pmap.c revision 1.75 1 1.75 reinoud /* $NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $ */
2 1.12 chris
3 1.12 chris /*
4 1.49 thorpej * Copyright (c) 2002 Wasabi Systems, Inc.
5 1.12 chris * Copyright (c) 2001 Richard Earnshaw
6 1.12 chris * Copyright (c) 2001 Christopher Gilbert
7 1.12 chris * All rights reserved.
8 1.12 chris *
9 1.12 chris * 1. Redistributions of source code must retain the above copyright
10 1.12 chris * notice, this list of conditions and the following disclaimer.
11 1.12 chris * 2. Redistributions in binary form must reproduce the above copyright
12 1.12 chris * notice, this list of conditions and the following disclaimer in the
13 1.12 chris * documentation and/or other materials provided with the distribution.
14 1.12 chris * 3. The name of the company nor the name of the author may be used to
15 1.12 chris * endorse or promote products derived from this software without specific
16 1.12 chris * prior written permission.
17 1.12 chris *
18 1.12 chris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 1.12 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 1.12 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.12 chris * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 1.12 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 1.12 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 1.12 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.12 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.12 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.12 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.12 chris * SUCH DAMAGE.
29 1.12 chris */
30 1.1 matt
31 1.1 matt /*-
32 1.1 matt * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 1.1 matt * All rights reserved.
34 1.1 matt *
35 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
36 1.1 matt * by Charles M. Hannum.
37 1.1 matt *
38 1.1 matt * Redistribution and use in source and binary forms, with or without
39 1.1 matt * modification, are permitted provided that the following conditions
40 1.1 matt * are met:
41 1.1 matt * 1. Redistributions of source code must retain the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer.
43 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 matt * notice, this list of conditions and the following disclaimer in the
45 1.1 matt * documentation and/or other materials provided with the distribution.
46 1.1 matt * 3. All advertising materials mentioning features or use of this software
47 1.1 matt * must display the following acknowledgement:
48 1.1 matt * This product includes software developed by the NetBSD
49 1.1 matt * Foundation, Inc. and its contributors.
50 1.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
51 1.1 matt * contributors may be used to endorse or promote products derived
52 1.1 matt * from this software without specific prior written permission.
53 1.1 matt *
54 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
65 1.1 matt */
66 1.1 matt
67 1.1 matt /*
68 1.1 matt * Copyright (c) 1994-1998 Mark Brinicombe.
69 1.1 matt * Copyright (c) 1994 Brini.
70 1.1 matt * All rights reserved.
71 1.1 matt *
72 1.1 matt * This code is derived from software written for Brini by Mark Brinicombe
73 1.1 matt *
74 1.1 matt * Redistribution and use in source and binary forms, with or without
75 1.1 matt * modification, are permitted provided that the following conditions
76 1.1 matt * are met:
77 1.1 matt * 1. Redistributions of source code must retain the above copyright
78 1.1 matt * notice, this list of conditions and the following disclaimer.
79 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
80 1.1 matt * notice, this list of conditions and the following disclaimer in the
81 1.1 matt * documentation and/or other materials provided with the distribution.
82 1.1 matt * 3. All advertising materials mentioning features or use of this software
83 1.1 matt * must display the following acknowledgement:
84 1.1 matt * This product includes software developed by Mark Brinicombe.
85 1.1 matt * 4. The name of the author may not be used to endorse or promote products
86 1.1 matt * derived from this software without specific prior written permission.
87 1.1 matt *
88 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 1.1 matt *
98 1.1 matt * RiscBSD kernel project
99 1.1 matt *
100 1.1 matt * pmap.c
101 1.1 matt *
102 1.1 matt * Machine dependant vm stuff
103 1.1 matt *
104 1.1 matt * Created : 20/09/94
105 1.1 matt */
106 1.1 matt
107 1.1 matt /*
108 1.1 matt * Performance improvements, UVM changes, overhauls and part-rewrites
109 1.1 matt * were contributed by Neil A. Carson <neil (at) causality.com>.
110 1.1 matt */
111 1.1 matt
112 1.1 matt /*
113 1.1 matt * The dram block info is currently referenced from the bootconfig.
114 1.1 matt * This should be placed in a separate structure.
115 1.1 matt */
116 1.1 matt
117 1.1 matt /*
118 1.1 matt * Special compilation symbols
119 1.1 matt * PMAP_DEBUG - Build in pmap_debug_level code
120 1.1 matt */
121 1.1 matt
122 1.1 matt /* Include header files */
123 1.1 matt
124 1.1 matt #include "opt_pmap_debug.h"
125 1.1 matt #include "opt_ddb.h"
126 1.1 matt
127 1.1 matt #include <sys/types.h>
128 1.1 matt #include <sys/param.h>
129 1.1 matt #include <sys/kernel.h>
130 1.1 matt #include <sys/systm.h>
131 1.1 matt #include <sys/proc.h>
132 1.1 matt #include <sys/malloc.h>
133 1.1 matt #include <sys/user.h>
134 1.10 chris #include <sys/pool.h>
135 1.16 chris #include <sys/cdefs.h>
136 1.16 chris
137 1.1 matt #include <uvm/uvm.h>
138 1.1 matt
139 1.1 matt #include <machine/bootconfig.h>
140 1.1 matt #include <machine/bus.h>
141 1.1 matt #include <machine/pmap.h>
142 1.1 matt #include <machine/pcb.h>
143 1.1 matt #include <machine/param.h>
144 1.32 thorpej #include <arm/arm32/katelib.h>
145 1.16 chris
146 1.75 reinoud __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $");
147 1.1 matt #ifdef PMAP_DEBUG
148 1.1 matt #define PDEBUG(_lev_,_stat_) \
149 1.1 matt if (pmap_debug_level >= (_lev_)) \
150 1.1 matt ((_stat_))
151 1.1 matt int pmap_debug_level = -2;
152 1.48 chris void pmap_dump_pvlist(vaddr_t phys, char *m);
153 1.17 chris
154 1.17 chris /*
155 1.17 chris * for switching to potentially finer grained debugging
156 1.17 chris */
157 1.17 chris #define PDB_FOLLOW 0x0001
158 1.17 chris #define PDB_INIT 0x0002
159 1.17 chris #define PDB_ENTER 0x0004
160 1.17 chris #define PDB_REMOVE 0x0008
161 1.17 chris #define PDB_CREATE 0x0010
162 1.17 chris #define PDB_PTPAGE 0x0020
163 1.48 chris #define PDB_GROWKERN 0x0040
164 1.17 chris #define PDB_BITS 0x0080
165 1.17 chris #define PDB_COLLECT 0x0100
166 1.17 chris #define PDB_PROTECT 0x0200
167 1.48 chris #define PDB_MAP_L1 0x0400
168 1.17 chris #define PDB_BOOTSTRAP 0x1000
169 1.17 chris #define PDB_PARANOIA 0x2000
170 1.17 chris #define PDB_WIRING 0x4000
171 1.17 chris #define PDB_PVDUMP 0x8000
172 1.17 chris
173 1.17 chris int debugmap = 0;
174 1.17 chris int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 1.17 chris #define NPDEBUG(_lev_,_stat_) \
176 1.17 chris if (pmapdebug & (_lev_)) \
177 1.17 chris ((_stat_))
178 1.17 chris
179 1.1 matt #else /* PMAP_DEBUG */
180 1.1 matt #define PDEBUG(_lev_,_stat_) /* Nothing */
181 1.48 chris #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 1.1 matt #endif /* PMAP_DEBUG */
183 1.1 matt
184 1.1 matt struct pmap kernel_pmap_store;
185 1.1 matt
186 1.10 chris /*
187 1.48 chris * linked list of all non-kernel pmaps
188 1.48 chris */
189 1.48 chris
190 1.69 thorpej static LIST_HEAD(, pmap) pmaps;
191 1.48 chris
192 1.48 chris /*
193 1.10 chris * pool that pmap structures are allocated from
194 1.10 chris */
195 1.10 chris
196 1.10 chris struct pool pmap_pmap_pool;
197 1.10 chris
198 1.54 thorpej static pt_entry_t *csrc_pte, *cdst_pte;
199 1.54 thorpej static vaddr_t csrcp, cdstp;
200 1.54 thorpej
201 1.1 matt char *memhook;
202 1.1 matt extern caddr_t msgbufaddr;
203 1.1 matt
204 1.1 matt boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 1.17 chris /*
206 1.17 chris * locking data structures
207 1.17 chris */
208 1.1 matt
209 1.17 chris static struct lock pmap_main_lock;
210 1.17 chris static struct simplelock pvalloc_lock;
211 1.48 chris static struct simplelock pmaps_lock;
212 1.17 chris #ifdef LOCKDEBUG
213 1.17 chris #define PMAP_MAP_TO_HEAD_LOCK() \
214 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 1.17 chris #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217 1.17 chris
218 1.17 chris #define PMAP_HEAD_TO_MAP_LOCK() \
219 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 1.17 chris #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 1.17 chris (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 1.17 chris #else
223 1.17 chris #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 1.17 chris #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 1.17 chris #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 1.17 chris #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 1.17 chris #endif /* LOCKDEBUG */
228 1.17 chris
229 1.17 chris /*
230 1.17 chris * pv_page management structures: locked by pvalloc_lock
231 1.17 chris */
232 1.1 matt
233 1.17 chris TAILQ_HEAD(pv_pagelist, pv_page);
234 1.17 chris static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 1.17 chris static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 1.17 chris static int pv_nfpvents; /* # of free pv entries */
237 1.17 chris static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 1.17 chris static vaddr_t pv_cachedva; /* cached VA for later use */
239 1.17 chris
240 1.17 chris #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 1.17 chris #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 1.17 chris /* high water mark */
243 1.17 chris
244 1.17 chris /*
245 1.17 chris * local prototypes
246 1.17 chris */
247 1.17 chris
248 1.17 chris static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 1.17 chris static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 1.17 chris #define ALLOCPV_NEED 0 /* need PV now */
251 1.17 chris #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 1.17 chris #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 1.17 chris static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 1.49 thorpej static void pmap_enter_pv __P((struct vm_page *,
255 1.17 chris struct pv_entry *, struct pmap *,
256 1.17 chris vaddr_t, struct vm_page *, int));
257 1.17 chris static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 1.17 chris static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 1.17 chris static void pmap_free_pv_doit __P((struct pv_entry *));
260 1.17 chris static void pmap_free_pvpage __P((void));
261 1.17 chris static boolean_t pmap_is_curpmap __P((struct pmap *));
262 1.49 thorpej static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 1.17 chris vaddr_t));
264 1.17 chris #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 1.17 chris #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266 1.1 matt
267 1.49 thorpej static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 1.33 chris u_int, u_int));
269 1.33 chris
270 1.69 thorpej /*
271 1.69 thorpej * Structure that describes and L1 table.
272 1.69 thorpej */
273 1.69 thorpej struct l1pt {
274 1.69 thorpej SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 1.69 thorpej struct pglist pt_plist; /* Allocated page list */
276 1.69 thorpej vaddr_t pt_va; /* Allocated virtual address */
277 1.69 thorpej int pt_flags; /* Flags */
278 1.69 thorpej };
279 1.69 thorpej #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 1.69 thorpej #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 1.69 thorpej #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282 1.69 thorpej
283 1.33 chris static void pmap_free_l1pt __P((struct l1pt *));
284 1.33 chris static int pmap_allocpagedir __P((struct pmap *));
285 1.33 chris static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 1.49 thorpej static void pmap_remove_all __P((struct vm_page *));
287 1.33 chris
288 1.57 thorpej static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
289 1.57 thorpej static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
290 1.49 thorpej __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
291 1.17 chris
292 1.2 matt extern paddr_t physical_start;
293 1.2 matt extern paddr_t physical_freestart;
294 1.2 matt extern paddr_t physical_end;
295 1.2 matt extern paddr_t physical_freeend;
296 1.1 matt extern unsigned int free_pages;
297 1.1 matt extern int max_processes;
298 1.1 matt
299 1.54 thorpej vaddr_t virtual_avail;
300 1.1 matt vaddr_t virtual_end;
301 1.48 chris vaddr_t pmap_curmaxkvaddr;
302 1.1 matt
303 1.1 matt vaddr_t avail_start;
304 1.1 matt vaddr_t avail_end;
305 1.1 matt
306 1.1 matt extern pv_addr_t systempage;
307 1.1 matt
308 1.1 matt /* Variables used by the L1 page table queue code */
309 1.1 matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
310 1.73 thorpej static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
311 1.73 thorpej static int l1pt_static_queue_count; /* items in the static l1 queue */
312 1.73 thorpej static int l1pt_static_create_count; /* static l1 items created */
313 1.73 thorpej static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
314 1.73 thorpej static int l1pt_queue_count; /* items in the l1 queue */
315 1.73 thorpej static int l1pt_create_count; /* stat - L1's create count */
316 1.73 thorpej static int l1pt_reuse_count; /* stat - L1's reused count */
317 1.1 matt
318 1.1 matt /* Local function prototypes (not used outside this file) */
319 1.15 chris void pmap_pinit __P((struct pmap *));
320 1.15 chris void pmap_freepagedir __P((struct pmap *));
321 1.1 matt
322 1.1 matt /* Other function prototypes */
323 1.1 matt extern void bzero_page __P((vaddr_t));
324 1.1 matt extern void bcopy_page __P((vaddr_t, vaddr_t));
325 1.1 matt
326 1.1 matt struct l1pt *pmap_alloc_l1pt __P((void));
327 1.15 chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
328 1.17 chris vaddr_t l2pa, boolean_t));
329 1.1 matt
330 1.11 chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
331 1.17 chris static void pmap_unmap_ptes __P((struct pmap *));
332 1.11 chris
333 1.49 thorpej __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
334 1.25 rearnsha pt_entry_t *, boolean_t));
335 1.49 thorpej static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
336 1.25 rearnsha pt_entry_t *, boolean_t));
337 1.49 thorpej static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
338 1.25 rearnsha pt_entry_t *, boolean_t));
339 1.11 chris
340 1.17 chris /*
341 1.27 rearnsha * Cache enable bits in PTE to use on pages that are cacheable.
342 1.27 rearnsha * On most machines this is cacheable/bufferable, but on some, eg arm10, we
343 1.27 rearnsha * can chose between write-through and write-back cacheing.
344 1.27 rearnsha */
345 1.27 rearnsha pt_entry_t pte_cache_mode = (PT_C | PT_B);
346 1.27 rearnsha
347 1.27 rearnsha /*
348 1.17 chris * real definition of pv_entry.
349 1.17 chris */
350 1.17 chris
351 1.17 chris struct pv_entry {
352 1.17 chris struct pv_entry *pv_next; /* next pv_entry */
353 1.17 chris struct pmap *pv_pmap; /* pmap where mapping lies */
354 1.17 chris vaddr_t pv_va; /* virtual address for mapping */
355 1.17 chris int pv_flags; /* flags */
356 1.17 chris struct vm_page *pv_ptp; /* vm_page for the ptp */
357 1.17 chris };
358 1.17 chris
359 1.17 chris /*
360 1.17 chris * pv_entrys are dynamically allocated in chunks from a single page.
361 1.17 chris * we keep track of how many pv_entrys are in use for each page and
362 1.17 chris * we can free pv_entry pages if needed. there is one lock for the
363 1.17 chris * entire allocation system.
364 1.17 chris */
365 1.17 chris
366 1.17 chris struct pv_page_info {
367 1.17 chris TAILQ_ENTRY(pv_page) pvpi_list;
368 1.17 chris struct pv_entry *pvpi_pvfree;
369 1.17 chris int pvpi_nfree;
370 1.17 chris };
371 1.17 chris
372 1.17 chris /*
373 1.17 chris * number of pv_entry's in a pv_page
374 1.17 chris * (note: won't work on systems where NPBG isn't a constant)
375 1.17 chris */
376 1.17 chris
377 1.17 chris #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
378 1.17 chris sizeof(struct pv_entry))
379 1.17 chris
380 1.17 chris /*
381 1.17 chris * a pv_page: where pv_entrys are allocated from
382 1.17 chris */
383 1.17 chris
384 1.17 chris struct pv_page {
385 1.17 chris struct pv_page_info pvinfo;
386 1.17 chris struct pv_entry pvents[PVE_PER_PVPAGE];
387 1.17 chris };
388 1.17 chris
389 1.1 matt #ifdef MYCROFT_HACK
390 1.1 matt int mycroft_hack = 0;
391 1.1 matt #endif
392 1.1 matt
393 1.1 matt /* Function to set the debug level of the pmap code */
394 1.1 matt
395 1.1 matt #ifdef PMAP_DEBUG
396 1.1 matt void
397 1.73 thorpej pmap_debug(int level)
398 1.1 matt {
399 1.1 matt pmap_debug_level = level;
400 1.1 matt printf("pmap_debug: level=%d\n", pmap_debug_level);
401 1.1 matt }
402 1.1 matt #endif /* PMAP_DEBUG */
403 1.1 matt
404 1.22 chris __inline static boolean_t
405 1.17 chris pmap_is_curpmap(struct pmap *pmap)
406 1.17 chris {
407 1.58 thorpej
408 1.58 thorpej if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
409 1.58 thorpej pmap == pmap_kernel())
410 1.58 thorpej return (TRUE);
411 1.58 thorpej
412 1.58 thorpej return (FALSE);
413 1.17 chris }
414 1.58 thorpej
415 1.1 matt #include "isadma.h"
416 1.1 matt
417 1.1 matt #if NISADMA > 0
418 1.1 matt /*
419 1.1 matt * Used to protect memory for ISA DMA bounce buffers. If, when loading
420 1.1 matt * pages into the system, memory intersects with any of these ranges,
421 1.1 matt * the intersecting memory will be loaded into a lower-priority free list.
422 1.1 matt */
423 1.1 matt bus_dma_segment_t *pmap_isa_dma_ranges;
424 1.1 matt int pmap_isa_dma_nranges;
425 1.1 matt
426 1.1 matt /*
427 1.1 matt * Check if a memory range intersects with an ISA DMA range, and
428 1.1 matt * return the page-rounded intersection if it does. The intersection
429 1.1 matt * will be placed on a lower-priority free list.
430 1.1 matt */
431 1.73 thorpej static boolean_t
432 1.73 thorpej pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
433 1.73 thorpej psize_t *sizep)
434 1.1 matt {
435 1.1 matt bus_dma_segment_t *ds;
436 1.1 matt int i;
437 1.1 matt
438 1.1 matt if (pmap_isa_dma_ranges == NULL)
439 1.1 matt return (FALSE);
440 1.1 matt
441 1.1 matt for (i = 0, ds = pmap_isa_dma_ranges;
442 1.1 matt i < pmap_isa_dma_nranges; i++, ds++) {
443 1.1 matt if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
444 1.1 matt /*
445 1.1 matt * Beginning of region intersects with this range.
446 1.1 matt */
447 1.1 matt *pap = trunc_page(pa);
448 1.1 matt *sizep = round_page(min(pa + size,
449 1.1 matt ds->ds_addr + ds->ds_len) - pa);
450 1.1 matt return (TRUE);
451 1.1 matt }
452 1.1 matt if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
453 1.1 matt /*
454 1.1 matt * End of region intersects with this range.
455 1.1 matt */
456 1.1 matt *pap = trunc_page(ds->ds_addr);
457 1.1 matt *sizep = round_page(min((pa + size) - ds->ds_addr,
458 1.1 matt ds->ds_len));
459 1.1 matt return (TRUE);
460 1.1 matt }
461 1.1 matt }
462 1.1 matt
463 1.1 matt /*
464 1.1 matt * No intersection found.
465 1.1 matt */
466 1.1 matt return (FALSE);
467 1.1 matt }
468 1.1 matt #endif /* NISADMA > 0 */
469 1.1 matt
470 1.1 matt /*
471 1.17 chris * p v _ e n t r y f u n c t i o n s
472 1.17 chris */
473 1.17 chris
474 1.17 chris /*
475 1.17 chris * pv_entry allocation functions:
476 1.17 chris * the main pv_entry allocation functions are:
477 1.17 chris * pmap_alloc_pv: allocate a pv_entry structure
478 1.17 chris * pmap_free_pv: free one pv_entry
479 1.17 chris * pmap_free_pvs: free a list of pv_entrys
480 1.17 chris *
481 1.17 chris * the rest are helper functions
482 1.1 matt */
483 1.1 matt
484 1.1 matt /*
485 1.17 chris * pmap_alloc_pv: inline function to allocate a pv_entry structure
486 1.17 chris * => we lock pvalloc_lock
487 1.17 chris * => if we fail, we call out to pmap_alloc_pvpage
488 1.17 chris * => 3 modes:
489 1.17 chris * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
490 1.17 chris * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
491 1.17 chris * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
492 1.17 chris * one now
493 1.17 chris *
494 1.17 chris * "try" is for optional functions like pmap_copy().
495 1.1 matt */
496 1.17 chris
497 1.17 chris __inline static struct pv_entry *
498 1.73 thorpej pmap_alloc_pv(struct pmap *pmap, int mode)
499 1.1 matt {
500 1.17 chris struct pv_page *pvpage;
501 1.17 chris struct pv_entry *pv;
502 1.17 chris
503 1.17 chris simple_lock(&pvalloc_lock);
504 1.17 chris
505 1.51 chris pvpage = TAILQ_FIRST(&pv_freepages);
506 1.51 chris
507 1.51 chris if (pvpage != NULL) {
508 1.17 chris pvpage->pvinfo.pvpi_nfree--;
509 1.17 chris if (pvpage->pvinfo.pvpi_nfree == 0) {
510 1.17 chris /* nothing left in this one? */
511 1.17 chris TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
512 1.17 chris }
513 1.17 chris pv = pvpage->pvinfo.pvpi_pvfree;
514 1.51 chris KASSERT(pv);
515 1.17 chris pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
516 1.17 chris pv_nfpvents--; /* took one from pool */
517 1.17 chris } else {
518 1.17 chris pv = NULL; /* need more of them */
519 1.17 chris }
520 1.17 chris
521 1.17 chris /*
522 1.17 chris * if below low water mark or we didn't get a pv_entry we try and
523 1.17 chris * create more pv_entrys ...
524 1.17 chris */
525 1.17 chris
526 1.17 chris if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
527 1.17 chris if (pv == NULL)
528 1.17 chris pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
529 1.17 chris mode : ALLOCPV_NEED);
530 1.17 chris else
531 1.17 chris (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
532 1.17 chris }
533 1.17 chris
534 1.17 chris simple_unlock(&pvalloc_lock);
535 1.17 chris return(pv);
536 1.17 chris }
537 1.17 chris
538 1.17 chris /*
539 1.17 chris * pmap_alloc_pvpage: maybe allocate a new pvpage
540 1.17 chris *
541 1.17 chris * if need_entry is false: try and allocate a new pv_page
542 1.17 chris * if need_entry is true: try and allocate a new pv_page and return a
543 1.17 chris * new pv_entry from it. if we are unable to allocate a pv_page
544 1.17 chris * we make a last ditch effort to steal a pv_page from some other
545 1.17 chris * mapping. if that fails, we panic...
546 1.17 chris *
547 1.17 chris * => we assume that the caller holds pvalloc_lock
548 1.17 chris */
549 1.17 chris
550 1.17 chris static struct pv_entry *
551 1.73 thorpej pmap_alloc_pvpage(struct pmap *pmap, int mode)
552 1.17 chris {
553 1.17 chris struct vm_page *pg;
554 1.17 chris struct pv_page *pvpage;
555 1.1 matt struct pv_entry *pv;
556 1.17 chris int s;
557 1.17 chris
558 1.17 chris /*
559 1.17 chris * if we need_entry and we've got unused pv_pages, allocate from there
560 1.17 chris */
561 1.17 chris
562 1.51 chris pvpage = TAILQ_FIRST(&pv_unusedpgs);
563 1.51 chris if (mode != ALLOCPV_NONEED && pvpage != NULL) {
564 1.17 chris
565 1.17 chris /* move it to pv_freepages list */
566 1.17 chris TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
567 1.17 chris TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
568 1.17 chris
569 1.17 chris /* allocate a pv_entry */
570 1.17 chris pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
571 1.17 chris pv = pvpage->pvinfo.pvpi_pvfree;
572 1.51 chris KASSERT(pv);
573 1.17 chris pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
574 1.17 chris
575 1.17 chris pv_nfpvents--; /* took one from pool */
576 1.17 chris return(pv);
577 1.17 chris }
578 1.1 matt
579 1.1 matt /*
580 1.17 chris * see if we've got a cached unmapped VA that we can map a page in.
581 1.17 chris * if not, try to allocate one.
582 1.1 matt */
583 1.1 matt
584 1.23 chs
585 1.17 chris if (pv_cachedva == 0) {
586 1.23 chs s = splvm();
587 1.23 chs pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
588 1.17 chris PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
589 1.23 chs splx(s);
590 1.17 chris if (pv_cachedva == 0) {
591 1.17 chris return (NULL);
592 1.1 matt }
593 1.1 matt }
594 1.17 chris
595 1.23 chs pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
596 1.23 chs UVM_PGA_USERESERVE);
597 1.17 chris
598 1.17 chris if (pg == NULL)
599 1.17 chris return (NULL);
600 1.51 chris pg->flags &= ~PG_BUSY; /* never busy */
601 1.17 chris
602 1.17 chris /*
603 1.17 chris * add a mapping for our new pv_page and free its entrys (save one!)
604 1.17 chris *
605 1.17 chris * NOTE: If we are allocating a PV page for the kernel pmap, the
606 1.17 chris * pmap is already locked! (...but entering the mapping is safe...)
607 1.17 chris */
608 1.17 chris
609 1.51 chris pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
610 1.51 chris VM_PROT_READ|VM_PROT_WRITE);
611 1.19 chris pmap_update(pmap_kernel());
612 1.17 chris pvpage = (struct pv_page *) pv_cachedva;
613 1.17 chris pv_cachedva = 0;
614 1.17 chris return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
615 1.1 matt }
616 1.1 matt
617 1.1 matt /*
618 1.17 chris * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
619 1.17 chris *
620 1.17 chris * => caller must hold pvalloc_lock
621 1.17 chris * => if need_entry is true, we allocate and return one pv_entry
622 1.1 matt */
623 1.1 matt
624 1.17 chris static struct pv_entry *
625 1.73 thorpej pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
626 1.1 matt {
627 1.17 chris int tofree, lcv;
628 1.17 chris
629 1.17 chris /* do we need to return one? */
630 1.17 chris tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
631 1.1 matt
632 1.17 chris pvp->pvinfo.pvpi_pvfree = NULL;
633 1.17 chris pvp->pvinfo.pvpi_nfree = tofree;
634 1.17 chris for (lcv = 0 ; lcv < tofree ; lcv++) {
635 1.17 chris pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
636 1.17 chris pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
637 1.1 matt }
638 1.17 chris if (need_entry)
639 1.17 chris TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
640 1.17 chris else
641 1.17 chris TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
642 1.17 chris pv_nfpvents += tofree;
643 1.17 chris return((need_entry) ? &pvp->pvents[lcv] : NULL);
644 1.1 matt }
645 1.1 matt
646 1.17 chris /*
647 1.17 chris * pmap_free_pv_doit: actually free a pv_entry
648 1.17 chris *
649 1.17 chris * => do not call this directly! instead use either
650 1.17 chris * 1. pmap_free_pv ==> free a single pv_entry
651 1.17 chris * 2. pmap_free_pvs => free a list of pv_entrys
652 1.17 chris * => we must be holding pvalloc_lock
653 1.17 chris */
654 1.17 chris
655 1.17 chris __inline static void
656 1.73 thorpej pmap_free_pv_doit(struct pv_entry *pv)
657 1.1 matt {
658 1.17 chris struct pv_page *pvp;
659 1.1 matt
660 1.17 chris pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
661 1.17 chris pv_nfpvents++;
662 1.17 chris pvp->pvinfo.pvpi_nfree++;
663 1.1 matt
664 1.17 chris /* nfree == 1 => fully allocated page just became partly allocated */
665 1.17 chris if (pvp->pvinfo.pvpi_nfree == 1) {
666 1.17 chris TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
667 1.1 matt }
668 1.1 matt
669 1.17 chris /* free it */
670 1.17 chris pv->pv_next = pvp->pvinfo.pvpi_pvfree;
671 1.17 chris pvp->pvinfo.pvpi_pvfree = pv;
672 1.1 matt
673 1.17 chris /*
674 1.17 chris * are all pv_page's pv_entry's free? move it to unused queue.
675 1.17 chris */
676 1.1 matt
677 1.17 chris if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
678 1.17 chris TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
679 1.17 chris TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
680 1.1 matt }
681 1.1 matt }
682 1.1 matt
683 1.1 matt /*
684 1.17 chris * pmap_free_pv: free a single pv_entry
685 1.17 chris *
686 1.17 chris * => we gain the pvalloc_lock
687 1.1 matt */
688 1.1 matt
689 1.17 chris __inline static void
690 1.73 thorpej pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
691 1.1 matt {
692 1.17 chris simple_lock(&pvalloc_lock);
693 1.17 chris pmap_free_pv_doit(pv);
694 1.17 chris
695 1.17 chris /*
696 1.17 chris * Can't free the PV page if the PV entries were associated with
697 1.17 chris * the kernel pmap; the pmap is already locked.
698 1.17 chris */
699 1.51 chris if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
700 1.17 chris pmap != pmap_kernel())
701 1.17 chris pmap_free_pvpage();
702 1.17 chris
703 1.17 chris simple_unlock(&pvalloc_lock);
704 1.17 chris }
705 1.1 matt
706 1.17 chris /*
707 1.17 chris * pmap_free_pvs: free a list of pv_entrys
708 1.17 chris *
709 1.17 chris * => we gain the pvalloc_lock
710 1.17 chris */
711 1.1 matt
712 1.17 chris __inline static void
713 1.73 thorpej pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
714 1.17 chris {
715 1.17 chris struct pv_entry *nextpv;
716 1.1 matt
717 1.17 chris simple_lock(&pvalloc_lock);
718 1.1 matt
719 1.17 chris for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
720 1.17 chris nextpv = pvs->pv_next;
721 1.17 chris pmap_free_pv_doit(pvs);
722 1.1 matt }
723 1.1 matt
724 1.17 chris /*
725 1.17 chris * Can't free the PV page if the PV entries were associated with
726 1.17 chris * the kernel pmap; the pmap is already locked.
727 1.17 chris */
728 1.51 chris if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
729 1.17 chris pmap != pmap_kernel())
730 1.17 chris pmap_free_pvpage();
731 1.1 matt
732 1.17 chris simple_unlock(&pvalloc_lock);
733 1.1 matt }
734 1.1 matt
735 1.1 matt
736 1.1 matt /*
737 1.17 chris * pmap_free_pvpage: try and free an unused pv_page structure
738 1.17 chris *
739 1.17 chris * => assume caller is holding the pvalloc_lock and that
740 1.17 chris * there is a page on the pv_unusedpgs list
741 1.17 chris * => if we can't get a lock on the kmem_map we try again later
742 1.1 matt */
743 1.1 matt
744 1.17 chris static void
745 1.73 thorpej pmap_free_pvpage(void)
746 1.1 matt {
747 1.17 chris int s;
748 1.17 chris struct vm_map *map;
749 1.17 chris struct vm_map_entry *dead_entries;
750 1.17 chris struct pv_page *pvp;
751 1.17 chris
752 1.17 chris s = splvm(); /* protect kmem_map */
753 1.1 matt
754 1.51 chris pvp = TAILQ_FIRST(&pv_unusedpgs);
755 1.1 matt
756 1.1 matt /*
757 1.17 chris * note: watch out for pv_initpage which is allocated out of
758 1.17 chris * kernel_map rather than kmem_map.
759 1.1 matt */
760 1.17 chris if (pvp == pv_initpage)
761 1.17 chris map = kernel_map;
762 1.17 chris else
763 1.17 chris map = kmem_map;
764 1.17 chris if (vm_map_lock_try(map)) {
765 1.17 chris
766 1.17 chris /* remove pvp from pv_unusedpgs */
767 1.17 chris TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
768 1.17 chris
769 1.17 chris /* unmap the page */
770 1.17 chris dead_entries = NULL;
771 1.17 chris uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
772 1.17 chris &dead_entries);
773 1.17 chris vm_map_unlock(map);
774 1.17 chris
775 1.17 chris if (dead_entries != NULL)
776 1.17 chris uvm_unmap_detach(dead_entries, 0);
777 1.1 matt
778 1.17 chris pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
779 1.1 matt }
780 1.17 chris if (pvp == pv_initpage)
781 1.17 chris /* no more initpage, we've freed it */
782 1.17 chris pv_initpage = NULL;
783 1.1 matt
784 1.1 matt splx(s);
785 1.1 matt }
786 1.1 matt
787 1.1 matt /*
788 1.17 chris * main pv_entry manipulation functions:
789 1.49 thorpej * pmap_enter_pv: enter a mapping onto a vm_page list
790 1.49 thorpej * pmap_remove_pv: remove a mappiing from a vm_page list
791 1.17 chris *
792 1.17 chris * NOTE: pmap_enter_pv expects to lock the pvh itself
793 1.17 chris * pmap_remove_pv expects te caller to lock the pvh before calling
794 1.17 chris */
795 1.17 chris
796 1.17 chris /*
797 1.49 thorpej * pmap_enter_pv: enter a mapping onto a vm_page lst
798 1.17 chris *
799 1.17 chris * => caller should hold the proper lock on pmap_main_lock
800 1.17 chris * => caller should have pmap locked
801 1.49 thorpej * => we will gain the lock on the vm_page and allocate the new pv_entry
802 1.17 chris * => caller should adjust ptp's wire_count before calling
803 1.17 chris * => caller should not adjust pmap's wire_count
804 1.17 chris */
805 1.17 chris
806 1.17 chris __inline static void
807 1.73 thorpej pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
808 1.73 thorpej vaddr_t va, struct vm_page *ptp, int flags)
809 1.17 chris {
810 1.17 chris pve->pv_pmap = pmap;
811 1.17 chris pve->pv_va = va;
812 1.17 chris pve->pv_ptp = ptp; /* NULL for kernel pmap */
813 1.17 chris pve->pv_flags = flags;
814 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
815 1.49 thorpej pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
816 1.49 thorpej pg->mdpage.pvh_list = pve; /* ... locked list */
817 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
818 1.17 chris if (pve->pv_flags & PT_W)
819 1.17 chris ++pmap->pm_stats.wired_count;
820 1.17 chris }
821 1.17 chris
822 1.17 chris /*
823 1.17 chris * pmap_remove_pv: try to remove a mapping from a pv_list
824 1.17 chris *
825 1.17 chris * => caller should hold proper lock on pmap_main_lock
826 1.17 chris * => pmap should be locked
827 1.49 thorpej * => caller should hold lock on vm_page [so that attrs can be adjusted]
828 1.17 chris * => caller should adjust ptp's wire_count and free PTP if needed
829 1.17 chris * => caller should NOT adjust pmap's wire_count
830 1.17 chris * => we return the removed pve
831 1.17 chris */
832 1.17 chris
833 1.17 chris __inline static struct pv_entry *
834 1.73 thorpej pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
835 1.17 chris {
836 1.17 chris struct pv_entry *pve, **prevptr;
837 1.17 chris
838 1.49 thorpej prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
839 1.17 chris pve = *prevptr;
840 1.17 chris while (pve) {
841 1.17 chris if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
842 1.17 chris *prevptr = pve->pv_next; /* remove it! */
843 1.17 chris if (pve->pv_flags & PT_W)
844 1.17 chris --pmap->pm_stats.wired_count;
845 1.17 chris break;
846 1.17 chris }
847 1.17 chris prevptr = &pve->pv_next; /* previous pointer */
848 1.17 chris pve = pve->pv_next; /* advance */
849 1.17 chris }
850 1.17 chris return(pve); /* return removed pve */
851 1.17 chris }
852 1.17 chris
853 1.17 chris /*
854 1.17 chris *
855 1.17 chris * pmap_modify_pv: Update pv flags
856 1.17 chris *
857 1.49 thorpej * => caller should hold lock on vm_page [so that attrs can be adjusted]
858 1.17 chris * => caller should NOT adjust pmap's wire_count
859 1.29 rearnsha * => caller must call pmap_vac_me_harder() if writable status of a page
860 1.29 rearnsha * may have changed.
861 1.17 chris * => we return the old flags
862 1.17 chris *
863 1.1 matt * Modify a physical-virtual mapping in the pv table
864 1.1 matt */
865 1.1 matt
866 1.73 thorpej static /* __inline */ u_int
867 1.73 thorpej pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
868 1.73 thorpej u_int bic_mask, u_int eor_mask)
869 1.1 matt {
870 1.1 matt struct pv_entry *npv;
871 1.1 matt u_int flags, oflags;
872 1.1 matt
873 1.1 matt /*
874 1.1 matt * There is at least one VA mapping this page.
875 1.1 matt */
876 1.1 matt
877 1.49 thorpej for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
878 1.1 matt if (pmap == npv->pv_pmap && va == npv->pv_va) {
879 1.1 matt oflags = npv->pv_flags;
880 1.1 matt npv->pv_flags = flags =
881 1.1 matt ((oflags & ~bic_mask) ^ eor_mask);
882 1.1 matt if ((flags ^ oflags) & PT_W) {
883 1.1 matt if (flags & PT_W)
884 1.1 matt ++pmap->pm_stats.wired_count;
885 1.1 matt else
886 1.1 matt --pmap->pm_stats.wired_count;
887 1.1 matt }
888 1.1 matt return (oflags);
889 1.1 matt }
890 1.1 matt }
891 1.1 matt return (0);
892 1.1 matt }
893 1.1 matt
894 1.1 matt /*
895 1.1 matt * Map the specified level 2 pagetable into the level 1 page table for
896 1.1 matt * the given pmap to cover a chunk of virtual address space starting from the
897 1.1 matt * address specified.
898 1.1 matt */
899 1.73 thorpej static __inline void
900 1.73 thorpej pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
901 1.1 matt {
902 1.1 matt vaddr_t ptva;
903 1.1 matt
904 1.1 matt /* Calculate the index into the L1 page table. */
905 1.1 matt ptva = (va >> PDSHIFT) & ~3;
906 1.1 matt
907 1.1 matt /* Map page table into the L1. */
908 1.1 matt pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
909 1.1 matt pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
910 1.1 matt pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
911 1.1 matt pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
912 1.1 matt
913 1.1 matt /* Map the page table into the page table area. */
914 1.73 thorpej if (selfref)
915 1.73 thorpej *((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
916 1.73 thorpej L2_PTE_NC_NB(l2pa, AP_KRW);
917 1.1 matt }
918 1.1 matt
919 1.1 matt #if 0
920 1.73 thorpej static __inline void
921 1.73 thorpej pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
922 1.1 matt {
923 1.1 matt vaddr_t ptva;
924 1.1 matt
925 1.1 matt /* Calculate the index into the L1 page table. */
926 1.1 matt ptva = (va >> PDSHIFT) & ~3;
927 1.1 matt
928 1.1 matt /* Unmap page table from the L1. */
929 1.1 matt pmap->pm_pdir[ptva + 0] = 0;
930 1.1 matt pmap->pm_pdir[ptva + 1] = 0;
931 1.1 matt pmap->pm_pdir[ptva + 2] = 0;
932 1.1 matt pmap->pm_pdir[ptva + 3] = 0;
933 1.1 matt
934 1.1 matt /* Unmap the page table from the page table area. */
935 1.1 matt *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
936 1.1 matt }
937 1.1 matt #endif
938 1.1 matt
939 1.1 matt /*
940 1.1 matt * Used to map a range of physical addresses into kernel
941 1.1 matt * virtual address space.
942 1.1 matt *
943 1.1 matt * For now, VM is already on, we only need to map the
944 1.1 matt * specified memory.
945 1.1 matt */
946 1.1 matt vaddr_t
947 1.73 thorpej pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
948 1.1 matt {
949 1.1 matt while (spa < epa) {
950 1.20 chris pmap_kenter_pa(va, spa, prot);
951 1.1 matt va += NBPG;
952 1.1 matt spa += NBPG;
953 1.1 matt }
954 1.19 chris pmap_update(pmap_kernel());
955 1.1 matt return(va);
956 1.1 matt }
957 1.1 matt
958 1.1 matt
959 1.1 matt /*
960 1.3 matt * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
961 1.1 matt *
962 1.1 matt * bootstrap the pmap system. This is called from initarm and allows
963 1.1 matt * the pmap system to initailise any structures it requires.
964 1.1 matt *
965 1.1 matt * Currently this sets up the kernel_pmap that is statically allocated
966 1.1 matt * and also allocated virtual addresses for certain page hooks.
967 1.1 matt * Currently the only one page hook is allocated that is used
968 1.1 matt * to zero physical pages of memory.
969 1.1 matt * It also initialises the start and end address of the kernel data space.
970 1.1 matt */
971 1.2 matt extern paddr_t physical_freestart;
972 1.2 matt extern paddr_t physical_freeend;
973 1.1 matt
974 1.17 chris char *boot_head;
975 1.1 matt
976 1.1 matt void
977 1.73 thorpej pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
978 1.1 matt {
979 1.54 thorpej pt_entry_t *pte;
980 1.1 matt int loop;
981 1.2 matt paddr_t start, end;
982 1.1 matt #if NISADMA > 0
983 1.2 matt paddr_t istart;
984 1.2 matt psize_t isize;
985 1.1 matt #endif
986 1.1 matt
987 1.15 chris pmap_kernel()->pm_pdir = kernel_l1pt;
988 1.15 chris pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
989 1.15 chris pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
990 1.15 chris simple_lock_init(&pmap_kernel()->pm_lock);
991 1.16 chris pmap_kernel()->pm_obj.pgops = NULL;
992 1.16 chris TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
993 1.16 chris pmap_kernel()->pm_obj.uo_npages = 0;
994 1.16 chris pmap_kernel()->pm_obj.uo_refs = 1;
995 1.16 chris
996 1.1 matt /*
997 1.1 matt * Initialize PAGE_SIZE-dependent variables.
998 1.1 matt */
999 1.1 matt uvm_setpagesize();
1000 1.1 matt
1001 1.1 matt loop = 0;
1002 1.1 matt while (loop < bootconfig.dramblocks) {
1003 1.2 matt start = (paddr_t)bootconfig.dram[loop].address;
1004 1.1 matt end = start + (bootconfig.dram[loop].pages * NBPG);
1005 1.1 matt if (start < physical_freestart)
1006 1.1 matt start = physical_freestart;
1007 1.1 matt if (end > physical_freeend)
1008 1.1 matt end = physical_freeend;
1009 1.1 matt #if 0
1010 1.1 matt printf("%d: %lx -> %lx\n", loop, start, end - 1);
1011 1.1 matt #endif
1012 1.1 matt #if NISADMA > 0
1013 1.1 matt if (pmap_isa_dma_range_intersect(start, end - start,
1014 1.1 matt &istart, &isize)) {
1015 1.1 matt /*
1016 1.1 matt * Place the pages that intersect with the
1017 1.1 matt * ISA DMA range onto the ISA DMA free list.
1018 1.1 matt */
1019 1.1 matt #if 0
1020 1.1 matt printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1021 1.1 matt istart + isize - 1);
1022 1.1 matt #endif
1023 1.1 matt uvm_page_physload(atop(istart),
1024 1.1 matt atop(istart + isize), atop(istart),
1025 1.1 matt atop(istart + isize), VM_FREELIST_ISADMA);
1026 1.73 thorpej
1027 1.1 matt /*
1028 1.1 matt * Load the pieces that come before
1029 1.1 matt * the intersection into the default
1030 1.1 matt * free list.
1031 1.1 matt */
1032 1.1 matt if (start < istart) {
1033 1.1 matt #if 0
1034 1.1 matt printf(" BEFORE 0x%lx -> 0x%lx\n",
1035 1.1 matt start, istart - 1);
1036 1.1 matt #endif
1037 1.1 matt uvm_page_physload(atop(start),
1038 1.1 matt atop(istart), atop(start),
1039 1.1 matt atop(istart), VM_FREELIST_DEFAULT);
1040 1.1 matt }
1041 1.1 matt
1042 1.1 matt /*
1043 1.1 matt * Load the pieces that come after
1044 1.1 matt * the intersection into the default
1045 1.1 matt * free list.
1046 1.1 matt */
1047 1.1 matt if ((istart + isize) < end) {
1048 1.1 matt #if 0
1049 1.1 matt printf(" AFTER 0x%lx -> 0x%lx\n",
1050 1.1 matt (istart + isize), end - 1);
1051 1.1 matt #endif
1052 1.1 matt uvm_page_physload(atop(istart + isize),
1053 1.1 matt atop(end), atop(istart + isize),
1054 1.1 matt atop(end), VM_FREELIST_DEFAULT);
1055 1.1 matt }
1056 1.1 matt } else {
1057 1.1 matt uvm_page_physload(atop(start), atop(end),
1058 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 1.1 matt }
1060 1.1 matt #else /* NISADMA > 0 */
1061 1.1 matt uvm_page_physload(atop(start), atop(end),
1062 1.1 matt atop(start), atop(end), VM_FREELIST_DEFAULT);
1063 1.1 matt #endif /* NISADMA > 0 */
1064 1.1 matt ++loop;
1065 1.1 matt }
1066 1.1 matt
1067 1.54 thorpej virtual_avail = KERNEL_VM_BASE;
1068 1.74 thorpej virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1069 1.1 matt
1070 1.1 matt /*
1071 1.54 thorpej * now we allocate the "special" VAs which are used for tmp mappings
1072 1.54 thorpej * by the pmap (and other modules). we allocate the VAs by advancing
1073 1.54 thorpej * virtual_avail (note that there are no pages mapped at these VAs).
1074 1.54 thorpej * we find the PTE that maps the allocated VA via the linear PTE
1075 1.54 thorpej * mapping.
1076 1.1 matt */
1077 1.1 matt
1078 1.54 thorpej pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1079 1.54 thorpej
1080 1.54 thorpej csrcp = virtual_avail; csrc_pte = pte;
1081 1.54 thorpej virtual_avail += PAGE_SIZE; pte++;
1082 1.54 thorpej
1083 1.54 thorpej cdstp = virtual_avail; cdst_pte = pte;
1084 1.54 thorpej virtual_avail += PAGE_SIZE; pte++;
1085 1.54 thorpej
1086 1.54 thorpej memhook = (char *) virtual_avail; /* don't need pte */
1087 1.54 thorpej virtual_avail += PAGE_SIZE; pte++;
1088 1.54 thorpej
1089 1.54 thorpej msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1090 1.54 thorpej virtual_avail += round_page(MSGBUFSIZE);
1091 1.54 thorpej pte += atop(round_page(MSGBUFSIZE));
1092 1.1 matt
1093 1.17 chris /*
1094 1.17 chris * init the static-global locks and global lists.
1095 1.17 chris */
1096 1.17 chris spinlockinit(&pmap_main_lock, "pmaplk", 0);
1097 1.17 chris simple_lock_init(&pvalloc_lock);
1098 1.48 chris simple_lock_init(&pmaps_lock);
1099 1.48 chris LIST_INIT(&pmaps);
1100 1.17 chris TAILQ_INIT(&pv_freepages);
1101 1.17 chris TAILQ_INIT(&pv_unusedpgs);
1102 1.1 matt
1103 1.10 chris /*
1104 1.10 chris * initialize the pmap pool.
1105 1.10 chris */
1106 1.10 chris
1107 1.10 chris pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1108 1.52 thorpej &pool_allocator_nointr);
1109 1.10 chris
1110 1.36 thorpej cpu_dcache_wbinv_all();
1111 1.1 matt }
1112 1.1 matt
1113 1.1 matt /*
1114 1.1 matt * void pmap_init(void)
1115 1.1 matt *
1116 1.1 matt * Initialize the pmap module.
1117 1.1 matt * Called by vm_init() in vm/vm_init.c in order to initialise
1118 1.1 matt * any structures that the pmap system needs to map virtual memory.
1119 1.1 matt */
1120 1.1 matt
1121 1.1 matt extern int physmem;
1122 1.1 matt
1123 1.1 matt void
1124 1.73 thorpej pmap_init(void)
1125 1.1 matt {
1126 1.1 matt
1127 1.1 matt /*
1128 1.1 matt * Set the available memory vars - These do not map to real memory
1129 1.1 matt * addresses and cannot as the physical memory is fragmented.
1130 1.1 matt * They are used by ps for %mem calculations.
1131 1.1 matt * One could argue whether this should be the entire memory or just
1132 1.1 matt * the memory that is useable in a user process.
1133 1.1 matt */
1134 1.1 matt avail_start = 0;
1135 1.1 matt avail_end = physmem * NBPG;
1136 1.1 matt
1137 1.17 chris /*
1138 1.17 chris * now we need to free enough pv_entry structures to allow us to get
1139 1.17 chris * the kmem_map/kmem_object allocated and inited (done after this
1140 1.17 chris * function is finished). to do this we allocate one bootstrap page out
1141 1.17 chris * of kernel_map and use it to provide an initial pool of pv_entry
1142 1.17 chris * structures. we never free this page.
1143 1.17 chris */
1144 1.17 chris
1145 1.17 chris pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1146 1.17 chris if (pv_initpage == NULL)
1147 1.17 chris panic("pmap_init: pv_initpage");
1148 1.17 chris pv_cachedva = 0; /* a VA we have allocated but not used yet */
1149 1.17 chris pv_nfpvents = 0;
1150 1.17 chris (void) pmap_add_pvpage(pv_initpage, FALSE);
1151 1.17 chris
1152 1.1 matt pmap_initialized = TRUE;
1153 1.1 matt
1154 1.1 matt /* Initialise our L1 page table queues and counters */
1155 1.1 matt SIMPLEQ_INIT(&l1pt_static_queue);
1156 1.1 matt l1pt_static_queue_count = 0;
1157 1.1 matt l1pt_static_create_count = 0;
1158 1.1 matt SIMPLEQ_INIT(&l1pt_queue);
1159 1.1 matt l1pt_queue_count = 0;
1160 1.1 matt l1pt_create_count = 0;
1161 1.1 matt l1pt_reuse_count = 0;
1162 1.1 matt }
1163 1.1 matt
1164 1.1 matt /*
1165 1.1 matt * pmap_postinit()
1166 1.1 matt *
1167 1.1 matt * This routine is called after the vm and kmem subsystems have been
1168 1.1 matt * initialised. This allows the pmap code to perform any initialisation
1169 1.1 matt * that can only be done one the memory allocation is in place.
1170 1.1 matt */
1171 1.1 matt
1172 1.1 matt void
1173 1.73 thorpej pmap_postinit(void)
1174 1.1 matt {
1175 1.1 matt int loop;
1176 1.1 matt struct l1pt *pt;
1177 1.1 matt
1178 1.1 matt #ifdef PMAP_STATIC_L1S
1179 1.1 matt for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1180 1.1 matt #else /* PMAP_STATIC_L1S */
1181 1.1 matt for (loop = 0; loop < max_processes; ++loop) {
1182 1.1 matt #endif /* PMAP_STATIC_L1S */
1183 1.1 matt /* Allocate a L1 page table */
1184 1.1 matt pt = pmap_alloc_l1pt();
1185 1.1 matt if (!pt)
1186 1.1 matt panic("Cannot allocate static L1 page tables\n");
1187 1.1 matt
1188 1.1 matt /* Clean it */
1189 1.1 matt bzero((void *)pt->pt_va, PD_SIZE);
1190 1.1 matt pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1191 1.1 matt /* Add the page table to the queue */
1192 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1193 1.1 matt ++l1pt_static_queue_count;
1194 1.1 matt ++l1pt_static_create_count;
1195 1.1 matt }
1196 1.1 matt }
1197 1.1 matt
1198 1.1 matt
1199 1.1 matt /*
1200 1.1 matt * Create and return a physical map.
1201 1.1 matt *
1202 1.1 matt * If the size specified for the map is zero, the map is an actual physical
1203 1.1 matt * map, and may be referenced by the hardware.
1204 1.1 matt *
1205 1.1 matt * If the size specified is non-zero, the map will be used in software only,
1206 1.1 matt * and is bounded by that size.
1207 1.1 matt */
1208 1.1 matt
1209 1.1 matt pmap_t
1210 1.73 thorpej pmap_create(void)
1211 1.1 matt {
1212 1.15 chris struct pmap *pmap;
1213 1.1 matt
1214 1.10 chris /*
1215 1.10 chris * Fetch pmap entry from the pool
1216 1.10 chris */
1217 1.10 chris
1218 1.10 chris pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1219 1.17 chris /* XXX is this really needed! */
1220 1.17 chris memset(pmap, 0, sizeof(*pmap));
1221 1.1 matt
1222 1.16 chris simple_lock_init(&pmap->pm_obj.vmobjlock);
1223 1.16 chris pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1224 1.16 chris TAILQ_INIT(&pmap->pm_obj.memq);
1225 1.16 chris pmap->pm_obj.uo_npages = 0;
1226 1.16 chris pmap->pm_obj.uo_refs = 1;
1227 1.16 chris pmap->pm_stats.wired_count = 0;
1228 1.16 chris pmap->pm_stats.resident_count = 1;
1229 1.70 thorpej pmap->pm_ptphint = NULL;
1230 1.16 chris
1231 1.1 matt /* Now init the machine part of the pmap */
1232 1.1 matt pmap_pinit(pmap);
1233 1.1 matt return(pmap);
1234 1.1 matt }
1235 1.1 matt
1236 1.1 matt /*
1237 1.1 matt * pmap_alloc_l1pt()
1238 1.1 matt *
1239 1.1 matt * This routine allocates physical and virtual memory for a L1 page table
1240 1.1 matt * and wires it.
1241 1.1 matt * A l1pt structure is returned to describe the allocated page table.
1242 1.1 matt *
1243 1.1 matt * This routine is allowed to fail if the required memory cannot be allocated.
1244 1.1 matt * In this case NULL is returned.
1245 1.1 matt */
1246 1.1 matt
1247 1.1 matt struct l1pt *
1248 1.1 matt pmap_alloc_l1pt(void)
1249 1.1 matt {
1250 1.2 matt paddr_t pa;
1251 1.2 matt vaddr_t va;
1252 1.1 matt struct l1pt *pt;
1253 1.1 matt int error;
1254 1.9 chs struct vm_page *m;
1255 1.11 chris pt_entry_t *ptes;
1256 1.1 matt
1257 1.1 matt /* Allocate virtual address space for the L1 page table */
1258 1.1 matt va = uvm_km_valloc(kernel_map, PD_SIZE);
1259 1.1 matt if (va == 0) {
1260 1.1 matt #ifdef DIAGNOSTIC
1261 1.26 rearnsha PDEBUG(0,
1262 1.26 rearnsha printf("pmap: Cannot allocate pageable memory for L1\n"));
1263 1.1 matt #endif /* DIAGNOSTIC */
1264 1.1 matt return(NULL);
1265 1.1 matt }
1266 1.1 matt
1267 1.1 matt /* Allocate memory for the l1pt structure */
1268 1.1 matt pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1269 1.1 matt
1270 1.1 matt /*
1271 1.1 matt * Allocate pages from the VM system.
1272 1.1 matt */
1273 1.1 matt TAILQ_INIT(&pt->pt_plist);
1274 1.1 matt error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
1275 1.1 matt PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1276 1.1 matt if (error) {
1277 1.1 matt #ifdef DIAGNOSTIC
1278 1.26 rearnsha PDEBUG(0,
1279 1.26 rearnsha printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1280 1.26 rearnsha error));
1281 1.1 matt #endif /* DIAGNOSTIC */
1282 1.1 matt /* Release the resources we already have claimed */
1283 1.1 matt free(pt, M_VMPMAP);
1284 1.1 matt uvm_km_free(kernel_map, va, PD_SIZE);
1285 1.1 matt return(NULL);
1286 1.1 matt }
1287 1.1 matt
1288 1.1 matt /* Map our physical pages into our virtual space */
1289 1.1 matt pt->pt_va = va;
1290 1.51 chris m = TAILQ_FIRST(&pt->pt_plist);
1291 1.11 chris ptes = pmap_map_ptes(pmap_kernel());
1292 1.1 matt while (m && va < (pt->pt_va + PD_SIZE)) {
1293 1.1 matt pa = VM_PAGE_TO_PHYS(m);
1294 1.1 matt
1295 1.20 chris pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
1296 1.1 matt
1297 1.1 matt /* Revoke cacheability and bufferability */
1298 1.1 matt /* XXX should be done better than this */
1299 1.56 thorpej ptes[arm_btop(va)] &= ~(PT_C | PT_B);
1300 1.1 matt
1301 1.1 matt va += NBPG;
1302 1.1 matt m = m->pageq.tqe_next;
1303 1.1 matt }
1304 1.11 chris pmap_unmap_ptes(pmap_kernel());
1305 1.19 chris pmap_update(pmap_kernel());
1306 1.1 matt
1307 1.1 matt #ifdef DIAGNOSTIC
1308 1.1 matt if (m)
1309 1.1 matt panic("pmap_alloc_l1pt: pglist not empty\n");
1310 1.1 matt #endif /* DIAGNOSTIC */
1311 1.1 matt
1312 1.1 matt pt->pt_flags = 0;
1313 1.1 matt return(pt);
1314 1.1 matt }
1315 1.1 matt
1316 1.1 matt /*
1317 1.1 matt * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1318 1.1 matt */
1319 1.33 chris static void
1320 1.73 thorpej pmap_free_l1pt(struct l1pt *pt)
1321 1.1 matt {
1322 1.1 matt /* Separate the physical memory for the virtual space */
1323 1.20 chris pmap_kremove(pt->pt_va, PD_SIZE);
1324 1.19 chris pmap_update(pmap_kernel());
1325 1.1 matt
1326 1.1 matt /* Return the physical memory */
1327 1.1 matt uvm_pglistfree(&pt->pt_plist);
1328 1.1 matt
1329 1.1 matt /* Free the virtual space */
1330 1.1 matt uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1331 1.1 matt
1332 1.1 matt /* Free the l1pt structure */
1333 1.1 matt free(pt, M_VMPMAP);
1334 1.1 matt }
1335 1.1 matt
1336 1.1 matt /*
1337 1.1 matt * Allocate a page directory.
1338 1.1 matt * This routine will either allocate a new page directory from the pool
1339 1.1 matt * of L1 page tables currently held by the kernel or it will allocate
1340 1.1 matt * a new one via pmap_alloc_l1pt().
1341 1.1 matt * It will then initialise the l1 page table for use.
1342 1.48 chris *
1343 1.48 chris * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
1344 1.1 matt */
1345 1.33 chris static int
1346 1.73 thorpej pmap_allocpagedir(struct pmap *pmap)
1347 1.1 matt {
1348 1.2 matt paddr_t pa;
1349 1.1 matt struct l1pt *pt;
1350 1.1 matt pt_entry_t *pte;
1351 1.1 matt
1352 1.1 matt PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1353 1.1 matt
1354 1.1 matt /* Do we have any spare L1's lying around ? */
1355 1.1 matt if (l1pt_static_queue_count) {
1356 1.1 matt --l1pt_static_queue_count;
1357 1.1 matt pt = l1pt_static_queue.sqh_first;
1358 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1359 1.1 matt } else if (l1pt_queue_count) {
1360 1.1 matt --l1pt_queue_count;
1361 1.1 matt pt = l1pt_queue.sqh_first;
1362 1.1 matt SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1363 1.1 matt ++l1pt_reuse_count;
1364 1.1 matt } else {
1365 1.1 matt pt = pmap_alloc_l1pt();
1366 1.1 matt if (!pt)
1367 1.1 matt return(ENOMEM);
1368 1.1 matt ++l1pt_create_count;
1369 1.1 matt }
1370 1.1 matt
1371 1.1 matt /* Store the pointer to the l1 descriptor in the pmap. */
1372 1.1 matt pmap->pm_l1pt = pt;
1373 1.1 matt
1374 1.1 matt /* Get the physical address of the start of the l1 */
1375 1.51 chris pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1376 1.1 matt
1377 1.1 matt /* Store the virtual address of the l1 in the pmap. */
1378 1.1 matt pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1379 1.1 matt
1380 1.1 matt /* Clean the L1 if it is dirty */
1381 1.1 matt if (!(pt->pt_flags & PTFLAG_CLEAN))
1382 1.1 matt bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1383 1.1 matt
1384 1.1 matt /* Allocate a page table to map all the page tables for this pmap */
1385 1.1 matt
1386 1.1 matt #ifdef DIAGNOSTIC
1387 1.1 matt if (pmap->pm_vptpt) {
1388 1.1 matt /* XXX What if we have one already ? */
1389 1.1 matt panic("pmap_allocpagedir: have pt already\n");
1390 1.1 matt }
1391 1.1 matt #endif /* DIAGNOSTIC */
1392 1.1 matt pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1393 1.5 toshii if (pmap->pm_vptpt == 0) {
1394 1.48 chris pmap_freepagedir(pmap);
1395 1.48 chris return(ENOMEM);
1396 1.5 toshii }
1397 1.5 toshii
1398 1.48 chris /* need to lock this all up for growkernel */
1399 1.48 chris simple_lock(&pmaps_lock);
1400 1.48 chris /* wish we didn't have to keep this locked... */
1401 1.48 chris
1402 1.64 thorpej /* Duplicate the kernel mappings. */
1403 1.48 chris bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1404 1.48 chris (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1405 1.48 chris KERNEL_PD_SIZE);
1406 1.48 chris
1407 1.64 thorpej pte = vtopte(pmap->pm_vptpt);
1408 1.64 thorpej pmap->pm_pptpt = l2pte_pa(*pte);
1409 1.64 thorpej
1410 1.1 matt /* Revoke cacheability and bufferability */
1411 1.1 matt /* XXX should be done better than this */
1412 1.64 thorpej *pte &= ~(PT_C | PT_B);
1413 1.1 matt
1414 1.1 matt /* Wire in this page table */
1415 1.53 thorpej pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1416 1.1 matt
1417 1.1 matt pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1418 1.48 chris
1419 1.1 matt /*
1420 1.64 thorpej * Map the kernel page tables into the new PT map.
1421 1.1 matt */
1422 1.53 thorpej bcopy((char *)(PTE_BASE
1423 1.53 thorpej + (PTE_BASE >> (PGSHIFT - 2))
1424 1.1 matt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1425 1.1 matt (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1426 1.1 matt (KERNEL_PD_SIZE >> 2));
1427 1.1 matt
1428 1.48 chris LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1429 1.48 chris simple_unlock(&pmaps_lock);
1430 1.48 chris
1431 1.1 matt return(0);
1432 1.1 matt }
1433 1.1 matt
1434 1.1 matt
1435 1.1 matt /*
1436 1.1 matt * Initialize a preallocated and zeroed pmap structure,
1437 1.1 matt * such as one in a vmspace structure.
1438 1.1 matt */
1439 1.1 matt
1440 1.1 matt void
1441 1.73 thorpej pmap_pinit(struct pmap *pmap)
1442 1.1 matt {
1443 1.26 rearnsha int backoff = 6;
1444 1.26 rearnsha int retry = 10;
1445 1.26 rearnsha
1446 1.1 matt PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1447 1.1 matt
1448 1.1 matt /* Keep looping until we succeed in allocating a page directory */
1449 1.1 matt while (pmap_allocpagedir(pmap) != 0) {
1450 1.1 matt /*
1451 1.1 matt * Ok we failed to allocate a suitable block of memory for an
1452 1.1 matt * L1 page table. This means that either:
1453 1.1 matt * 1. 16KB of virtual address space could not be allocated
1454 1.1 matt * 2. 16KB of physically contiguous memory on a 16KB boundary
1455 1.1 matt * could not be allocated.
1456 1.1 matt *
1457 1.1 matt * Since we cannot fail we will sleep for a while and try
1458 1.17 chris * again.
1459 1.26 rearnsha *
1460 1.26 rearnsha * Searching for a suitable L1 PT is expensive:
1461 1.26 rearnsha * to avoid hogging the system when memory is really
1462 1.26 rearnsha * scarce, use an exponential back-off so that
1463 1.26 rearnsha * eventually we won't retry more than once every 8
1464 1.26 rearnsha * seconds. This should allow other processes to run
1465 1.26 rearnsha * to completion and free up resources.
1466 1.1 matt */
1467 1.26 rearnsha (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1468 1.26 rearnsha NULL);
1469 1.26 rearnsha if (--retry == 0) {
1470 1.26 rearnsha retry = 10;
1471 1.26 rearnsha if (backoff)
1472 1.26 rearnsha --backoff;
1473 1.26 rearnsha }
1474 1.1 matt }
1475 1.1 matt
1476 1.1 matt /* Map zero page for the pmap. This will also map the L2 for it */
1477 1.1 matt pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1478 1.1 matt VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1479 1.19 chris pmap_update(pmap);
1480 1.1 matt }
1481 1.1 matt
1482 1.1 matt
1483 1.1 matt void
1484 1.73 thorpej pmap_freepagedir(struct pmap *pmap)
1485 1.1 matt {
1486 1.1 matt /* Free the memory used for the page table mapping */
1487 1.5 toshii if (pmap->pm_vptpt != 0)
1488 1.5 toshii uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1489 1.1 matt
1490 1.1 matt /* junk the L1 page table */
1491 1.1 matt if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1492 1.1 matt /* Add the page table to the queue */
1493 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1494 1.1 matt ++l1pt_static_queue_count;
1495 1.1 matt } else if (l1pt_queue_count < 8) {
1496 1.1 matt /* Add the page table to the queue */
1497 1.1 matt SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1498 1.1 matt ++l1pt_queue_count;
1499 1.1 matt } else
1500 1.1 matt pmap_free_l1pt(pmap->pm_l1pt);
1501 1.1 matt }
1502 1.1 matt
1503 1.1 matt
1504 1.1 matt /*
1505 1.1 matt * Retire the given physical map from service.
1506 1.1 matt * Should only be called if the map contains no valid mappings.
1507 1.1 matt */
1508 1.1 matt
1509 1.1 matt void
1510 1.73 thorpej pmap_destroy(struct pmap *pmap)
1511 1.1 matt {
1512 1.17 chris struct vm_page *page;
1513 1.1 matt int count;
1514 1.1 matt
1515 1.1 matt if (pmap == NULL)
1516 1.1 matt return;
1517 1.1 matt
1518 1.1 matt PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1519 1.17 chris
1520 1.17 chris /*
1521 1.17 chris * Drop reference count
1522 1.17 chris */
1523 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
1524 1.16 chris count = --pmap->pm_obj.uo_refs;
1525 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
1526 1.17 chris if (count > 0) {
1527 1.17 chris return;
1528 1.1 matt }
1529 1.1 matt
1530 1.17 chris /*
1531 1.17 chris * reference count is zero, free pmap resources and then free pmap.
1532 1.17 chris */
1533 1.48 chris
1534 1.48 chris /*
1535 1.48 chris * remove it from global list of pmaps
1536 1.48 chris */
1537 1.48 chris
1538 1.48 chris simple_lock(&pmaps_lock);
1539 1.48 chris LIST_REMOVE(pmap, pm_list);
1540 1.48 chris simple_unlock(&pmaps_lock);
1541 1.17 chris
1542 1.1 matt /* Remove the zero page mapping */
1543 1.1 matt pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1544 1.19 chris pmap_update(pmap);
1545 1.1 matt
1546 1.1 matt /*
1547 1.1 matt * Free any page tables still mapped
1548 1.1 matt * This is only temporay until pmap_enter can count the number
1549 1.1 matt * of mappings made in a page table. Then pmap_remove() can
1550 1.1 matt * reduce the count and free the pagetable when the count
1551 1.16 chris * reaches zero. Note that entries in this list should match the
1552 1.16 chris * contents of the ptpt, however this is faster than walking a 1024
1553 1.16 chris * entries looking for pt's
1554 1.16 chris * taken from i386 pmap.c
1555 1.1 matt */
1556 1.51 chris while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1557 1.51 chris KASSERT((page->flags & PG_BUSY) == 0);
1558 1.16 chris page->wire_count = 0;
1559 1.16 chris uvm_pagefree(page);
1560 1.1 matt }
1561 1.16 chris
1562 1.1 matt /* Free the page dir */
1563 1.1 matt pmap_freepagedir(pmap);
1564 1.17 chris
1565 1.17 chris /* return the pmap to the pool */
1566 1.17 chris pool_put(&pmap_pmap_pool, pmap);
1567 1.1 matt }
1568 1.1 matt
1569 1.1 matt
1570 1.1 matt /*
1571 1.15 chris * void pmap_reference(struct pmap *pmap)
1572 1.1 matt *
1573 1.1 matt * Add a reference to the specified pmap.
1574 1.1 matt */
1575 1.1 matt
1576 1.1 matt void
1577 1.73 thorpej pmap_reference(struct pmap *pmap)
1578 1.1 matt {
1579 1.1 matt if (pmap == NULL)
1580 1.1 matt return;
1581 1.1 matt
1582 1.1 matt simple_lock(&pmap->pm_lock);
1583 1.16 chris pmap->pm_obj.uo_refs++;
1584 1.1 matt simple_unlock(&pmap->pm_lock);
1585 1.1 matt }
1586 1.1 matt
1587 1.1 matt /*
1588 1.1 matt * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1589 1.1 matt *
1590 1.1 matt * Return the start and end addresses of the kernel's virtual space.
1591 1.1 matt * These values are setup in pmap_bootstrap and are updated as pages
1592 1.1 matt * are allocated.
1593 1.1 matt */
1594 1.1 matt
1595 1.1 matt void
1596 1.73 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1597 1.1 matt {
1598 1.54 thorpej *start = virtual_avail;
1599 1.1 matt *end = virtual_end;
1600 1.1 matt }
1601 1.1 matt
1602 1.1 matt /*
1603 1.1 matt * Activate the address space for the specified process. If the process
1604 1.1 matt * is the current process, load the new MMU context.
1605 1.1 matt */
1606 1.1 matt void
1607 1.73 thorpej pmap_activate(struct proc *p)
1608 1.1 matt {
1609 1.15 chris struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1610 1.1 matt struct pcb *pcb = &p->p_addr->u_pcb;
1611 1.1 matt
1612 1.15 chris (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1613 1.1 matt (paddr_t *)&pcb->pcb_pagedir);
1614 1.1 matt
1615 1.1 matt PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1616 1.1 matt p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1617 1.1 matt
1618 1.1 matt if (p == curproc) {
1619 1.1 matt PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1620 1.1 matt setttb((u_int)pcb->pcb_pagedir);
1621 1.1 matt }
1622 1.1 matt }
1623 1.1 matt
1624 1.1 matt /*
1625 1.1 matt * Deactivate the address space of the specified process.
1626 1.1 matt */
1627 1.1 matt void
1628 1.73 thorpej pmap_deactivate(struct proc *p)
1629 1.1 matt {
1630 1.1 matt }
1631 1.1 matt
1632 1.31 thorpej /*
1633 1.31 thorpej * Perform any deferred pmap operations.
1634 1.31 thorpej */
1635 1.31 thorpej void
1636 1.31 thorpej pmap_update(struct pmap *pmap)
1637 1.31 thorpej {
1638 1.31 thorpej
1639 1.31 thorpej /*
1640 1.31 thorpej * We haven't deferred any pmap operations, but we do need to
1641 1.31 thorpej * make sure TLB/cache operations have completed.
1642 1.31 thorpej */
1643 1.31 thorpej cpu_cpwait();
1644 1.31 thorpej }
1645 1.1 matt
1646 1.1 matt /*
1647 1.1 matt * pmap_clean_page()
1648 1.1 matt *
1649 1.1 matt * This is a local function used to work out the best strategy to clean
1650 1.1 matt * a single page referenced by its entry in the PV table. It's used by
1651 1.1 matt * pmap_copy_page, pmap_zero page and maybe some others later on.
1652 1.1 matt *
1653 1.1 matt * Its policy is effectively:
1654 1.1 matt * o If there are no mappings, we don't bother doing anything with the cache.
1655 1.1 matt * o If there is one mapping, we clean just that page.
1656 1.1 matt * o If there are multiple mappings, we clean the entire cache.
1657 1.1 matt *
1658 1.1 matt * So that some functions can be further optimised, it returns 0 if it didn't
1659 1.1 matt * clean the entire cache, or 1 if it did.
1660 1.1 matt *
1661 1.1 matt * XXX One bug in this routine is that if the pv_entry has a single page
1662 1.1 matt * mapped at 0x00000000 a whole cache clean will be performed rather than
1663 1.1 matt * just the 1 page. Since this should not occur in everyday use and if it does
1664 1.1 matt * it will just result in not the most efficient clean for the page.
1665 1.1 matt */
1666 1.1 matt static int
1667 1.73 thorpej pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1668 1.1 matt {
1669 1.17 chris struct pmap *pmap;
1670 1.17 chris struct pv_entry *npv;
1671 1.1 matt int cache_needs_cleaning = 0;
1672 1.1 matt vaddr_t page_to_clean = 0;
1673 1.1 matt
1674 1.17 chris if (pv == NULL)
1675 1.17 chris /* nothing mapped in so nothing to flush */
1676 1.17 chris return (0);
1677 1.17 chris
1678 1.17 chris /* Since we flush the cache each time we change curproc, we
1679 1.17 chris * only need to flush the page if it is in the current pmap.
1680 1.17 chris */
1681 1.17 chris if (curproc)
1682 1.17 chris pmap = curproc->p_vmspace->vm_map.pmap;
1683 1.17 chris else
1684 1.17 chris pmap = pmap_kernel();
1685 1.17 chris
1686 1.17 chris for (npv = pv; npv; npv = npv->pv_next) {
1687 1.17 chris if (npv->pv_pmap == pmap) {
1688 1.17 chris /* The page is mapped non-cacheable in
1689 1.17 chris * this map. No need to flush the cache.
1690 1.17 chris */
1691 1.17 chris if (npv->pv_flags & PT_NC) {
1692 1.17 chris #ifdef DIAGNOSTIC
1693 1.17 chris if (cache_needs_cleaning)
1694 1.17 chris panic("pmap_clean_page: "
1695 1.17 chris "cache inconsistency");
1696 1.17 chris #endif
1697 1.17 chris break;
1698 1.17 chris }
1699 1.17 chris #if 0
1700 1.17 chris /* This doesn't work, because pmap_protect
1701 1.17 chris doesn't flush changes on pages that it
1702 1.17 chris has write-protected. */
1703 1.21 chris
1704 1.25 rearnsha /* If the page is not writable and this
1705 1.17 chris is the source, then there is no need
1706 1.17 chris to flush it from the cache. */
1707 1.17 chris else if (is_src && ! (npv->pv_flags & PT_Wr))
1708 1.17 chris continue;
1709 1.17 chris #endif
1710 1.17 chris if (cache_needs_cleaning){
1711 1.17 chris page_to_clean = 0;
1712 1.17 chris break;
1713 1.17 chris }
1714 1.17 chris else
1715 1.17 chris page_to_clean = npv->pv_va;
1716 1.17 chris cache_needs_cleaning = 1;
1717 1.17 chris }
1718 1.1 matt }
1719 1.1 matt
1720 1.1 matt if (page_to_clean)
1721 1.36 thorpej cpu_idcache_wbinv_range(page_to_clean, NBPG);
1722 1.1 matt else if (cache_needs_cleaning) {
1723 1.36 thorpej cpu_idcache_wbinv_all();
1724 1.1 matt return (1);
1725 1.1 matt }
1726 1.1 matt return (0);
1727 1.1 matt }
1728 1.1 matt
1729 1.1 matt /*
1730 1.1 matt * pmap_zero_page()
1731 1.1 matt *
1732 1.1 matt * Zero a given physical page by mapping it at a page hook point.
1733 1.1 matt * In doing the zero page op, the page we zero is mapped cachable, as with
1734 1.1 matt * StrongARM accesses to non-cached pages are non-burst making writing
1735 1.1 matt * _any_ bulk data very slow.
1736 1.1 matt */
1737 1.1 matt void
1738 1.73 thorpej pmap_zero_page(paddr_t phys)
1739 1.1 matt {
1740 1.71 thorpej #ifdef DEBUG
1741 1.71 thorpej struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1742 1.71 thorpej
1743 1.71 thorpej if (pg->mdpage.pvh_list != NULL)
1744 1.71 thorpej panic("pmap_zero_page: page has mappings");
1745 1.71 thorpej #endif
1746 1.1 matt
1747 1.1 matt /*
1748 1.1 matt * Hook in the page, zero it, and purge the cache for that
1749 1.1 matt * zeroed page. Invalidate the TLB as needed.
1750 1.1 matt */
1751 1.54 thorpej *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1752 1.54 thorpej cpu_tlb_flushD_SE(cdstp);
1753 1.32 thorpej cpu_cpwait();
1754 1.54 thorpej bzero_page(cdstp);
1755 1.54 thorpej cpu_dcache_wbinv_range(cdstp, NBPG);
1756 1.1 matt }
1757 1.1 matt
1758 1.17 chris /* pmap_pageidlezero()
1759 1.17 chris *
1760 1.17 chris * The same as above, except that we assume that the page is not
1761 1.17 chris * mapped. This means we never have to flush the cache first. Called
1762 1.17 chris * from the idle loop.
1763 1.17 chris */
1764 1.17 chris boolean_t
1765 1.73 thorpej pmap_pageidlezero(paddr_t phys)
1766 1.17 chris {
1767 1.17 chris int i, *ptr;
1768 1.17 chris boolean_t rv = TRUE;
1769 1.71 thorpej #ifdef DEBUG
1770 1.49 thorpej struct vm_page *pg;
1771 1.17 chris
1772 1.49 thorpej pg = PHYS_TO_VM_PAGE(phys);
1773 1.49 thorpej if (pg->mdpage.pvh_list != NULL)
1774 1.71 thorpej panic("pmap_pageidlezero: page has mappings");
1775 1.17 chris #endif
1776 1.17 chris
1777 1.17 chris /*
1778 1.17 chris * Hook in the page, zero it, and purge the cache for that
1779 1.17 chris * zeroed page. Invalidate the TLB as needed.
1780 1.17 chris */
1781 1.54 thorpej *cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1782 1.54 thorpej cpu_tlb_flushD_SE(cdstp);
1783 1.32 thorpej cpu_cpwait();
1784 1.32 thorpej
1785 1.54 thorpej for (i = 0, ptr = (int *)cdstp;
1786 1.17 chris i < (NBPG / sizeof(int)); i++) {
1787 1.17 chris if (sched_whichqs != 0) {
1788 1.17 chris /*
1789 1.17 chris * A process has become ready. Abort now,
1790 1.17 chris * so we don't keep it waiting while we
1791 1.17 chris * do slow memory access to finish this
1792 1.17 chris * page.
1793 1.17 chris */
1794 1.17 chris rv = FALSE;
1795 1.17 chris break;
1796 1.17 chris }
1797 1.17 chris *ptr++ = 0;
1798 1.17 chris }
1799 1.17 chris
1800 1.17 chris if (rv)
1801 1.17 chris /*
1802 1.17 chris * if we aborted we'll rezero this page again later so don't
1803 1.17 chris * purge it unless we finished it
1804 1.17 chris */
1805 1.54 thorpej cpu_dcache_wbinv_range(cdstp, NBPG);
1806 1.17 chris return (rv);
1807 1.17 chris }
1808 1.17 chris
1809 1.1 matt /*
1810 1.1 matt * pmap_copy_page()
1811 1.1 matt *
1812 1.1 matt * Copy one physical page into another, by mapping the pages into
1813 1.1 matt * hook points. The same comment regarding cachability as in
1814 1.1 matt * pmap_zero_page also applies here.
1815 1.1 matt */
1816 1.1 matt void
1817 1.73 thorpej pmap_copy_page(paddr_t src, paddr_t dst)
1818 1.1 matt {
1819 1.71 thorpej struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1820 1.71 thorpej #ifdef DEBUG
1821 1.71 thorpej struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1822 1.71 thorpej
1823 1.71 thorpej if (dst_pg->mdpage.pvh_list != NULL)
1824 1.71 thorpej panic("pmap_copy_page: dst page has mappings");
1825 1.71 thorpej #endif
1826 1.71 thorpej
1827 1.71 thorpej /*
1828 1.71 thorpej * Clean the source page. Hold the source page's lock for
1829 1.71 thorpej * the duration of the copy so that no other mappings can
1830 1.71 thorpej * be created while we have a potentially aliased mapping.
1831 1.71 thorpej */
1832 1.49 thorpej simple_lock(&src_pg->mdpage.pvh_slock);
1833 1.71 thorpej (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1834 1.1 matt
1835 1.1 matt /*
1836 1.1 matt * Map the pages into the page hook points, copy them, and purge
1837 1.1 matt * the cache for the appropriate page. Invalidate the TLB
1838 1.1 matt * as required.
1839 1.1 matt */
1840 1.65 chris *csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
1841 1.71 thorpej *cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
1842 1.54 thorpej cpu_tlb_flushD_SE(csrcp);
1843 1.54 thorpej cpu_tlb_flushD_SE(cdstp);
1844 1.32 thorpej cpu_cpwait();
1845 1.54 thorpej bcopy_page(csrcp, cdstp);
1846 1.65 chris cpu_dcache_inv_range(csrcp, NBPG);
1847 1.71 thorpej simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1848 1.54 thorpej cpu_dcache_wbinv_range(cdstp, NBPG);
1849 1.1 matt }
1850 1.1 matt
1851 1.1 matt #if 0
1852 1.1 matt void
1853 1.73 thorpej pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1854 1.1 matt {
1855 1.1 matt pd_entry_t *pde;
1856 1.2 matt paddr_t pa;
1857 1.1 matt struct vm_page *m;
1858 1.1 matt
1859 1.1 matt if (pmap == pmap_kernel())
1860 1.1 matt return;
1861 1.1 matt
1862 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1863 1.1 matt pa = pmap_pte_pa(pde);
1864 1.1 matt m = PHYS_TO_VM_PAGE(pa);
1865 1.1 matt ++m->wire_count;
1866 1.1 matt #ifdef MYCROFT_HACK
1867 1.1 matt printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1868 1.1 matt pmap, va, pde, pa, m, m->wire_count);
1869 1.1 matt #endif
1870 1.1 matt }
1871 1.1 matt
1872 1.1 matt void
1873 1.73 thorpej pmap_pte_delref(struct pmap *pmap, vaddr_t va)
1874 1.1 matt {
1875 1.1 matt pd_entry_t *pde;
1876 1.2 matt paddr_t pa;
1877 1.1 matt struct vm_page *m;
1878 1.1 matt
1879 1.1 matt if (pmap == pmap_kernel())
1880 1.1 matt return;
1881 1.1 matt
1882 1.1 matt pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1883 1.1 matt pa = pmap_pte_pa(pde);
1884 1.1 matt m = PHYS_TO_VM_PAGE(pa);
1885 1.1 matt --m->wire_count;
1886 1.1 matt #ifdef MYCROFT_HACK
1887 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1888 1.1 matt pmap, va, pde, pa, m, m->wire_count);
1889 1.1 matt #endif
1890 1.1 matt if (m->wire_count == 0) {
1891 1.1 matt #ifdef MYCROFT_HACK
1892 1.1 matt printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1893 1.1 matt pmap, va, pde, pa, m);
1894 1.1 matt #endif
1895 1.1 matt pmap_unmap_in_l1(pmap, va);
1896 1.1 matt uvm_pagefree(m);
1897 1.1 matt --pmap->pm_stats.resident_count;
1898 1.1 matt }
1899 1.1 matt }
1900 1.1 matt #else
1901 1.1 matt #define pmap_pte_addref(pmap, va)
1902 1.1 matt #define pmap_pte_delref(pmap, va)
1903 1.1 matt #endif
1904 1.1 matt
1905 1.1 matt /*
1906 1.1 matt * Since we have a virtually indexed cache, we may need to inhibit caching if
1907 1.1 matt * there is more than one mapping and at least one of them is writable.
1908 1.1 matt * Since we purge the cache on every context switch, we only need to check for
1909 1.1 matt * other mappings within the same pmap, or kernel_pmap.
1910 1.1 matt * This function is also called when a page is unmapped, to possibly reenable
1911 1.1 matt * caching on any remaining mappings.
1912 1.28 rearnsha *
1913 1.28 rearnsha * The code implements the following logic, where:
1914 1.28 rearnsha *
1915 1.28 rearnsha * KW = # of kernel read/write pages
1916 1.28 rearnsha * KR = # of kernel read only pages
1917 1.28 rearnsha * UW = # of user read/write pages
1918 1.28 rearnsha * UR = # of user read only pages
1919 1.28 rearnsha * OW = # of user read/write pages in another pmap, then
1920 1.28 rearnsha *
1921 1.28 rearnsha * KC = kernel mapping is cacheable
1922 1.28 rearnsha * UC = user mapping is cacheable
1923 1.28 rearnsha *
1924 1.28 rearnsha * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1925 1.28 rearnsha * +---------------------------------------------
1926 1.28 rearnsha * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
1927 1.28 rearnsha * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1928 1.28 rearnsha * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
1929 1.28 rearnsha * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1930 1.28 rearnsha * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1931 1.11 chris *
1932 1.11 chris * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1933 1.1 matt */
1934 1.25 rearnsha __inline static void
1935 1.49 thorpej pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1936 1.12 chris boolean_t clear_cache)
1937 1.1 matt {
1938 1.25 rearnsha if (pmap == pmap_kernel())
1939 1.49 thorpej pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
1940 1.25 rearnsha else
1941 1.49 thorpej pmap_vac_me_user(pmap, pg, ptes, clear_cache);
1942 1.25 rearnsha }
1943 1.25 rearnsha
1944 1.25 rearnsha static void
1945 1.49 thorpej pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1946 1.25 rearnsha boolean_t clear_cache)
1947 1.25 rearnsha {
1948 1.25 rearnsha int user_entries = 0;
1949 1.25 rearnsha int user_writable = 0;
1950 1.25 rearnsha int user_cacheable = 0;
1951 1.25 rearnsha int kernel_entries = 0;
1952 1.25 rearnsha int kernel_writable = 0;
1953 1.25 rearnsha int kernel_cacheable = 0;
1954 1.25 rearnsha struct pv_entry *pv;
1955 1.25 rearnsha struct pmap *last_pmap = pmap;
1956 1.25 rearnsha
1957 1.25 rearnsha #ifdef DIAGNOSTIC
1958 1.25 rearnsha if (pmap != pmap_kernel())
1959 1.25 rearnsha panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
1960 1.25 rearnsha #endif
1961 1.25 rearnsha
1962 1.25 rearnsha /*
1963 1.25 rearnsha * Pass one, see if there are both kernel and user pmaps for
1964 1.25 rearnsha * this page. Calculate whether there are user-writable or
1965 1.25 rearnsha * kernel-writable pages.
1966 1.25 rearnsha */
1967 1.49 thorpej for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
1968 1.25 rearnsha if (pv->pv_pmap != pmap) {
1969 1.25 rearnsha user_entries++;
1970 1.25 rearnsha if (pv->pv_flags & PT_Wr)
1971 1.25 rearnsha user_writable++;
1972 1.25 rearnsha if ((pv->pv_flags & PT_NC) == 0)
1973 1.25 rearnsha user_cacheable++;
1974 1.25 rearnsha } else {
1975 1.25 rearnsha kernel_entries++;
1976 1.25 rearnsha if (pv->pv_flags & PT_Wr)
1977 1.25 rearnsha kernel_writable++;
1978 1.25 rearnsha if ((pv->pv_flags & PT_NC) == 0)
1979 1.25 rearnsha kernel_cacheable++;
1980 1.25 rearnsha }
1981 1.25 rearnsha }
1982 1.25 rearnsha
1983 1.25 rearnsha /*
1984 1.25 rearnsha * We know we have just been updating a kernel entry, so if
1985 1.25 rearnsha * all user pages are already cacheable, then there is nothing
1986 1.25 rearnsha * further to do.
1987 1.25 rearnsha */
1988 1.25 rearnsha if (kernel_entries == 0 &&
1989 1.25 rearnsha user_cacheable == user_entries)
1990 1.25 rearnsha return;
1991 1.25 rearnsha
1992 1.25 rearnsha if (user_entries) {
1993 1.25 rearnsha /*
1994 1.25 rearnsha * Scan over the list again, for each entry, if it
1995 1.25 rearnsha * might not be set correctly, call pmap_vac_me_user
1996 1.25 rearnsha * to recalculate the settings.
1997 1.25 rearnsha */
1998 1.49 thorpej for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
1999 1.25 rearnsha /*
2000 1.25 rearnsha * We know kernel mappings will get set
2001 1.25 rearnsha * correctly in other calls. We also know
2002 1.25 rearnsha * that if the pmap is the same as last_pmap
2003 1.25 rearnsha * then we've just handled this entry.
2004 1.25 rearnsha */
2005 1.25 rearnsha if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2006 1.25 rearnsha continue;
2007 1.25 rearnsha /*
2008 1.25 rearnsha * If there are kernel entries and this page
2009 1.25 rearnsha * is writable but non-cacheable, then we can
2010 1.25 rearnsha * skip this entry also.
2011 1.25 rearnsha */
2012 1.25 rearnsha if (kernel_entries > 0 &&
2013 1.25 rearnsha (pv->pv_flags & (PT_NC | PT_Wr)) ==
2014 1.25 rearnsha (PT_NC | PT_Wr))
2015 1.25 rearnsha continue;
2016 1.25 rearnsha /*
2017 1.25 rearnsha * Similarly if there are no kernel-writable
2018 1.25 rearnsha * entries and the page is already
2019 1.25 rearnsha * read-only/cacheable.
2020 1.25 rearnsha */
2021 1.25 rearnsha if (kernel_writable == 0 &&
2022 1.25 rearnsha (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
2023 1.25 rearnsha continue;
2024 1.25 rearnsha /*
2025 1.25 rearnsha * For some of the remaining cases, we know
2026 1.25 rearnsha * that we must recalculate, but for others we
2027 1.25 rearnsha * can't tell if they are correct or not, so
2028 1.25 rearnsha * we recalculate anyway.
2029 1.25 rearnsha */
2030 1.25 rearnsha pmap_unmap_ptes(last_pmap);
2031 1.25 rearnsha last_pmap = pv->pv_pmap;
2032 1.25 rearnsha ptes = pmap_map_ptes(last_pmap);
2033 1.49 thorpej pmap_vac_me_user(last_pmap, pg, ptes,
2034 1.25 rearnsha pmap_is_curpmap(last_pmap));
2035 1.25 rearnsha }
2036 1.25 rearnsha /* Restore the pte mapping that was passed to us. */
2037 1.25 rearnsha if (last_pmap != pmap) {
2038 1.25 rearnsha pmap_unmap_ptes(last_pmap);
2039 1.25 rearnsha ptes = pmap_map_ptes(pmap);
2040 1.25 rearnsha }
2041 1.25 rearnsha if (kernel_entries == 0)
2042 1.25 rearnsha return;
2043 1.25 rearnsha }
2044 1.25 rearnsha
2045 1.49 thorpej pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2046 1.25 rearnsha return;
2047 1.25 rearnsha }
2048 1.25 rearnsha
2049 1.25 rearnsha static void
2050 1.49 thorpej pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2051 1.25 rearnsha boolean_t clear_cache)
2052 1.25 rearnsha {
2053 1.25 rearnsha struct pmap *kpmap = pmap_kernel();
2054 1.17 chris struct pv_entry *pv, *npv;
2055 1.1 matt int entries = 0;
2056 1.25 rearnsha int writable = 0;
2057 1.12 chris int cacheable_entries = 0;
2058 1.25 rearnsha int kern_cacheable = 0;
2059 1.25 rearnsha int other_writable = 0;
2060 1.1 matt
2061 1.49 thorpej pv = pg->mdpage.pvh_list;
2062 1.11 chris KASSERT(ptes != NULL);
2063 1.1 matt
2064 1.1 matt /*
2065 1.1 matt * Count mappings and writable mappings in this pmap.
2066 1.25 rearnsha * Include kernel mappings as part of our own.
2067 1.1 matt * Keep a pointer to the first one.
2068 1.1 matt */
2069 1.1 matt for (npv = pv; npv; npv = npv->pv_next) {
2070 1.1 matt /* Count mappings in the same pmap */
2071 1.25 rearnsha if (pmap == npv->pv_pmap ||
2072 1.25 rearnsha kpmap == npv->pv_pmap) {
2073 1.1 matt if (entries++ == 0)
2074 1.1 matt pv = npv;
2075 1.12 chris /* Cacheable mappings */
2076 1.25 rearnsha if ((npv->pv_flags & PT_NC) == 0) {
2077 1.12 chris cacheable_entries++;
2078 1.25 rearnsha if (kpmap == npv->pv_pmap)
2079 1.25 rearnsha kern_cacheable++;
2080 1.25 rearnsha }
2081 1.25 rearnsha /* Writable mappings */
2082 1.1 matt if (npv->pv_flags & PT_Wr)
2083 1.25 rearnsha ++writable;
2084 1.25 rearnsha } else if (npv->pv_flags & PT_Wr)
2085 1.25 rearnsha other_writable = 1;
2086 1.1 matt }
2087 1.1 matt
2088 1.12 chris PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2089 1.25 rearnsha "writable %d cacheable %d %s\n", pmap, entries, writable,
2090 1.12 chris cacheable_entries, clear_cache ? "clean" : "no clean"));
2091 1.12 chris
2092 1.1 matt /*
2093 1.1 matt * Enable or disable caching as necessary.
2094 1.25 rearnsha * Note: the first entry might be part of the kernel pmap,
2095 1.25 rearnsha * so we can't assume this is indicative of the state of the
2096 1.25 rearnsha * other (maybe non-kpmap) entries.
2097 1.1 matt */
2098 1.25 rearnsha if ((entries > 1 && writable) ||
2099 1.25 rearnsha (entries > 0 && pmap == kpmap && other_writable)) {
2100 1.12 chris if (cacheable_entries == 0)
2101 1.12 chris return;
2102 1.25 rearnsha for (npv = pv; npv; npv = npv->pv_next) {
2103 1.25 rearnsha if ((pmap == npv->pv_pmap
2104 1.25 rearnsha || kpmap == npv->pv_pmap) &&
2105 1.12 chris (npv->pv_flags & PT_NC) == 0) {
2106 1.56 thorpej ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
2107 1.12 chris npv->pv_flags |= PT_NC;
2108 1.25 rearnsha /*
2109 1.25 rearnsha * If this page needs flushing from the
2110 1.25 rearnsha * cache, and we aren't going to do it
2111 1.25 rearnsha * below, do it now.
2112 1.25 rearnsha */
2113 1.25 rearnsha if ((cacheable_entries < 4 &&
2114 1.25 rearnsha (clear_cache || npv->pv_pmap == kpmap)) ||
2115 1.25 rearnsha (npv->pv_pmap == kpmap &&
2116 1.25 rearnsha !clear_cache && kern_cacheable < 4)) {
2117 1.36 thorpej cpu_idcache_wbinv_range(npv->pv_va,
2118 1.12 chris NBPG);
2119 1.12 chris cpu_tlb_flushID_SE(npv->pv_va);
2120 1.12 chris }
2121 1.1 matt }
2122 1.1 matt }
2123 1.25 rearnsha if ((clear_cache && cacheable_entries >= 4) ||
2124 1.25 rearnsha kern_cacheable >= 4) {
2125 1.36 thorpej cpu_idcache_wbinv_all();
2126 1.12 chris cpu_tlb_flushID();
2127 1.12 chris }
2128 1.32 thorpej cpu_cpwait();
2129 1.1 matt } else if (entries > 0) {
2130 1.25 rearnsha /*
2131 1.25 rearnsha * Turn cacheing back on for some pages. If it is a kernel
2132 1.25 rearnsha * page, only do so if there are no other writable pages.
2133 1.25 rearnsha */
2134 1.25 rearnsha for (npv = pv; npv; npv = npv->pv_next) {
2135 1.25 rearnsha if ((pmap == npv->pv_pmap ||
2136 1.25 rearnsha (kpmap == npv->pv_pmap && other_writable == 0)) &&
2137 1.25 rearnsha (npv->pv_flags & PT_NC)) {
2138 1.56 thorpej ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
2139 1.12 chris npv->pv_flags &= ~PT_NC;
2140 1.1 matt }
2141 1.1 matt }
2142 1.1 matt }
2143 1.1 matt }
2144 1.1 matt
2145 1.1 matt /*
2146 1.1 matt * pmap_remove()
2147 1.1 matt *
2148 1.1 matt * pmap_remove is responsible for nuking a number of mappings for a range
2149 1.1 matt * of virtual address space in the current pmap. To do this efficiently
2150 1.1 matt * is interesting, because in a number of cases a wide virtual address
2151 1.1 matt * range may be supplied that contains few actual mappings. So, the
2152 1.1 matt * optimisations are:
2153 1.1 matt * 1. Try and skip over hunks of address space for which an L1 entry
2154 1.1 matt * does not exist.
2155 1.1 matt * 2. Build up a list of pages we've hit, up to a maximum, so we can
2156 1.1 matt * maybe do just a partial cache clean. This path of execution is
2157 1.1 matt * complicated by the fact that the cache must be flushed _before_
2158 1.1 matt * the PTE is nuked, being a VAC :-)
2159 1.1 matt * 3. Maybe later fast-case a single page, but I don't think this is
2160 1.1 matt * going to make _that_ much difference overall.
2161 1.1 matt */
2162 1.1 matt
2163 1.1 matt #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2164 1.1 matt
2165 1.1 matt void
2166 1.73 thorpej pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2167 1.1 matt {
2168 1.1 matt int cleanlist_idx = 0;
2169 1.1 matt struct pagelist {
2170 1.1 matt vaddr_t va;
2171 1.1 matt pt_entry_t *pte;
2172 1.1 matt } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2173 1.11 chris pt_entry_t *pte = 0, *ptes;
2174 1.2 matt paddr_t pa;
2175 1.1 matt int pmap_active;
2176 1.49 thorpej struct vm_page *pg;
2177 1.1 matt
2178 1.1 matt /* Exit quick if there is no pmap */
2179 1.1 matt if (!pmap)
2180 1.1 matt return;
2181 1.1 matt
2182 1.1 matt PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
2183 1.1 matt
2184 1.1 matt sva &= PG_FRAME;
2185 1.1 matt eva &= PG_FRAME;
2186 1.1 matt
2187 1.17 chris /*
2188 1.49 thorpej * we lock in the pmap => vm_page direction
2189 1.17 chris */
2190 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2191 1.17 chris
2192 1.11 chris ptes = pmap_map_ptes(pmap);
2193 1.1 matt /* Get a page table pointer */
2194 1.1 matt while (sva < eva) {
2195 1.30 rearnsha if (pmap_pde_page(pmap_pde(pmap, sva)))
2196 1.1 matt break;
2197 1.1 matt sva = (sva & PD_MASK) + NBPD;
2198 1.1 matt }
2199 1.11 chris
2200 1.56 thorpej pte = &ptes[arm_btop(sva)];
2201 1.1 matt /* Note if the pmap is active thus require cache and tlb cleans */
2202 1.58 thorpej pmap_active = pmap_is_curpmap(pmap);
2203 1.1 matt
2204 1.1 matt /* Now loop along */
2205 1.1 matt while (sva < eva) {
2206 1.1 matt /* Check if we can move to the next PDE (l1 chunk) */
2207 1.1 matt if (!(sva & PT_MASK))
2208 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2209 1.1 matt sva += NBPD;
2210 1.56 thorpej pte += arm_btop(NBPD);
2211 1.1 matt continue;
2212 1.1 matt }
2213 1.1 matt
2214 1.1 matt /* We've found a valid PTE, so this page of PTEs has to go. */
2215 1.1 matt if (pmap_pte_v(pte)) {
2216 1.1 matt /* Update statistics */
2217 1.1 matt --pmap->pm_stats.resident_count;
2218 1.1 matt
2219 1.1 matt /*
2220 1.1 matt * Add this page to our cache remove list, if we can.
2221 1.1 matt * If, however the cache remove list is totally full,
2222 1.1 matt * then do a complete cache invalidation taking note
2223 1.1 matt * to backtrack the PTE table beforehand, and ignore
2224 1.1 matt * the lists in future because there's no longer any
2225 1.1 matt * point in bothering with them (we've paid the
2226 1.1 matt * penalty, so will carry on unhindered). Otherwise,
2227 1.1 matt * when we fall out, we just clean the list.
2228 1.1 matt */
2229 1.1 matt PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2230 1.1 matt pa = pmap_pte_pa(pte);
2231 1.1 matt
2232 1.1 matt if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2233 1.1 matt /* Add to the clean list. */
2234 1.1 matt cleanlist[cleanlist_idx].pte = pte;
2235 1.1 matt cleanlist[cleanlist_idx].va = sva;
2236 1.1 matt cleanlist_idx++;
2237 1.1 matt } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2238 1.1 matt int cnt;
2239 1.1 matt
2240 1.1 matt /* Nuke everything if needed. */
2241 1.1 matt if (pmap_active) {
2242 1.36 thorpej cpu_idcache_wbinv_all();
2243 1.1 matt cpu_tlb_flushID();
2244 1.1 matt }
2245 1.1 matt
2246 1.1 matt /*
2247 1.1 matt * Roll back the previous PTE list,
2248 1.1 matt * and zero out the current PTE.
2249 1.1 matt */
2250 1.1 matt for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2251 1.1 matt *cleanlist[cnt].pte = 0;
2252 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
2253 1.1 matt }
2254 1.1 matt *pte = 0;
2255 1.1 matt pmap_pte_delref(pmap, sva);
2256 1.1 matt cleanlist_idx++;
2257 1.1 matt } else {
2258 1.1 matt /*
2259 1.1 matt * We've already nuked the cache and
2260 1.1 matt * TLB, so just carry on regardless,
2261 1.1 matt * and we won't need to do it again
2262 1.1 matt */
2263 1.1 matt *pte = 0;
2264 1.1 matt pmap_pte_delref(pmap, sva);
2265 1.1 matt }
2266 1.1 matt
2267 1.1 matt /*
2268 1.1 matt * Update flags. In a number of circumstances,
2269 1.1 matt * we could cluster a lot of these and do a
2270 1.1 matt * number of sequential pages in one go.
2271 1.1 matt */
2272 1.49 thorpej if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2273 1.17 chris struct pv_entry *pve;
2274 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2275 1.49 thorpej pve = pmap_remove_pv(pg, pmap, sva);
2276 1.17 chris pmap_free_pv(pmap, pve);
2277 1.49 thorpej pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2278 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2279 1.1 matt }
2280 1.1 matt }
2281 1.1 matt sva += NBPG;
2282 1.1 matt pte++;
2283 1.1 matt }
2284 1.1 matt
2285 1.11 chris pmap_unmap_ptes(pmap);
2286 1.1 matt /*
2287 1.1 matt * Now, if we've fallen through down to here, chances are that there
2288 1.1 matt * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2289 1.1 matt */
2290 1.1 matt if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2291 1.1 matt u_int cnt;
2292 1.1 matt
2293 1.1 matt for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2294 1.1 matt if (pmap_active) {
2295 1.36 thorpej cpu_idcache_wbinv_range(cleanlist[cnt].va,
2296 1.36 thorpej NBPG);
2297 1.1 matt *cleanlist[cnt].pte = 0;
2298 1.1 matt cpu_tlb_flushID_SE(cleanlist[cnt].va);
2299 1.1 matt } else
2300 1.1 matt *cleanlist[cnt].pte = 0;
2301 1.1 matt pmap_pte_delref(pmap, cleanlist[cnt].va);
2302 1.1 matt }
2303 1.1 matt }
2304 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2305 1.1 matt }
2306 1.1 matt
2307 1.1 matt /*
2308 1.1 matt * Routine: pmap_remove_all
2309 1.1 matt * Function:
2310 1.1 matt * Removes this physical page from
2311 1.1 matt * all physical maps in which it resides.
2312 1.1 matt * Reflects back modify bits to the pager.
2313 1.1 matt */
2314 1.1 matt
2315 1.33 chris static void
2316 1.73 thorpej pmap_remove_all(struct vm_page *pg)
2317 1.1 matt {
2318 1.17 chris struct pv_entry *pv, *npv;
2319 1.15 chris struct pmap *pmap;
2320 1.11 chris pt_entry_t *pte, *ptes;
2321 1.1 matt
2322 1.49 thorpej PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2323 1.1 matt
2324 1.49 thorpej /* set vm_page => pmap locking */
2325 1.17 chris PMAP_HEAD_TO_MAP_LOCK();
2326 1.1 matt
2327 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2328 1.17 chris
2329 1.49 thorpej pv = pg->mdpage.pvh_list;
2330 1.49 thorpej if (pv == NULL) {
2331 1.49 thorpej PDEBUG(0, printf("free page\n"));
2332 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2333 1.49 thorpej PMAP_HEAD_TO_MAP_UNLOCK();
2334 1.49 thorpej return;
2335 1.1 matt }
2336 1.17 chris pmap_clean_page(pv, FALSE);
2337 1.1 matt
2338 1.1 matt while (pv) {
2339 1.1 matt pmap = pv->pv_pmap;
2340 1.11 chris ptes = pmap_map_ptes(pmap);
2341 1.56 thorpej pte = &ptes[arm_btop(pv->pv_va)];
2342 1.1 matt
2343 1.1 matt PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2344 1.1 matt pv->pv_va, pv->pv_flags));
2345 1.1 matt #ifdef DEBUG
2346 1.32 thorpej if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
2347 1.30 rearnsha !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
2348 1.1 matt panic("pmap_remove_all: bad mapping");
2349 1.1 matt #endif /* DEBUG */
2350 1.1 matt
2351 1.1 matt /*
2352 1.1 matt * Update statistics
2353 1.1 matt */
2354 1.1 matt --pmap->pm_stats.resident_count;
2355 1.1 matt
2356 1.1 matt /* Wired bit */
2357 1.1 matt if (pv->pv_flags & PT_W)
2358 1.1 matt --pmap->pm_stats.wired_count;
2359 1.1 matt
2360 1.1 matt /*
2361 1.1 matt * Invalidate the PTEs.
2362 1.1 matt * XXX: should cluster them up and invalidate as many
2363 1.1 matt * as possible at once.
2364 1.1 matt */
2365 1.1 matt
2366 1.1 matt #ifdef needednotdone
2367 1.1 matt reduce wiring count on page table pages as references drop
2368 1.1 matt #endif
2369 1.1 matt
2370 1.1 matt *pte = 0;
2371 1.1 matt pmap_pte_delref(pmap, pv->pv_va);
2372 1.1 matt
2373 1.1 matt npv = pv->pv_next;
2374 1.17 chris pmap_free_pv(pmap, pv);
2375 1.1 matt pv = npv;
2376 1.11 chris pmap_unmap_ptes(pmap);
2377 1.1 matt }
2378 1.49 thorpej pg->mdpage.pvh_list = NULL;
2379 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2380 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
2381 1.1 matt
2382 1.1 matt PDEBUG(0, printf("done\n"));
2383 1.1 matt cpu_tlb_flushID();
2384 1.32 thorpej cpu_cpwait();
2385 1.1 matt }
2386 1.1 matt
2387 1.1 matt
2388 1.1 matt /*
2389 1.1 matt * Set the physical protection on the specified range of this map as requested.
2390 1.1 matt */
2391 1.1 matt
2392 1.1 matt void
2393 1.73 thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2394 1.1 matt {
2395 1.11 chris pt_entry_t *pte = NULL, *ptes;
2396 1.49 thorpej struct vm_page *pg;
2397 1.1 matt int armprot;
2398 1.1 matt int flush = 0;
2399 1.2 matt paddr_t pa;
2400 1.1 matt
2401 1.1 matt PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2402 1.1 matt pmap, sva, eva, prot));
2403 1.1 matt
2404 1.1 matt if (~prot & VM_PROT_READ) {
2405 1.1 matt /* Just remove the mappings. */
2406 1.1 matt pmap_remove(pmap, sva, eva);
2407 1.33 chris /* pmap_update not needed as it should be called by the caller
2408 1.33 chris * of pmap_protect */
2409 1.1 matt return;
2410 1.1 matt }
2411 1.1 matt if (prot & VM_PROT_WRITE) {
2412 1.1 matt /*
2413 1.1 matt * If this is a read->write transition, just ignore it and let
2414 1.1 matt * uvm_fault() take care of it later.
2415 1.1 matt */
2416 1.1 matt return;
2417 1.1 matt }
2418 1.1 matt
2419 1.1 matt sva &= PG_FRAME;
2420 1.1 matt eva &= PG_FRAME;
2421 1.1 matt
2422 1.17 chris /* Need to lock map->head */
2423 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2424 1.17 chris
2425 1.11 chris ptes = pmap_map_ptes(pmap);
2426 1.1 matt /*
2427 1.1 matt * We need to acquire a pointer to a page table page before entering
2428 1.1 matt * the following loop.
2429 1.1 matt */
2430 1.1 matt while (sva < eva) {
2431 1.30 rearnsha if (pmap_pde_page(pmap_pde(pmap, sva)))
2432 1.1 matt break;
2433 1.1 matt sva = (sva & PD_MASK) + NBPD;
2434 1.1 matt }
2435 1.11 chris
2436 1.56 thorpej pte = &ptes[arm_btop(sva)];
2437 1.17 chris
2438 1.1 matt while (sva < eva) {
2439 1.1 matt /* only check once in a while */
2440 1.1 matt if ((sva & PT_MASK) == 0) {
2441 1.30 rearnsha if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2442 1.1 matt /* We can race ahead here, to the next pde. */
2443 1.1 matt sva += NBPD;
2444 1.56 thorpej pte += arm_btop(NBPD);
2445 1.1 matt continue;
2446 1.1 matt }
2447 1.1 matt }
2448 1.1 matt
2449 1.1 matt if (!pmap_pte_v(pte))
2450 1.1 matt goto next;
2451 1.1 matt
2452 1.1 matt flush = 1;
2453 1.1 matt
2454 1.1 matt armprot = 0;
2455 1.1 matt if (sva < VM_MAXUSER_ADDRESS)
2456 1.1 matt armprot |= PT_AP(AP_U);
2457 1.1 matt else if (sva < VM_MAX_ADDRESS)
2458 1.1 matt armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
2459 1.1 matt *pte = (*pte & 0xfffff00f) | armprot;
2460 1.1 matt
2461 1.1 matt pa = pmap_pte_pa(pte);
2462 1.1 matt
2463 1.1 matt /* Get the physical page index */
2464 1.1 matt
2465 1.1 matt /* Clear write flag */
2466 1.49 thorpej if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2467 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2468 1.49 thorpej (void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
2469 1.49 thorpej pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2470 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2471 1.1 matt }
2472 1.1 matt
2473 1.1 matt next:
2474 1.1 matt sva += NBPG;
2475 1.1 matt pte++;
2476 1.1 matt }
2477 1.11 chris pmap_unmap_ptes(pmap);
2478 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2479 1.1 matt if (flush)
2480 1.1 matt cpu_tlb_flushID();
2481 1.1 matt }
2482 1.1 matt
2483 1.1 matt /*
2484 1.15 chris * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2485 1.1 matt * int flags)
2486 1.1 matt *
2487 1.1 matt * Insert the given physical page (p) at
2488 1.1 matt * the specified virtual address (v) in the
2489 1.1 matt * target physical map with the protection requested.
2490 1.1 matt *
2491 1.1 matt * If specified, the page will be wired down, meaning
2492 1.1 matt * that the related pte can not be reclaimed.
2493 1.1 matt *
2494 1.1 matt * NB: This is the only routine which MAY NOT lazy-evaluate
2495 1.1 matt * or lose information. That is, this routine must actually
2496 1.1 matt * insert this page into the given map NOW.
2497 1.1 matt */
2498 1.1 matt
2499 1.1 matt int
2500 1.73 thorpej pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2501 1.73 thorpej int flags)
2502 1.1 matt {
2503 1.66 thorpej pt_entry_t *ptes, opte, npte;
2504 1.2 matt paddr_t opa;
2505 1.1 matt boolean_t wired = (flags & PMAP_WIRED) != 0;
2506 1.49 thorpej struct vm_page *pg;
2507 1.17 chris struct pv_entry *pve;
2508 1.66 thorpej int error, nflags;
2509 1.1 matt
2510 1.1 matt PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2511 1.1 matt va, pa, pmap, prot, wired));
2512 1.1 matt
2513 1.1 matt #ifdef DIAGNOSTIC
2514 1.1 matt /* Valid address ? */
2515 1.48 chris if (va >= (pmap_curmaxkvaddr))
2516 1.1 matt panic("pmap_enter: too big");
2517 1.1 matt if (pmap != pmap_kernel() && va != 0) {
2518 1.1 matt if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2519 1.1 matt panic("pmap_enter: kernel page in user map");
2520 1.1 matt } else {
2521 1.1 matt if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2522 1.1 matt panic("pmap_enter: user page in kernel map");
2523 1.1 matt if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2524 1.1 matt panic("pmap_enter: entering PT page");
2525 1.1 matt }
2526 1.1 matt #endif
2527 1.49 thorpej /*
2528 1.49 thorpej * Get a pointer to the page. Later on in this function, we
2529 1.49 thorpej * test for a managed page by checking pg != NULL.
2530 1.49 thorpej */
2531 1.55 thorpej pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2532 1.49 thorpej
2533 1.17 chris /* get lock */
2534 1.17 chris PMAP_MAP_TO_HEAD_LOCK();
2535 1.66 thorpej
2536 1.1 matt /*
2537 1.66 thorpej * map the ptes. If there's not already an L2 table for this
2538 1.66 thorpej * address, allocate one.
2539 1.1 matt */
2540 1.66 thorpej ptes = pmap_map_ptes(pmap); /* locks pmap */
2541 1.66 thorpej if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2542 1.17 chris struct vm_page *ptp;
2543 1.57 thorpej
2544 1.57 thorpej /* kernel should be pre-grown */
2545 1.57 thorpej KASSERT(pmap != pmap_kernel());
2546 1.17 chris
2547 1.17 chris /* if failure is allowed then don't try too hard */
2548 1.70 thorpej ptp = pmap_get_ptp(pmap, va & PD_MASK);
2549 1.17 chris if (ptp == NULL) {
2550 1.17 chris if (flags & PMAP_CANFAIL) {
2551 1.17 chris error = ENOMEM;
2552 1.17 chris goto out;
2553 1.17 chris }
2554 1.17 chris panic("pmap_enter: get ptp failed");
2555 1.1 matt }
2556 1.1 matt }
2557 1.66 thorpej opte = ptes[arm_btop(va)];
2558 1.1 matt
2559 1.1 matt nflags = 0;
2560 1.1 matt if (prot & VM_PROT_WRITE)
2561 1.1 matt nflags |= PT_Wr;
2562 1.1 matt if (wired)
2563 1.1 matt nflags |= PT_W;
2564 1.1 matt
2565 1.1 matt /* Is the pte valid ? If so then this page is already mapped */
2566 1.66 thorpej if (l2pte_valid(opte)) {
2567 1.1 matt /* Get the physical address of the current page mapped */
2568 1.66 thorpej opa = l2pte_pa(opte);
2569 1.1 matt
2570 1.1 matt /* Are we mapping the same page ? */
2571 1.1 matt if (opa == pa) {
2572 1.1 matt /* Has the wiring changed ? */
2573 1.49 thorpej if (pg != NULL) {
2574 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2575 1.49 thorpej (void) pmap_modify_pv(pmap, va, pg,
2576 1.1 matt PT_Wr | PT_W, nflags);
2577 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2578 1.49 thorpej }
2579 1.1 matt } else {
2580 1.49 thorpej struct vm_page *opg;
2581 1.49 thorpej
2582 1.1 matt /* We are replacing the page with a new one. */
2583 1.36 thorpej cpu_idcache_wbinv_range(va, NBPG);
2584 1.1 matt
2585 1.1 matt /*
2586 1.1 matt * If it is part of our managed memory then we
2587 1.1 matt * must remove it from the PV list
2588 1.1 matt */
2589 1.49 thorpej if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2590 1.49 thorpej simple_lock(&opg->mdpage.pvh_slock);
2591 1.49 thorpej pve = pmap_remove_pv(opg, pmap, va);
2592 1.49 thorpej simple_unlock(&opg->mdpage.pvh_slock);
2593 1.17 chris } else {
2594 1.17 chris pve = NULL;
2595 1.1 matt }
2596 1.1 matt
2597 1.1 matt goto enter;
2598 1.1 matt }
2599 1.1 matt } else {
2600 1.1 matt opa = 0;
2601 1.17 chris pve = NULL;
2602 1.1 matt pmap_pte_addref(pmap, va);
2603 1.1 matt
2604 1.1 matt /* pte is not valid so we must be hooking in a new page */
2605 1.1 matt ++pmap->pm_stats.resident_count;
2606 1.1 matt
2607 1.1 matt enter:
2608 1.1 matt /*
2609 1.1 matt * Enter on the PV list if part of our managed memory
2610 1.1 matt */
2611 1.55 thorpej if (pg != NULL) {
2612 1.17 chris if (pve == NULL) {
2613 1.17 chris pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2614 1.17 chris if (pve == NULL) {
2615 1.17 chris if (flags & PMAP_CANFAIL) {
2616 1.17 chris error = ENOMEM;
2617 1.17 chris goto out;
2618 1.17 chris }
2619 1.66 thorpej panic("pmap_enter: no pv entries "
2620 1.66 thorpej "available");
2621 1.17 chris }
2622 1.17 chris }
2623 1.17 chris /* enter_pv locks pvh when adding */
2624 1.49 thorpej pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2625 1.17 chris } else {
2626 1.17 chris if (pve != NULL)
2627 1.17 chris pmap_free_pv(pmap, pve);
2628 1.1 matt }
2629 1.1 matt }
2630 1.1 matt
2631 1.1 matt /* Construct the pte, giving the correct access. */
2632 1.1 matt npte = (pa & PG_FRAME);
2633 1.1 matt
2634 1.1 matt /* VA 0 is magic. */
2635 1.1 matt if (pmap != pmap_kernel() && va != 0)
2636 1.1 matt npte |= PT_AP(AP_U);
2637 1.1 matt
2638 1.55 thorpej if (pg != NULL) {
2639 1.1 matt #ifdef DIAGNOSTIC
2640 1.1 matt if ((flags & VM_PROT_ALL) & ~prot)
2641 1.1 matt panic("pmap_enter: access_type exceeds prot");
2642 1.1 matt #endif
2643 1.27 rearnsha npte |= pte_cache_mode;
2644 1.1 matt if (flags & VM_PROT_WRITE) {
2645 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2646 1.49 thorpej pg->mdpage.pvh_attrs |= PT_H | PT_M;
2647 1.1 matt } else if (flags & VM_PROT_ALL) {
2648 1.1 matt npte |= L2_SPAGE;
2649 1.49 thorpej pg->mdpage.pvh_attrs |= PT_H;
2650 1.1 matt } else
2651 1.1 matt npte |= L2_INVAL;
2652 1.1 matt } else {
2653 1.1 matt if (prot & VM_PROT_WRITE)
2654 1.1 matt npte |= L2_SPAGE | PT_AP(AP_W);
2655 1.1 matt else if (prot & VM_PROT_ALL)
2656 1.1 matt npte |= L2_SPAGE;
2657 1.1 matt else
2658 1.1 matt npte |= L2_INVAL;
2659 1.1 matt }
2660 1.1 matt
2661 1.66 thorpej ptes[arm_btop(va)] = npte;
2662 1.1 matt
2663 1.55 thorpej if (pg != NULL) {
2664 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2665 1.59 thorpej pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2666 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2667 1.11 chris }
2668 1.1 matt
2669 1.1 matt /* Better flush the TLB ... */
2670 1.1 matt cpu_tlb_flushID_SE(va);
2671 1.17 chris error = 0;
2672 1.17 chris out:
2673 1.66 thorpej pmap_unmap_ptes(pmap); /* unlocks pmap */
2674 1.17 chris PMAP_MAP_TO_HEAD_UNLOCK();
2675 1.1 matt
2676 1.17 chris return error;
2677 1.1 matt }
2678 1.1 matt
2679 1.48 chris /*
2680 1.48 chris * pmap_kenter_pa: enter a kernel mapping
2681 1.48 chris *
2682 1.48 chris * => no need to lock anything assume va is already allocated
2683 1.48 chris * => should be faster than normal pmap enter function
2684 1.48 chris */
2685 1.1 matt void
2686 1.73 thorpej pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2687 1.1 matt {
2688 1.13 chris pt_entry_t *pte;
2689 1.13 chris
2690 1.13 chris pte = vtopte(va);
2691 1.14 chs KASSERT(!pmap_pte_v(pte));
2692 1.13 chris *pte = L2_PTE(pa, AP_KRW);
2693 1.1 matt }
2694 1.1 matt
2695 1.1 matt void
2696 1.73 thorpej pmap_kremove(vaddr_t va, vsize_t len)
2697 1.1 matt {
2698 1.14 chs pt_entry_t *pte;
2699 1.14 chs
2700 1.1 matt for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2701 1.13 chris
2702 1.14 chs /*
2703 1.14 chs * We assume that we will only be called with small
2704 1.14 chs * regions of memory.
2705 1.14 chs */
2706 1.14 chs
2707 1.30 rearnsha KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2708 1.13 chris pte = vtopte(va);
2709 1.36 thorpej cpu_idcache_wbinv_range(va, PAGE_SIZE);
2710 1.13 chris *pte = 0;
2711 1.13 chris cpu_tlb_flushID_SE(va);
2712 1.1 matt }
2713 1.1 matt }
2714 1.1 matt
2715 1.1 matt /*
2716 1.1 matt * pmap_page_protect:
2717 1.1 matt *
2718 1.1 matt * Lower the permission for all mappings to a given page.
2719 1.1 matt */
2720 1.1 matt
2721 1.1 matt void
2722 1.73 thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2723 1.1 matt {
2724 1.1 matt
2725 1.49 thorpej PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2726 1.49 thorpej VM_PAGE_TO_PHYS(pg), prot));
2727 1.1 matt
2728 1.1 matt switch(prot) {
2729 1.17 chris case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2730 1.17 chris case VM_PROT_READ|VM_PROT_WRITE:
2731 1.17 chris return;
2732 1.17 chris
2733 1.1 matt case VM_PROT_READ:
2734 1.1 matt case VM_PROT_READ|VM_PROT_EXECUTE:
2735 1.73 thorpej pmap_clearbit(pg, PT_Wr);
2736 1.1 matt break;
2737 1.1 matt
2738 1.1 matt default:
2739 1.49 thorpej pmap_remove_all(pg);
2740 1.1 matt break;
2741 1.1 matt }
2742 1.1 matt }
2743 1.1 matt
2744 1.1 matt
2745 1.1 matt /*
2746 1.1 matt * Routine: pmap_unwire
2747 1.1 matt * Function: Clear the wired attribute for a map/virtual-address
2748 1.1 matt * pair.
2749 1.1 matt * In/out conditions:
2750 1.1 matt * The mapping must already exist in the pmap.
2751 1.1 matt */
2752 1.1 matt
2753 1.1 matt void
2754 1.73 thorpej pmap_unwire(struct pmap *pmap, vaddr_t va)
2755 1.1 matt {
2756 1.60 thorpej pt_entry_t *ptes;
2757 1.60 thorpej struct vm_page *pg;
2758 1.2 matt paddr_t pa;
2759 1.1 matt
2760 1.60 thorpej PMAP_MAP_TO_HEAD_LOCK();
2761 1.60 thorpej ptes = pmap_map_ptes(pmap); /* locks pmap */
2762 1.1 matt
2763 1.60 thorpej if (pmap_pde_v(pmap_pde(pmap, va))) {
2764 1.60 thorpej #ifdef DIAGNOSTIC
2765 1.60 thorpej if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2766 1.60 thorpej panic("pmap_unwire: invalid L2 PTE");
2767 1.60 thorpej #endif
2768 1.60 thorpej /* Extract the physical address of the page */
2769 1.60 thorpej pa = l2pte_pa(ptes[arm_btop(va)]);
2770 1.1 matt
2771 1.60 thorpej if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2772 1.60 thorpej goto out;
2773 1.1 matt
2774 1.60 thorpej /* Update the wired bit in the pv entry for this page. */
2775 1.60 thorpej simple_lock(&pg->mdpage.pvh_slock);
2776 1.60 thorpej (void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
2777 1.60 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2778 1.60 thorpej }
2779 1.60 thorpej #ifdef DIAGNOSTIC
2780 1.60 thorpej else {
2781 1.60 thorpej panic("pmap_unwire: invalid L1 PTE");
2782 1.60 thorpej }
2783 1.60 thorpej #endif
2784 1.60 thorpej out:
2785 1.60 thorpej pmap_unmap_ptes(pmap); /* unlocks pmap */
2786 1.60 thorpej PMAP_MAP_TO_HEAD_UNLOCK();
2787 1.1 matt }
2788 1.1 matt
2789 1.1 matt /*
2790 1.1 matt * Routine: pmap_extract
2791 1.1 matt * Function:
2792 1.1 matt * Extract the physical page address associated
2793 1.1 matt * with the given map/virtual_address pair.
2794 1.1 matt */
2795 1.1 matt boolean_t
2796 1.73 thorpej pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2797 1.1 matt {
2798 1.34 thorpej pd_entry_t *pde;
2799 1.11 chris pt_entry_t *pte, *ptes;
2800 1.1 matt paddr_t pa;
2801 1.75 reinoud boolean_t rv = FALSE;
2802 1.75 reinoud int l1_ptype, l2_ptype;
2803 1.1 matt
2804 1.1 matt PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2805 1.1 matt
2806 1.1 matt /*
2807 1.11 chris * Get the pte for this virtual address.
2808 1.1 matt */
2809 1.34 thorpej pde = pmap_pde(pmap, va);
2810 1.11 chris ptes = pmap_map_ptes(pmap);
2811 1.56 thorpej pte = &ptes[arm_btop(va)];
2812 1.1 matt
2813 1.75 reinoud l1_ptype = *pde & L1_MASK;
2814 1.75 reinoud
2815 1.75 reinoud if (l1_ptype == L1_SECTION) {
2816 1.75 reinoud /* Extract the physical address from the pde */
2817 1.34 thorpej pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
2818 1.75 reinoud rv = TRUE;
2819 1.75 reinoud } else if (l1_ptype == L1_PAGE) {
2820 1.1 matt
2821 1.75 reinoud l2_ptype = *pte & L2_MASK;
2822 1.1 matt
2823 1.75 reinoud if (l2_ptype == L2_LPAGE) {
2824 1.75 reinoud /* Extract the physical address from the pte */
2825 1.75 reinoud pa = *pte & ~(L2_LPAGE_SIZE - 1);
2826 1.75 reinoud pa |= va & (L2_LPAGE_SIZE - 1);
2827 1.75 reinoud rv = TRUE;
2828 1.75 reinoud } else if (l2_ptype == L2_SPAGE) {
2829 1.75 reinoud /* Extract the physical address from the pte */
2830 1.75 reinoud pa = *pte & ~(L2_SPAGE_SIZE - 1);
2831 1.75 reinoud pa |= va & (L2_SPAGE_SIZE - 1);
2832 1.75 reinoud rv = TRUE;
2833 1.75 reinoud };
2834 1.75 reinoud };
2835 1.75 reinoud /* if `rv' is still false then it wasnt meant to be .. and return FALSE */
2836 1.1 matt
2837 1.75 reinoud if (rv && (pap != NULL)) *pap = pa; /* only return when valid */
2838 1.34 thorpej
2839 1.11 chris pmap_unmap_ptes(pmap);
2840 1.34 thorpej return (rv);
2841 1.1 matt }
2842 1.1 matt
2843 1.1 matt
2844 1.1 matt /*
2845 1.73 thorpej * pmap_copy:
2846 1.1 matt *
2847 1.73 thorpej * Copy the range specified by src_addr/len from the source map to the
2848 1.73 thorpej * range dst_addr/len in the destination map.
2849 1.73 thorpej *
2850 1.73 thorpej * This routine is only advisory and need not do anything.
2851 1.1 matt */
2852 1.73 thorpej /* Call deleted in <arm/arm32/pmap.h> */
2853 1.1 matt
2854 1.1 matt #if defined(PMAP_DEBUG)
2855 1.1 matt void
2856 1.1 matt pmap_dump_pvlist(phys, m)
2857 1.1 matt vaddr_t phys;
2858 1.1 matt char *m;
2859 1.1 matt {
2860 1.49 thorpej struct vm_page *pg;
2861 1.1 matt struct pv_entry *pv;
2862 1.1 matt
2863 1.49 thorpej if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2864 1.1 matt printf("INVALID PA\n");
2865 1.1 matt return;
2866 1.1 matt }
2867 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2868 1.1 matt printf("%s %08lx:", m, phys);
2869 1.49 thorpej if (pg->mdpage.pvh_list == NULL) {
2870 1.1 matt printf(" no mappings\n");
2871 1.1 matt return;
2872 1.1 matt }
2873 1.1 matt
2874 1.49 thorpej for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2875 1.1 matt printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2876 1.1 matt pv->pv_va, pv->pv_flags);
2877 1.1 matt
2878 1.1 matt printf("\n");
2879 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2880 1.1 matt }
2881 1.1 matt
2882 1.1 matt #endif /* PMAP_DEBUG */
2883 1.1 matt
2884 1.11 chris static pt_entry_t *
2885 1.11 chris pmap_map_ptes(struct pmap *pmap)
2886 1.11 chris {
2887 1.72 thorpej struct proc *p;
2888 1.17 chris
2889 1.17 chris /* the kernel's pmap is always accessible */
2890 1.17 chris if (pmap == pmap_kernel()) {
2891 1.72 thorpej return (pt_entry_t *)PTE_BASE;
2892 1.17 chris }
2893 1.17 chris
2894 1.17 chris if (pmap_is_curpmap(pmap)) {
2895 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
2896 1.53 thorpej return (pt_entry_t *)PTE_BASE;
2897 1.17 chris }
2898 1.72 thorpej
2899 1.17 chris p = curproc;
2900 1.72 thorpej KDASSERT(p != NULL);
2901 1.17 chris
2902 1.17 chris /* need to lock both curpmap and pmap: use ordered locking */
2903 1.72 thorpej if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
2904 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
2905 1.72 thorpej simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2906 1.17 chris } else {
2907 1.72 thorpej simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2908 1.17 chris simple_lock(&pmap->pm_obj.vmobjlock);
2909 1.17 chris }
2910 1.11 chris
2911 1.72 thorpej pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
2912 1.72 thorpej FALSE);
2913 1.17 chris cpu_tlb_flushD();
2914 1.32 thorpej cpu_cpwait();
2915 1.53 thorpej return (pt_entry_t *)APTE_BASE;
2916 1.17 chris }
2917 1.17 chris
2918 1.17 chris /*
2919 1.17 chris * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
2920 1.17 chris */
2921 1.17 chris
2922 1.17 chris static void
2923 1.73 thorpej pmap_unmap_ptes(struct pmap *pmap)
2924 1.17 chris {
2925 1.72 thorpej
2926 1.17 chris if (pmap == pmap_kernel()) {
2927 1.17 chris return;
2928 1.17 chris }
2929 1.17 chris if (pmap_is_curpmap(pmap)) {
2930 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
2931 1.17 chris } else {
2932 1.72 thorpej KDASSERT(curproc != NULL);
2933 1.17 chris simple_unlock(&pmap->pm_obj.vmobjlock);
2934 1.72 thorpej simple_unlock(
2935 1.72 thorpej &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2936 1.17 chris }
2937 1.11 chris }
2938 1.1 matt
2939 1.1 matt /*
2940 1.1 matt * Modify pte bits for all ptes corresponding to the given physical address.
2941 1.1 matt * We use `maskbits' rather than `clearbits' because we're always passing
2942 1.1 matt * constants and the latter would require an extra inversion at run-time.
2943 1.1 matt */
2944 1.1 matt
2945 1.22 chris static void
2946 1.73 thorpej pmap_clearbit(struct vm_page *pg, u_int maskbits)
2947 1.1 matt {
2948 1.1 matt struct pv_entry *pv;
2949 1.59 thorpej pt_entry_t *ptes;
2950 1.1 matt vaddr_t va;
2951 1.49 thorpej int tlbentry;
2952 1.1 matt
2953 1.1 matt PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2954 1.49 thorpej VM_PAGE_TO_PHYS(pg), maskbits));
2955 1.21 chris
2956 1.21 chris tlbentry = 0;
2957 1.21 chris
2958 1.17 chris PMAP_HEAD_TO_MAP_LOCK();
2959 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
2960 1.17 chris
2961 1.1 matt /*
2962 1.1 matt * Clear saved attributes (modify, reference)
2963 1.1 matt */
2964 1.49 thorpej pg->mdpage.pvh_attrs &= ~maskbits;
2965 1.1 matt
2966 1.49 thorpej if (pg->mdpage.pvh_list == NULL) {
2967 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
2968 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
2969 1.1 matt return;
2970 1.1 matt }
2971 1.1 matt
2972 1.1 matt /*
2973 1.1 matt * Loop over all current mappings setting/clearing as appropos
2974 1.1 matt */
2975 1.49 thorpej for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2976 1.1 matt va = pv->pv_va;
2977 1.1 matt pv->pv_flags &= ~maskbits;
2978 1.59 thorpej ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
2979 1.59 thorpej KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
2980 1.29 rearnsha if (maskbits & (PT_Wr|PT_M)) {
2981 1.29 rearnsha if ((pv->pv_flags & PT_NC)) {
2982 1.29 rearnsha /*
2983 1.29 rearnsha * Entry is not cacheable: reenable
2984 1.29 rearnsha * the cache, nothing to flush
2985 1.29 rearnsha *
2986 1.29 rearnsha * Don't turn caching on again if this
2987 1.29 rearnsha * is a modified emulation. This
2988 1.29 rearnsha * would be inconsitent with the
2989 1.29 rearnsha * settings created by
2990 1.29 rearnsha * pmap_vac_me_harder().
2991 1.29 rearnsha *
2992 1.29 rearnsha * There's no need to call
2993 1.29 rearnsha * pmap_vac_me_harder() here: all
2994 1.29 rearnsha * pages are loosing their write
2995 1.29 rearnsha * permission.
2996 1.29 rearnsha *
2997 1.29 rearnsha */
2998 1.29 rearnsha if (maskbits & PT_Wr) {
2999 1.59 thorpej ptes[arm_btop(va)] |= pte_cache_mode;
3000 1.29 rearnsha pv->pv_flags &= ~PT_NC;
3001 1.29 rearnsha }
3002 1.59 thorpej } else if (pmap_is_curpmap(pv->pv_pmap)) {
3003 1.29 rearnsha /*
3004 1.29 rearnsha * Entry is cacheable: check if pmap is
3005 1.29 rearnsha * current if it is flush it,
3006 1.29 rearnsha * otherwise it won't be in the cache
3007 1.29 rearnsha */
3008 1.36 thorpej cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3009 1.59 thorpej }
3010 1.29 rearnsha
3011 1.29 rearnsha /* make the pte read only */
3012 1.59 thorpej ptes[arm_btop(va)] &= ~PT_AP(AP_W);
3013 1.29 rearnsha }
3014 1.29 rearnsha
3015 1.29 rearnsha if (maskbits & PT_H)
3016 1.59 thorpej ptes[arm_btop(va)] =
3017 1.59 thorpej (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
3018 1.21 chris
3019 1.59 thorpej if (pmap_is_curpmap(pv->pv_pmap)) {
3020 1.21 chris /*
3021 1.29 rearnsha * if we had cacheable pte's we'd clean the
3022 1.29 rearnsha * pte out to memory here
3023 1.29 rearnsha *
3024 1.21 chris * flush tlb entry as it's in the current pmap
3025 1.21 chris */
3026 1.21 chris cpu_tlb_flushID_SE(pv->pv_va);
3027 1.59 thorpej }
3028 1.59 thorpej pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3029 1.29 rearnsha }
3030 1.32 thorpej cpu_cpwait();
3031 1.21 chris
3032 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
3033 1.17 chris PMAP_HEAD_TO_MAP_UNLOCK();
3034 1.1 matt }
3035 1.1 matt
3036 1.50 thorpej /*
3037 1.50 thorpej * pmap_clear_modify:
3038 1.50 thorpej *
3039 1.50 thorpej * Clear the "modified" attribute for a page.
3040 1.50 thorpej */
3041 1.1 matt boolean_t
3042 1.73 thorpej pmap_clear_modify(struct vm_page *pg)
3043 1.1 matt {
3044 1.1 matt boolean_t rv;
3045 1.1 matt
3046 1.50 thorpej if (pg->mdpage.pvh_attrs & PT_M) {
3047 1.50 thorpej rv = TRUE;
3048 1.50 thorpej pmap_clearbit(pg, PT_M);
3049 1.50 thorpej } else
3050 1.50 thorpej rv = FALSE;
3051 1.50 thorpej
3052 1.50 thorpej PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3053 1.50 thorpej VM_PAGE_TO_PHYS(pg), rv));
3054 1.50 thorpej
3055 1.50 thorpej return (rv);
3056 1.1 matt }
3057 1.1 matt
3058 1.50 thorpej /*
3059 1.50 thorpej * pmap_clear_reference:
3060 1.50 thorpej *
3061 1.50 thorpej * Clear the "referenced" attribute for a page.
3062 1.50 thorpej */
3063 1.1 matt boolean_t
3064 1.73 thorpej pmap_clear_reference(struct vm_page *pg)
3065 1.1 matt {
3066 1.1 matt boolean_t rv;
3067 1.1 matt
3068 1.50 thorpej if (pg->mdpage.pvh_attrs & PT_H) {
3069 1.50 thorpej rv = TRUE;
3070 1.50 thorpej pmap_clearbit(pg, PT_H);
3071 1.50 thorpej } else
3072 1.50 thorpej rv = FALSE;
3073 1.50 thorpej
3074 1.50 thorpej PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3075 1.50 thorpej VM_PAGE_TO_PHYS(pg), rv));
3076 1.50 thorpej
3077 1.50 thorpej return (rv);
3078 1.1 matt }
3079 1.1 matt
3080 1.50 thorpej /*
3081 1.50 thorpej * pmap_is_modified:
3082 1.50 thorpej *
3083 1.50 thorpej * Test if a page has the "modified" attribute.
3084 1.50 thorpej */
3085 1.50 thorpej /* See <arm/arm32/pmap.h> */
3086 1.39 thorpej
3087 1.50 thorpej /*
3088 1.50 thorpej * pmap_is_referenced:
3089 1.50 thorpej *
3090 1.50 thorpej * Test if a page has the "referenced" attribute.
3091 1.50 thorpej */
3092 1.50 thorpej /* See <arm/arm32/pmap.h> */
3093 1.1 matt
3094 1.1 matt int
3095 1.73 thorpej pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3096 1.1 matt {
3097 1.61 thorpej pt_entry_t *ptes;
3098 1.61 thorpej struct vm_page *pg;
3099 1.2 matt paddr_t pa;
3100 1.1 matt u_int flags;
3101 1.61 thorpej int rv = 0;
3102 1.1 matt
3103 1.1 matt PDEBUG(2, printf("pmap_modified_emulation\n"));
3104 1.1 matt
3105 1.61 thorpej PMAP_MAP_TO_HEAD_LOCK();
3106 1.62 thorpej ptes = pmap_map_ptes(pmap); /* locks pmap */
3107 1.61 thorpej
3108 1.61 thorpej if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3109 1.61 thorpej PDEBUG(2, printf("L1 PTE invalid\n"));
3110 1.61 thorpej goto out;
3111 1.1 matt }
3112 1.1 matt
3113 1.61 thorpej PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3114 1.1 matt
3115 1.61 thorpej /* Check for a invalid pte */
3116 1.61 thorpej if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3117 1.61 thorpej goto out;
3118 1.1 matt
3119 1.1 matt /* This can happen if user code tries to access kernel memory. */
3120 1.61 thorpej if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
3121 1.61 thorpej goto out;
3122 1.1 matt
3123 1.1 matt /* Extract the physical address of the page */
3124 1.61 thorpej pa = l2pte_pa(ptes[arm_btop(va)]);
3125 1.49 thorpej if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3126 1.61 thorpej goto out;
3127 1.1 matt
3128 1.49 thorpej /* Get the current flags for this page. */
3129 1.49 thorpej simple_lock(&pg->mdpage.pvh_slock);
3130 1.17 chris
3131 1.49 thorpej flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3132 1.1 matt PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3133 1.1 matt
3134 1.1 matt /*
3135 1.1 matt * Do the flags say this page is writable ? If not then it is a
3136 1.1 matt * genuine write fault. If yes then the write fault is our fault
3137 1.1 matt * as we did not reflect the write access in the PTE. Now we know
3138 1.1 matt * a write has occurred we can correct this and also set the
3139 1.1 matt * modified bit
3140 1.1 matt */
3141 1.17 chris if (~flags & PT_Wr) {
3142 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
3143 1.61 thorpej goto out;
3144 1.17 chris }
3145 1.1 matt
3146 1.61 thorpej PDEBUG(0,
3147 1.61 thorpej printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3148 1.61 thorpej va, ptes[arm_btop(va)]));
3149 1.49 thorpej pg->mdpage.pvh_attrs |= PT_H | PT_M;
3150 1.29 rearnsha
3151 1.29 rearnsha /*
3152 1.29 rearnsha * Re-enable write permissions for the page. No need to call
3153 1.29 rearnsha * pmap_vac_me_harder(), since this is just a
3154 1.29 rearnsha * modified-emulation fault, and the PT_Wr bit isn't changing. We've
3155 1.29 rearnsha * already set the cacheable bits based on the assumption that we
3156 1.29 rearnsha * can write to this page.
3157 1.29 rearnsha */
3158 1.61 thorpej ptes[arm_btop(va)] =
3159 1.61 thorpej (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
3160 1.61 thorpej PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3161 1.1 matt
3162 1.49 thorpej simple_unlock(&pg->mdpage.pvh_slock);
3163 1.61 thorpej
3164 1.1 matt cpu_tlb_flushID_SE(va);
3165 1.32 thorpej cpu_cpwait();
3166 1.61 thorpej rv = 1;
3167 1.61 thorpej out:
3168 1.61 thorpej pmap_unmap_ptes(pmap); /* unlocks pmap */
3169 1.61 thorpej PMAP_MAP_TO_HEAD_UNLOCK();
3170 1.61 thorpej return (rv);
3171 1.1 matt }
3172 1.1 matt
3173 1.1 matt int
3174 1.73 thorpej pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3175 1.1 matt {
3176 1.62 thorpej pt_entry_t *ptes;
3177 1.62 thorpej struct vm_page *pg;
3178 1.2 matt paddr_t pa;
3179 1.62 thorpej int rv = 0;
3180 1.1 matt
3181 1.1 matt PDEBUG(2, printf("pmap_handled_emulation\n"));
3182 1.1 matt
3183 1.63 thorpej PMAP_MAP_TO_HEAD_LOCK();
3184 1.62 thorpej ptes = pmap_map_ptes(pmap); /* locks pmap */
3185 1.62 thorpej
3186 1.62 thorpej if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3187 1.62 thorpej PDEBUG(2, printf("L1 PTE invalid\n"));
3188 1.62 thorpej goto out;
3189 1.1 matt }
3190 1.1 matt
3191 1.62 thorpej PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3192 1.1 matt
3193 1.62 thorpej /* Check for invalid pte */
3194 1.62 thorpej if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3195 1.62 thorpej goto out;
3196 1.1 matt
3197 1.1 matt /* This can happen if user code tries to access kernel memory. */
3198 1.62 thorpej if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
3199 1.62 thorpej goto out;
3200 1.1 matt
3201 1.1 matt /* Extract the physical address of the page */
3202 1.62 thorpej pa = l2pte_pa(ptes[arm_btop(va)]);
3203 1.49 thorpej if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3204 1.62 thorpej goto out;
3205 1.1 matt
3206 1.63 thorpej simple_lock(&pg->mdpage.pvh_slock);
3207 1.63 thorpej
3208 1.1 matt /*
3209 1.1 matt * Ok we just enable the pte and mark the attibs as handled
3210 1.63 thorpej * XXX Should we traverse the PV list and enable all PTEs?
3211 1.1 matt */
3212 1.62 thorpej PDEBUG(0,
3213 1.62 thorpej printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3214 1.62 thorpej va, ptes[arm_btop(va)]));
3215 1.49 thorpej pg->mdpage.pvh_attrs |= PT_H;
3216 1.1 matt
3217 1.62 thorpej ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
3218 1.62 thorpej PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3219 1.62 thorpej
3220 1.63 thorpej simple_unlock(&pg->mdpage.pvh_slock);
3221 1.63 thorpej
3222 1.1 matt cpu_tlb_flushID_SE(va);
3223 1.32 thorpej cpu_cpwait();
3224 1.62 thorpej rv = 1;
3225 1.62 thorpej out:
3226 1.62 thorpej pmap_unmap_ptes(pmap); /* unlocks pmap */
3227 1.63 thorpej PMAP_MAP_TO_HEAD_UNLOCK();
3228 1.62 thorpej return (rv);
3229 1.1 matt }
3230 1.17 chris
3231 1.1 matt /*
3232 1.1 matt * pmap_collect: free resources held by a pmap
3233 1.1 matt *
3234 1.1 matt * => optional function.
3235 1.1 matt * => called when a process is swapped out to free memory.
3236 1.1 matt */
3237 1.1 matt
3238 1.1 matt void
3239 1.73 thorpej pmap_collect(struct pmap *pmap)
3240 1.1 matt {
3241 1.1 matt }
3242 1.1 matt
3243 1.1 matt /*
3244 1.1 matt * Routine: pmap_procwr
3245 1.1 matt *
3246 1.1 matt * Function:
3247 1.1 matt * Synchronize caches corresponding to [addr, addr+len) in p.
3248 1.1 matt *
3249 1.1 matt */
3250 1.1 matt void
3251 1.73 thorpej pmap_procwr(struct proc *p, vaddr_t va, int len)
3252 1.1 matt {
3253 1.1 matt /* We only need to do anything if it is the current process. */
3254 1.1 matt if (p == curproc)
3255 1.36 thorpej cpu_icache_sync_range(va, len);
3256 1.17 chris }
3257 1.17 chris /*
3258 1.17 chris * PTP functions
3259 1.17 chris */
3260 1.17 chris
3261 1.17 chris /*
3262 1.17 chris * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3263 1.17 chris *
3264 1.17 chris * => pmap should NOT be pmap_kernel()
3265 1.17 chris * => pmap should be locked
3266 1.17 chris */
3267 1.17 chris
3268 1.17 chris static struct vm_page *
3269 1.57 thorpej pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3270 1.17 chris {
3271 1.57 thorpej struct vm_page *ptp;
3272 1.17 chris
3273 1.57 thorpej if (pmap_pde_page(pmap_pde(pmap, va))) {
3274 1.17 chris
3275 1.57 thorpej /* valid... check hint (saves us a PA->PG lookup) */
3276 1.57 thorpej if (pmap->pm_ptphint &&
3277 1.70 thorpej (pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
3278 1.57 thorpej VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3279 1.57 thorpej return (pmap->pm_ptphint);
3280 1.57 thorpej ptp = uvm_pagelookup(&pmap->pm_obj, va);
3281 1.17 chris #ifdef DIAGNOSTIC
3282 1.57 thorpej if (ptp == NULL)
3283 1.57 thorpej panic("pmap_get_ptp: unmanaged user PTP");
3284 1.17 chris #endif
3285 1.70 thorpej pmap->pm_ptphint = ptp;
3286 1.57 thorpej return(ptp);
3287 1.57 thorpej }
3288 1.17 chris
3289 1.57 thorpej /* allocate a new PTP (updates ptphint) */
3290 1.57 thorpej return(pmap_alloc_ptp(pmap, va));
3291 1.17 chris }
3292 1.17 chris
3293 1.17 chris /*
3294 1.17 chris * pmap_alloc_ptp: allocate a PTP for a PMAP
3295 1.17 chris *
3296 1.17 chris * => pmap should already be locked by caller
3297 1.17 chris * => we use the ptp's wire_count to count the number of active mappings
3298 1.17 chris * in the PTP (we start it at one to prevent any chance this PTP
3299 1.17 chris * will ever leak onto the active/inactive queues)
3300 1.17 chris */
3301 1.17 chris
3302 1.17 chris /*__inline */ static struct vm_page *
3303 1.57 thorpej pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3304 1.17 chris {
3305 1.17 chris struct vm_page *ptp;
3306 1.17 chris
3307 1.17 chris ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3308 1.17 chris UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3309 1.57 thorpej if (ptp == NULL)
3310 1.17 chris return (NULL);
3311 1.17 chris
3312 1.17 chris /* got one! */
3313 1.17 chris ptp->flags &= ~PG_BUSY; /* never busy */
3314 1.17 chris ptp->wire_count = 1; /* no mappings yet */
3315 1.17 chris pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3316 1.17 chris pmap->pm_stats.resident_count++; /* count PTP as resident */
3317 1.70 thorpej pmap->pm_ptphint = ptp;
3318 1.17 chris return (ptp);
3319 1.1 matt }
3320 1.48 chris
3321 1.48 chris vaddr_t
3322 1.73 thorpej pmap_growkernel(vaddr_t maxkvaddr)
3323 1.48 chris {
3324 1.48 chris struct pmap *kpm = pmap_kernel(), *pm;
3325 1.48 chris int s;
3326 1.48 chris paddr_t ptaddr;
3327 1.48 chris struct vm_page *ptp;
3328 1.48 chris
3329 1.48 chris if (maxkvaddr <= pmap_curmaxkvaddr)
3330 1.48 chris goto out; /* we are OK */
3331 1.48 chris NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3332 1.48 chris pmap_curmaxkvaddr, maxkvaddr));
3333 1.48 chris
3334 1.48 chris /*
3335 1.48 chris * whoops! we need to add kernel PTPs
3336 1.48 chris */
3337 1.48 chris
3338 1.48 chris s = splhigh(); /* to be safe */
3339 1.48 chris simple_lock(&kpm->pm_obj.vmobjlock);
3340 1.48 chris /* due to the way the arm pmap works we map 4MB at a time */
3341 1.70 thorpej for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3342 1.70 thorpej pmap_curmaxkvaddr += 4 * NBPD) {
3343 1.48 chris
3344 1.48 chris if (uvm.page_init_done == FALSE) {
3345 1.48 chris
3346 1.48 chris /*
3347 1.48 chris * we're growing the kernel pmap early (from
3348 1.48 chris * uvm_pageboot_alloc()). this case must be
3349 1.48 chris * handled a little differently.
3350 1.48 chris */
3351 1.48 chris
3352 1.48 chris if (uvm_page_physget(&ptaddr) == FALSE)
3353 1.48 chris panic("pmap_growkernel: out of memory");
3354 1.48 chris pmap_zero_page(ptaddr);
3355 1.48 chris
3356 1.48 chris /* map this page in */
3357 1.70 thorpej pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3358 1.48 chris
3359 1.48 chris /* count PTP as resident */
3360 1.48 chris kpm->pm_stats.resident_count++;
3361 1.48 chris continue;
3362 1.48 chris }
3363 1.48 chris
3364 1.48 chris /*
3365 1.48 chris * THIS *MUST* BE CODED SO AS TO WORK IN THE
3366 1.48 chris * pmap_initialized == FALSE CASE! WE MAY BE
3367 1.48 chris * INVOKED WHILE pmap_init() IS RUNNING!
3368 1.48 chris */
3369 1.48 chris
3370 1.70 thorpej if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3371 1.48 chris panic("pmap_growkernel: alloc ptp failed");
3372 1.48 chris
3373 1.48 chris /* distribute new kernel PTP to all active pmaps */
3374 1.48 chris simple_lock(&pmaps_lock);
3375 1.48 chris LIST_FOREACH(pm, &pmaps, pm_list) {
3376 1.70 thorpej pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3377 1.70 thorpej VM_PAGE_TO_PHYS(ptp), TRUE);
3378 1.48 chris }
3379 1.48 chris
3380 1.48 chris simple_unlock(&pmaps_lock);
3381 1.48 chris }
3382 1.48 chris
3383 1.48 chris /*
3384 1.48 chris * flush out the cache, expensive but growkernel will happen so
3385 1.48 chris * rarely
3386 1.48 chris */
3387 1.48 chris cpu_tlb_flushD();
3388 1.48 chris cpu_cpwait();
3389 1.48 chris
3390 1.48 chris simple_unlock(&kpm->pm_obj.vmobjlock);
3391 1.48 chris splx(s);
3392 1.48 chris
3393 1.48 chris out:
3394 1.48 chris return (pmap_curmaxkvaddr);
3395 1.48 chris }
3396 1.48 chris
3397 1.48 chris
3398 1.1 matt
3399 1.40 thorpej /************************ Bootstrapping routines ****************************/
3400 1.40 thorpej
3401 1.40 thorpej /*
3402 1.46 thorpej * This list exists for the benefit of pmap_map_chunk(). It keeps track
3403 1.46 thorpej * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3404 1.46 thorpej * find them as necessary.
3405 1.46 thorpej *
3406 1.46 thorpej * Note that the data on this list is not valid after initarm() returns.
3407 1.46 thorpej */
3408 1.46 thorpej SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3409 1.46 thorpej
3410 1.46 thorpej static vaddr_t
3411 1.46 thorpej kernel_pt_lookup(paddr_t pa)
3412 1.46 thorpej {
3413 1.46 thorpej pv_addr_t *pv;
3414 1.46 thorpej
3415 1.46 thorpej SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3416 1.46 thorpej if (pv->pv_pa == pa)
3417 1.46 thorpej return (pv->pv_va);
3418 1.46 thorpej }
3419 1.46 thorpej return (0);
3420 1.46 thorpej }
3421 1.46 thorpej
3422 1.46 thorpej /*
3423 1.40 thorpej * pmap_map_section:
3424 1.40 thorpej *
3425 1.40 thorpej * Create a single section mapping.
3426 1.40 thorpej */
3427 1.40 thorpej void
3428 1.40 thorpej pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3429 1.40 thorpej {
3430 1.40 thorpej pd_entry_t *pde = (pd_entry_t *) l1pt;
3431 1.43 thorpej pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3432 1.43 thorpej pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3433 1.40 thorpej
3434 1.40 thorpej KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
3435 1.40 thorpej
3436 1.43 thorpej pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
3437 1.41 thorpej }
3438 1.41 thorpej
3439 1.41 thorpej /*
3440 1.41 thorpej * pmap_map_entry:
3441 1.41 thorpej *
3442 1.41 thorpej * Create a single page mapping.
3443 1.41 thorpej */
3444 1.41 thorpej void
3445 1.47 thorpej pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3446 1.41 thorpej {
3447 1.47 thorpej pd_entry_t *pde = (pd_entry_t *) l1pt;
3448 1.41 thorpej pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3449 1.41 thorpej pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3450 1.47 thorpej pt_entry_t *pte;
3451 1.41 thorpej
3452 1.41 thorpej KASSERT(((va | pa) & PGOFSET) == 0);
3453 1.41 thorpej
3454 1.47 thorpej if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3455 1.47 thorpej panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3456 1.47 thorpej
3457 1.47 thorpej pte = (pt_entry_t *)
3458 1.47 thorpej kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3459 1.47 thorpej if (pte == NULL)
3460 1.47 thorpej panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3461 1.47 thorpej
3462 1.41 thorpej pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
3463 1.42 thorpej }
3464 1.42 thorpej
3465 1.42 thorpej /*
3466 1.42 thorpej * pmap_link_l2pt:
3467 1.42 thorpej *
3468 1.42 thorpej * Link the L2 page table specified by "pa" into the L1
3469 1.42 thorpej * page table at the slot for "va".
3470 1.42 thorpej */
3471 1.42 thorpej void
3472 1.46 thorpej pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3473 1.42 thorpej {
3474 1.42 thorpej pd_entry_t *pde = (pd_entry_t *) l1pt;
3475 1.42 thorpej u_int slot = va >> PDSHIFT;
3476 1.42 thorpej
3477 1.46 thorpej KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3478 1.46 thorpej
3479 1.46 thorpej pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
3480 1.46 thorpej pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
3481 1.46 thorpej pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
3482 1.46 thorpej pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
3483 1.42 thorpej
3484 1.46 thorpej SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3485 1.43 thorpej }
3486 1.43 thorpej
3487 1.43 thorpej /*
3488 1.43 thorpej * pmap_map_chunk:
3489 1.43 thorpej *
3490 1.43 thorpej * Map a chunk of memory using the most efficient mappings
3491 1.43 thorpej * possible (section, large page, small page) into the
3492 1.43 thorpej * provided L1 and L2 tables at the specified virtual address.
3493 1.43 thorpej */
3494 1.43 thorpej vsize_t
3495 1.46 thorpej pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3496 1.46 thorpej int prot, int cache)
3497 1.43 thorpej {
3498 1.43 thorpej pd_entry_t *pde = (pd_entry_t *) l1pt;
3499 1.43 thorpej pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
3500 1.43 thorpej pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
3501 1.46 thorpej pt_entry_t *pte;
3502 1.43 thorpej vsize_t resid;
3503 1.43 thorpej int i;
3504 1.43 thorpej
3505 1.43 thorpej resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3506 1.43 thorpej
3507 1.44 thorpej if (l1pt == 0)
3508 1.44 thorpej panic("pmap_map_chunk: no L1 table provided");
3509 1.44 thorpej
3510 1.43 thorpej #ifdef VERBOSE_INIT_ARM
3511 1.43 thorpej printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3512 1.43 thorpej "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3513 1.43 thorpej #endif
3514 1.43 thorpej
3515 1.43 thorpej size = resid;
3516 1.43 thorpej
3517 1.43 thorpej while (resid > 0) {
3518 1.43 thorpej /* See if we can use a section mapping. */
3519 1.44 thorpej if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
3520 1.43 thorpej resid >= L1_SEC_SIZE) {
3521 1.43 thorpej #ifdef VERBOSE_INIT_ARM
3522 1.43 thorpej printf("S");
3523 1.43 thorpej #endif
3524 1.43 thorpej pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
3525 1.43 thorpej va += L1_SEC_SIZE;
3526 1.43 thorpej pa += L1_SEC_SIZE;
3527 1.43 thorpej resid -= L1_SEC_SIZE;
3528 1.43 thorpej continue;
3529 1.43 thorpej }
3530 1.45 thorpej
3531 1.45 thorpej /*
3532 1.45 thorpej * Ok, we're going to use an L2 table. Make sure
3533 1.45 thorpej * one is actually in the corresponding L1 slot
3534 1.45 thorpej * for the current VA.
3535 1.45 thorpej */
3536 1.45 thorpej if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
3537 1.46 thorpej panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3538 1.46 thorpej
3539 1.46 thorpej pte = (pt_entry_t *)
3540 1.46 thorpej kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
3541 1.46 thorpej if (pte == NULL)
3542 1.46 thorpej panic("pmap_map_chunk: can't find L2 table for VA"
3543 1.46 thorpej "0x%08lx", va);
3544 1.43 thorpej
3545 1.43 thorpej /* See if we can use a L2 large page mapping. */
3546 1.43 thorpej if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
3547 1.43 thorpej resid >= L2_LPAGE_SIZE) {
3548 1.43 thorpej #ifdef VERBOSE_INIT_ARM
3549 1.43 thorpej printf("L");
3550 1.43 thorpej #endif
3551 1.43 thorpej for (i = 0; i < 16; i++) {
3552 1.43 thorpej pte[((va >> PGSHIFT) & 0x3f0) + i] =
3553 1.43 thorpej L2_LPTE(pa, ap, fl);
3554 1.43 thorpej }
3555 1.43 thorpej va += L2_LPAGE_SIZE;
3556 1.43 thorpej pa += L2_LPAGE_SIZE;
3557 1.43 thorpej resid -= L2_LPAGE_SIZE;
3558 1.43 thorpej continue;
3559 1.43 thorpej }
3560 1.43 thorpej
3561 1.43 thorpej /* Use a small page mapping. */
3562 1.43 thorpej #ifdef VERBOSE_INIT_ARM
3563 1.43 thorpej printf("P");
3564 1.43 thorpej #endif
3565 1.43 thorpej pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
3566 1.43 thorpej va += NBPG;
3567 1.43 thorpej pa += NBPG;
3568 1.43 thorpej resid -= NBPG;
3569 1.43 thorpej }
3570 1.43 thorpej #ifdef VERBOSE_INIT_ARM
3571 1.43 thorpej printf("\n");
3572 1.43 thorpej #endif
3573 1.43 thorpej return (size);
3574 1.40 thorpej }
3575