    atop(istart), VM_FREELIST_DEFAULT);
   1085   1.1      matt 				npages += atop(istart) - atop(start);
   1086   1.1      matt 			}
   1087   1.1      matt 
   1088   1.1      matt 			/*
   1089   1.1      matt 			 * Load the pieces that come after
   1090   1.1      matt 			 * the intersection into the default
   1091   1.1      matt 			 * free list.
   1092   1.1      matt 			 */
   1093   1.1      matt 			if ((istart + isize) < end) {
   1094   1.1      matt #if 0
   1095   1.1      matt 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1096   1.1      matt 				    (istart + isize), end - 1);
   1097   1.1      matt #endif
   1098   1.1      matt 				uvm_page_physload(atop(istart + isize),
   1099   1.1      matt 				    atop(end), atop(istart + isize),
   1100   1.1      matt 				    atop(end), VM_FREELIST_DEFAULT);
   1101   1.1      matt 				npages += atop(end) - atop(istart + isize);
   1102   1.1      matt 			}
   1103   1.1      matt 		} else {
   1104   1.1      matt 			uvm_page_physload(atop(start), atop(end),
   1105   1.1      matt 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1106   1.1      matt 			npages += atop(end) - atop(start);
   1107   1.1      matt 		}
   1108   1.1      matt #else	/* NISADMA > 0 */
   1109   1.1      matt 		uvm_page_physload(atop(start), atop(end),
   1110   1.1      matt 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1111   1.1      matt 		npages += atop(end) - atop(start);
   1112   1.1      matt #endif /* NISADMA > 0 */
   1113   1.1      matt 		++loop;
   1114   1.1      matt 	}
   1115   1.1      matt 
   1116   1.1      matt #ifdef MYCROFT_HACK
   1117   1.1      matt 	printf("npages = %ld\n", npages);
   1118   1.1      matt #endif
   1119   1.1      matt 
   1120  1.54   thorpej 	virtual_avail = KERNEL_VM_BASE;
   1121  1.48     chris 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE - 1;
   1122   1.1      matt 
   1123   1.1      matt 	/*
   1124  1.54   thorpej 	 * now we allocate the "special" VAs which are used for tmp mappings
   1125  1.54   thorpej 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1126  1.54   thorpej 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1127  1.54   thorpej 	 * we find the PTE that maps the allocated VA via the linear PTE
   1128  1.54   thorpej 	 * mapping.
   1129   1.1      matt 	 */
   1130   1.1      matt 
   1131  1.54   thorpej 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1132  1.54   thorpej 
   1133  1.54   thorpej 	csrcp = virtual_avail; csrc_pte = pte;
   1134  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1135  1.54   thorpej 
   1136  1.54   thorpej 	cdstp = virtual_avail; cdst_pte = pte;
   1137  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1138  1.54   thorpej 
   1139  1.54   thorpej 	memhook = (char *) virtual_avail;	/* don't need pte */
   1140  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1141  1.54   thorpej 
   1142  1.54   thorpej 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1143  1.54   thorpej 	virtual_avail += round_page(MSGBUFSIZE);
   1144  1.54   thorpej 	pte += atop(round_page(MSGBUFSIZE));
   1145   1.1      matt 
   1146  1.17     chris 	/*
   1147  1.17     chris 	 * init the static-global locks and global lists.
   1148  1.17     chris 	 */
   1149  1.17     chris 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1150  1.17     chris 	simple_lock_init(&pvalloc_lock);
   1151  1.48     chris 	simple_lock_init(&pmaps_lock);
   1152  1.48     chris 	LIST_INIT(&pmaps);
   1153  1.17     chris 	TAILQ_INIT(&pv_freepages);
   1154  1.17     chris 	TAILQ_INIT(&pv_unusedpgs);
   1155   1.1      matt 
   1156  1.10     chris 	/*
   1157  1.10     chris 	 * initialize the pmap pool.
   1158  1.10     chris 	 */
   1159  1.10     chris 
   1160  1.10     chris 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1161  1.52   thorpej 		  &pool_allocator_nointr);
   1162  1.10     chris 
   1163  1.36   thorpej 	cpu_dcache_wbinv_all();
   1164   1.1      matt }
   1165   1.1      matt 
   1166   1.1      matt /*
   1167   1.1      matt  * void pmap_init(void)
   1168   1.1      matt  *
   1169   1.1      matt  * Initialize the pmap module.
   1170   1.1      matt  * Called by vm_init() in vm/vm_init.c in order to initialise
   1171   1.1      matt  * any structures that the pmap system needs to map virtual memory.
   1172   1.1      matt  */
   1173   1.1      matt 
   1174   1.1      matt extern int physmem;
   1175   1.1      matt 
   1176   1.1      matt void
   1177   1.1      matt pmap_init()
   1178   1.1      matt {
   1179   1.1      matt 
   1180   1.1      matt 	/*
   1181   1.1      matt 	 * Set the available memory vars - These do not map to real memory
   1182   1.1      matt 	 * addresses and cannot as the physical memory is fragmented.
   1183   1.1      matt 	 * They are used by ps for %mem calculations.
   1184   1.1      matt 	 * One could argue whether this should be the entire memory or just
   1185   1.1      matt 	 * the memory that is useable in a user process.
   1186   1.1      matt 	 */
   1187   1.1      matt 	avail_start = 0;
   1188   1.1      matt 	avail_end = physmem * NBPG;
   1189   1.1      matt 
   1190  1.17     chris 	/*
   1191  1.17     chris 	 * now we need to free enough pv_entry structures to allow us to get
   1192  1.17     chris 	 * the kmem_map/kmem_object allocated and inited (done after this
   1193  1.17     chris 	 * function is finished).  to do this we allocate one bootstrap page out
   1194  1.17     chris 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1195  1.17     chris 	 * structures.   we never free this page.
   1196  1.17     chris 	 */
   1197  1.17     chris 
   1198  1.17     chris 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1199  1.17     chris 	if (pv_initpage == NULL)
   1200  1.17     chris 		panic("pmap_init: pv_initpage");
   1201  1.17     chris 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1202  1.17     chris 	pv_nfpvents = 0;
   1203  1.17     chris 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1204  1.17     chris 
   1205   1.1      matt 	pmap_initialized = TRUE;
   1206   1.1      matt 
   1207   1.1      matt 	/* Initialise our L1 page table queues and counters */
   1208   1.1      matt 	SIMPLEQ_INIT(&l1pt_static_queue);
   1209   1.1      matt 	l1pt_static_queue_count = 0;
   1210   1.1      matt 	l1pt_static_create_count = 0;
   1211   1.1      matt 	SIMPLEQ_INIT(&l1pt_queue);
   1212   1.1      matt 	l1pt_queue_count = 0;
   1213   1.1      matt 	l1pt_create_count = 0;
   1214   1.1      matt 	l1pt_reuse_count = 0;
   1215   1.1      matt }
   1216   1.1      matt 
   1217   1.1      matt /*
   1218   1.1      matt  * pmap_postinit()
   1219   1.1      matt  *
   1220   1.1      matt  * This routine is called after the vm and kmem subsystems have been
   1221   1.1      matt  * initialised. This allows the pmap code to perform any initialisation
   1222   1.1      matt  * that can only be done one the memory allocation is in place.
   1223   1.1      matt  */
   1224   1.1      matt 
   1225   1.1      matt void
   1226   1.1      matt pmap_postinit()
   1227   1.1      matt {
   1228   1.1      matt 	int loop;
   1229   1.1      matt 	struct l1pt *pt;
   1230   1.1      matt 
   1231   1.1      matt #ifdef PMAP_STATIC_L1S
   1232   1.1      matt 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1233   1.1      matt #else	/* PMAP_STATIC_L1S */
   1234   1.1      matt 	for (loop = 0; loop < max_processes; ++loop) {
   1235   1.1      matt #endif	/* PMAP_STATIC_L1S */
   1236   1.1      matt 		/* Allocate a L1 page table */
   1237   1.1      matt 		pt = pmap_alloc_l1pt();
   1238   1.1      matt 		if (!pt)
   1239   1.1      matt 			panic("Cannot allocate static L1 page tables\n");
   1240   1.1      matt 
   1241   1.1      matt 		/* Clean it */
   1242   1.1      matt 		bzero((void *)pt->pt_va, PD_SIZE);
   1243   1.1      matt 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1244   1.1      matt 		/* Add the page table to the queue */
   1245   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1246   1.1      matt 		++l1pt_static_queue_count;
   1247   1.1      matt 		++l1pt_static_create_count;
   1248   1.1      matt 	}
   1249   1.1      matt }
   1250   1.1      matt 
   1251   1.1      matt 
   1252   1.1      matt /*
   1253   1.1      matt  * Create and return a physical map.
   1254   1.1      matt  *
   1255   1.1      matt  * If the size specified for the map is zero, the map is an actual physical
   1256   1.1      matt  * map, and may be referenced by the hardware.
   1257   1.1      matt  *
   1258   1.1      matt  * If the size specified is non-zero, the map will be used in software only,
   1259   1.1      matt  * and is bounded by that size.
   1260   1.1      matt  */
   1261   1.1      matt 
   1262   1.1      matt pmap_t
   1263   1.1      matt pmap_create()
   1264   1.1      matt {
   1265  1.15     chris 	struct pmap *pmap;
   1266   1.1      matt 
   1267  1.10     chris 	/*
   1268  1.10     chris 	 * Fetch pmap entry from the pool
   1269  1.10     chris 	 */
   1270  1.10     chris 
   1271  1.10     chris 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1272  1.17     chris 	/* XXX is this really needed! */
   1273  1.17     chris 	memset(pmap, 0, sizeof(*pmap));
   1274   1.1      matt 
   1275  1.16     chris 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1276  1.16     chris 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1277  1.16     chris 	TAILQ_INIT(&pmap->pm_obj.memq);
   1278  1.16     chris 	pmap->pm_obj.uo_npages = 0;
   1279  1.16     chris 	pmap->pm_obj.uo_refs = 1;
   1280  1.16     chris 	pmap->pm_stats.wired_count = 0;
   1281  1.16     chris 	pmap->pm_stats.resident_count = 1;
   1282  1.16     chris 
   1283   1.1      matt 	/* Now init the machine part of the pmap */
   1284   1.1      matt 	pmap_pinit(pmap);
   1285   1.1      matt 	return(pmap);
   1286   1.1      matt }
   1287   1.1      matt 
   1288   1.1      matt /*
   1289   1.1      matt  * pmap_alloc_l1pt()
   1290   1.1      matt  *
   1291   1.1      matt  * This routine allocates physical and virtual memory for a L1 page table
   1292   1.1      matt  * and wires it.
   1293   1.1      matt  * A l1pt structure is returned to describe the allocated page table.
   1294   1.1      matt  *
   1295   1.1      matt  * This routine is allowed to fail if the required memory cannot be allocated.
   1296   1.1      matt  * In this case NULL is returned.
   1297   1.1      matt  */
   1298   1.1      matt 
   1299   1.1      matt struct l1pt *
   1300   1.1      matt pmap_alloc_l1pt(void)
   1301   1.1      matt {
   1302   1.2      matt 	paddr_t pa;
   1303   1.2      matt 	vaddr_t va;
   1304   1.1      matt 	struct l1pt *pt;
   1305   1.1      matt 	int error;
   1306   1.9       chs 	struct vm_page *m;
   1307  1.11     chris 	pt_entry_t *ptes;
   1308   1.1      matt 
   1309   1.1      matt 	/* Allocate virtual address space for the L1 page table */
   1310   1.1      matt 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1311   1.1      matt 	if (va == 0) {
   1312   1.1      matt #ifdef DIAGNOSTIC
   1313  1.26  rearnsha 		PDEBUG(0,
   1314  1.26  rearnsha 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1315   1.1      matt #endif	/* DIAGNOSTIC */
   1316   1.1      matt 		return(NULL);
   1317   1.1      matt 	}
   1318   1.1      matt 
   1319   1.1      matt 	/* Allocate memory for the l1pt structure */
   1320   1.1      matt 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1321   1.1      matt 
   1322   1.1      matt 	/*
   1323   1.1      matt 	 * Allocate pages from the VM system.
   1324   1.1      matt 	 */
   1325   1.1      matt 	TAILQ_INIT(&pt->pt_plist);
   1326   1.1      matt 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1327   1.1      matt 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1328   1.1      matt 	if (error) {
   1329   1.1      matt #ifdef DIAGNOSTIC
   1330  1.26  rearnsha 		PDEBUG(0,
   1331  1.26  rearnsha 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1332  1.26  rearnsha 		    error));
   1333   1.1      matt #endif	/* DIAGNOSTIC */
   1334   1.1      matt 		/* Release the resources we already have claimed */
   1335   1.1      matt 		free(pt, M_VMPMAP);
   1336   1.1      matt 		uvm_km_free(kernel_map, va, PD_SIZE);
   1337   1.1      matt 		return(NULL);
   1338   1.1      matt 	}
   1339   1.1      matt 
   1340   1.1      matt 	/* Map our physical pages into our virtual space */
   1341   1.1      matt 	pt->pt_va = va;
   1342  1.51     chris 	m = TAILQ_FIRST(&pt->pt_plist);
   1343  1.11     chris 	ptes = pmap_map_ptes(pmap_kernel());
   1344   1.1      matt 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1345   1.1      matt 		pa = VM_PAGE_TO_PHYS(m);
   1346   1.1      matt 
   1347  1.20     chris 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1348   1.1      matt 
   1349   1.1      matt 		/* Revoke cacheability and bufferability */
   1350   1.1      matt 		/* XXX should be done better than this */
   1351  1.56   thorpej 		ptes[arm_btop(va)] &= ~(PT_C | PT_B);
   1352   1.1      matt 
   1353   1.1      matt 		va += NBPG;
   1354   1.1      matt 		m = m->pageq.tqe_next;
   1355   1.1      matt 	}
   1356  1.11     chris 	pmap_unmap_ptes(pmap_kernel());
   1357  1.19     chris 	pmap_update(pmap_kernel());
   1358   1.1      matt 
   1359   1.1      matt #ifdef DIAGNOSTIC
   1360   1.1      matt 	if (m)
   1361   1.1      matt 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1362   1.1      matt #endif	/* DIAGNOSTIC */
   1363   1.1      matt 
   1364   1.1      matt 	pt->pt_flags = 0;
   1365   1.1      matt 	return(pt);
   1366   1.1      matt }
   1367   1.1      matt 
   1368   1.1      matt /*
   1369   1.1      matt  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1370   1.1      matt  */
   1371  1.33     chris static void
   1372   1.1      matt pmap_free_l1pt(pt)
   1373   1.1      matt 	struct l1pt *pt;
   1374   1.1      matt {
   1375   1.1      matt 	/* Separate the physical memory for the virtual space */
   1376  1.20     chris 	pmap_kremove(pt->pt_va, PD_SIZE);
   1377  1.19     chris 	pmap_update(pmap_kernel());
   1378   1.1      matt 
   1379   1.1      matt 	/* Return the physical memory */
   1380   1.1      matt 	uvm_pglistfree(&pt->pt_plist);
   1381   1.1      matt 
   1382   1.1      matt 	/* Free the virtual space */
   1383   1.1      matt 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1384   1.1      matt 
   1385   1.1      matt 	/* Free the l1pt structure */
   1386   1.1      matt 	free(pt, M_VMPMAP);
   1387   1.1      matt }
   1388   1.1      matt 
   1389   1.1      matt /*
   1390   1.1      matt  * Allocate a page directory.
   1391   1.1      matt  * This routine will either allocate a new page directory from the pool
   1392   1.1      matt  * of L1 page tables currently held by the kernel or it will allocate
   1393   1.1      matt  * a new one via pmap_alloc_l1pt().
   1394   1.1      matt  * It will then initialise the l1 page table for use.
   1395  1.48     chris  *
   1396  1.48     chris  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1397   1.1      matt  */
   1398  1.33     chris static int
   1399   1.1      matt pmap_allocpagedir(pmap)
   1400   1.1      matt 	struct pmap *pmap;
   1401   1.1      matt {
   1402   1.2      matt 	paddr_t pa;
   1403   1.1      matt 	struct l1pt *pt;
   1404   1.1      matt 	pt_entry_t *pte;
   1405   1.1      matt 
   1406   1.1      matt 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1407   1.1      matt 
   1408   1.1      matt 	/* Do we have any spare L1's lying around ? */
   1409   1.1      matt 	if (l1pt_static_queue_count) {
   1410   1.1      matt 		--l1pt_static_queue_count;
   1411   1.1      matt 		pt = l1pt_static_queue.sqh_first;
   1412   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1413   1.1      matt 	} else if (l1pt_queue_count) {
   1414   1.1      matt 		--l1pt_queue_count;
   1415   1.1      matt 		pt = l1pt_queue.sqh_first;
   1416   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1417   1.1      matt 		++l1pt_reuse_count;
   1418   1.1      matt 	} else {
   1419   1.1      matt 		pt = pmap_alloc_l1pt();
   1420   1.1      matt 		if (!pt)
   1421   1.1      matt 			return(ENOMEM);
   1422   1.1      matt 		++l1pt_create_count;
   1423   1.1      matt 	}
   1424   1.1      matt 
   1425   1.1      matt 	/* Store the pointer to the l1 descriptor in the pmap. */
   1426   1.1      matt 	pmap->pm_l1pt = pt;
   1427   1.1      matt 
   1428   1.1      matt 	/* Get the physical address of the start of the l1 */
   1429  1.51     chris 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1430   1.1      matt 
   1431   1.1      matt 	/* Store the virtual address of the l1 in the pmap. */
   1432   1.1      matt 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1433   1.1      matt 
   1434   1.1      matt 	/* Clean the L1 if it is dirty */
   1435   1.1      matt 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1436   1.1      matt 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1437   1.1      matt 
   1438   1.1      matt 	/* Allocate a page table to map all the page tables for this pmap */
   1439   1.1      matt 
   1440   1.1      matt #ifdef DIAGNOSTIC
   1441   1.1      matt 	if (pmap->pm_vptpt) {
   1442   1.1      matt 		/* XXX What if we have one already ? */
   1443   1.1      matt 		panic("pmap_allocpagedir: have pt already\n");
   1444   1.1      matt 	}
   1445   1.1      matt #endif	/* DIAGNOSTIC */
   1446   1.1      matt 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1447   1.5    toshii 	if (pmap->pm_vptpt == 0) {
   1448  1.48     chris 	    pmap_freepagedir(pmap);
   1449  1.48     chris     	    return(ENOMEM);
   1450   1.5    toshii 	}
   1451   1.5    toshii 
   1452  1.48     chris 	/* need to lock this all up  for growkernel */
   1453  1.48     chris 	simple_lock(&pmaps_lock);
   1454  1.48     chris 	/* wish we didn't have to keep this locked... */
   1455  1.48     chris 
   1456  1.64   thorpej 	/* Duplicate the kernel mappings. */
   1457  1.48     chris 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1458  1.48     chris 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1459  1.48     chris 		KERNEL_PD_SIZE);
   1460  1.48     chris 
   1461  1.64   thorpej 	pte = vtopte(pmap->pm_vptpt);
   1462  1.64   thorpej 	pmap->pm_pptpt = l2pte_pa(*pte);
   1463  1.64   thorpej 
   1464   1.1      matt 	/* Revoke cacheability and bufferability */
   1465   1.1      matt 	/* XXX should be done better than this */
   1466  1.64   thorpej 	*pte &= ~(PT_C | PT_B);
   1467   1.1      matt 
   1468   1.1      matt 	/* Wire in this page table */
   1469  1.53   thorpej 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1470   1.1      matt 
   1471   1.1      matt 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1472  1.48     chris 
   1473   1.1      matt 	/*
   1474  1.64   thorpej 	 * Map the kernel page tables into the new PT map.
   1475   1.1      matt 	 */
   1476  1.53   thorpej 	bcopy((char *)(PTE_BASE
   1477  1.53   thorpej 	    + (PTE_BASE >> (PGSHIFT - 2))
   1478   1.1      matt 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1479   1.1      matt 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1480   1.1      matt 	    (KERNEL_PD_SIZE >> 2));
   1481   1.1      matt 
   1482  1.48     chris 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1483  1.48     chris 	simple_unlock(&pmaps_lock);
   1484  1.48     chris 
   1485   1.1      matt 	return(0);
   1486   1.1      matt }
   1487   1.1      matt 
   1488   1.1      matt 
   1489   1.1      matt /*
   1490   1.1      matt  * Initialize a preallocated and zeroed pmap structure,
   1491   1.1      matt  * such as one in a vmspace structure.
   1492   1.1      matt  */
   1493   1.1      matt 
   1494   1.1      matt void
   1495   1.1      matt pmap_pinit(pmap)
   1496   1.1      matt 	struct pmap *pmap;
   1497   1.1      matt {
   1498  1.26  rearnsha 	int backoff = 6;
   1499  1.26  rearnsha 	int retry = 10;
   1500  1.26  rearnsha 
   1501   1.1      matt 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1502   1.1      matt 
   1503   1.1      matt 	/* Keep looping until we succeed in allocating a page directory */
   1504   1.1      matt 	while (pmap_allocpagedir(pmap) != 0) {
   1505   1.1      matt 		/*
   1506   1.1      matt 		 * Ok we failed to allocate a suitable block of memory for an
   1507   1.1      matt 		 * L1 page table. This means that either:
   1508   1.1      matt 		 * 1. 16KB of virtual address space could not be allocated
   1509   1.1      matt 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1510   1.1      matt 		 *    could not be allocated.
   1511   1.1      matt 		 *
   1512   1.1      matt 		 * Since we cannot fail we will sleep for a while and try
   1513  1.17     chris 		 * again.
   1514  1.26  rearnsha 		 *
   1515  1.26  rearnsha 		 * Searching for a suitable L1 PT is expensive:
   1516  1.26  rearnsha 		 * to avoid hogging the system when memory is really
   1517  1.26  rearnsha 		 * scarce, use an exponential back-off so that
   1518  1.26  rearnsha 		 * eventually we won't retry more than once every 8
   1519  1.26  rearnsha 		 * seconds.  This should allow other processes to run
   1520  1.26  rearnsha 		 * to completion and free up resources.
   1521   1.1      matt 		 */
   1522  1.26  rearnsha 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1523  1.26  rearnsha 		    NULL);
   1524  1.26  rearnsha 		if (--retry == 0) {
   1525  1.26  rearnsha 			retry = 10;
   1526  1.26  rearnsha 			if (backoff)
   1527  1.26  rearnsha 				--backoff;
   1528  1.26  rearnsha 		}
   1529   1.1      matt 	}
   1530   1.1      matt 
   1531   1.1      matt 	/* Map zero page for the pmap. This will also map the L2 for it */
   1532   1.1      matt 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1533   1.1      matt 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1534  1.19     chris 	pmap_update(pmap);
   1535   1.1      matt }
   1536   1.1      matt 
   1537   1.1      matt 
   1538   1.1      matt void
   1539   1.1      matt pmap_freepagedir(pmap)
   1540  1.15     chris 	struct pmap *pmap;
   1541   1.1      matt {
   1542   1.1      matt 	/* Free the memory used for the page table mapping */
   1543   1.5    toshii 	if (pmap->pm_vptpt != 0)
   1544   1.5    toshii 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1545   1.1      matt 
   1546   1.1      matt 	/* junk the L1 page table */
   1547   1.1      matt 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1548   1.1      matt 		/* Add the page table to the queue */
   1549   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1550   1.1      matt 		++l1pt_static_queue_count;
   1551   1.1      matt 	} else if (l1pt_queue_count < 8) {
   1552   1.1      matt 		/* Add the page table to the queue */
   1553   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1554   1.1      matt 		++l1pt_queue_count;
   1555   1.1      matt 	} else
   1556   1.1      matt 		pmap_free_l1pt(pmap->pm_l1pt);
   1557   1.1      matt }
   1558   1.1      matt 
   1559   1.1      matt 
   1560   1.1      matt /*
   1561   1.1      matt  * Retire the given physical map from service.
   1562   1.1      matt  * Should only be called if the map contains no valid mappings.
   1563   1.1      matt  */
   1564   1.1      matt 
   1565   1.1      matt void
   1566   1.1      matt pmap_destroy(pmap)
   1567  1.15     chris 	struct pmap *pmap;
   1568   1.1      matt {
   1569  1.17     chris 	struct vm_page *page;
   1570   1.1      matt 	int count;
   1571   1.1      matt 
   1572   1.1      matt 	if (pmap == NULL)
   1573   1.1      matt 		return;
   1574   1.1      matt 
   1575   1.1      matt 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1576  1.17     chris 
   1577  1.17     chris 	/*
   1578  1.17     chris 	 * Drop reference count
   1579  1.17     chris 	 */
   1580  1.17     chris 	simple_lock(&pmap->pm_obj.vmobjlock);
   1581  1.16     chris 	count = --pmap->pm_obj.uo_refs;
   1582  1.17     chris 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1583  1.17     chris 	if (count > 0) {
   1584  1.17     chris 		return;
   1585   1.1      matt 	}
   1586   1.1      matt 
   1587  1.17     chris 	/*
   1588  1.17     chris 	 * reference count is zero, free pmap resources and then free pmap.
   1589  1.17     chris 	 */
   1590  1.48     chris 
   1591  1.48     chris 	/*
   1592  1.48     chris 	 * remove it from global list of pmaps
   1593  1.48     chris 	 */
   1594  1.48     chris 
   1595  1.48     chris 	simple_lock(&pmaps_lock);
   1596  1.48     chris 	LIST_REMOVE(pmap, pm_list);
   1597  1.48     chris 	simple_unlock(&pmaps_lock);
   1598  1.17     chris 
   1599   1.1      matt 	/* Remove the zero page mapping */
   1600   1.1      matt 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1601  1.19     chris 	pmap_update(pmap);
   1602   1.1      matt 
   1603   1.1      matt 	/*
   1604   1.1      matt 	 * Free any page tables still mapped
   1605   1.1      matt 	 * This is only temporay until pmap_enter can count the number
   1606   1.1      matt 	 * of mappings made in a page table. Then pmap_remove() can
   1607   1.1      matt 	 * reduce the count and free the pagetable when the count
   1608  1.16     chris 	 * reaches zero.  Note that entries in this list should match the
   1609  1.16     chris 	 * contents of the ptpt, however this is faster than walking a 1024
   1610  1.16     chris 	 * entries looking for pt's
   1611  1.16     chris 	 * taken from i386 pmap.c
   1612   1.1      matt 	 */
   1613  1.51     chris 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1614  1.51     chris 		KASSERT((page->flags & PG_BUSY) == 0);
   1615  1.16     chris 		page->wire_count = 0;
   1616  1.16     chris 		uvm_pagefree(page);
   1617   1.1      matt 	}
   1618  1.16     chris 
   1619   1.1      matt 	/* Free the page dir */
   1620   1.1      matt 	pmap_freepagedir(pmap);
   1621  1.17     chris 
   1622  1.17     chris 	/* return the pmap to the pool */
   1623  1.17     chris 	pool_put(&pmap_pmap_pool, pmap);
   1624   1.1      matt }
   1625   1.1      matt 
   1626   1.1      matt 
   1627   1.1      matt /*
   1628  1.15     chris  * void pmap_reference(struct pmap *pmap)
   1629   1.1      matt  *
   1630   1.1      matt  * Add a reference to the specified pmap.
   1631   1.1      matt  */
   1632   1.1      matt 
   1633   1.1      matt void
   1634   1.1      matt pmap_reference(pmap)
   1635  1.15     chris 	struct pmap *pmap;
   1636   1.1      matt {
   1637   1.1      matt 	if (pmap == NULL)
   1638   1.1      matt 		return;
   1639   1.1      matt 
   1640   1.1      matt 	simple_lock(&pmap->pm_lock);
   1641  1.16     chris 	pmap->pm_obj.uo_refs++;
   1642   1.1      matt 	simple_unlock(&pmap->pm_lock);
   1643   1.1      matt }
   1644   1.1      matt 
   1645   1.1      matt /*
   1646   1.1      matt  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1647   1.1      matt  *
   1648   1.1      matt  * Return the start and end addresses of the kernel's virtual space.
   1649   1.1      matt  * These values are setup in pmap_bootstrap and are updated as pages
   1650   1.1      matt  * are allocated.
   1651   1.1      matt  */
   1652   1.1      matt 
   1653   1.1      matt void
   1654   1.1      matt pmap_virtual_space(start, end)
   1655   1.1      matt 	vaddr_t *start;
   1656   1.1      matt 	vaddr_t *end;
   1657   1.1      matt {
   1658  1.54   thorpej 	*start = virtual_avail;
   1659   1.1      matt 	*end = virtual_end;
   1660   1.1      matt }
   1661   1.1      matt 
   1662   1.1      matt 
   1663   1.1      matt /*
   1664   1.1      matt  * Activate the address space for the specified process.  If the process
   1665   1.1      matt  * is the current process, load the new MMU context.
   1666   1.1      matt  */
   1667   1.1      matt void
   1668   1.1      matt pmap_activate(p)
   1669   1.1      matt 	struct proc *p;
   1670   1.1      matt {
   1671  1.15     chris 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1672   1.1      matt 	struct pcb *pcb = &p->p_addr->u_pcb;
   1673   1.1      matt 
   1674  1.15     chris 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1675   1.1      matt 	    (paddr_t *)&pcb->pcb_pagedir);
   1676   1.1      matt 
   1677   1.1      matt 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1678   1.1      matt 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1679   1.1      matt 
   1680   1.1      matt 	if (p == curproc) {
   1681   1.1      matt 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1682   1.1      matt 		setttb((u_int)pcb->pcb_pagedir);
   1683   1.1      matt 	}
   1684   1.1      matt #if 0
   1685   1.1      matt 	pmap->pm_pdchanged = FALSE;
   1686   1.1      matt #endif
   1687   1.1      matt }
   1688   1.1      matt 
   1689   1.1      matt 
   1690   1.1      matt /*
   1691   1.1      matt  * Deactivate the address space of the specified process.
   1692   1.1      matt  */
   1693   1.1      matt void
   1694   1.1      matt pmap_deactivate(p)
   1695   1.1      matt 	struct proc *p;
   1696   1.1      matt {
   1697   1.1      matt }
   1698   1.1      matt 
   1699  1.31   thorpej /*
   1700  1.31   thorpej  * Perform any deferred pmap operations.
   1701  1.31   thorpej  */
   1702  1.31   thorpej void
   1703  1.31   thorpej pmap_update(struct pmap *pmap)
   1704  1.31   thorpej {
   1705  1.31   thorpej 
   1706  1.31   thorpej 	/*
   1707  1.31   thorpej 	 * We haven't deferred any pmap operations, but we do need to
   1708  1.31   thorpej 	 * make sure TLB/cache operations have completed.
   1709  1.31   thorpej 	 */
   1710  1.31   thorpej 	cpu_cpwait();
   1711  1.31   thorpej }
   1712   1.1      matt 
   1713   1.1      matt /*
   1714   1.1      matt  * pmap_clean_page()
   1715   1.1      matt  *
   1716   1.1      matt  * This is a local function used to work out the best strategy to clean
   1717   1.1      matt  * a single page referenced by its entry in the PV table. It's used by
   1718   1.1      matt  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1719   1.1      matt  *
   1720   1.1      matt  * Its policy is effectively:
   1721   1.1      matt  *  o If there are no mappings, we don't bother doing anything with the cache.
   1722   1.1      matt  *  o If there is one mapping, we clean just that page.
   1723   1.1      matt  *  o If there are multiple mappings, we clean the entire cache.
   1724   1.1      matt  *
   1725   1.1      matt  * So that some functions can be further optimised, it returns 0 if it didn't
   1726   1.1      matt  * clean the entire cache, or 1 if it did.
   1727   1.1      matt  *
   1728   1.1      matt  * XXX One bug in this routine is that if the pv_entry has a single page
   1729   1.1      matt  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1730   1.1      matt  * just the 1 page. Since this should not occur in everyday use and if it does
   1731   1.1      matt  * it will just result in not the most efficient clean for the page.
   1732   1.1      matt  */
   1733   1.1      matt static int
   1734  1.17     chris pmap_clean_page(pv, is_src)
   1735   1.1      matt 	struct pv_entry *pv;
   1736  1.17     chris 	boolean_t is_src;
   1737   1.1      matt {
   1738  1.17     chris 	struct pmap *pmap;
   1739  1.17     chris 	struct pv_entry *npv;
   1740   1.1      matt 	int cache_needs_cleaning = 0;
   1741   1.1      matt 	vaddr_t page_to_clean = 0;
   1742   1.1      matt 
   1743  1.17     chris 	if (pv == NULL)
   1744  1.17     chris 		/* nothing mapped in so nothing to flush */
   1745  1.17     chris 		return (0);
   1746  1.17     chris 
   1747  1.17     chris 	/* Since we flush the cache each time we change curproc, we
   1748  1.17     chris 	 * only need to flush the page if it is in the current pmap.
   1749  1.17     chris 	 */
   1750  1.17     chris 	if (curproc)
   1751  1.17     chris 		pmap = curproc->p_vmspace->vm_map.pmap;
   1752  1.17     chris 	else
   1753  1.17     chris 		pmap = pmap_kernel();
   1754  1.17     chris 
   1755  1.17     chris 	for (npv = pv; npv; npv = npv->pv_next) {
   1756  1.17     chris 		if (npv->pv_pmap == pmap) {
   1757  1.17     chris 			/* The page is mapped non-cacheable in
   1758  1.17     chris 			 * this map.  No need to flush the cache.
   1759  1.17     chris 			 */
   1760  1.17     chris 			if (npv->pv_flags & PT_NC) {
   1761  1.17     chris #ifdef DIAGNOSTIC
   1762  1.17     chris 				if (cache_needs_cleaning)
   1763  1.17     chris 					panic("pmap_clean_page: "
   1764  1.17     chris 							"cache inconsistency");
   1765  1.17     chris #endif
   1766  1.17     chris 				break;
   1767  1.17     chris 			}
   1768  1.17     chris #if 0
   1769  1.17     chris 			/* This doesn't work, because pmap_protect
   1770  1.17     chris 			   doesn't flush changes on pages that it
   1771  1.17     chris 			   has write-protected.  */
   1772  1.21     chris 
   1773  1.25  rearnsha 			/* If the page is not writable and this
   1774  1.17     chris 			   is the source, then there is no need
   1775  1.17     chris 			   to flush it from the cache.  */
   1776  1.17     chris 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1777  1.17     chris 				continue;
   1778  1.17     chris #endif
   1779  1.17     chris 			if (cache_needs_cleaning){
   1780  1.17     chris 				page_to_clean = 0;
   1781  1.17     chris 				break;
   1782  1.17     chris 			}
   1783  1.17     chris 			else
   1784  1.17     chris 				page_to_clean = npv->pv_va;
   1785  1.17     chris 			cache_needs_cleaning = 1;
   1786  1.17     chris 		}
   1787   1.1      matt 	}
   1788   1.1      matt 
   1789   1.1      matt 	if (page_to_clean)
   1790  1.36   thorpej 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1791   1.1      matt 	else if (cache_needs_cleaning) {
   1792  1.36   thorpej 		cpu_idcache_wbinv_all();
   1793   1.1      matt 		return (1);
   1794   1.1      matt 	}
   1795   1.1      matt 	return (0);
   1796   1.1      matt }
   1797   1.1      matt 
   1798   1.1      matt /*
   1799   1.1      matt  * pmap_zero_page()
   1800   1.1      matt  *
   1801   1.1      matt  * Zero a given physical page by mapping it at a page hook point.
   1802   1.1      matt  * In doing the zero page op, the page we zero is mapped cachable, as with
   1803   1.1      matt  * StrongARM accesses to non-cached pages are non-burst making writing
   1804   1.1      matt  * _any_ bulk data very slow.
   1805   1.1      matt  */
   1806   1.1      matt void
   1807   1.1      matt pmap_zero_page(phys)
   1808   1.2      matt 	paddr_t phys;
   1809   1.1      matt {
   1810  1.49   thorpej 	struct vm_page *pg;
   1811   1.1      matt 
   1812   1.1      matt 	/* Get an entry for this page, and clean it it. */
   1813  1.49   thorpej 	pg = PHYS_TO_VM_PAGE(phys);
   1814  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   1815  1.49   thorpej 	pmap_clean_page(pg->mdpage.pvh_list, FALSE);
   1816  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   1817  1.17     chris 
   1818   1.1      matt 	/*
   1819   1.1      matt 	 * Hook in the page, zero it, and purge the cache for that
   1820   1.1      matt 	 * zeroed page. Invalidate the TLB as needed.
   1821   1.1      matt 	 */
   1822  1.54   thorpej 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1823  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1824  1.32   thorpej 	cpu_cpwait();
   1825  1.54   thorpej 	bzero_page(cdstp);
   1826  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1827   1.1      matt }
   1828   1.1      matt 
   1829  1.17     chris /* pmap_pageidlezero()
   1830  1.17     chris  *
   1831  1.17     chris  * The same as above, except that we assume that the page is not
   1832  1.17     chris  * mapped.  This means we never have to flush the cache first.  Called
   1833  1.17     chris  * from the idle loop.
   1834  1.17     chris  */
   1835  1.17     chris boolean_t
   1836  1.17     chris pmap_pageidlezero(phys)
   1837  1.17     chris     paddr_t phys;
   1838  1.17     chris {
   1839  1.17     chris 	int i, *ptr;
   1840  1.17     chris 	boolean_t rv = TRUE;
   1841  1.17     chris 
   1842  1.17     chris #ifdef DIAGNOSTIC
   1843  1.49   thorpej 	struct vm_page *pg;
   1844  1.17     chris 
   1845  1.49   thorpej 	pg = PHYS_TO_VM_PAGE(phys);
   1846  1.49   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1847  1.17     chris 		panic("pmap_pageidlezero: zeroing mapped page\n");
   1848  1.17     chris #endif
   1849  1.17     chris 
   1850  1.17     chris 	/*
   1851  1.17     chris 	 * Hook in the page, zero it, and purge the cache for that
   1852  1.17     chris 	 * zeroed page. Invalidate the TLB as needed.
   1853  1.17     chris 	 */
   1854  1.54   thorpej 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1855  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1856  1.32   thorpej 	cpu_cpwait();
   1857  1.32   thorpej 
   1858  1.54   thorpej 	for (i = 0, ptr = (int *)cdstp;
   1859  1.17     chris 			i < (NBPG / sizeof(int)); i++) {
   1860  1.17     chris 		if (sched_whichqs != 0) {
   1861  1.17     chris 			/*
   1862  1.17     chris 			 * A process has become ready.  Abort now,
   1863  1.17     chris 			 * so we don't keep it waiting while we
   1864  1.17     chris 			 * do slow memory access to finish this
   1865  1.17     chris 			 * page.
   1866  1.17     chris 			 */
   1867  1.17     chris 			rv = FALSE;
   1868  1.17     chris 			break;
   1869  1.17     chris 		}
   1870  1.17     chris 		*ptr++ = 0;
   1871  1.17     chris 	}
   1872  1.17     chris 
   1873  1.17     chris 	if (rv)
   1874  1.17     chris 		/*
   1875  1.17     chris 		 * if we aborted we'll rezero this page again later so don't
   1876  1.17     chris 		 * purge it unless we finished it
   1877  1.17     chris 		 */
   1878  1.54   thorpej 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1879  1.17     chris 	return (rv);
   1880  1.17     chris }
   1881  1.17     chris 
   1882   1.1      matt /*
   1883   1.1      matt  * pmap_copy_page()
   1884   1.1      matt  *
   1885   1.1      matt  * Copy one physical page into another, by mapping the pages into
   1886   1.1      matt  * hook points. The same comment regarding cachability as in
   1887   1.1      matt  * pmap_zero_page also applies here.
   1888   1.1      matt  */
   1889   1.1      matt void
   1890   1.1      matt pmap_copy_page(src, dest)
   1891   1.2      matt 	paddr_t src;
   1892   1.2      matt 	paddr_t dest;
   1893   1.1      matt {
   1894  1.49   thorpej 	struct vm_page *src_pg, *dest_pg;
   1895  1.20     chris 	boolean_t cleanedcache;
   1896   1.1      matt 
   1897   1.1      matt 	/* Get PV entries for the pages, and clean them if needed. */
   1898  1.49   thorpej 	src_pg = PHYS_TO_VM_PAGE(src);
   1899  1.20     chris 
   1900  1.49   thorpej 	simple_lock(&src_pg->mdpage.pvh_slock);
   1901  1.49   thorpej 	cleanedcache = pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1902  1.49   thorpej 	simple_unlock(&src_pg->mdpage.pvh_slock);
   1903   1.1      matt 
   1904  1.20     chris 	if (cleanedcache == 0) {
   1905  1.49   thorpej 		dest_pg = PHYS_TO_VM_PAGE(dest);
   1906  1.49   thorpej 		simple_lock(&dest_pg->mdpage.pvh_slock);
   1907  1.49   thorpej 		pmap_clean_page(dest_pg->mdpage.pvh_list, FALSE);
   1908  1.49   thorpej 		simple_unlock(&dest_pg->mdpage.pvh_slock);
   1909  1.20     chris 	}
   1910   1.1      matt 	/*
   1911   1.1      matt 	 * Map the pages into the page hook points, copy them, and purge
   1912   1.1      matt 	 * the cache for the appropriate page. Invalidate the TLB
   1913   1.1      matt 	 * as required.
   1914   1.1      matt 	 */
   1915  1.54   thorpej 	*csrc_pte = L2_PTE(src & PG_FRAME, AP_KRW);
   1916  1.54   thorpej 	*cdst_pte = L2_PTE(dest & PG_FRAME, AP_KRW);
   1917  1.54   thorpej 	cpu_tlb_flushD_SE(csrcp);
   1918  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1919  1.32   thorpej 	cpu_cpwait();
   1920  1.54   thorpej 	bcopy_page(csrcp, cdstp);
   1921  1.54   thorpej 	cpu_dcache_wbinv_range(csrcp, NBPG);
   1922  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1923   1.1      matt }
   1924   1.1      matt 
   1925   1.1      matt #if 0
   1926   1.1      matt void
   1927   1.1      matt pmap_pte_addref(pmap, va)
   1928  1.15     chris 	struct pmap *pmap;
   1929   1.1      matt 	vaddr_t va;
   1930   1.1      matt {
   1931   1.1      matt 	pd_entry_t *pde;
   1932   1.2      matt 	paddr_t pa;
   1933   1.1      matt 	struct vm_page *m;
   1934   1.1      matt 
   1935   1.1      matt 	if (pmap == pmap_kernel())
   1936   1.1      matt 		return;
   1937   1.1      matt 
   1938   1.1      matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1939   1.1      matt 	pa = pmap_pte_pa(pde);
   1940   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   1941   1.1      matt 	++m->wire_count;
   1942   1.1      matt #ifdef MYCROFT_HACK
   1943   1.1      matt 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1944   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   1945   1.1      matt #endif
   1946   1.1      matt }
   1947   1.1      matt 
   1948   1.1      matt void
   1949   1.1      matt pmap_pte_delref(pmap, va)
   1950  1.15     chris 	struct pmap *pmap;
   1951   1.1      matt 	vaddr_t va;
   1952   1.1      matt {
   1953   1.1      matt 	pd_entry_t *pde;
   1954   1.2      matt 	paddr_t pa;
   1955   1.1      matt 	struct vm_page *m;
   1956   1.1      matt 
   1957   1.1      matt 	if (pmap == pmap_kernel())
   1958   1.1      matt 		return;
   1959   1.1      matt 
   1960   1.1      matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1961   1.1      matt 	pa = pmap_pte_pa(pde);
   1962   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   1963   1.1      matt 	--m->wire_count;
   1964   1.1      matt #ifdef MYCROFT_HACK
   1965   1.1      matt 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1966   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   1967   1.1      matt #endif
   1968   1.1      matt 	if (m->wire_count == 0) {
   1969   1.1      matt #ifdef MYCROFT_HACK
   1970   1.1      matt 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1971   1.1      matt 		    pmap, va, pde, pa, m);
   1972   1.1      matt #endif
   1973   1.1      matt 		pmap_unmap_in_l1(pmap, va);
   1974   1.1      matt 		uvm_pagefree(m);
   1975   1.1      matt 		--pmap->pm_stats.resident_count;
   1976   1.1      matt 	}
   1977   1.1      matt }
   1978   1.1      matt #else
   1979   1.1      matt #define	pmap_pte_addref(pmap, va)
   1980   1.1      matt #define	pmap_pte_delref(pmap, va)
   1981   1.1      matt #endif
   1982   1.1      matt 
   1983   1.1      matt /*
   1984   1.1      matt  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1985   1.1      matt  * there is more than one mapping and at least one of them is writable.
   1986   1.1      matt  * Since we purge the cache on every context switch, we only need to check for
   1987   1.1      matt  * other mappings within the same pmap, or kernel_pmap.
   1988   1.1      matt  * This function is also called when a page is unmapped, to possibly reenable
   1989   1.1      matt  * caching on any remaining mappings.
   1990  1.28  rearnsha  *
   1991  1.28  rearnsha  * The code implements the following logic, where:
   1992  1.28  rearnsha  *
   1993  1.28  rearnsha  * KW = # of kernel read/write pages
   1994  1.28  rearnsha  * KR = # of kernel read only pages
   1995  1.28  rearnsha  * UW = # of user read/write pages
   1996  1.28  rearnsha  * UR = # of user read only pages
   1997  1.28  rearnsha  * OW = # of user read/write pages in another pmap, then
   1998  1.28  rearnsha  *
   1999  1.28  rearnsha  * KC = kernel mapping is cacheable
   2000  1.28  rearnsha  * UC = user mapping is cacheable
   2001  1.28  rearnsha  *
   2002  1.28  rearnsha  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2003  1.28  rearnsha  *                   +---------------------------------------------
   2004  1.28  rearnsha  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2005  1.28  rearnsha  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2006  1.28  rearnsha  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2007  1.28  rearnsha  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2008  1.28  rearnsha  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2009  1.11     chris  *
   2010  1.11     chris  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2011   1.1      matt  */
   2012  1.25  rearnsha __inline static void
   2013  1.49   thorpej pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2014  1.12     chris 	boolean_t clear_cache)
   2015   1.1      matt {
   2016  1.25  rearnsha 	if (pmap == pmap_kernel())
   2017  1.49   thorpej 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2018  1.25  rearnsha 	else
   2019  1.49   thorpej 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2020  1.25  rearnsha }
   2021  1.25  rearnsha 
   2022  1.25  rearnsha static void
   2023  1.49   thorpej pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2024  1.25  rearnsha 	boolean_t clear_cache)
   2025  1.25  rearnsha {
   2026  1.25  rearnsha 	int user_entries = 0;
   2027  1.25  rearnsha 	int user_writable = 0;
   2028  1.25  rearnsha 	int user_cacheable = 0;
   2029  1.25  rearnsha 	int kernel_entries = 0;
   2030  1.25  rearnsha 	int kernel_writable = 0;
   2031  1.25  rearnsha 	int kernel_cacheable = 0;
   2032  1.25  rearnsha 	struct pv_entry *pv;
   2033  1.25  rearnsha 	struct pmap *last_pmap = pmap;
   2034  1.25  rearnsha 
   2035  1.25  rearnsha #ifdef DIAGNOSTIC
   2036  1.25  rearnsha 	if (pmap != pmap_kernel())
   2037  1.25  rearnsha 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2038  1.25  rearnsha #endif
   2039  1.25  rearnsha 
   2040  1.25  rearnsha 	/*
   2041  1.25  rearnsha 	 * Pass one, see if there are both kernel and user pmaps for
   2042  1.25  rearnsha 	 * this page.  Calculate whether there are user-writable or
   2043  1.25  rearnsha 	 * kernel-writable pages.
   2044  1.25  rearnsha 	 */
   2045  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2046  1.25  rearnsha 		if (pv->pv_pmap != pmap) {
   2047  1.25  rearnsha 			user_entries++;
   2048  1.25  rearnsha 			if (pv->pv_flags & PT_Wr)
   2049  1.25  rearnsha 				user_writable++;
   2050  1.25  rearnsha 			if ((pv->pv_flags & PT_NC) == 0)
   2051  1.25  rearnsha 				user_cacheable++;
   2052  1.25  rearnsha 		} else {
   2053  1.25  rearnsha 			kernel_entries++;
   2054  1.25  rearnsha 			if (pv->pv_flags & PT_Wr)
   2055  1.25  rearnsha 				kernel_writable++;
   2056  1.25  rearnsha 			if ((pv->pv_flags & PT_NC) == 0)
   2057  1.25  rearnsha 				kernel_cacheable++;
   2058  1.25  rearnsha 		}
   2059  1.25  rearnsha 	}
   2060  1.25  rearnsha 
   2061  1.25  rearnsha 	/*
   2062  1.25  rearnsha 	 * We know we have just been updating a kernel entry, so if
   2063  1.25  rearnsha 	 * all user pages are already cacheable, then there is nothing
   2064  1.25  rearnsha 	 * further to do.
   2065  1.25  rearnsha 	 */
   2066  1.25  rearnsha 	if (kernel_entries == 0 &&
   2067  1.25  rearnsha 	    user_cacheable == user_entries)
   2068  1.25  rearnsha 		return;
   2069  1.25  rearnsha 
   2070  1.25  rearnsha 	if (user_entries) {
   2071  1.25  rearnsha 		/*
   2072  1.25  rearnsha 		 * Scan over the list again, for each entry, if it
   2073  1.25  rearnsha 		 * might not be set correctly, call pmap_vac_me_user
   2074  1.25  rearnsha 		 * to recalculate the settings.
   2075  1.25  rearnsha 		 */
   2076  1.49   thorpej 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2077  1.25  rearnsha 			/*
   2078  1.25  rearnsha 			 * We know kernel mappings will get set
   2079  1.25  rearnsha 			 * correctly in other calls.  We also know
   2080  1.25  rearnsha 			 * that if the pmap is the same as last_pmap
   2081  1.25  rearnsha 			 * then we've just handled this entry.
   2082  1.25  rearnsha 			 */
   2083  1.25  rearnsha 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2084  1.25  rearnsha 				continue;
   2085  1.25  rearnsha 			/*
   2086  1.25  rearnsha 			 * If there are kernel entries and this page
   2087  1.25  rearnsha 			 * is writable but non-cacheable, then we can
   2088  1.25  rearnsha 			 * skip this entry also.
   2089  1.25  rearnsha 			 */
   2090  1.25  rearnsha 			if (kernel_entries > 0 &&
   2091  1.25  rearnsha 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2092  1.25  rearnsha 			    (PT_NC | PT_Wr))
   2093  1.25  rearnsha 				continue;
   2094  1.25  rearnsha 			/*
   2095  1.25  rearnsha 			 * Similarly if there are no kernel-writable
   2096  1.25  rearnsha 			 * entries and the page is already
   2097  1.25  rearnsha 			 * read-only/cacheable.
   2098  1.25  rearnsha 			 */
   2099  1.25  rearnsha 			if (kernel_writable == 0 &&
   2100  1.25  rearnsha 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2101  1.25  rearnsha 				continue;
   2102  1.25  rearnsha 			/*
   2103  1.25  rearnsha 			 * For some of the remaining cases, we know
   2104  1.25  rearnsha 			 * that we must recalculate, but for others we
   2105  1.25  rearnsha 			 * can't tell if they are correct or not, so
   2106  1.25  rearnsha 			 * we recalculate anyway.
   2107  1.25  rearnsha 			 */
   2108  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2109  1.25  rearnsha 			last_pmap = pv->pv_pmap;
   2110  1.25  rearnsha 			ptes = pmap_map_ptes(last_pmap);
   2111  1.49   thorpej 			pmap_vac_me_user(last_pmap, pg, ptes,
   2112  1.25  rearnsha 			    pmap_is_curpmap(last_pmap));
   2113  1.25  rearnsha 		}
   2114  1.25  rearnsha 		/* Restore the pte mapping that was passed to us.  */
   2115  1.25  rearnsha 		if (last_pmap != pmap) {
   2116  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2117  1.25  rearnsha 			ptes = pmap_map_ptes(pmap);
   2118  1.25  rearnsha 		}
   2119  1.25  rearnsha 		if (kernel_entries == 0)
   2120  1.25  rearnsha 			return;
   2121  1.25  rearnsha 	}
   2122  1.25  rearnsha 
   2123  1.49   thorpej 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2124  1.25  rearnsha 	return;
   2125  1.25  rearnsha }
   2126  1.25  rearnsha 
   2127  1.25  rearnsha static void
   2128  1.49   thorpej pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2129  1.25  rearnsha 	boolean_t clear_cache)
   2130  1.25  rearnsha {
   2131  1.25  rearnsha 	struct pmap *kpmap = pmap_kernel();
   2132  1.17     chris 	struct pv_entry *pv, *npv;
   2133   1.1      matt 	int entries = 0;
   2134  1.25  rearnsha 	int writable = 0;
   2135  1.12     chris 	int cacheable_entries = 0;
   2136  1.25  rearnsha 	int kern_cacheable = 0;
   2137  1.25  rearnsha 	int other_writable = 0;
   2138   1.1      matt 
   2139  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2140  1.11     chris 	KASSERT(ptes != NULL);
   2141   1.1      matt 
   2142   1.1      matt 	/*
   2143   1.1      matt 	 * Count mappings and writable mappings in this pmap.
   2144  1.25  rearnsha 	 * Include kernel mappings as part of our own.
   2145   1.1      matt 	 * Keep a pointer to the first one.
   2146   1.1      matt 	 */
   2147   1.1      matt 	for (npv = pv; npv; npv = npv->pv_next) {
   2148   1.1      matt 		/* Count mappings in the same pmap */
   2149  1.25  rearnsha 		if (pmap == npv->pv_pmap ||
   2150  1.25  rearnsha 		    kpmap == npv->pv_pmap) {
   2151   1.1      matt 			if (entries++ == 0)
   2152   1.1      matt 				pv = npv;
   2153  1.12     chris 			/* Cacheable mappings */
   2154  1.25  rearnsha 			if ((npv->pv_flags & PT_NC) == 0) {
   2155  1.12     chris 				cacheable_entries++;
   2156  1.25  rearnsha 				if (kpmap == npv->pv_pmap)
   2157  1.25  rearnsha 					kern_cacheable++;
   2158  1.25  rearnsha 			}
   2159  1.25  rearnsha 			/* Writable mappings */
   2160   1.1      matt 			if (npv->pv_flags & PT_Wr)
   2161  1.25  rearnsha 				++writable;
   2162  1.25  rearnsha 		} else if (npv->pv_flags & PT_Wr)
   2163  1.25  rearnsha 			other_writable = 1;
   2164   1.1      matt 	}
   2165   1.1      matt 
   2166  1.12     chris 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2167  1.25  rearnsha 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2168  1.12     chris 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2169  1.12     chris 
   2170   1.1      matt 	/*
   2171   1.1      matt 	 * Enable or disable caching as necessary.
   2172  1.25  rearnsha 	 * Note: the first entry might be part of the kernel pmap,
   2173  1.25  rearnsha 	 * so we can't assume this is indicative of the state of the
   2174  1.25  rearnsha 	 * other (maybe non-kpmap) entries.
   2175   1.1      matt 	 */
   2176  1.25  rearnsha 	if ((entries > 1 && writable) ||
   2177  1.25  rearnsha 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2178  1.12     chris 		if (cacheable_entries == 0)
   2179  1.12     chris 		    return;
   2180  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2181  1.25  rearnsha 			if ((pmap == npv->pv_pmap
   2182  1.25  rearnsha 			    || kpmap == npv->pv_pmap) &&
   2183  1.12     chris 			    (npv->pv_flags & PT_NC) == 0) {
   2184  1.56   thorpej 				ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
   2185  1.12     chris  				npv->pv_flags |= PT_NC;
   2186  1.25  rearnsha 				/*
   2187  1.25  rearnsha 				 * If this page needs flushing from the
   2188  1.25  rearnsha 				 * cache, and we aren't going to do it
   2189  1.25  rearnsha 				 * below, do it now.
   2190  1.25  rearnsha 				 */
   2191  1.25  rearnsha 				if ((cacheable_entries < 4 &&
   2192  1.25  rearnsha 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2193  1.25  rearnsha 				    (npv->pv_pmap == kpmap &&
   2194  1.25  rearnsha 				    !clear_cache && kern_cacheable < 4)) {
   2195  1.36   thorpej 					cpu_idcache_wbinv_range(npv->pv_va,
   2196  1.12     chris 					    NBPG);
   2197  1.12     chris 					cpu_tlb_flushID_SE(npv->pv_va);
   2198  1.12     chris 				}
   2199   1.1      matt 			}
   2200   1.1      matt 		}
   2201  1.25  rearnsha 		if ((clear_cache && cacheable_entries >= 4) ||
   2202  1.25  rearnsha 		    kern_cacheable >= 4) {
   2203  1.36   thorpej 			cpu_idcache_wbinv_all();
   2204  1.12     chris 			cpu_tlb_flushID();
   2205  1.12     chris 		}
   2206  1.32   thorpej 		cpu_cpwait();
   2207   1.1      matt 	} else if (entries > 0) {
   2208  1.25  rearnsha 		/*
   2209  1.25  rearnsha 		 * Turn cacheing back on for some pages.  If it is a kernel
   2210  1.25  rearnsha 		 * page, only do so if there are no other writable pages.
   2211  1.25  rearnsha 		 */
   2212  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2213  1.25  rearnsha 			if ((pmap == npv->pv_pmap ||
   2214  1.25  rearnsha 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2215  1.25  rearnsha 			    (npv->pv_flags & PT_NC)) {
   2216  1.56   thorpej 				ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
   2217  1.12     chris 				npv->pv_flags &= ~PT_NC;
   2218   1.1      matt 			}
   2219   1.1      matt 		}
   2220   1.1      matt 	}
   2221   1.1      matt }
   2222   1.1      matt 
   2223   1.1      matt /*
   2224   1.1      matt  * pmap_remove()
   2225   1.1      matt  *
   2226   1.1      matt  * pmap_remove is responsible for nuking a number of mappings for a range
   2227   1.1      matt  * of virtual address space in the current pmap. To do this efficiently
   2228   1.1      matt  * is interesting, because in a number of cases a wide virtual address
   2229   1.1      matt  * range may be supplied that contains few actual mappings. So, the
   2230   1.1      matt  * optimisations are:
   2231   1.1      matt  *  1. Try and skip over hunks of address space for which an L1 entry
   2232   1.1      matt  *     does not exist.
   2233   1.1      matt  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2234   1.1      matt  *     maybe do just a partial cache clean. This path of execution is
   2235   1.1      matt  *     complicated by the fact that the cache must be flushed _before_
   2236   1.1      matt  *     the PTE is nuked, being a VAC :-)
   2237   1.1      matt  *  3. Maybe later fast-case a single page, but I don't think this is
   2238   1.1      matt  *     going to make _that_ much difference overall.
   2239   1.1      matt  */
   2240   1.1      matt 
   2241   1.1      matt #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2242   1.1      matt 
   2243   1.1      matt void
   2244   1.1      matt pmap_remove(pmap, sva, eva)
   2245  1.15     chris 	struct pmap *pmap;
   2246   1.1      matt 	vaddr_t sva;
   2247   1.1      matt 	vaddr_t eva;
   2248   1.1      matt {
   2249   1.1      matt 	int cleanlist_idx = 0;
   2250   1.1      matt 	struct pagelist {
   2251   1.1      matt 		vaddr_t va;
   2252   1.1      matt 		pt_entry_t *pte;
   2253   1.1      matt 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2254  1.11     chris 	pt_entry_t *pte = 0, *ptes;
   2255   1.2      matt 	paddr_t pa;
   2256   1.1      matt 	int pmap_active;
   2257  1.49   thorpej 	struct vm_page *pg;
   2258   1.1      matt 
   2259   1.1      matt 	/* Exit quick if there is no pmap */
   2260   1.1      matt 	if (!pmap)
   2261   1.1      matt 		return;
   2262   1.1      matt 
   2263   1.1      matt 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2264   1.1      matt 
   2265   1.1      matt 	sva &= PG_FRAME;
   2266   1.1      matt 	eva &= PG_FRAME;
   2267   1.1      matt 
   2268  1.17     chris 	/*
   2269  1.49   thorpej 	 * we lock in the pmap => vm_page direction
   2270  1.17     chris 	 */
   2271  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2272  1.17     chris 
   2273  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2274   1.1      matt 	/* Get a page table pointer */
   2275   1.1      matt 	while (sva < eva) {
   2276  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2277   1.1      matt 			break;
   2278   1.1      matt 		sva = (sva & PD_MASK) + NBPD;
   2279   1.1      matt 	}
   2280  1.11     chris 
   2281  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2282   1.1      matt 	/* Note if the pmap is active thus require cache and tlb cleans */
   2283  1.58   thorpej 	pmap_active = pmap_is_curpmap(pmap);
   2284   1.1      matt 
   2285   1.1      matt 	/* Now loop along */
   2286   1.1      matt 	while (sva < eva) {
   2287   1.1      matt 		/* Check if we can move to the next PDE (l1 chunk) */
   2288   1.1      matt 		if (!(sva & PT_MASK))
   2289  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2290   1.1      matt 				sva += NBPD;
   2291  1.56   thorpej 				pte += arm_btop(NBPD);
   2292   1.1      matt 				continue;
   2293   1.1      matt 			}
   2294   1.1      matt 
   2295   1.1      matt 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2296   1.1      matt 		if (pmap_pte_v(pte)) {
   2297   1.1      matt 			/* Update statistics */
   2298   1.1      matt 			--pmap->pm_stats.resident_count;
   2299   1.1      matt 
   2300   1.1      matt 			/*
   2301   1.1      matt 			 * Add this page to our cache remove list, if we can.
   2302   1.1      matt 			 * If, however the cache remove list is totally full,
   2303   1.1      matt 			 * then do a complete cache invalidation taking note
   2304   1.1      matt 			 * to backtrack the PTE table beforehand, and ignore
   2305   1.1      matt 			 * the lists in future because there's no longer any
   2306   1.1      matt 			 * point in bothering with them (we've paid the
   2307   1.1      matt 			 * penalty, so will carry on unhindered). Otherwise,
   2308   1.1      matt 			 * when we fall out, we just clean the list.
   2309   1.1      matt 			 */
   2310   1.1      matt 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2311   1.1      matt 			pa = pmap_pte_pa(pte);
   2312   1.1      matt 
   2313   1.1      matt 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2314   1.1      matt 				/* Add to the clean list. */
   2315   1.1      matt 				cleanlist[cleanlist_idx].pte = pte;
   2316   1.1      matt 				cleanlist[cleanlist_idx].va = sva;
   2317   1.1      matt 				cleanlist_idx++;
   2318   1.1      matt 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2319   1.1      matt 				int cnt;
   2320   1.1      matt 
   2321   1.1      matt 				/* Nuke everything if needed. */
   2322   1.1      matt 				if (pmap_active) {
   2323  1.36   thorpej 					cpu_idcache_wbinv_all();
   2324   1.1      matt 					cpu_tlb_flushID();
   2325   1.1      matt 				}
   2326   1.1      matt 
   2327   1.1      matt 				/*
   2328   1.1      matt 				 * Roll back the previous PTE list,
   2329   1.1      matt 				 * and zero out the current PTE.
   2330   1.1      matt 				 */
   2331   1.1      matt 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2332   1.1      matt 					*cleanlist[cnt].pte = 0;
   2333   1.1      matt 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2334   1.1      matt 				}
   2335   1.1      matt 				*pte = 0;
   2336   1.1      matt 				pmap_pte_delref(pmap, sva);
   2337   1.1      matt 				cleanlist_idx++;
   2338   1.1      matt 			} else {
   2339   1.1      matt 				/*
   2340   1.1      matt 				 * We've already nuked the cache and
   2341   1.1      matt 				 * TLB, so just carry on regardless,
   2342   1.1      matt 				 * and we won't need to do it again
   2343   1.1      matt 				 */
   2344   1.1      matt 				*pte = 0;
   2345   1.1      matt 				pmap_pte_delref(pmap, sva);
   2346   1.1      matt 			}
   2347   1.1      matt 
   2348   1.1      matt 			/*
   2349   1.1      matt 			 * Update flags. In a number of circumstances,
   2350   1.1      matt 			 * we could cluster a lot of these and do a
   2351   1.1      matt 			 * number of sequential pages in one go.
   2352   1.1      matt 			 */
   2353  1.49   thorpej 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2354  1.17     chris 				struct pv_entry *pve;
   2355  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2356  1.49   thorpej 				pve = pmap_remove_pv(pg, pmap, sva);
   2357  1.17     chris 				pmap_free_pv(pmap, pve);
   2358  1.49   thorpej 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2359  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2360   1.1      matt 			}
   2361   1.1      matt 		}
   2362   1.1      matt 		sva += NBPG;
   2363   1.1      matt 		pte++;
   2364   1.1      matt 	}
   2365   1.1      matt 
   2366  1.11     chris 	pmap_unmap_ptes(pmap);
   2367   1.1      matt 	/*
   2368   1.1      matt 	 * Now, if we've fallen through down to here, chances are that there
   2369   1.1      matt 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2370   1.1      matt 	 */
   2371   1.1      matt 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2372   1.1      matt 		u_int cnt;
   2373   1.1      matt 
   2374   1.1      matt 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2375   1.1      matt 			if (pmap_active) {
   2376  1.36   thorpej 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2377  1.36   thorpej 				    NBPG);
   2378   1.1      matt 				*cleanlist[cnt].pte = 0;
   2379   1.1      matt 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2380   1.1      matt 			} else
   2381   1.1      matt 				*cleanlist[cnt].pte = 0;
   2382   1.1      matt 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2383   1.1      matt 		}
   2384   1.1      matt 	}
   2385  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2386   1.1      matt }
   2387   1.1      matt 
   2388   1.1      matt /*
   2389   1.1      matt  * Routine:	pmap_remove_all
   2390   1.1      matt  * Function:
   2391   1.1      matt  *		Removes this physical page from
   2392   1.1      matt  *		all physical maps in which it resides.
   2393   1.1      matt  *		Reflects back modify bits to the pager.
   2394   1.1      matt  */
   2395   1.1      matt 
   2396  1.33     chris static void
   2397  1.49   thorpej pmap_remove_all(pg)
   2398  1.49   thorpej 	struct vm_page *pg;
   2399   1.1      matt {
   2400  1.17     chris 	struct pv_entry *pv, *npv;
   2401  1.15     chris 	struct pmap *pmap;
   2402  1.11     chris 	pt_entry_t *pte, *ptes;
   2403   1.1      matt 
   2404  1.49   thorpej 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2405   1.1      matt 
   2406  1.49   thorpej 	/* set vm_page => pmap locking */
   2407  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   2408   1.1      matt 
   2409  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2410  1.17     chris 
   2411  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2412  1.49   thorpej 	if (pv == NULL) {
   2413  1.49   thorpej 		PDEBUG(0, printf("free page\n"));
   2414  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2415  1.49   thorpej 		PMAP_HEAD_TO_MAP_UNLOCK();
   2416  1.49   thorpej 		return;
   2417   1.1      matt 	}
   2418  1.17     chris 	pmap_clean_page(pv, FALSE);
   2419   1.1      matt 
   2420   1.1      matt 	while (pv) {
   2421   1.1      matt 		pmap = pv->pv_pmap;
   2422  1.11     chris 		ptes = pmap_map_ptes(pmap);
   2423  1.56   thorpej 		pte = &ptes[arm_btop(pv->pv_va)];
   2424   1.1      matt 
   2425   1.1      matt 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2426   1.1      matt 		    pv->pv_va, pv->pv_flags));
   2427   1.1      matt #ifdef DEBUG
   2428  1.32   thorpej 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2429  1.30  rearnsha 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2430   1.1      matt 			panic("pmap_remove_all: bad mapping");
   2431   1.1      matt #endif	/* DEBUG */
   2432   1.1      matt 
   2433   1.1      matt 		/*
   2434   1.1      matt 		 * Update statistics
   2435   1.1      matt 		 */
   2436   1.1      matt 		--pmap->pm_stats.resident_count;
   2437   1.1      matt 
   2438   1.1      matt 		/* Wired bit */
   2439   1.1      matt 		if (pv->pv_flags & PT_W)
   2440   1.1      matt 			--pmap->pm_stats.wired_count;
   2441   1.1      matt 
   2442   1.1      matt 		/*
   2443   1.1      matt 		 * Invalidate the PTEs.
   2444   1.1      matt 		 * XXX: should cluster them up and invalidate as many
   2445   1.1      matt 		 * as possible at once.
   2446   1.1      matt 		 */
   2447   1.1      matt 
   2448   1.1      matt #ifdef needednotdone
   2449   1.1      matt reduce wiring count on page table pages as references drop
   2450   1.1      matt #endif
   2451   1.1      matt 
   2452   1.1      matt 		*pte = 0;
   2453   1.1      matt 		pmap_pte_delref(pmap, pv->pv_va);
   2454   1.1      matt 
   2455   1.1      matt 		npv = pv->pv_next;
   2456  1.17     chris 		pmap_free_pv(pmap, pv);
   2457   1.1      matt 		pv = npv;
   2458  1.11     chris 		pmap_unmap_ptes(pmap);
   2459   1.1      matt 	}
   2460  1.49   thorpej 	pg->mdpage.pvh_list = NULL;
   2461  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   2462  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   2463   1.1      matt 
   2464   1.1      matt 	PDEBUG(0, printf("done\n"));
   2465   1.1      matt 	cpu_tlb_flushID();
   2466  1.32   thorpej 	cpu_cpwait();
   2467   1.1      matt }
   2468   1.1      matt 
   2469   1.1      matt 
   2470   1.1      matt /*
   2471   1.1      matt  * Set the physical protection on the specified range of this map as requested.
   2472   1.1      matt  */
   2473   1.1      matt 
   2474   1.1      matt void
   2475   1.1      matt pmap_protect(pmap, sva, eva, prot)
   2476  1.15     chris 	struct pmap *pmap;
   2477   1.1      matt 	vaddr_t sva;
   2478   1.1      matt 	vaddr_t eva;
   2479   1.1      matt 	vm_prot_t prot;
   2480   1.1      matt {
   2481  1.11     chris 	pt_entry_t *pte = NULL, *ptes;
   2482  1.49   thorpej 	struct vm_page *pg;
   2483   1.1      matt 	int armprot;
   2484   1.1      matt 	int flush = 0;
   2485   1.2      matt 	paddr_t pa;
   2486   1.1      matt 
   2487   1.1      matt 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2488   1.1      matt 	    pmap, sva, eva, prot));
   2489   1.1      matt 
   2490   1.1      matt 	if (~prot & VM_PROT_READ) {
   2491   1.1      matt 		/* Just remove the mappings. */
   2492   1.1      matt 		pmap_remove(pmap, sva, eva);
   2493  1.33     chris 		/* pmap_update not needed as it should be called by the caller
   2494  1.33     chris 		 * of pmap_protect */
   2495   1.1      matt 		return;
   2496   1.1      matt 	}
   2497   1.1      matt 	if (prot & VM_PROT_WRITE) {
   2498   1.1      matt 		/*
   2499   1.1      matt 		 * If this is a read->write transition, just ignore it and let
   2500   1.1      matt 		 * uvm_fault() take care of it later.
   2501   1.1      matt 		 */
   2502   1.1      matt 		return;
   2503   1.1      matt 	}
   2504   1.1      matt 
   2505   1.1      matt 	sva &= PG_FRAME;
   2506   1.1      matt 	eva &= PG_FRAME;
   2507   1.1      matt 
   2508  1.17     chris 	/* Need to lock map->head */
   2509  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2510  1.17     chris 
   2511  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2512   1.1      matt 	/*
   2513   1.1      matt 	 * We need to acquire a pointer to a page table page before entering
   2514   1.1      matt 	 * the following loop.
   2515   1.1      matt 	 */
   2516   1.1      matt 	while (sva < eva) {
   2517  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2518   1.1      matt 			break;
   2519   1.1      matt 		sva = (sva & PD_MASK) + NBPD;
   2520   1.1      matt 	}
   2521  1.11     chris 
   2522  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2523  1.17     chris 
   2524   1.1      matt 	while (sva < eva) {
   2525   1.1      matt 		/* only check once in a while */
   2526   1.1      matt 		if ((sva & PT_MASK) == 0) {
   2527  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2528   1.1      matt 				/* We can race ahead here, to the next pde. */
   2529   1.1      matt 				sva += NBPD;
   2530  1.56   thorpej 				pte += arm_btop(NBPD);
   2531   1.1      matt 				continue;
   2532   1.1      matt 			}
   2533   1.1      matt 		}
   2534   1.1      matt 
   2535   1.1      matt 		if (!pmap_pte_v(pte))
   2536   1.1      matt 			goto next;
   2537   1.1      matt 
   2538   1.1      matt 		flush = 1;
   2539   1.1      matt 
   2540   1.1      matt 		armprot = 0;
   2541   1.1      matt 		if (sva < VM_MAXUSER_ADDRESS)
   2542   1.1      matt 			armprot |= PT_AP(AP_U);
   2543   1.1      matt 		else if (sva < VM_MAX_ADDRESS)
   2544   1.1      matt 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2545   1.1      matt 		*pte = (*pte & 0xfffff00f) | armprot;
   2546   1.1      matt 
   2547   1.1      matt 		pa = pmap_pte_pa(pte);
   2548   1.1      matt 
   2549   1.1      matt 		/* Get the physical page index */
   2550   1.1      matt 
   2551   1.1      matt 		/* Clear write flag */
   2552  1.49   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2553  1.49   thorpej 			simple_lock(&pg->mdpage.pvh_slock);
   2554  1.49   thorpej 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2555  1.49   thorpej 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2556  1.49   thorpej 			simple_unlock(&pg->mdpage.pvh_slock);
   2557   1.1      matt 		}
   2558   1.1      matt 
   2559   1.1      matt next:
   2560   1.1      matt 		sva += NBPG;
   2561   1.1      matt 		pte++;
   2562   1.1      matt 	}
   2563  1.11     chris 	pmap_unmap_ptes(pmap);
   2564  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2565   1.1      matt 	if (flush)
   2566   1.1      matt 		cpu_tlb_flushID();
   2567   1.1      matt }
   2568   1.1      matt 
   2569   1.1      matt /*
   2570  1.15     chris  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2571   1.1      matt  * int flags)
   2572   1.1      matt  *
   2573   1.1      matt  *      Insert the given physical page (p) at
   2574   1.1      matt  *      the specified virtual address (v) in the
   2575   1.1      matt  *      target physical map with the protection requested.
   2576   1.1      matt  *
   2577   1.1      matt  *      If specified, the page will be wired down, meaning
   2578   1.1      matt  *      that the related pte can not be reclaimed.
   2579   1.1      matt  *
   2580   1.1      matt  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2581   1.1      matt  *      or lose information.  That is, this routine must actually
   2582   1.1      matt  *      insert this page into the given map NOW.
   2583   1.1      matt  */
   2584   1.1      matt 
   2585   1.1      matt int
   2586   1.1      matt pmap_enter(pmap, va, pa, prot, flags)
   2587  1.15     chris 	struct pmap *pmap;
   2588   1.1      matt 	vaddr_t va;
   2589   1.2      matt 	paddr_t pa;
   2590   1.1      matt 	vm_prot_t prot;
   2591   1.1      matt 	int flags;
   2592   1.1      matt {
   2593  1.11     chris 	pt_entry_t *pte, *ptes;
   2594   1.1      matt 	u_int npte;
   2595   1.2      matt 	paddr_t opa;
   2596   1.1      matt 	int nflags;
   2597   1.1      matt 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2598  1.49   thorpej 	struct vm_page *pg;
   2599  1.17     chris 	struct pv_entry *pve;
   2600  1.17     chris 	int error;
   2601   1.1      matt 
   2602   1.1      matt 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2603   1.1      matt 	    va, pa, pmap, prot, wired));
   2604   1.1      matt 
   2605   1.1      matt #ifdef DIAGNOSTIC
   2606   1.1      matt 	/* Valid address ? */
   2607  1.48     chris 	if (va >= (pmap_curmaxkvaddr))
   2608   1.1      matt 		panic("pmap_enter: too big");
   2609   1.1      matt 	if (pmap != pmap_kernel() && va != 0) {
   2610   1.1      matt 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2611   1.1      matt 			panic("pmap_enter: kernel page in user map");
   2612   1.1      matt 	} else {
   2613   1.1      matt 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2614   1.1      matt 			panic("pmap_enter: user page in kernel map");
   2615   1.1      matt 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2616   1.1      matt 			panic("pmap_enter: entering PT page");
   2617   1.1      matt 	}
   2618   1.1      matt #endif
   2619  1.49   thorpej 	/*
   2620  1.49   thorpej 	 * Get a pointer to the page.  Later on in this function, we
   2621  1.49   thorpej 	 * test for a managed page by checking pg != NULL.
   2622  1.49   thorpej 	 */
   2623  1.55   thorpej 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2624  1.49   thorpej 
   2625  1.17     chris 	/* get lock */
   2626  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2627   1.1      matt 	/*
   2628   1.1      matt 	 * Get a pointer to the pte for this virtual address. If the
   2629   1.1      matt 	 * pte pointer is NULL then we are missing the L2 page table
   2630   1.1      matt 	 * so we need to create one.
   2631   1.1      matt 	 */
   2632  1.24     chris 	/* XXX horrible hack to get us working with lockdebug */
   2633  1.24     chris 	simple_lock(&pmap->pm_obj.vmobjlock);
   2634   1.1      matt 	pte = pmap_pte(pmap, va);
   2635   1.1      matt 	if (!pte) {
   2636  1.17     chris 		struct vm_page *ptp;
   2637  1.57   thorpej 
   2638  1.57   thorpej 		/* kernel should be pre-grown */
   2639  1.57   thorpej 		KASSERT(pmap != pmap_kernel());
   2640  1.17     chris 
   2641  1.17     chris 		/* if failure is allowed then don't try too hard */
   2642  1.57   thorpej 		ptp = pmap_get_ptp(pmap, va);
   2643  1.17     chris 		if (ptp == NULL) {
   2644  1.17     chris 			if (flags & PMAP_CANFAIL) {
   2645  1.17     chris 				error = ENOMEM;
   2646  1.17     chris 				goto out;
   2647  1.17     chris 			}
   2648  1.17     chris 			panic("pmap_enter: get ptp failed");
   2649   1.1      matt 		}
   2650  1.16     chris 
   2651   1.1      matt 		pte = pmap_pte(pmap, va);
   2652   1.1      matt #ifdef DIAGNOSTIC
   2653   1.1      matt 		if (!pte)
   2654   1.1      matt 			panic("pmap_enter: no pte");
   2655   1.1      matt #endif
   2656   1.1      matt 	}
   2657   1.1      matt 
   2658   1.1      matt 	nflags = 0;
   2659   1.1      matt 	if (prot & VM_PROT_WRITE)
   2660   1.1      matt 		nflags |= PT_Wr;
   2661   1.1      matt 	if (wired)
   2662   1.1      matt 		nflags |= PT_W;
   2663   1.1      matt 
   2664   1.1      matt 	/* More debugging info */
   2665   1.1      matt 	PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
   2666   1.1      matt 	    *pte));
   2667   1.1      matt 
   2668   1.1      matt 	/* Is the pte valid ? If so then this page is already mapped */
   2669   1.1      matt 	if (pmap_pte_v(pte)) {
   2670   1.1      matt 		/* Get the physical address of the current page mapped */
   2671   1.1      matt 		opa = pmap_pte_pa(pte);
   2672   1.1      matt 
   2673   1.1      matt #ifdef MYCROFT_HACK
   2674   1.1      matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
   2675   1.1      matt #endif
   2676   1.1      matt 
   2677   1.1      matt 		/* Are we mapping the same page ? */
   2678   1.1      matt 		if (opa == pa) {
   2679   1.1      matt 			/* All we must be doing is changing the protection */
   2680   1.1      matt 			PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
   2681   1.1      matt 			    va, pa));
   2682   1.1      matt 
   2683   1.1      matt 			/* Has the wiring changed ? */
   2684  1.49   thorpej 			if (pg != NULL) {
   2685  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2686  1.49   thorpej 				(void) pmap_modify_pv(pmap, va, pg,
   2687   1.1      matt 				    PT_Wr | PT_W, nflags);
   2688  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2689  1.49   thorpej  			}
   2690   1.1      matt 		} else {
   2691  1.49   thorpej 			struct vm_page *opg;
   2692  1.49   thorpej 
   2693   1.1      matt 			/* We are replacing the page with a new one. */
   2694  1.36   thorpej 			cpu_idcache_wbinv_range(va, NBPG);
   2695   1.1      matt 
   2696   1.1      matt 			PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
   2697   1.1      matt 			    va, pa, opa));
   2698   1.1      matt 
   2699   1.1      matt 			/*
   2700   1.1      matt 			 * If it is part of our managed memory then we
   2701   1.1      matt 			 * must remove it from the PV list
   2702   1.1      matt 			 */
   2703  1.49   thorpej 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2704  1.49   thorpej 				simple_lock(&opg->mdpage.pvh_slock);
   2705  1.49   thorpej 				pve = pmap_remove_pv(opg, pmap, va);
   2706  1.49   thorpej 				simple_unlock(&opg->mdpage.pvh_slock);
   2707  1.17     chris 			} else {
   2708  1.17     chris 				pve = NULL;
   2709   1.1      matt 			}
   2710   1.1      matt 
   2711   1.1      matt 			goto enter;
   2712   1.1      matt 		}
   2713   1.1      matt 	} else {
   2714   1.1      matt 		opa = 0;
   2715  1.17     chris 		pve = NULL;
   2716   1.1      matt 		pmap_pte_addref(pmap, va);
   2717   1.1      matt 
   2718   1.1      matt 		/* pte is not valid so we must be hooking in a new page */
   2719   1.1      matt 		++pmap->pm_stats.resident_count;
   2720   1.1      matt 
   2721   1.1      matt 	enter:
   2722   1.1      matt 		/*
   2723   1.1      matt 		 * Enter on the PV list if part of our managed memory
   2724   1.1      matt 		 */
   2725  1.55   thorpej 		if (pg != NULL) {
   2726  1.17     chris 			if (pve == NULL) {
   2727  1.17     chris 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2728  1.17     chris 				if (pve == NULL) {
   2729  1.17     chris 					if (flags & PMAP_CANFAIL) {
   2730  1.17     chris 						error = ENOMEM;
   2731  1.17     chris 						goto out;
   2732  1.17     chris 					}
   2733  1.17     chris 					panic("pmap_enter: no pv entries available");
   2734  1.17     chris 				}
   2735  1.17     chris 			}
   2736  1.17     chris 			/* enter_pv locks pvh when adding */
   2737  1.49   thorpej 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2738  1.17     chris 		} else {
   2739  1.49   thorpej 			pg = NULL;
   2740  1.17     chris 			if (pve != NULL)
   2741  1.17     chris 				pmap_free_pv(pmap, pve);
   2742   1.1      matt 		}
   2743   1.1      matt 	}
   2744   1.1      matt 
   2745   1.1      matt #ifdef MYCROFT_HACK
   2746   1.1      matt 	if (mycroft_hack)
   2747   1.1      matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
   2748   1.1      matt #endif
   2749   1.1      matt 
   2750   1.1      matt 	/* Construct the pte, giving the correct access. */
   2751   1.1      matt 	npte = (pa & PG_FRAME);
   2752   1.1      matt 
   2753   1.1      matt 	/* VA 0 is magic. */
   2754   1.1      matt 	if (pmap != pmap_kernel() && va != 0)
   2755   1.1      matt 		npte |= PT_AP(AP_U);
   2756   1.1      matt 
   2757  1.55   thorpej 	if (pg != NULL) {
   2758   1.1      matt #ifdef DIAGNOSTIC
   2759   1.1      matt 		if ((flags & VM_PROT_ALL) & ~prot)
   2760   1.1      matt 			panic("pmap_enter: access_type exceeds prot");
   2761   1.1      matt #endif
   2762  1.27  rearnsha 		npte |= pte_cache_mode;
   2763   1.1      matt 		if (flags & VM_PROT_WRITE) {
   2764   1.1      matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2765  1.49   thorpej 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2766   1.1      matt 		} else if (flags & VM_PROT_ALL) {
   2767   1.1      matt 			npte |= L2_SPAGE;
   2768  1.49   thorpej 			pg->mdpage.pvh_attrs |= PT_H;
   2769   1.1      matt 		} else
   2770   1.1      matt 			npte |= L2_INVAL;
   2771   1.1      matt 	} else {
   2772   1.1      matt 		if (prot & VM_PROT_WRITE)
   2773   1.1      matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2774   1.1      matt 		else if (prot & VM_PROT_ALL)
   2775   1.1      matt 			npte |= L2_SPAGE;
   2776   1.1      matt 		else
   2777   1.1      matt 			npte |= L2_INVAL;
   2778   1.1      matt 	}
   2779   1.1      matt 
   2780   1.1      matt #ifdef MYCROFT_HACK
   2781   1.1      matt 	if (mycroft_hack)
   2782   1.1      matt 		printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
   2783   1.1      matt #endif
   2784   1.1      matt 
   2785   1.1      matt 	*pte = npte;
   2786   1.1      matt 
   2787  1.55   thorpej 	if (pg != NULL) {
   2788  1.11     chris 		/* XXX this will change once the whole of pmap_enter uses
   2789  1.11     chris 		 * map_ptes
   2790  1.11     chris 		 */
   2791  1.11     chris 		ptes = pmap_map_ptes(pmap);
   2792  1.49   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2793  1.59   thorpej  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2794  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2795  1.11     chris 		pmap_unmap_ptes(pmap);
   2796  1.11     chris 	}
   2797   1.1      matt 
   2798   1.1      matt 	/* Better flush the TLB ... */
   2799   1.1      matt 	cpu_tlb_flushID_SE(va);
   2800  1.17     chris 	error = 0;
   2801  1.17     chris out:
   2802  1.24     chris 	simple_unlock(&pmap->pm_obj.vmobjlock);
   2803  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2804   1.1      matt 	PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
   2805   1.1      matt 
   2806  1.17     chris 	return error;
   2807   1.1      matt }
   2808   1.1      matt 
   2809  1.48     chris /*
   2810  1.48     chris  * pmap_kenter_pa: enter a kernel mapping
   2811  1.48     chris  *
   2812  1.48     chris  * => no need to lock anything assume va is already allocated
   2813  1.48     chris  * => should be faster than normal pmap enter function
   2814  1.48     chris  */
   2815   1.1      matt void
   2816   1.1      matt pmap_kenter_pa(va, pa, prot)
   2817   1.1      matt 	vaddr_t va;
   2818   1.1      matt 	paddr_t pa;
   2819   1.1      matt 	vm_prot_t prot;
   2820   1.1      matt {
   2821  1.13     chris 	pt_entry_t *pte;
   2822  1.13     chris 
   2823  1.13     chris 	pte = vtopte(va);
   2824  1.14       chs 	KASSERT(!pmap_pte_v(pte));
   2825  1.13     chris 	*pte = L2_PTE(pa, AP_KRW);
   2826   1.1      matt }
   2827   1.1      matt 
   2828   1.1      matt void
   2829   1.1      matt pmap_kremove(va, len)
   2830   1.1      matt 	vaddr_t va;
   2831   1.1      matt 	vsize_t len;
   2832   1.1      matt {
   2833  1.14       chs 	pt_entry_t *pte;
   2834  1.14       chs 
   2835   1.1      matt 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2836  1.13     chris 
   2837  1.14       chs 		/*
   2838  1.14       chs 		 * We assume that we will only be called with small
   2839  1.14       chs 		 * regions of memory.
   2840  1.14       chs 		 */
   2841  1.14       chs 
   2842  1.30  rearnsha 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2843  1.13     chris 		pte = vtopte(va);
   2844  1.36   thorpej 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2845  1.13     chris 		*pte = 0;
   2846  1.13     chris 		cpu_tlb_flushID_SE(va);
   2847   1.1      matt 	}
   2848   1.1      matt }
   2849   1.1      matt 
   2850   1.1      matt /*
   2851   1.1      matt  * pmap_page_protect:
   2852   1.1      matt  *
   2853   1.1      matt  * Lower the permission for all mappings to a given page.
   2854   1.1      matt  */
   2855   1.1      matt 
   2856   1.1      matt void
   2857   1.1      matt pmap_page_protect(pg, prot)
   2858   1.1      matt 	struct vm_page *pg;
   2859   1.1      matt 	vm_prot_t prot;
   2860   1.1      matt {
   2861   1.1      matt 
   2862  1.49   thorpej 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2863  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), prot));
   2864   1.1      matt 
   2865   1.1      matt 	switch(prot) {
   2866  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2867  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE:
   2868  1.17     chris 		return;
   2869  1.17     chris 
   2870   1.1      matt 	case VM_PROT_READ:
   2871   1.1      matt 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2872  1.49   thorpej 		pmap_copy_on_write(pg);
   2873   1.1      matt 		break;
   2874   1.1      matt 
   2875   1.1      matt 	default:
   2876  1.49   thorpej 		pmap_remove_all(pg);
   2877   1.1      matt 		break;
   2878   1.1      matt 	}
   2879   1.1      matt }
   2880   1.1      matt 
   2881   1.1      matt 
   2882   1.1      matt /*
   2883   1.1      matt  * Routine:	pmap_unwire
   2884   1.1      matt  * Function:	Clear the wired attribute for a map/virtual-address
   2885   1.1      matt  *		pair.
   2886   1.1      matt  * In/out conditions:
   2887   1.1      matt  *		The mapping must already exist in the pmap.
   2888   1.1      matt  */
   2889   1.1      matt 
   2890   1.1      matt void
   2891   1.1      matt pmap_unwire(pmap, va)
   2892  1.15     chris 	struct pmap *pmap;
   2893   1.1      matt 	vaddr_t va;
   2894   1.1      matt {
   2895  1.60   thorpej 	pt_entry_t *ptes;
   2896  1.60   thorpej 	struct vm_page *pg;
   2897   1.2      matt 	paddr_t pa;
   2898   1.1      matt 
   2899  1.60   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2900  1.60   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2901   1.1      matt 
   2902  1.60   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2903  1.60   thorpej #ifdef DIAGNOSTIC
   2904  1.60   thorpej 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2905  1.60   thorpej 			panic("pmap_unwire: invalid L2 PTE");
   2906  1.60   thorpej #endif
   2907  1.60   thorpej 		/* Extract the physical address of the page */
   2908  1.60   thorpej 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2909   1.1      matt 
   2910  1.60   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2911  1.60   thorpej 			goto out;
   2912   1.1      matt 
   2913  1.60   thorpej 		/* Update the wired bit in the pv entry for this page. */
   2914  1.60   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2915  1.60   thorpej 		(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2916  1.60   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2917  1.60   thorpej 	}
   2918  1.60   thorpej #ifdef DIAGNOSTIC
   2919  1.60   thorpej 	else {
   2920  1.60   thorpej 		panic("pmap_unwire: invalid L1 PTE");
   2921  1.60   thorpej 	}
   2922  1.60   thorpej #endif
   2923  1.60   thorpej  out:
   2924  1.60   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2925  1.60   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2926   1.1      matt }
   2927   1.1      matt 
   2928   1.1      matt /*
   2929  1.15     chris  * pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
   2930   1.1      matt  *
   2931   1.1      matt  * Return the pointer to a page table entry corresponding to the supplied
   2932   1.1      matt  * virtual address.
   2933   1.1      matt  *
   2934   1.1      matt  * The page directory is first checked to make sure that a page table
   2935   1.1      matt  * for the address in question exists and if it does a pointer to the
   2936   1.1      matt  * entry is returned.
   2937   1.1      matt  *
   2938   1.1      matt  * The way this works is that that the kernel page tables are mapped
   2939  1.53   thorpej  * into the memory map at APTE_BASE to APTE_BASE+4MB.  This allows
   2940  1.53   thorpej  * page tables to be located quickly.
   2941   1.1      matt  */
   2942   1.1      matt pt_entry_t *
   2943   1.1      matt pmap_pte(pmap, va)
   2944  1.15     chris 	struct pmap *pmap;
   2945   1.1      matt 	vaddr_t va;
   2946   1.1      matt {
   2947   1.1      matt 	pt_entry_t *ptp;
   2948   1.1      matt 	pt_entry_t *result;
   2949   1.1      matt 
   2950   1.1      matt 	/* The pmap must be valid */
   2951   1.1      matt 	if (!pmap)
   2952   1.1      matt 		return(NULL);
   2953   1.1      matt 
   2954   1.1      matt 	/* Return the address of the pte */
   2955   1.1      matt 	PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
   2956   1.1      matt 	    pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
   2957   1.1      matt 
   2958   1.1      matt 	/* Do we have a valid pde ? If not we don't have a page table */
   2959  1.30  rearnsha 	if (!pmap_pde_page(pmap_pde(pmap, va))) {
   2960  1.39   thorpej 		PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
   2961  1.39   thorpej 		    pmap_pde(pmap, va)));
   2962   1.1      matt 		return(NULL);
   2963   1.1      matt 	}
   2964   1.1      matt 
   2965   1.1      matt 	PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
   2966  1.53   thorpej 	    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   2967  1.53   thorpej 	    + (PTE_BASE >> (PGSHIFT - 2)) +
   2968  1.53   thorpej 	    (PTE_BASE >> PDSHIFT))) & PG_FRAME)));
   2969   1.1      matt 
   2970   1.1      matt 	/*
   2971   1.1      matt 	 * If the pmap is the kernel pmap or the pmap is the active one
   2972   1.1      matt 	 * then we can just return a pointer to entry relative to
   2973  1.53   thorpej 	 * PTE_BASE.
   2974   1.1      matt 	 * Otherwise we need to map the page tables to an alternative
   2975   1.1      matt 	 * address and reference them there.
   2976   1.1      matt 	 */
   2977  1.15     chris 	if (pmap == pmap_kernel() || pmap->pm_pptpt
   2978  1.53   thorpej 	    == (*((pt_entry_t *)(PTE_BASE
   2979  1.53   thorpej 	    + ((PTE_BASE >> (PGSHIFT - 2)) &
   2980  1.53   thorpej 	    ~3) + (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   2981  1.53   thorpej 		ptp = (pt_entry_t *)PTE_BASE;
   2982   1.1      matt 	} else {
   2983   1.1      matt 		struct proc *p = curproc;
   2984   1.1      matt 
   2985   1.1      matt 		/* If we don't have a valid curproc use proc0 */
   2986   1.1      matt 		/* Perhaps we should just use kernel_pmap instead */
   2987   1.1      matt 		if (p == NULL)
   2988   1.1      matt 			p = &proc0;
   2989   1.1      matt #ifdef DIAGNOSTIC
   2990   1.1      matt 		/*
   2991   1.1      matt 		 * The pmap should always be valid for the process so
   2992   1.1      matt 		 * panic if it is not.
   2993   1.1      matt 		 */
   2994   1.1      matt 		if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
   2995   1.1      matt 			printf("pmap_pte: va=%08lx p=%p vm=%p\n",
   2996   1.1      matt 			    va, p, p->p_vmspace);
   2997   1.1      matt 			console_debugger();
   2998   1.1      matt 		}
   2999   1.1      matt 		/*
   3000   1.1      matt 		 * The pmap for the current process should be mapped. If it
   3001   1.1      matt 		 * is not then we have a problem.
   3002   1.1      matt 		 */
   3003   1.1      matt 		if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
   3004  1.53   thorpej 		    (*((pt_entry_t *)(PTE_BASE
   3005  1.53   thorpej 		    + (PTE_BASE >> (PGSHIFT - 2)) +
   3006  1.53   thorpej 		    (PTE_BASE >> PDSHIFT))) & PG_FRAME)) {
   3007   1.1      matt 			printf("pmap pagetable = P%08lx current = P%08x ",
   3008  1.53   thorpej 			    pmap->pm_pptpt, (*((pt_entry_t *)(PTE_BASE
   3009  1.53   thorpej 			    + (PTE_BASE >> (PGSHIFT - 2)) +
   3010  1.53   thorpej 			    (PTE_BASE >> PDSHIFT))) &
   3011   1.1      matt 			    PG_FRAME));
   3012   1.1      matt 			printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
   3013   1.1      matt 			panic("pmap_pte: current and pmap mismatch\n");
   3014   1.1      matt 		}
   3015   1.1      matt #endif
   3016   1.1      matt 
   3017  1.53   thorpej 		ptp = (pt_entry_t *)APTE_BASE;
   3018  1.53   thorpej 		pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3019  1.17     chris 		    pmap->pm_pptpt, FALSE);
   3020   1.1      matt 		cpu_tlb_flushD();
   3021  1.32   thorpej 		cpu_cpwait();
   3022   1.1      matt 	}
   3023   1.1      matt 	PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
   3024   1.1      matt 	    ((va >> (PGSHIFT-2)) & ~3)));
   3025   1.1      matt 	result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
   3026   1.1      matt 	return(result);
   3027   1.1      matt }
   3028   1.1      matt 
   3029   1.1      matt /*
   3030   1.1      matt  * Routine:  pmap_extract
   3031   1.1      matt  * Function:
   3032   1.1      matt  *           Extract the physical page address associated
   3033   1.1      matt  *           with the given map/virtual_address pair.
   3034   1.1      matt  */
   3035   1.1      matt boolean_t
   3036   1.1      matt pmap_extract(pmap, va, pap)
   3037  1.15     chris 	struct pmap *pmap;
   3038   1.1      matt 	vaddr_t va;
   3039   1.1      matt 	paddr_t *pap;
   3040   1.1      matt {
   3041  1.34   thorpej 	pd_entry_t *pde;
   3042  1.11     chris 	pt_entry_t *pte, *ptes;
   3043   1.1      matt 	paddr_t pa;
   3044  1.34   thorpej 	boolean_t rv = TRUE;
   3045   1.1      matt 
   3046   1.1      matt 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   3047   1.1      matt 
   3048   1.1      matt 	/*
   3049  1.11     chris 	 * Get the pte for this virtual address.
   3050   1.1      matt 	 */
   3051  1.34   thorpej 	pde = pmap_pde(pmap, va);
   3052  1.11     chris 	ptes = pmap_map_ptes(pmap);
   3053  1.56   thorpej 	pte = &ptes[arm_btop(va)];
   3054   1.1      matt 
   3055  1.34   thorpej 	if (pmap_pde_section(pde)) {
   3056  1.34   thorpej 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   3057  1.34   thorpej 		goto out;
   3058  1.34   thorpej 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3059  1.34   thorpej 		rv = FALSE;
   3060  1.34   thorpej 		goto out;
   3061  1.11     chris 	}
   3062   1.1      matt 
   3063  1.34   thorpej 	if ((*pte & L2_MASK) == L2_LPAGE) {
   3064   1.1      matt 		/* Extract the physical address from the pte */
   3065  1.34   thorpej 		pa = *pte & ~(L2_LPAGE_SIZE - 1);
   3066   1.1      matt 
   3067   1.1      matt 		PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
   3068   1.1      matt 		    (pa | (va & (L2_LPAGE_SIZE - 1)))));
   3069   1.1      matt 
   3070   1.1      matt 		if (pap != NULL)
   3071   1.1      matt 			*pap = pa | (va & (L2_LPAGE_SIZE - 1));
   3072  1.34   thorpej 		goto out;
   3073  1.34   thorpej 	}
   3074  1.34   thorpej 
   3075  1.34   thorpej 	/* Extract the physical address from the pte */
   3076  1.34   thorpej 	pa = pmap_pte_pa(pte);
   3077   1.1      matt 
   3078  1.34   thorpej 	PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
   3079  1.34   thorpej 	    (pa | (va & ~PG_FRAME))));
   3080   1.1      matt 
   3081  1.34   thorpej 	if (pap != NULL)
   3082  1.34   thorpej 		*pap = pa | (va & ~PG_FRAME);
   3083  1.34   thorpej  out:
   3084  1.11     chris 	pmap_unmap_ptes(pmap);
   3085  1.34   thorpej 	return (rv);
   3086   1.1      matt }
   3087   1.1      matt 
   3088   1.1      matt 
   3089   1.1      matt /*
   3090  1.39   thorpej  * Copy the range specified by src_addr/len from the source map to the
   3091  1.39   thorpej  * range dst_addr/len in the destination map.
   3092   1.1      matt  *
   3093  1.39   thorpej  * This routine is only advisory and need not do anything.
   3094   1.1      matt  */
   3095   1.1      matt 
   3096  1.39   thorpej void
   3097  1.39   thorpej pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
   3098  1.39   thorpej 	struct pmap *dst_pmap;
   3099  1.39   thorpej 	struct pmap *src_pmap;
   3100  1.39   thorpej 	vaddr_t dst_addr;
   3101  1.39   thorpej 	vsize_t len;
   3102  1.39   thorpej 	vaddr_t src_addr;
   3103  1.39   thorpej {
   3104  1.39   thorpej 	PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
   3105  1.39   thorpej 	    dst_pmap, src_pmap, dst_addr, len, src_addr));
   3106  1.39   thorpej }
   3107   1.1      matt 
   3108   1.1      matt #if defined(PMAP_DEBUG)
   3109   1.1      matt void
   3110   1.1      matt pmap_dump_pvlist(phys, m)
   3111   1.1      matt 	vaddr_t phys;
   3112   1.1      matt 	char *m;
   3113   1.1      matt {
   3114  1.49   thorpej 	struct vm_page *pg;
   3115   1.1      matt 	struct pv_entry *pv;
   3116   1.1      matt 
   3117  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3118   1.1      matt 		printf("INVALID PA\n");
   3119   1.1      matt 		return;
   3120   1.1      matt 	}
   3121  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3122   1.1      matt 	printf("%s %08lx:", m, phys);
   3123  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   3124   1.1      matt 		printf(" no mappings\n");
   3125   1.1      matt 		return;
   3126   1.1      matt 	}
   3127   1.1      matt 
   3128  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3129   1.1      matt 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3130   1.1      matt 		    pv->pv_va, pv->pv_flags);
   3131   1.1      matt 
   3132   1.1      matt 	printf("\n");
   3133  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3134   1.1      matt }
   3135   1.1      matt 
   3136   1.1      matt #endif	/* PMAP_DEBUG */
   3137   1.1      matt 
   3138  1.11     chris static pt_entry_t *
   3139  1.11     chris pmap_map_ptes(struct pmap *pmap)
   3140  1.11     chris {
   3141  1.17     chris     	struct proc *p;
   3142  1.17     chris 
   3143  1.17     chris     	/* the kernel's pmap is always accessible */
   3144  1.17     chris 	if (pmap == pmap_kernel()) {
   3145  1.53   thorpej 		return (pt_entry_t *)PTE_BASE ;
   3146  1.17     chris 	}
   3147  1.17     chris 
   3148  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   3149  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3150  1.53   thorpej 		return (pt_entry_t *)PTE_BASE;
   3151  1.17     chris 	}
   3152  1.17     chris 
   3153  1.17     chris 	p = curproc;
   3154  1.17     chris 
   3155  1.17     chris 	if (p == NULL)
   3156  1.17     chris 		p = &proc0;
   3157  1.17     chris 
   3158  1.17     chris 	/* need to lock both curpmap and pmap: use ordered locking */
   3159  1.17     chris 	if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
   3160  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3161  1.17     chris 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3162  1.17     chris 	} else {
   3163  1.17     chris 		simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3164  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3165  1.17     chris 	}
   3166  1.11     chris 
   3167  1.53   thorpej 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE,
   3168  1.17     chris 			pmap->pm_pptpt, FALSE);
   3169  1.17     chris 	cpu_tlb_flushD();
   3170  1.32   thorpej 	cpu_cpwait();
   3171  1.53   thorpej 	return (pt_entry_t *)APTE_BASE;
   3172  1.17     chris }
   3173  1.17     chris 
   3174  1.17     chris /*
   3175  1.17     chris  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3176  1.17     chris  */
   3177  1.17     chris 
   3178  1.17     chris static void
   3179  1.17     chris pmap_unmap_ptes(pmap)
   3180  1.17     chris 	struct pmap *pmap;
   3181  1.17     chris {
   3182  1.17     chris 	if (pmap == pmap_kernel()) {
   3183  1.17     chris 		return;
   3184  1.17     chris 	}
   3185  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   3186  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3187  1.17     chris 	} else {
   3188  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3189  1.17     chris 		simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3190  1.17     chris 	}
   3191  1.11     chris }
   3192   1.1      matt 
   3193   1.1      matt /*
   3194   1.1      matt  * Modify pte bits for all ptes corresponding to the given physical address.
   3195   1.1      matt  * We use `maskbits' rather than `clearbits' because we're always passing
   3196   1.1      matt  * constants and the latter would require an extra inversion at run-time.
   3197   1.1      matt  */
   3198   1.1      matt 
   3199  1.22     chris static void
   3200  1.49   thorpej pmap_clearbit(pg, maskbits)
   3201  1.49   thorpej 	struct vm_page *pg;
   3202  1.22     chris 	unsigned int maskbits;
   3203   1.1      matt {
   3204   1.1      matt 	struct pv_entry *pv;
   3205  1.59   thorpej 	pt_entry_t *ptes;
   3206   1.1      matt 	vaddr_t va;
   3207  1.49   thorpej 	int tlbentry;
   3208   1.1      matt 
   3209   1.1      matt 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3210  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3211  1.21     chris 
   3212  1.21     chris 	tlbentry = 0;
   3213  1.21     chris 
   3214  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   3215  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3216  1.17     chris 
   3217   1.1      matt 	/*
   3218   1.1      matt 	 * Clear saved attributes (modify, reference)
   3219   1.1      matt 	 */
   3220  1.49   thorpej 	pg->mdpage.pvh_attrs &= ~maskbits;
   3221   1.1      matt 
   3222  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   3223  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   3224  1.17     chris 		PMAP_HEAD_TO_MAP_UNLOCK();
   3225   1.1      matt 		return;
   3226   1.1      matt 	}
   3227   1.1      matt 
   3228   1.1      matt 	/*
   3229   1.1      matt 	 * Loop over all current mappings setting/clearing as appropos
   3230   1.1      matt 	 */
   3231  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3232   1.1      matt 		va = pv->pv_va;
   3233   1.1      matt 		pv->pv_flags &= ~maskbits;
   3234  1.59   thorpej 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3235  1.59   thorpej 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3236  1.29  rearnsha 		if (maskbits & (PT_Wr|PT_M)) {
   3237  1.29  rearnsha 			if ((pv->pv_flags & PT_NC)) {
   3238  1.29  rearnsha 				/*
   3239  1.29  rearnsha 				 * Entry is not cacheable: reenable
   3240  1.29  rearnsha 				 * the cache, nothing to flush
   3241  1.29  rearnsha 				 *
   3242  1.29  rearnsha 				 * Don't turn caching on again if this
   3243  1.29  rearnsha 				 * is a modified emulation.  This
   3244  1.29  rearnsha 				 * would be inconsitent with the
   3245  1.29  rearnsha 				 * settings created by
   3246  1.29  rearnsha 				 * pmap_vac_me_harder().
   3247  1.29  rearnsha 				 *
   3248  1.29  rearnsha 				 * There's no need to call
   3249  1.29  rearnsha 				 * pmap_vac_me_harder() here: all
   3250  1.29  rearnsha 				 * pages are loosing their write
   3251  1.29  rearnsha 				 * permission.
   3252  1.29  rearnsha 				 *
   3253  1.29  rearnsha 				 */
   3254  1.29  rearnsha 				if (maskbits & PT_Wr) {
   3255  1.59   thorpej 					ptes[arm_btop(va)] |= pte_cache_mode;
   3256  1.29  rearnsha 					pv->pv_flags &= ~PT_NC;
   3257  1.29  rearnsha 				}
   3258  1.59   thorpej 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3259  1.29  rearnsha 				/*
   3260  1.29  rearnsha 				 * Entry is cacheable: check if pmap is
   3261  1.29  rearnsha 				 * current if it is flush it,
   3262  1.29  rearnsha 				 * otherwise it won't be in the cache
   3263  1.29  rearnsha 				 */
   3264  1.36   thorpej 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3265  1.59   thorpej 			}
   3266  1.29  rearnsha 
   3267  1.29  rearnsha 			/* make the pte read only */
   3268  1.59   thorpej 			ptes[arm_btop(va)] &= ~PT_AP(AP_W);
   3269  1.29  rearnsha 		}
   3270  1.29  rearnsha 
   3271  1.29  rearnsha 		if (maskbits & PT_H)
   3272  1.59   thorpej 			ptes[arm_btop(va)] =
   3273  1.59   thorpej 			    (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
   3274  1.21     chris 
   3275  1.59   thorpej 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3276  1.21     chris 			/*
   3277  1.29  rearnsha 			 * if we had cacheable pte's we'd clean the
   3278  1.29  rearnsha 			 * pte out to memory here
   3279  1.29  rearnsha 			 *
   3280  1.21     chris 			 * flush tlb entry as it's in the current pmap
   3281  1.21     chris 			 */
   3282  1.21     chris 			cpu_tlb_flushID_SE(pv->pv_va);
   3283  1.59   thorpej 		}
   3284  1.59   thorpej 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3285  1.29  rearnsha 	}
   3286  1.32   thorpej 	cpu_cpwait();
   3287  1.21     chris 
   3288  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3289  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   3290   1.1      matt }
   3291   1.1      matt 
   3292  1.50   thorpej /*
   3293  1.50   thorpej  * pmap_clear_modify:
   3294  1.50   thorpej  *
   3295  1.50   thorpej  *	Clear the "modified" attribute for a page.
   3296  1.50   thorpej  */
   3297   1.1      matt boolean_t
   3298   1.1      matt pmap_clear_modify(pg)
   3299   1.1      matt 	struct vm_page *pg;
   3300   1.1      matt {
   3301   1.1      matt 	boolean_t rv;
   3302   1.1      matt 
   3303  1.50   thorpej 	if (pg->mdpage.pvh_attrs & PT_M) {
   3304  1.50   thorpej 		rv = TRUE;
   3305  1.50   thorpej 		pmap_clearbit(pg, PT_M);
   3306  1.50   thorpej 	} else
   3307  1.50   thorpej 		rv = FALSE;
   3308  1.50   thorpej 
   3309  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3310  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3311  1.50   thorpej 
   3312  1.50   thorpej 	return (rv);
   3313   1.1      matt }
   3314   1.1      matt 
   3315  1.50   thorpej /*
   3316  1.50   thorpej  * pmap_clear_reference:
   3317  1.50   thorpej  *
   3318  1.50   thorpej  *	Clear the "referenced" attribute for a page.
   3319  1.50   thorpej  */
   3320   1.1      matt boolean_t
   3321   1.1      matt pmap_clear_reference(pg)
   3322   1.1      matt 	struct vm_page *pg;
   3323   1.1      matt {
   3324   1.1      matt 	boolean_t rv;
   3325   1.1      matt 
   3326  1.50   thorpej 	if (pg->mdpage.pvh_attrs & PT_H) {
   3327  1.50   thorpej 		rv = TRUE;
   3328  1.50   thorpej 		pmap_clearbit(pg, PT_H);
   3329  1.50   thorpej 	} else
   3330  1.50   thorpej 		rv = FALSE;
   3331  1.50   thorpej 
   3332  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3333  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3334  1.50   thorpej 
   3335  1.50   thorpej 	return (rv);
   3336   1.1      matt }
   3337   1.1      matt 
   3338   1.1      matt 
   3339   1.1      matt void
   3340  1.49   thorpej pmap_copy_on_write(pg)
   3341  1.49   thorpej 	struct vm_page *pg;
   3342  1.39   thorpej {
   3343  1.49   thorpej 	PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", VM_PAGE_TO_PHYS(pg)));
   3344  1.49   thorpej 	pmap_clearbit(pg, PT_Wr);
   3345  1.39   thorpej }
   3346  1.39   thorpej 
   3347  1.50   thorpej /*
   3348  1.50   thorpej  * pmap_is_modified:
   3349  1.50   thorpej  *
   3350  1.50   thorpej  *	Test if a page has the "modified" attribute.
   3351  1.50   thorpej  */
   3352  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3353  1.39   thorpej 
   3354  1.50   thorpej /*
   3355  1.50   thorpej  * pmap_is_referenced:
   3356  1.50   thorpej  *
   3357  1.50   thorpej  *	Test if a page has the "referenced" attribute.
   3358  1.50   thorpej  */
   3359  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3360   1.1      matt 
   3361   1.1      matt int
   3362   1.1      matt pmap_modified_emulation(pmap, va)
   3363  1.15     chris 	struct pmap *pmap;
   3364   1.1      matt 	vaddr_t va;
   3365   1.1      matt {
   3366  1.61   thorpej 	pt_entry_t *ptes;
   3367  1.61   thorpej 	struct vm_page *pg;
   3368   1.2      matt 	paddr_t pa;
   3369   1.1      matt 	u_int flags;
   3370  1.61   thorpej 	int rv = 0;
   3371   1.1      matt 
   3372   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3373   1.1      matt 
   3374  1.61   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3375  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3376  1.61   thorpej 
   3377  1.61   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3378  1.61   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3379  1.61   thorpej 		goto out;
   3380   1.1      matt 	}
   3381   1.1      matt 
   3382  1.61   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3383   1.1      matt 
   3384  1.61   thorpej 	/* Check for a invalid pte */
   3385  1.61   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3386  1.61   thorpej 		goto out;
   3387   1.1      matt 
   3388   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3389  1.61   thorpej 	if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
   3390  1.61   thorpej 		goto out;
   3391   1.1      matt 
   3392   1.1      matt 	/* Extract the physical address of the page */
   3393  1.61   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3394  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3395  1.61   thorpej 		goto out;
   3396   1.1      matt 
   3397  1.49   thorpej 	/* Get the current flags for this page. */
   3398  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3399  1.17     chris 
   3400  1.49   thorpej 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3401   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3402   1.1      matt 
   3403   1.1      matt 	/*
   3404   1.1      matt 	 * Do the flags say this page is writable ? If not then it is a
   3405   1.1      matt 	 * genuine write fault. If yes then the write fault is our fault
   3406   1.1      matt 	 * as we did not reflect the write access in the PTE. Now we know
   3407   1.1      matt 	 * a write has occurred we can correct this and also set the
   3408   1.1      matt 	 * modified bit
   3409   1.1      matt 	 */
   3410  1.17     chris 	if (~flags & PT_Wr) {
   3411  1.49   thorpej 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3412  1.61   thorpej 		goto out;
   3413  1.17     chris 	}
   3414   1.1      matt 
   3415  1.61   thorpej 	PDEBUG(0,
   3416  1.61   thorpej 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3417  1.61   thorpej 	    va, ptes[arm_btop(va)]));
   3418  1.49   thorpej 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3419  1.29  rearnsha 
   3420  1.29  rearnsha 	/*
   3421  1.29  rearnsha 	 * Re-enable write permissions for the page.  No need to call
   3422  1.29  rearnsha 	 * pmap_vac_me_harder(), since this is just a
   3423  1.29  rearnsha 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3424  1.29  rearnsha 	 * already set the cacheable bits based on the assumption that we
   3425  1.29  rearnsha 	 * can write to this page.
   3426  1.29  rearnsha 	 */
   3427  1.61   thorpej 	ptes[arm_btop(va)] =
   3428  1.61   thorpej 	    (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3429  1.61   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3430   1.1      matt 
   3431  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3432  1.61   thorpej 
   3433   1.1      matt 	cpu_tlb_flushID_SE(va);
   3434  1.32   thorpej 	cpu_cpwait();
   3435  1.61   thorpej 	rv = 1;
   3436  1.61   thorpej  out:
   3437  1.61   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3438  1.61   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3439  1.61   thorpej 	return (rv);
   3440   1.1      matt }
   3441   1.1      matt 
   3442   1.1      matt int
   3443   1.1      matt pmap_handled_emulation(pmap, va)
   3444  1.15     chris 	struct pmap *pmap;
   3445   1.1      matt 	vaddr_t va;
   3446   1.1      matt {
   3447  1.62   thorpej 	pt_entry_t *ptes;
   3448  1.62   thorpej 	struct vm_page *pg;
   3449   1.2      matt 	paddr_t pa;
   3450  1.62   thorpej 	int rv = 0;
   3451   1.1      matt 
   3452   1.1      matt 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3453   1.1      matt 
   3454  1.63   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3455  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3456  1.62   thorpej 
   3457  1.62   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3458  1.62   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3459  1.62   thorpej 		goto out;
   3460   1.1      matt 	}
   3461   1.1      matt 
   3462  1.62   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3463   1.1      matt 
   3464  1.62   thorpej 	/* Check for invalid pte */
   3465  1.62   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3466  1.62   thorpej 		goto out;
   3467   1.1      matt 
   3468   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3469  1.62   thorpej 	if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
   3470  1.62   thorpej 		goto out;
   3471   1.1      matt 
   3472   1.1      matt 	/* Extract the physical address of the page */
   3473  1.62   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3474  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3475  1.62   thorpej 		goto out;
   3476   1.1      matt 
   3477  1.63   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3478  1.63   thorpej 
   3479   1.1      matt 	/*
   3480   1.1      matt 	 * Ok we just enable the pte and mark the attibs as handled
   3481  1.63   thorpej 	 * XXX Should we traverse the PV list and enable all PTEs?
   3482   1.1      matt 	 */
   3483  1.62   thorpej 	PDEBUG(0,
   3484  1.62   thorpej 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3485  1.62   thorpej 	    va, ptes[arm_btop(va)]));
   3486  1.49   thorpej 	pg->mdpage.pvh_attrs |= PT_H;
   3487   1.1      matt 
   3488  1.62   thorpej 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
   3489  1.62   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3490  1.62   thorpej 
   3491  1.63   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3492  1.63   thorpej 
   3493   1.1      matt 	cpu_tlb_flushID_SE(va);
   3494  1.32   thorpej 	cpu_cpwait();
   3495  1.62   thorpej 	rv = 1;
   3496  1.62   thorpej  out:
   3497  1.62   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3498  1.63   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3499  1.62   thorpej 	return (rv);
   3500   1.1      matt }
   3501  1.17     chris 
   3502   1.1      matt /*
   3503   1.1      matt  * pmap_collect: free resources held by a pmap
   3504   1.1      matt  *
   3505   1.1      matt  * => optional function.
   3506   1.1      matt  * => called when a process is swapped out to free memory.
   3507   1.1      matt  */
   3508   1.1      matt 
   3509   1.1      matt void
   3510   1.1      matt pmap_collect(pmap)
   3511  1.15     chris 	struct pmap *pmap;
   3512   1.1      matt {
   3513   1.1      matt }
   3514   1.1      matt 
   3515   1.1      matt /*
   3516   1.1      matt  * Routine:	pmap_procwr
   3517   1.1      matt  *
   3518   1.1      matt  * Function:
   3519   1.1      matt  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3520   1.1      matt  *
   3521   1.1      matt  */
   3522   1.1      matt void
   3523   1.1      matt pmap_procwr(p, va, len)
   3524   1.1      matt 	struct proc	*p;
   3525   1.1      matt 	vaddr_t		va;
   3526   1.3      matt 	int		len;
   3527   1.1      matt {
   3528   1.1      matt 	/* We only need to do anything if it is the current process. */
   3529   1.1      matt 	if (p == curproc)
   3530  1.36   thorpej 		cpu_icache_sync_range(va, len);
   3531  1.17     chris }
   3532  1.17     chris /*
   3533  1.17     chris  * PTP functions
   3534  1.17     chris  */
   3535  1.17     chris 
   3536  1.17     chris /*
   3537  1.17     chris  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3538  1.17     chris  *
   3539  1.17     chris  * => pmap should NOT be pmap_kernel()
   3540  1.17     chris  * => pmap should be locked
   3541  1.17     chris  */
   3542  1.17     chris 
   3543  1.17     chris static struct vm_page *
   3544  1.57   thorpej pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3545  1.17     chris {
   3546  1.57   thorpej 	struct vm_page *ptp;
   3547  1.17     chris 
   3548  1.57   thorpej 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3549  1.17     chris 
   3550  1.57   thorpej 		/* valid... check hint (saves us a PA->PG lookup) */
   3551  1.17     chris #if 0
   3552  1.57   thorpej 		if (pmap->pm_ptphint &&
   3553  1.57   thorpej 		    ((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
   3554  1.57   thorpej 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3555  1.57   thorpej 			return (pmap->pm_ptphint);
   3556  1.17     chris #endif
   3557  1.57   thorpej 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3558  1.17     chris #ifdef DIAGNOSTIC
   3559  1.57   thorpej 		if (ptp == NULL)
   3560  1.57   thorpej 			panic("pmap_get_ptp: unmanaged user PTP");
   3561  1.17     chris #endif
   3562  1.57   thorpej //		pmap->pm_ptphint = ptp;
   3563  1.57   thorpej 		return(ptp);
   3564  1.57   thorpej 	}
   3565  1.17     chris 
   3566  1.57   thorpej 	/* allocate a new PTP (updates ptphint) */
   3567  1.57   thorpej 	return(pmap_alloc_ptp(pmap, va));
   3568  1.17     chris }
   3569  1.17     chris 
   3570  1.17     chris /*
   3571  1.17     chris  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3572  1.17     chris  *
   3573  1.17     chris  * => pmap should already be locked by caller
   3574  1.17     chris  * => we use the ptp's wire_count to count the number of active mappings
   3575  1.17     chris  *	in the PTP (we start it at one to prevent any chance this PTP
   3576  1.17     chris  *	will ever leak onto the active/inactive queues)
   3577  1.17     chris  */
   3578  1.17     chris 
   3579  1.17     chris /*__inline */ static struct vm_page *
   3580  1.57   thorpej pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3581  1.17     chris {
   3582  1.17     chris 	struct vm_page *ptp;
   3583  1.17     chris 
   3584  1.17     chris 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3585  1.17     chris 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3586  1.57   thorpej 	if (ptp == NULL)
   3587  1.17     chris 		return (NULL);
   3588  1.17     chris 
   3589  1.17     chris 	/* got one! */
   3590  1.17     chris 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3591  1.17     chris 	ptp->wire_count = 1;	/* no mappings yet */
   3592  1.17     chris 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3593  1.17     chris 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3594  1.17     chris //	pmap->pm_ptphint = ptp;
   3595  1.17     chris 	return (ptp);
   3596   1.1      matt }
   3597  1.48     chris 
   3598  1.48     chris vaddr_t
   3599  1.48     chris pmap_growkernel(maxkvaddr)
   3600  1.48     chris 	vaddr_t maxkvaddr;
   3601  1.48     chris {
   3602  1.48     chris 	struct pmap *kpm = pmap_kernel(), *pm;
   3603  1.48     chris 	int s;
   3604  1.48     chris 	paddr_t ptaddr;
   3605  1.48     chris 	struct vm_page *ptp;
   3606  1.48     chris 
   3607  1.48     chris 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3608  1.48     chris 		goto out;		/* we are OK */
   3609  1.48     chris 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3610  1.48     chris 		    pmap_curmaxkvaddr, maxkvaddr));
   3611  1.48     chris 
   3612  1.48     chris 	/*
   3613  1.48     chris 	 * whoops!   we need to add kernel PTPs
   3614  1.48     chris 	 */
   3615  1.48     chris 
   3616  1.48     chris 	s = splhigh();	/* to be safe */
   3617  1.48     chris 	simple_lock(&kpm->pm_obj.vmobjlock);
   3618  1.48     chris 	/* due to the way the arm pmap works we map 4MB at a time */
   3619  1.48     chris 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr ; pmap_curmaxkvaddr += 4 * NBPD) {
   3620  1.48     chris 
   3621  1.48     chris 		if (uvm.page_init_done == FALSE) {
   3622  1.48     chris 
   3623  1.48     chris 			/*
   3624  1.48     chris 			 * we're growing the kernel pmap early (from
   3625  1.48     chris 			 * uvm_pageboot_alloc()).  this case must be
   3626  1.48     chris 			 * handled a little differently.
   3627  1.48     chris 			 */
   3628  1.48     chris 
   3629  1.48     chris 			if (uvm_page_physget(&ptaddr) == FALSE)
   3630  1.48     chris 				panic("pmap_growkernel: out of memory");
   3631  1.48     chris 			pmap_zero_page(ptaddr);
   3632  1.48     chris 
   3633  1.48     chris 			/* map this page in */
   3634  1.48     chris 			pmap_map_in_l1(kpm, (pmap_curmaxkvaddr + 1), ptaddr, TRUE);
   3635  1.48     chris 
   3636  1.48     chris 			/* count PTP as resident */
   3637  1.48     chris 			kpm->pm_stats.resident_count++;
   3638  1.48     chris 			continue;
   3639  1.48     chris 		}
   3640  1.48     chris 
   3641  1.48     chris 		/*
   3642  1.48     chris 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3643  1.48     chris 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3644  1.48     chris 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3645  1.48     chris 		 */
   3646  1.48     chris 
   3647  1.57   thorpej 		if ((ptp = pmap_alloc_ptp(kpm, (pmap_curmaxkvaddr + 1))) == NULL) {
   3648  1.48     chris 			panic("pmap_growkernel: alloc ptp failed");
   3649  1.48     chris 		}
   3650  1.48     chris 
   3651  1.48     chris 		/* distribute new kernel PTP to all active pmaps */
   3652  1.48     chris 		simple_lock(&pmaps_lock);
   3653  1.48     chris 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3654  1.48     chris 		    pmap_map_in_l1(pm, (pmap_curmaxkvaddr + 1), VM_PAGE_TO_PHYS(ptp), TRUE);
   3655  1.48     chris 		}
   3656  1.48     chris 
   3657  1.48     chris 		simple_unlock(&pmaps_lock);
   3658  1.48     chris 	}
   3659  1.48     chris 
   3660  1.48     chris 	/*
   3661  1.48     chris 	 * flush out the cache, expensive but growkernel will happen so
   3662  1.48     chris 	 * rarely
   3663  1.48     chris 	 */
   3664  1.48     chris 	cpu_tlb_flushD();
   3665  1.48     chris 	cpu_cpwait();
   3666  1.48     chris 
   3667  1.48     chris 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3668  1.48     chris 	splx(s);
   3669  1.48     chris 
   3670  1.48     chris out:
   3671  1.48     chris 	return (pmap_curmaxkvaddr);
   3672  1.48     chris }
   3673  1.48     chris 
   3674  1.48     chris 
   3675   1.1      matt 
   3676  1.40   thorpej /************************ Bootstrapping routines ****************************/
   3677  1.40   thorpej 
   3678  1.40   thorpej /*
   3679  1.46   thorpej  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3680  1.46   thorpej  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3681  1.46   thorpej  * find them as necessary.
   3682  1.46   thorpej  *
   3683  1.46   thorpej  * Note that the data on this list is not valid after initarm() returns.
   3684  1.46   thorpej  */
   3685  1.46   thorpej SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3686  1.46   thorpej 
   3687  1.46   thorpej static vaddr_t
   3688  1.46   thorpej kernel_pt_lookup(paddr_t pa)
   3689  1.46   thorpej {
   3690  1.46   thorpej 	pv_addr_t *pv;
   3691  1.46   thorpej 
   3692  1.46   thorpej 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3693  1.46   thorpej 		if (pv->pv_pa == pa)
   3694  1.46   thorpej 			return (pv->pv_va);
   3695  1.46   thorpej 	}
   3696  1.46   thorpej 	return (0);
   3697  1.46   thorpej }
   3698  1.46   thorpej 
   3699  1.46   thorpej /*
   3700  1.40   thorpej  * pmap_map_section:
   3701  1.40   thorpej  *
   3702  1.40   thorpej  *	Create a single section mapping.
   3703  1.40   thorpej  */
   3704  1.40   thorpej void
   3705  1.40   thorpej pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3706  1.40   thorpej {
   3707  1.40   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3708  1.43   thorpej 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3709  1.43   thorpej 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3710  1.40   thorpej 
   3711  1.40   thorpej 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3712  1.40   thorpej 
   3713  1.43   thorpej 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3714  1.41   thorpej }
   3715  1.41   thorpej 
   3716  1.41   thorpej /*
   3717  1.41   thorpej  * pmap_map_entry:
   3718  1.41   thorpej  *
   3719  1.41   thorpej  *	Create a single page mapping.
   3720  1.41   thorpej  */
   3721  1.41   thorpej void
   3722  1.47   thorpej pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3723  1.41   thorpej {
   3724  1.47   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3725  1.41   thorpej 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3726  1.41   thorpej 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3727  1.47   thorpej 	pt_entry_t *pte;
   3728  1.41   thorpej 
   3729  1.41   thorpej 	KASSERT(((va | pa) & PGOFSET) == 0);
   3730  1.41   thorpej 
   3731  1.47   thorpej 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3732  1.47   thorpej 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3733  1.47   thorpej 
   3734  1.47   thorpej 	pte = (pt_entry_t *)
   3735  1.47   thorpej 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3736  1.47   thorpej 	if (pte == NULL)
   3737  1.47   thorpej 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3738  1.47   thorpej 
   3739  1.41   thorpej 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3740  1.42   thorpej }
   3741  1.42   thorpej 
   3742  1.42   thorpej /*
   3743  1.42   thorpej  * pmap_link_l2pt:
   3744  1.42   thorpej  *
   3745  1.42   thorpej  *	Link the L2 page table specified by "pa" into the L1
   3746  1.42   thorpej  *	page table at the slot for "va".
   3747  1.42   thorpej  */
   3748  1.42   thorpej void
   3749  1.46   thorpej pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3750  1.42   thorpej {
   3751  1.42   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3752  1.42   thorpej 	u_int slot = va >> PDSHIFT;
   3753  1.42   thorpej 
   3754  1.46   thorpej 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3755  1.46   thorpej 
   3756  1.46   thorpej 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3757  1.46   thorpej 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3758  1.46   thorpej 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3759  1.46   thorpej 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3760  1.42   thorpej 
   3761  1.46   thorpej 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3762  1.43   thorpej }
   3763  1.43   thorpej 
   3764  1.43   thorpej /*
   3765  1.43   thorpej  * pmap_map_chunk:
   3766  1.43   thorpej  *
   3767  1.43   thorpej  *	Map a chunk of memory using the most efficient mappings
   3768  1.43   thorpej  *	possible (section, large page, small page) into the
   3769  1.43   thorpej  *	provided L1 and L2 tables at the specified virtual address.
   3770  1.43   thorpej  */
   3771  1.43   thorpej vsize_t
   3772  1.46   thorpej pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3773  1.46   thorpej     int prot, int cache)
   3774  1.43   thorpej {
   3775  1.43   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3776  1.43   thorpej 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3777  1.43   thorpej 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3778  1.46   thorpej 	pt_entry_t *pte;
   3779  1.43   thorpej 	vsize_t resid;
   3780  1.43   thorpej 	int i;
   3781  1.43   thorpej 
   3782  1.43   thorpej 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3783  1.43   thorpej 
   3784  1.44   thorpej 	if (l1pt == 0)
   3785  1.44   thorpej 		panic("pmap_map_chunk: no L1 table provided");
   3786  1.44   thorpej 
   3787  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3788  1.43   thorpej 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3789  1.43   thorpej 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3790  1.43   thorpej #endif
   3791  1.43   thorpej 
   3792  1.43   thorpej 	size = resid;
   3793  1.43   thorpej 
   3794  1.43   thorpej 	while (resid > 0) {
   3795  1.43   thorpej 		/* See if we can use a section mapping. */
   3796  1.44   thorpej 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3797  1.43   thorpej 		    resid >= L1_SEC_SIZE) {
   3798  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3799  1.43   thorpej 			printf("S");
   3800  1.43   thorpej #endif
   3801  1.43   thorpej 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3802  1.43   thorpej 			va += L1_SEC_SIZE;
   3803  1.43   thorpej 			pa += L1_SEC_SIZE;
   3804  1.43   thorpej 			resid -= L1_SEC_SIZE;
   3805  1.43   thorpej 			continue;
   3806  1.43   thorpej 		}
   3807  1.45   thorpej 
   3808  1.45   thorpej 		/*
   3809  1.45   thorpej 		 * Ok, we're going to use an L2 table.  Make sure
   3810  1.45   thorpej 		 * one is actually in the corresponding L1 slot
   3811  1.45   thorpej 		 * for the current VA.
   3812  1.45   thorpej 		 */
   3813  1.45   thorpej 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3814  1.46   thorpej 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3815  1.46   thorpej 
   3816  1.46   thorpej 		pte = (pt_entry_t *)
   3817  1.46   thorpej 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3818  1.46   thorpej 		if (pte == NULL)
   3819  1.46   thorpej 			panic("pmap_map_chunk: can't find L2 table for VA"
   3820  1.46   thorpej 			    "0x%08lx", va);
   3821  1.43   thorpej 
   3822  1.43   thorpej 		/* See if we can use a L2 large page mapping. */
   3823  1.43   thorpej 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3824  1.43   thorpej 		    resid >= L2_LPAGE_SIZE) {
   3825  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3826  1.43   thorpej 			printf("L");
   3827  1.43   thorpej #endif
   3828  1.43   thorpej 			for (i = 0; i < 16; i++) {
   3829  1.43   thorpej 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3830  1.43   thorpej 				    L2_LPTE(pa, ap, fl);
   3831  1.43   thorpej 			}
   3832  1.43   thorpej 			va += L2_LPAGE_SIZE;
   3833  1.43   thorpej 			pa += L2_LPAGE_SIZE;
   3834  1.43   thorpej 			resid -= L2_LPAGE_SIZE;
   3835  1.43   thorpej 			continue;
   3836  1.43   thorpej 		}
   3837  1.43   thorpej 
   3838  1.43   thorpej 		/* Use a small page mapping. */
   3839  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3840  1.43   thorpej 		printf("P");
   3841  1.43   thorpej #endif
   3842  1.43   thorpej 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3843  1.43   thorpej 		va += NBPG;
   3844  1.43   thorpej 		pa += NBPG;
   3845  1.43   thorpej 		resid -= NBPG;
   3846  1.43   thorpej 	}
   3847  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3848  1.43   thorpej 	printf("\n");
   3849  1.43   thorpej #endif
   3850  1.43   thorpej 	return (size);
   3851  1.40   thorpej }
   3852