Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.75
      1  1.75   reinoud /*	$NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $	*/
      2  1.12     chris 
      3  1.12     chris /*
      4  1.49   thorpej  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  1.12     chris  * Copyright (c) 2001 Richard Earnshaw
      6  1.12     chris  * Copyright (c) 2001 Christopher Gilbert
      7  1.12     chris  * All rights reserved.
      8  1.12     chris  *
      9  1.12     chris  * 1. Redistributions of source code must retain the above copyright
     10  1.12     chris  *    notice, this list of conditions and the following disclaimer.
     11  1.12     chris  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.12     chris  *    notice, this list of conditions and the following disclaimer in the
     13  1.12     chris  *    documentation and/or other materials provided with the distribution.
     14  1.12     chris  * 3. The name of the company nor the name of the author may be used to
     15  1.12     chris  *    endorse or promote products derived from this software without specific
     16  1.12     chris  *    prior written permission.
     17  1.12     chris  *
     18  1.12     chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  1.12     chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  1.12     chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  1.12     chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  1.12     chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  1.12     chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  1.12     chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.12     chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.12     chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.12     chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.12     chris  * SUCH DAMAGE.
     29  1.12     chris  */
     30   1.1      matt 
     31   1.1      matt /*-
     32   1.1      matt  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33   1.1      matt  * All rights reserved.
     34   1.1      matt  *
     35   1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
     36   1.1      matt  * by Charles M. Hannum.
     37   1.1      matt  *
     38   1.1      matt  * Redistribution and use in source and binary forms, with or without
     39   1.1      matt  * modification, are permitted provided that the following conditions
     40   1.1      matt  * are met:
     41   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     42   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     43   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     44   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     45   1.1      matt  *    documentation and/or other materials provided with the distribution.
     46   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     47   1.1      matt  *    must display the following acknowledgement:
     48   1.1      matt  *        This product includes software developed by the NetBSD
     49   1.1      matt  *        Foundation, Inc. and its contributors.
     50   1.1      matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51   1.1      matt  *    contributors may be used to endorse or promote products derived
     52   1.1      matt  *    from this software without specific prior written permission.
     53   1.1      matt  *
     54   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55   1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     65   1.1      matt  */
     66   1.1      matt 
     67   1.1      matt /*
     68   1.1      matt  * Copyright (c) 1994-1998 Mark Brinicombe.
     69   1.1      matt  * Copyright (c) 1994 Brini.
     70   1.1      matt  * All rights reserved.
     71   1.1      matt  *
     72   1.1      matt  * This code is derived from software written for Brini by Mark Brinicombe
     73   1.1      matt  *
     74   1.1      matt  * Redistribution and use in source and binary forms, with or without
     75   1.1      matt  * modification, are permitted provided that the following conditions
     76   1.1      matt  * are met:
     77   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     78   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     79   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     80   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     81   1.1      matt  *    documentation and/or other materials provided with the distribution.
     82   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     83   1.1      matt  *    must display the following acknowledgement:
     84   1.1      matt  *	This product includes software developed by Mark Brinicombe.
     85   1.1      matt  * 4. The name of the author may not be used to endorse or promote products
     86   1.1      matt  *    derived from this software without specific prior written permission.
     87   1.1      matt  *
     88   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89   1.1      matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90   1.1      matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91   1.1      matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92   1.1      matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93   1.1      matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94   1.1      matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95   1.1      matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96   1.1      matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97   1.1      matt  *
     98   1.1      matt  * RiscBSD kernel project
     99   1.1      matt  *
    100   1.1      matt  * pmap.c
    101   1.1      matt  *
    102   1.1      matt  * Machine dependant vm stuff
    103   1.1      matt  *
    104   1.1      matt  * Created      : 20/09/94
    105   1.1      matt  */
    106   1.1      matt 
    107   1.1      matt /*
    108   1.1      matt  * Performance improvements, UVM changes, overhauls and part-rewrites
    109   1.1      matt  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110   1.1      matt  */
    111   1.1      matt 
    112   1.1      matt /*
    113   1.1      matt  * The dram block info is currently referenced from the bootconfig.
    114   1.1      matt  * This should be placed in a separate structure.
    115   1.1      matt  */
    116   1.1      matt 
    117   1.1      matt /*
    118   1.1      matt  * Special compilation symbols
    119   1.1      matt  * PMAP_DEBUG		- Build in pmap_debug_level code
    120   1.1      matt  */
    121   1.1      matt 
    122   1.1      matt /* Include header files */
    123   1.1      matt 
    124   1.1      matt #include "opt_pmap_debug.h"
    125   1.1      matt #include "opt_ddb.h"
    126   1.1      matt 
    127   1.1      matt #include <sys/types.h>
    128   1.1      matt #include <sys/param.h>
    129   1.1      matt #include <sys/kernel.h>
    130   1.1      matt #include <sys/systm.h>
    131   1.1      matt #include <sys/proc.h>
    132   1.1      matt #include <sys/malloc.h>
    133   1.1      matt #include <sys/user.h>
    134  1.10     chris #include <sys/pool.h>
    135  1.16     chris #include <sys/cdefs.h>
    136  1.16     chris 
    137   1.1      matt #include <uvm/uvm.h>
    138   1.1      matt 
    139   1.1      matt #include <machine/bootconfig.h>
    140   1.1      matt #include <machine/bus.h>
    141   1.1      matt #include <machine/pmap.h>
    142   1.1      matt #include <machine/pcb.h>
    143   1.1      matt #include <machine/param.h>
    144  1.32   thorpej #include <arm/arm32/katelib.h>
    145  1.16     chris 
    146  1.75   reinoud __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2002/04/03 15:59:58 reinoud Exp $");
    147   1.1      matt #ifdef PMAP_DEBUG
    148   1.1      matt #define	PDEBUG(_lev_,_stat_) \
    149   1.1      matt 	if (pmap_debug_level >= (_lev_)) \
    150   1.1      matt         	((_stat_))
    151   1.1      matt int pmap_debug_level = -2;
    152  1.48     chris void pmap_dump_pvlist(vaddr_t phys, char *m);
    153  1.17     chris 
    154  1.17     chris /*
    155  1.17     chris  * for switching to potentially finer grained debugging
    156  1.17     chris  */
    157  1.17     chris #define	PDB_FOLLOW	0x0001
    158  1.17     chris #define	PDB_INIT	0x0002
    159  1.17     chris #define	PDB_ENTER	0x0004
    160  1.17     chris #define	PDB_REMOVE	0x0008
    161  1.17     chris #define	PDB_CREATE	0x0010
    162  1.17     chris #define	PDB_PTPAGE	0x0020
    163  1.48     chris #define	PDB_GROWKERN	0x0040
    164  1.17     chris #define	PDB_BITS	0x0080
    165  1.17     chris #define	PDB_COLLECT	0x0100
    166  1.17     chris #define	PDB_PROTECT	0x0200
    167  1.48     chris #define	PDB_MAP_L1	0x0400
    168  1.17     chris #define	PDB_BOOTSTRAP	0x1000
    169  1.17     chris #define	PDB_PARANOIA	0x2000
    170  1.17     chris #define	PDB_WIRING	0x4000
    171  1.17     chris #define	PDB_PVDUMP	0x8000
    172  1.17     chris 
    173  1.17     chris int debugmap = 0;
    174  1.17     chris int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175  1.17     chris #define	NPDEBUG(_lev_,_stat_) \
    176  1.17     chris 	if (pmapdebug & (_lev_)) \
    177  1.17     chris         	((_stat_))
    178  1.17     chris 
    179   1.1      matt #else	/* PMAP_DEBUG */
    180   1.1      matt #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181  1.48     chris #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182   1.1      matt #endif	/* PMAP_DEBUG */
    183   1.1      matt 
    184   1.1      matt struct pmap     kernel_pmap_store;
    185   1.1      matt 
    186  1.10     chris /*
    187  1.48     chris  * linked list of all non-kernel pmaps
    188  1.48     chris  */
    189  1.48     chris 
    190  1.69   thorpej static LIST_HEAD(, pmap) pmaps;
    191  1.48     chris 
    192  1.48     chris /*
    193  1.10     chris  * pool that pmap structures are allocated from
    194  1.10     chris  */
    195  1.10     chris 
    196  1.10     chris struct pool pmap_pmap_pool;
    197  1.10     chris 
    198  1.54   thorpej static pt_entry_t *csrc_pte, *cdst_pte;
    199  1.54   thorpej static vaddr_t csrcp, cdstp;
    200  1.54   thorpej 
    201   1.1      matt char *memhook;
    202   1.1      matt extern caddr_t msgbufaddr;
    203   1.1      matt 
    204   1.1      matt boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205  1.17     chris /*
    206  1.17     chris  * locking data structures
    207  1.17     chris  */
    208   1.1      matt 
    209  1.17     chris static struct lock pmap_main_lock;
    210  1.17     chris static struct simplelock pvalloc_lock;
    211  1.48     chris static struct simplelock pmaps_lock;
    212  1.17     chris #ifdef LOCKDEBUG
    213  1.17     chris #define PMAP_MAP_TO_HEAD_LOCK() \
    214  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215  1.17     chris #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217  1.17     chris 
    218  1.17     chris #define PMAP_HEAD_TO_MAP_LOCK() \
    219  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220  1.17     chris #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222  1.17     chris #else
    223  1.17     chris #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224  1.17     chris #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225  1.17     chris #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226  1.17     chris #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227  1.17     chris #endif /* LOCKDEBUG */
    228  1.17     chris 
    229  1.17     chris /*
    230  1.17     chris  * pv_page management structures: locked by pvalloc_lock
    231  1.17     chris  */
    232   1.1      matt 
    233  1.17     chris TAILQ_HEAD(pv_pagelist, pv_page);
    234  1.17     chris static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235  1.17     chris static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236  1.17     chris static int pv_nfpvents;			/* # of free pv entries */
    237  1.17     chris static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238  1.17     chris static vaddr_t pv_cachedva;		/* cached VA for later use */
    239  1.17     chris 
    240  1.17     chris #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241  1.17     chris #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242  1.17     chris 					/* high water mark */
    243  1.17     chris 
    244  1.17     chris /*
    245  1.17     chris  * local prototypes
    246  1.17     chris  */
    247  1.17     chris 
    248  1.17     chris static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249  1.17     chris static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250  1.17     chris #define ALLOCPV_NEED	0	/* need PV now */
    251  1.17     chris #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252  1.17     chris #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253  1.17     chris static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254  1.49   thorpej static void		 pmap_enter_pv __P((struct vm_page *,
    255  1.17     chris 					    struct pv_entry *, struct pmap *,
    256  1.17     chris 					    vaddr_t, struct vm_page *, int));
    257  1.17     chris static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258  1.17     chris static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259  1.17     chris static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260  1.17     chris static void		 pmap_free_pvpage __P((void));
    261  1.17     chris static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262  1.49   thorpej static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263  1.17     chris 			vaddr_t));
    264  1.17     chris #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265  1.17     chris #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266   1.1      matt 
    267  1.49   thorpej static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268  1.33     chris 	u_int, u_int));
    269  1.33     chris 
    270  1.69   thorpej /*
    271  1.69   thorpej  * Structure that describes and L1 table.
    272  1.69   thorpej  */
    273  1.69   thorpej struct l1pt {
    274  1.69   thorpej 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    275  1.69   thorpej 	struct pglist		pt_plist;	/* Allocated page list */
    276  1.69   thorpej 	vaddr_t			pt_va;		/* Allocated virtual address */
    277  1.69   thorpej 	int			pt_flags;	/* Flags */
    278  1.69   thorpej };
    279  1.69   thorpej #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    280  1.69   thorpej #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    281  1.69   thorpej #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    282  1.69   thorpej 
    283  1.33     chris static void pmap_free_l1pt __P((struct l1pt *));
    284  1.33     chris static int pmap_allocpagedir __P((struct pmap *));
    285  1.33     chris static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    286  1.49   thorpej static void pmap_remove_all __P((struct vm_page *));
    287  1.33     chris 
    288  1.57   thorpej static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    289  1.57   thorpej static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    290  1.49   thorpej __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    291  1.17     chris 
    292   1.2      matt extern paddr_t physical_start;
    293   1.2      matt extern paddr_t physical_freestart;
    294   1.2      matt extern paddr_t physical_end;
    295   1.2      matt extern paddr_t physical_freeend;
    296   1.1      matt extern unsigned int free_pages;
    297   1.1      matt extern int max_processes;
    298   1.1      matt 
    299  1.54   thorpej vaddr_t virtual_avail;
    300   1.1      matt vaddr_t virtual_end;
    301  1.48     chris vaddr_t pmap_curmaxkvaddr;
    302   1.1      matt 
    303   1.1      matt vaddr_t avail_start;
    304   1.1      matt vaddr_t avail_end;
    305   1.1      matt 
    306   1.1      matt extern pv_addr_t systempage;
    307   1.1      matt 
    308   1.1      matt /* Variables used by the L1 page table queue code */
    309   1.1      matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
    310  1.73   thorpej static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    311  1.73   thorpej static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    312  1.73   thorpej static int l1pt_static_create_count;	    /* static l1 items created */
    313  1.73   thorpej static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    314  1.73   thorpej static int l1pt_queue_count;		    /* items in the l1 queue */
    315  1.73   thorpej static int l1pt_create_count;		    /* stat - L1's create count */
    316  1.73   thorpej static int l1pt_reuse_count;		    /* stat - L1's reused count */
    317   1.1      matt 
    318   1.1      matt /* Local function prototypes (not used outside this file) */
    319  1.15     chris void pmap_pinit __P((struct pmap *));
    320  1.15     chris void pmap_freepagedir __P((struct pmap *));
    321   1.1      matt 
    322   1.1      matt /* Other function prototypes */
    323   1.1      matt extern void bzero_page __P((vaddr_t));
    324   1.1      matt extern void bcopy_page __P((vaddr_t, vaddr_t));
    325   1.1      matt 
    326   1.1      matt struct l1pt *pmap_alloc_l1pt __P((void));
    327  1.15     chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    328  1.17     chris      vaddr_t l2pa, boolean_t));
    329   1.1      matt 
    330  1.11     chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    331  1.17     chris static void pmap_unmap_ptes __P((struct pmap *));
    332  1.11     chris 
    333  1.49   thorpej __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    334  1.25  rearnsha     pt_entry_t *, boolean_t));
    335  1.49   thorpej static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    336  1.25  rearnsha     pt_entry_t *, boolean_t));
    337  1.49   thorpej static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    338  1.25  rearnsha     pt_entry_t *, boolean_t));
    339  1.11     chris 
    340  1.17     chris /*
    341  1.27  rearnsha  * Cache enable bits in PTE to use on pages that are cacheable.
    342  1.27  rearnsha  * On most machines this is cacheable/bufferable, but on some, eg arm10, we
    343  1.27  rearnsha  * can chose between write-through and write-back cacheing.
    344  1.27  rearnsha  */
    345  1.27  rearnsha pt_entry_t pte_cache_mode = (PT_C | PT_B);
    346  1.27  rearnsha 
    347  1.27  rearnsha /*
    348  1.17     chris  * real definition of pv_entry.
    349  1.17     chris  */
    350  1.17     chris 
    351  1.17     chris struct pv_entry {
    352  1.17     chris 	struct pv_entry *pv_next;       /* next pv_entry */
    353  1.17     chris 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    354  1.17     chris 	vaddr_t         pv_va;          /* virtual address for mapping */
    355  1.17     chris 	int             pv_flags;       /* flags */
    356  1.17     chris 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    357  1.17     chris };
    358  1.17     chris 
    359  1.17     chris /*
    360  1.17     chris  * pv_entrys are dynamically allocated in chunks from a single page.
    361  1.17     chris  * we keep track of how many pv_entrys are in use for each page and
    362  1.17     chris  * we can free pv_entry pages if needed.  there is one lock for the
    363  1.17     chris  * entire allocation system.
    364  1.17     chris  */
    365  1.17     chris 
    366  1.17     chris struct pv_page_info {
    367  1.17     chris 	TAILQ_ENTRY(pv_page) pvpi_list;
    368  1.17     chris 	struct pv_entry *pvpi_pvfree;
    369  1.17     chris 	int pvpi_nfree;
    370  1.17     chris };
    371  1.17     chris 
    372  1.17     chris /*
    373  1.17     chris  * number of pv_entry's in a pv_page
    374  1.17     chris  * (note: won't work on systems where NPBG isn't a constant)
    375  1.17     chris  */
    376  1.17     chris 
    377  1.17     chris #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    378  1.17     chris 			sizeof(struct pv_entry))
    379  1.17     chris 
    380  1.17     chris /*
    381  1.17     chris  * a pv_page: where pv_entrys are allocated from
    382  1.17     chris  */
    383  1.17     chris 
    384  1.17     chris struct pv_page {
    385  1.17     chris 	struct pv_page_info pvinfo;
    386  1.17     chris 	struct pv_entry pvents[PVE_PER_PVPAGE];
    387  1.17     chris };
    388  1.17     chris 
    389   1.1      matt #ifdef MYCROFT_HACK
    390   1.1      matt int mycroft_hack = 0;
    391   1.1      matt #endif
    392   1.1      matt 
    393   1.1      matt /* Function to set the debug level of the pmap code */
    394   1.1      matt 
    395   1.1      matt #ifdef PMAP_DEBUG
    396   1.1      matt void
    397  1.73   thorpej pmap_debug(int level)
    398   1.1      matt {
    399   1.1      matt 	pmap_debug_level = level;
    400   1.1      matt 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    401   1.1      matt }
    402   1.1      matt #endif	/* PMAP_DEBUG */
    403   1.1      matt 
    404  1.22     chris __inline static boolean_t
    405  1.17     chris pmap_is_curpmap(struct pmap *pmap)
    406  1.17     chris {
    407  1.58   thorpej 
    408  1.58   thorpej 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    409  1.58   thorpej 	    pmap == pmap_kernel())
    410  1.58   thorpej 		return (TRUE);
    411  1.58   thorpej 
    412  1.58   thorpej 	return (FALSE);
    413  1.17     chris }
    414  1.58   thorpej 
    415   1.1      matt #include "isadma.h"
    416   1.1      matt 
    417   1.1      matt #if NISADMA > 0
    418   1.1      matt /*
    419   1.1      matt  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    420   1.1      matt  * pages into the system, memory intersects with any of these ranges,
    421   1.1      matt  * the intersecting memory will be loaded into a lower-priority free list.
    422   1.1      matt  */
    423   1.1      matt bus_dma_segment_t *pmap_isa_dma_ranges;
    424   1.1      matt int pmap_isa_dma_nranges;
    425   1.1      matt 
    426   1.1      matt /*
    427   1.1      matt  * Check if a memory range intersects with an ISA DMA range, and
    428   1.1      matt  * return the page-rounded intersection if it does.  The intersection
    429   1.1      matt  * will be placed on a lower-priority free list.
    430   1.1      matt  */
    431  1.73   thorpej static boolean_t
    432  1.73   thorpej pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
    433  1.73   thorpej     psize_t *sizep)
    434   1.1      matt {
    435   1.1      matt 	bus_dma_segment_t *ds;
    436   1.1      matt 	int i;
    437   1.1      matt 
    438   1.1      matt 	if (pmap_isa_dma_ranges == NULL)
    439   1.1      matt 		return (FALSE);
    440   1.1      matt 
    441   1.1      matt 	for (i = 0, ds = pmap_isa_dma_ranges;
    442   1.1      matt 	     i < pmap_isa_dma_nranges; i++, ds++) {
    443   1.1      matt 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    444   1.1      matt 			/*
    445   1.1      matt 			 * Beginning of region intersects with this range.
    446   1.1      matt 			 */
    447   1.1      matt 			*pap = trunc_page(pa);
    448   1.1      matt 			*sizep = round_page(min(pa + size,
    449   1.1      matt 			    ds->ds_addr + ds->ds_len) - pa);
    450   1.1      matt 			return (TRUE);
    451   1.1      matt 		}
    452   1.1      matt 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    453   1.1      matt 			/*
    454   1.1      matt 			 * End of region intersects with this range.
    455   1.1      matt 			 */
    456   1.1      matt 			*pap = trunc_page(ds->ds_addr);
    457   1.1      matt 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    458   1.1      matt 			    ds->ds_len));
    459   1.1      matt 			return (TRUE);
    460   1.1      matt 		}
    461   1.1      matt 	}
    462   1.1      matt 
    463   1.1      matt 	/*
    464   1.1      matt 	 * No intersection found.
    465   1.1      matt 	 */
    466   1.1      matt 	return (FALSE);
    467   1.1      matt }
    468   1.1      matt #endif /* NISADMA > 0 */
    469   1.1      matt 
    470   1.1      matt /*
    471  1.17     chris  * p v _ e n t r y   f u n c t i o n s
    472  1.17     chris  */
    473  1.17     chris 
    474  1.17     chris /*
    475  1.17     chris  * pv_entry allocation functions:
    476  1.17     chris  *   the main pv_entry allocation functions are:
    477  1.17     chris  *     pmap_alloc_pv: allocate a pv_entry structure
    478  1.17     chris  *     pmap_free_pv: free one pv_entry
    479  1.17     chris  *     pmap_free_pvs: free a list of pv_entrys
    480  1.17     chris  *
    481  1.17     chris  * the rest are helper functions
    482   1.1      matt  */
    483   1.1      matt 
    484   1.1      matt /*
    485  1.17     chris  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    486  1.17     chris  * => we lock pvalloc_lock
    487  1.17     chris  * => if we fail, we call out to pmap_alloc_pvpage
    488  1.17     chris  * => 3 modes:
    489  1.17     chris  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    490  1.17     chris  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    491  1.17     chris  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    492  1.17     chris  *			one now
    493  1.17     chris  *
    494  1.17     chris  * "try" is for optional functions like pmap_copy().
    495   1.1      matt  */
    496  1.17     chris 
    497  1.17     chris __inline static struct pv_entry *
    498  1.73   thorpej pmap_alloc_pv(struct pmap *pmap, int mode)
    499   1.1      matt {
    500  1.17     chris 	struct pv_page *pvpage;
    501  1.17     chris 	struct pv_entry *pv;
    502  1.17     chris 
    503  1.17     chris 	simple_lock(&pvalloc_lock);
    504  1.17     chris 
    505  1.51     chris 	pvpage = TAILQ_FIRST(&pv_freepages);
    506  1.51     chris 
    507  1.51     chris 	if (pvpage != NULL) {
    508  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;
    509  1.17     chris 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    510  1.17     chris 			/* nothing left in this one? */
    511  1.17     chris 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    512  1.17     chris 		}
    513  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    514  1.51     chris 		KASSERT(pv);
    515  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    516  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    517  1.17     chris 	} else {
    518  1.17     chris 		pv = NULL;		/* need more of them */
    519  1.17     chris 	}
    520  1.17     chris 
    521  1.17     chris 	/*
    522  1.17     chris 	 * if below low water mark or we didn't get a pv_entry we try and
    523  1.17     chris 	 * create more pv_entrys ...
    524  1.17     chris 	 */
    525  1.17     chris 
    526  1.17     chris 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    527  1.17     chris 		if (pv == NULL)
    528  1.17     chris 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    529  1.17     chris 					       mode : ALLOCPV_NEED);
    530  1.17     chris 		else
    531  1.17     chris 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    532  1.17     chris 	}
    533  1.17     chris 
    534  1.17     chris 	simple_unlock(&pvalloc_lock);
    535  1.17     chris 	return(pv);
    536  1.17     chris }
    537  1.17     chris 
    538  1.17     chris /*
    539  1.17     chris  * pmap_alloc_pvpage: maybe allocate a new pvpage
    540  1.17     chris  *
    541  1.17     chris  * if need_entry is false: try and allocate a new pv_page
    542  1.17     chris  * if need_entry is true: try and allocate a new pv_page and return a
    543  1.17     chris  *	new pv_entry from it.   if we are unable to allocate a pv_page
    544  1.17     chris  *	we make a last ditch effort to steal a pv_page from some other
    545  1.17     chris  *	mapping.    if that fails, we panic...
    546  1.17     chris  *
    547  1.17     chris  * => we assume that the caller holds pvalloc_lock
    548  1.17     chris  */
    549  1.17     chris 
    550  1.17     chris static struct pv_entry *
    551  1.73   thorpej pmap_alloc_pvpage(struct pmap *pmap, int mode)
    552  1.17     chris {
    553  1.17     chris 	struct vm_page *pg;
    554  1.17     chris 	struct pv_page *pvpage;
    555   1.1      matt 	struct pv_entry *pv;
    556  1.17     chris 	int s;
    557  1.17     chris 
    558  1.17     chris 	/*
    559  1.17     chris 	 * if we need_entry and we've got unused pv_pages, allocate from there
    560  1.17     chris 	 */
    561  1.17     chris 
    562  1.51     chris 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    563  1.51     chris 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    564  1.17     chris 
    565  1.17     chris 		/* move it to pv_freepages list */
    566  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    567  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    568  1.17     chris 
    569  1.17     chris 		/* allocate a pv_entry */
    570  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    571  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    572  1.51     chris 		KASSERT(pv);
    573  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    574  1.17     chris 
    575  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    576  1.17     chris 		return(pv);
    577  1.17     chris 	}
    578   1.1      matt 
    579   1.1      matt 	/*
    580  1.17     chris 	 *  see if we've got a cached unmapped VA that we can map a page in.
    581  1.17     chris 	 * if not, try to allocate one.
    582   1.1      matt 	 */
    583   1.1      matt 
    584  1.23       chs 
    585  1.17     chris 	if (pv_cachedva == 0) {
    586  1.23       chs 		s = splvm();
    587  1.23       chs 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    588  1.17     chris 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    589  1.23       chs 		splx(s);
    590  1.17     chris 		if (pv_cachedva == 0) {
    591  1.17     chris 			return (NULL);
    592   1.1      matt 		}
    593   1.1      matt 	}
    594  1.17     chris 
    595  1.23       chs 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    596  1.23       chs 	    UVM_PGA_USERESERVE);
    597  1.17     chris 
    598  1.17     chris 	if (pg == NULL)
    599  1.17     chris 		return (NULL);
    600  1.51     chris 	pg->flags &= ~PG_BUSY;	/* never busy */
    601  1.17     chris 
    602  1.17     chris 	/*
    603  1.17     chris 	 * add a mapping for our new pv_page and free its entrys (save one!)
    604  1.17     chris 	 *
    605  1.17     chris 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    606  1.17     chris 	 * pmap is already locked!  (...but entering the mapping is safe...)
    607  1.17     chris 	 */
    608  1.17     chris 
    609  1.51     chris 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    610  1.51     chris 		VM_PROT_READ|VM_PROT_WRITE);
    611  1.19     chris 	pmap_update(pmap_kernel());
    612  1.17     chris 	pvpage = (struct pv_page *) pv_cachedva;
    613  1.17     chris 	pv_cachedva = 0;
    614  1.17     chris 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    615   1.1      matt }
    616   1.1      matt 
    617   1.1      matt /*
    618  1.17     chris  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    619  1.17     chris  *
    620  1.17     chris  * => caller must hold pvalloc_lock
    621  1.17     chris  * => if need_entry is true, we allocate and return one pv_entry
    622   1.1      matt  */
    623   1.1      matt 
    624  1.17     chris static struct pv_entry *
    625  1.73   thorpej pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    626   1.1      matt {
    627  1.17     chris 	int tofree, lcv;
    628  1.17     chris 
    629  1.17     chris 	/* do we need to return one? */
    630  1.17     chris 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    631   1.1      matt 
    632  1.17     chris 	pvp->pvinfo.pvpi_pvfree = NULL;
    633  1.17     chris 	pvp->pvinfo.pvpi_nfree = tofree;
    634  1.17     chris 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    635  1.17     chris 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    636  1.17     chris 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    637   1.1      matt 	}
    638  1.17     chris 	if (need_entry)
    639  1.17     chris 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    640  1.17     chris 	else
    641  1.17     chris 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    642  1.17     chris 	pv_nfpvents += tofree;
    643  1.17     chris 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    644   1.1      matt }
    645   1.1      matt 
    646  1.17     chris /*
    647  1.17     chris  * pmap_free_pv_doit: actually free a pv_entry
    648  1.17     chris  *
    649  1.17     chris  * => do not call this directly!  instead use either
    650  1.17     chris  *    1. pmap_free_pv ==> free a single pv_entry
    651  1.17     chris  *    2. pmap_free_pvs => free a list of pv_entrys
    652  1.17     chris  * => we must be holding pvalloc_lock
    653  1.17     chris  */
    654  1.17     chris 
    655  1.17     chris __inline static void
    656  1.73   thorpej pmap_free_pv_doit(struct pv_entry *pv)
    657   1.1      matt {
    658  1.17     chris 	struct pv_page *pvp;
    659   1.1      matt 
    660  1.17     chris 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    661  1.17     chris 	pv_nfpvents++;
    662  1.17     chris 	pvp->pvinfo.pvpi_nfree++;
    663   1.1      matt 
    664  1.17     chris 	/* nfree == 1 => fully allocated page just became partly allocated */
    665  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == 1) {
    666  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    667   1.1      matt 	}
    668   1.1      matt 
    669  1.17     chris 	/* free it */
    670  1.17     chris 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    671  1.17     chris 	pvp->pvinfo.pvpi_pvfree = pv;
    672   1.1      matt 
    673  1.17     chris 	/*
    674  1.17     chris 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    675  1.17     chris 	 */
    676   1.1      matt 
    677  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    678  1.17     chris 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    679  1.17     chris 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    680   1.1      matt 	}
    681   1.1      matt }
    682   1.1      matt 
    683   1.1      matt /*
    684  1.17     chris  * pmap_free_pv: free a single pv_entry
    685  1.17     chris  *
    686  1.17     chris  * => we gain the pvalloc_lock
    687   1.1      matt  */
    688   1.1      matt 
    689  1.17     chris __inline static void
    690  1.73   thorpej pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    691   1.1      matt {
    692  1.17     chris 	simple_lock(&pvalloc_lock);
    693  1.17     chris 	pmap_free_pv_doit(pv);
    694  1.17     chris 
    695  1.17     chris 	/*
    696  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    697  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    698  1.17     chris 	 */
    699  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    700  1.17     chris 	    pmap != pmap_kernel())
    701  1.17     chris 		pmap_free_pvpage();
    702  1.17     chris 
    703  1.17     chris 	simple_unlock(&pvalloc_lock);
    704  1.17     chris }
    705   1.1      matt 
    706  1.17     chris /*
    707  1.17     chris  * pmap_free_pvs: free a list of pv_entrys
    708  1.17     chris  *
    709  1.17     chris  * => we gain the pvalloc_lock
    710  1.17     chris  */
    711   1.1      matt 
    712  1.17     chris __inline static void
    713  1.73   thorpej pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    714  1.17     chris {
    715  1.17     chris 	struct pv_entry *nextpv;
    716   1.1      matt 
    717  1.17     chris 	simple_lock(&pvalloc_lock);
    718   1.1      matt 
    719  1.17     chris 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    720  1.17     chris 		nextpv = pvs->pv_next;
    721  1.17     chris 		pmap_free_pv_doit(pvs);
    722   1.1      matt 	}
    723   1.1      matt 
    724  1.17     chris 	/*
    725  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    726  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    727  1.17     chris 	 */
    728  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    729  1.17     chris 	    pmap != pmap_kernel())
    730  1.17     chris 		pmap_free_pvpage();
    731   1.1      matt 
    732  1.17     chris 	simple_unlock(&pvalloc_lock);
    733   1.1      matt }
    734   1.1      matt 
    735   1.1      matt 
    736   1.1      matt /*
    737  1.17     chris  * pmap_free_pvpage: try and free an unused pv_page structure
    738  1.17     chris  *
    739  1.17     chris  * => assume caller is holding the pvalloc_lock and that
    740  1.17     chris  *	there is a page on the pv_unusedpgs list
    741  1.17     chris  * => if we can't get a lock on the kmem_map we try again later
    742   1.1      matt  */
    743   1.1      matt 
    744  1.17     chris static void
    745  1.73   thorpej pmap_free_pvpage(void)
    746   1.1      matt {
    747  1.17     chris 	int s;
    748  1.17     chris 	struct vm_map *map;
    749  1.17     chris 	struct vm_map_entry *dead_entries;
    750  1.17     chris 	struct pv_page *pvp;
    751  1.17     chris 
    752  1.17     chris 	s = splvm(); /* protect kmem_map */
    753   1.1      matt 
    754  1.51     chris 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    755   1.1      matt 
    756   1.1      matt 	/*
    757  1.17     chris 	 * note: watch out for pv_initpage which is allocated out of
    758  1.17     chris 	 * kernel_map rather than kmem_map.
    759   1.1      matt 	 */
    760  1.17     chris 	if (pvp == pv_initpage)
    761  1.17     chris 		map = kernel_map;
    762  1.17     chris 	else
    763  1.17     chris 		map = kmem_map;
    764  1.17     chris 	if (vm_map_lock_try(map)) {
    765  1.17     chris 
    766  1.17     chris 		/* remove pvp from pv_unusedpgs */
    767  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    768  1.17     chris 
    769  1.17     chris 		/* unmap the page */
    770  1.17     chris 		dead_entries = NULL;
    771  1.17     chris 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    772  1.17     chris 		    &dead_entries);
    773  1.17     chris 		vm_map_unlock(map);
    774  1.17     chris 
    775  1.17     chris 		if (dead_entries != NULL)
    776  1.17     chris 			uvm_unmap_detach(dead_entries, 0);
    777   1.1      matt 
    778  1.17     chris 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    779   1.1      matt 	}
    780  1.17     chris 	if (pvp == pv_initpage)
    781  1.17     chris 		/* no more initpage, we've freed it */
    782  1.17     chris 		pv_initpage = NULL;
    783   1.1      matt 
    784   1.1      matt 	splx(s);
    785   1.1      matt }
    786   1.1      matt 
    787   1.1      matt /*
    788  1.17     chris  * main pv_entry manipulation functions:
    789  1.49   thorpej  *   pmap_enter_pv: enter a mapping onto a vm_page list
    790  1.49   thorpej  *   pmap_remove_pv: remove a mappiing from a vm_page list
    791  1.17     chris  *
    792  1.17     chris  * NOTE: pmap_enter_pv expects to lock the pvh itself
    793  1.17     chris  *       pmap_remove_pv expects te caller to lock the pvh before calling
    794  1.17     chris  */
    795  1.17     chris 
    796  1.17     chris /*
    797  1.49   thorpej  * pmap_enter_pv: enter a mapping onto a vm_page lst
    798  1.17     chris  *
    799  1.17     chris  * => caller should hold the proper lock on pmap_main_lock
    800  1.17     chris  * => caller should have pmap locked
    801  1.49   thorpej  * => we will gain the lock on the vm_page and allocate the new pv_entry
    802  1.17     chris  * => caller should adjust ptp's wire_count before calling
    803  1.17     chris  * => caller should not adjust pmap's wire_count
    804  1.17     chris  */
    805  1.17     chris 
    806  1.17     chris __inline static void
    807  1.73   thorpej pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    808  1.73   thorpej     vaddr_t va, struct vm_page *ptp, int flags)
    809  1.17     chris {
    810  1.17     chris 	pve->pv_pmap = pmap;
    811  1.17     chris 	pve->pv_va = va;
    812  1.17     chris 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    813  1.17     chris 	pve->pv_flags = flags;
    814  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    815  1.49   thorpej 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    816  1.49   thorpej 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    817  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    818  1.17     chris 	if (pve->pv_flags & PT_W)
    819  1.17     chris 		++pmap->pm_stats.wired_count;
    820  1.17     chris }
    821  1.17     chris 
    822  1.17     chris /*
    823  1.17     chris  * pmap_remove_pv: try to remove a mapping from a pv_list
    824  1.17     chris  *
    825  1.17     chris  * => caller should hold proper lock on pmap_main_lock
    826  1.17     chris  * => pmap should be locked
    827  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    828  1.17     chris  * => caller should adjust ptp's wire_count and free PTP if needed
    829  1.17     chris  * => caller should NOT adjust pmap's wire_count
    830  1.17     chris  * => we return the removed pve
    831  1.17     chris  */
    832  1.17     chris 
    833  1.17     chris __inline static struct pv_entry *
    834  1.73   thorpej pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    835  1.17     chris {
    836  1.17     chris 	struct pv_entry *pve, **prevptr;
    837  1.17     chris 
    838  1.49   thorpej 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    839  1.17     chris 	pve = *prevptr;
    840  1.17     chris 	while (pve) {
    841  1.17     chris 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    842  1.17     chris 			*prevptr = pve->pv_next;		/* remove it! */
    843  1.17     chris 			if (pve->pv_flags & PT_W)
    844  1.17     chris 			    --pmap->pm_stats.wired_count;
    845  1.17     chris 			break;
    846  1.17     chris 		}
    847  1.17     chris 		prevptr = &pve->pv_next;		/* previous pointer */
    848  1.17     chris 		pve = pve->pv_next;			/* advance */
    849  1.17     chris 	}
    850  1.17     chris 	return(pve);				/* return removed pve */
    851  1.17     chris }
    852  1.17     chris 
    853  1.17     chris /*
    854  1.17     chris  *
    855  1.17     chris  * pmap_modify_pv: Update pv flags
    856  1.17     chris  *
    857  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    858  1.17     chris  * => caller should NOT adjust pmap's wire_count
    859  1.29  rearnsha  * => caller must call pmap_vac_me_harder() if writable status of a page
    860  1.29  rearnsha  *    may have changed.
    861  1.17     chris  * => we return the old flags
    862  1.17     chris  *
    863   1.1      matt  * Modify a physical-virtual mapping in the pv table
    864   1.1      matt  */
    865   1.1      matt 
    866  1.73   thorpej static /* __inline */ u_int
    867  1.73   thorpej pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    868  1.73   thorpej     u_int bic_mask, u_int eor_mask)
    869   1.1      matt {
    870   1.1      matt 	struct pv_entry *npv;
    871   1.1      matt 	u_int flags, oflags;
    872   1.1      matt 
    873   1.1      matt 	/*
    874   1.1      matt 	 * There is at least one VA mapping this page.
    875   1.1      matt 	 */
    876   1.1      matt 
    877  1.49   thorpej 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    878   1.1      matt 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    879   1.1      matt 			oflags = npv->pv_flags;
    880   1.1      matt 			npv->pv_flags = flags =
    881   1.1      matt 			    ((oflags & ~bic_mask) ^ eor_mask);
    882   1.1      matt 			if ((flags ^ oflags) & PT_W) {
    883   1.1      matt 				if (flags & PT_W)
    884   1.1      matt 					++pmap->pm_stats.wired_count;
    885   1.1      matt 				else
    886   1.1      matt 					--pmap->pm_stats.wired_count;
    887   1.1      matt 			}
    888   1.1      matt 			return (oflags);
    889   1.1      matt 		}
    890   1.1      matt 	}
    891   1.1      matt 	return (0);
    892   1.1      matt }
    893   1.1      matt 
    894   1.1      matt /*
    895   1.1      matt  * Map the specified level 2 pagetable into the level 1 page table for
    896   1.1      matt  * the given pmap to cover a chunk of virtual address space starting from the
    897   1.1      matt  * address specified.
    898   1.1      matt  */
    899  1.73   thorpej static __inline void
    900  1.73   thorpej pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    901   1.1      matt {
    902   1.1      matt 	vaddr_t ptva;
    903   1.1      matt 
    904   1.1      matt 	/* Calculate the index into the L1 page table. */
    905   1.1      matt 	ptva = (va >> PDSHIFT) & ~3;
    906   1.1      matt 
    907   1.1      matt 	/* Map page table into the L1. */
    908   1.1      matt 	pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
    909   1.1      matt 	pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
    910   1.1      matt 	pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
    911   1.1      matt 	pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
    912   1.1      matt 
    913   1.1      matt 	/* Map the page table into the page table area. */
    914  1.73   thorpej 	if (selfref)
    915  1.73   thorpej 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
    916  1.73   thorpej 		    L2_PTE_NC_NB(l2pa, AP_KRW);
    917   1.1      matt }
    918   1.1      matt 
    919   1.1      matt #if 0
    920  1.73   thorpej static __inline void
    921  1.73   thorpej pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    922   1.1      matt {
    923   1.1      matt 	vaddr_t ptva;
    924   1.1      matt 
    925   1.1      matt 	/* Calculate the index into the L1 page table. */
    926   1.1      matt 	ptva = (va >> PDSHIFT) & ~3;
    927   1.1      matt 
    928   1.1      matt 	/* Unmap page table from the L1. */
    929   1.1      matt 	pmap->pm_pdir[ptva + 0] = 0;
    930   1.1      matt 	pmap->pm_pdir[ptva + 1] = 0;
    931   1.1      matt 	pmap->pm_pdir[ptva + 2] = 0;
    932   1.1      matt 	pmap->pm_pdir[ptva + 3] = 0;
    933   1.1      matt 
    934   1.1      matt 	/* Unmap the page table from the page table area. */
    935   1.1      matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    936   1.1      matt }
    937   1.1      matt #endif
    938   1.1      matt 
    939   1.1      matt /*
    940   1.1      matt  *	Used to map a range of physical addresses into kernel
    941   1.1      matt  *	virtual address space.
    942   1.1      matt  *
    943   1.1      matt  *	For now, VM is already on, we only need to map the
    944   1.1      matt  *	specified memory.
    945   1.1      matt  */
    946   1.1      matt vaddr_t
    947  1.73   thorpej pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    948   1.1      matt {
    949   1.1      matt 	while (spa < epa) {
    950  1.20     chris 		pmap_kenter_pa(va, spa, prot);
    951   1.1      matt 		va += NBPG;
    952   1.1      matt 		spa += NBPG;
    953   1.1      matt 	}
    954  1.19     chris 	pmap_update(pmap_kernel());
    955   1.1      matt 	return(va);
    956   1.1      matt }
    957   1.1      matt 
    958   1.1      matt 
    959   1.1      matt /*
    960   1.3      matt  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    961   1.1      matt  *
    962   1.1      matt  * bootstrap the pmap system. This is called from initarm and allows
    963   1.1      matt  * the pmap system to initailise any structures it requires.
    964   1.1      matt  *
    965   1.1      matt  * Currently this sets up the kernel_pmap that is statically allocated
    966   1.1      matt  * and also allocated virtual addresses for certain page hooks.
    967   1.1      matt  * Currently the only one page hook is allocated that is used
    968   1.1      matt  * to zero physical pages of memory.
    969   1.1      matt  * It also initialises the start and end address of the kernel data space.
    970   1.1      matt  */
    971   1.2      matt extern paddr_t physical_freestart;
    972   1.2      matt extern paddr_t physical_freeend;
    973   1.1      matt 
    974  1.17     chris char *boot_head;
    975   1.1      matt 
    976   1.1      matt void
    977  1.73   thorpej pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    978   1.1      matt {
    979  1.54   thorpej 	pt_entry_t *pte;
    980   1.1      matt 	int loop;
    981   1.2      matt 	paddr_t start, end;
    982   1.1      matt #if NISADMA > 0
    983   1.2      matt 	paddr_t istart;
    984   1.2      matt 	psize_t isize;
    985   1.1      matt #endif
    986   1.1      matt 
    987  1.15     chris 	pmap_kernel()->pm_pdir = kernel_l1pt;
    988  1.15     chris 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    989  1.15     chris 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
    990  1.15     chris 	simple_lock_init(&pmap_kernel()->pm_lock);
    991  1.16     chris 	pmap_kernel()->pm_obj.pgops = NULL;
    992  1.16     chris 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
    993  1.16     chris 	pmap_kernel()->pm_obj.uo_npages = 0;
    994  1.16     chris 	pmap_kernel()->pm_obj.uo_refs = 1;
    995  1.16     chris 
    996   1.1      matt 	/*
    997   1.1      matt 	 * Initialize PAGE_SIZE-dependent variables.
    998   1.1      matt 	 */
    999   1.1      matt 	uvm_setpagesize();
   1000   1.1      matt 
   1001   1.1      matt 	loop = 0;
   1002   1.1      matt 	while (loop < bootconfig.dramblocks) {
   1003   1.2      matt 		start = (paddr_t)bootconfig.dram[loop].address;
   1004   1.1      matt 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1005   1.1      matt 		if (start < physical_freestart)
   1006   1.1      matt 			start = physical_freestart;
   1007   1.1      matt 		if (end > physical_freeend)
   1008   1.1      matt 			end = physical_freeend;
   1009   1.1      matt #if 0
   1010   1.1      matt 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1011   1.1      matt #endif
   1012   1.1      matt #if NISADMA > 0
   1013   1.1      matt 		if (pmap_isa_dma_range_intersect(start, end - start,
   1014   1.1      matt 		    &istart, &isize)) {
   1015   1.1      matt 			/*
   1016   1.1      matt 			 * Place the pages that intersect with the
   1017   1.1      matt 			 * ISA DMA range onto the ISA DMA free list.
   1018   1.1      matt 			 */
   1019   1.1      matt #if 0
   1020   1.1      matt 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1021   1.1      matt 			    istart + isize - 1);
   1022   1.1      matt #endif
   1023   1.1      matt 			uvm_page_physload(atop(istart),
   1024   1.1      matt 			    atop(istart + isize), atop(istart),
   1025   1.1      matt 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1026  1.73   thorpej 
   1027   1.1      matt 			/*
   1028   1.1      matt 			 * Load the pieces that come before
   1029   1.1      matt 			 * the intersection into the default
   1030   1.1      matt 			 * free list.
   1031   1.1      matt 			 */
   1032   1.1      matt 			if (start < istart) {
   1033   1.1      matt #if 0
   1034   1.1      matt 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1035   1.1      matt 				    start, istart - 1);
   1036   1.1      matt #endif
   1037   1.1      matt 				uvm_page_physload(atop(start),
   1038   1.1      matt 				    atop(istart), atop(start),
   1039   1.1      matt 				    atop(istart), VM_FREELIST_DEFAULT);
   1040   1.1      matt 			}
   1041   1.1      matt 
   1042   1.1      matt 			/*
   1043   1.1      matt 			 * Load the pieces that come after
   1044   1.1      matt 			 * the intersection into the default
   1045   1.1      matt 			 * free list.
   1046   1.1      matt 			 */
   1047   1.1      matt 			if ((istart + isize) < end) {
   1048   1.1      matt #if 0
   1049   1.1      matt 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1050   1.1      matt 				    (istart + isize), end - 1);
   1051   1.1      matt #endif
   1052   1.1      matt 				uvm_page_physload(atop(istart + isize),
   1053   1.1      matt 				    atop(end), atop(istart + isize),
   1054   1.1      matt 				    atop(end), VM_FREELIST_DEFAULT);
   1055   1.1      matt 			}
   1056   1.1      matt 		} else {
   1057   1.1      matt 			uvm_page_physload(atop(start), atop(end),
   1058   1.1      matt 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1059   1.1      matt 		}
   1060   1.1      matt #else	/* NISADMA > 0 */
   1061   1.1      matt 		uvm_page_physload(atop(start), atop(end),
   1062   1.1      matt 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1063   1.1      matt #endif /* NISADMA > 0 */
   1064   1.1      matt 		++loop;
   1065   1.1      matt 	}
   1066   1.1      matt 
   1067  1.54   thorpej 	virtual_avail = KERNEL_VM_BASE;
   1068  1.74   thorpej 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1069   1.1      matt 
   1070   1.1      matt 	/*
   1071  1.54   thorpej 	 * now we allocate the "special" VAs which are used for tmp mappings
   1072  1.54   thorpej 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1073  1.54   thorpej 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1074  1.54   thorpej 	 * we find the PTE that maps the allocated VA via the linear PTE
   1075  1.54   thorpej 	 * mapping.
   1076   1.1      matt 	 */
   1077   1.1      matt 
   1078  1.54   thorpej 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1079  1.54   thorpej 
   1080  1.54   thorpej 	csrcp = virtual_avail; csrc_pte = pte;
   1081  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1082  1.54   thorpej 
   1083  1.54   thorpej 	cdstp = virtual_avail; cdst_pte = pte;
   1084  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1085  1.54   thorpej 
   1086  1.54   thorpej 	memhook = (char *) virtual_avail;	/* don't need pte */
   1087  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1088  1.54   thorpej 
   1089  1.54   thorpej 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1090  1.54   thorpej 	virtual_avail += round_page(MSGBUFSIZE);
   1091  1.54   thorpej 	pte += atop(round_page(MSGBUFSIZE));
   1092   1.1      matt 
   1093  1.17     chris 	/*
   1094  1.17     chris 	 * init the static-global locks and global lists.
   1095  1.17     chris 	 */
   1096  1.17     chris 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1097  1.17     chris 	simple_lock_init(&pvalloc_lock);
   1098  1.48     chris 	simple_lock_init(&pmaps_lock);
   1099  1.48     chris 	LIST_INIT(&pmaps);
   1100  1.17     chris 	TAILQ_INIT(&pv_freepages);
   1101  1.17     chris 	TAILQ_INIT(&pv_unusedpgs);
   1102   1.1      matt 
   1103  1.10     chris 	/*
   1104  1.10     chris 	 * initialize the pmap pool.
   1105  1.10     chris 	 */
   1106  1.10     chris 
   1107  1.10     chris 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1108  1.52   thorpej 		  &pool_allocator_nointr);
   1109  1.10     chris 
   1110  1.36   thorpej 	cpu_dcache_wbinv_all();
   1111   1.1      matt }
   1112   1.1      matt 
   1113   1.1      matt /*
   1114   1.1      matt  * void pmap_init(void)
   1115   1.1      matt  *
   1116   1.1      matt  * Initialize the pmap module.
   1117   1.1      matt  * Called by vm_init() in vm/vm_init.c in order to initialise
   1118   1.1      matt  * any structures that the pmap system needs to map virtual memory.
   1119   1.1      matt  */
   1120   1.1      matt 
   1121   1.1      matt extern int physmem;
   1122   1.1      matt 
   1123   1.1      matt void
   1124  1.73   thorpej pmap_init(void)
   1125   1.1      matt {
   1126   1.1      matt 
   1127   1.1      matt 	/*
   1128   1.1      matt 	 * Set the available memory vars - These do not map to real memory
   1129   1.1      matt 	 * addresses and cannot as the physical memory is fragmented.
   1130   1.1      matt 	 * They are used by ps for %mem calculations.
   1131   1.1      matt 	 * One could argue whether this should be the entire memory or just
   1132   1.1      matt 	 * the memory that is useable in a user process.
   1133   1.1      matt 	 */
   1134   1.1      matt 	avail_start = 0;
   1135   1.1      matt 	avail_end = physmem * NBPG;
   1136   1.1      matt 
   1137  1.17     chris 	/*
   1138  1.17     chris 	 * now we need to free enough pv_entry structures to allow us to get
   1139  1.17     chris 	 * the kmem_map/kmem_object allocated and inited (done after this
   1140  1.17     chris 	 * function is finished).  to do this we allocate one bootstrap page out
   1141  1.17     chris 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1142  1.17     chris 	 * structures.   we never free this page.
   1143  1.17     chris 	 */
   1144  1.17     chris 
   1145  1.17     chris 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1146  1.17     chris 	if (pv_initpage == NULL)
   1147  1.17     chris 		panic("pmap_init: pv_initpage");
   1148  1.17     chris 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1149  1.17     chris 	pv_nfpvents = 0;
   1150  1.17     chris 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1151  1.17     chris 
   1152   1.1      matt 	pmap_initialized = TRUE;
   1153   1.1      matt 
   1154   1.1      matt 	/* Initialise our L1 page table queues and counters */
   1155   1.1      matt 	SIMPLEQ_INIT(&l1pt_static_queue);
   1156   1.1      matt 	l1pt_static_queue_count = 0;
   1157   1.1      matt 	l1pt_static_create_count = 0;
   1158   1.1      matt 	SIMPLEQ_INIT(&l1pt_queue);
   1159   1.1      matt 	l1pt_queue_count = 0;
   1160   1.1      matt 	l1pt_create_count = 0;
   1161   1.1      matt 	l1pt_reuse_count = 0;
   1162   1.1      matt }
   1163   1.1      matt 
   1164   1.1      matt /*
   1165   1.1      matt  * pmap_postinit()
   1166   1.1      matt  *
   1167   1.1      matt  * This routine is called after the vm and kmem subsystems have been
   1168   1.1      matt  * initialised. This allows the pmap code to perform any initialisation
   1169   1.1      matt  * that can only be done one the memory allocation is in place.
   1170   1.1      matt  */
   1171   1.1      matt 
   1172   1.1      matt void
   1173  1.73   thorpej pmap_postinit(void)
   1174   1.1      matt {
   1175   1.1      matt 	int loop;
   1176   1.1      matt 	struct l1pt *pt;
   1177   1.1      matt 
   1178   1.1      matt #ifdef PMAP_STATIC_L1S
   1179   1.1      matt 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1180   1.1      matt #else	/* PMAP_STATIC_L1S */
   1181   1.1      matt 	for (loop = 0; loop < max_processes; ++loop) {
   1182   1.1      matt #endif	/* PMAP_STATIC_L1S */
   1183   1.1      matt 		/* Allocate a L1 page table */
   1184   1.1      matt 		pt = pmap_alloc_l1pt();
   1185   1.1      matt 		if (!pt)
   1186   1.1      matt 			panic("Cannot allocate static L1 page tables\n");
   1187   1.1      matt 
   1188   1.1      matt 		/* Clean it */
   1189   1.1      matt 		bzero((void *)pt->pt_va, PD_SIZE);
   1190   1.1      matt 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1191   1.1      matt 		/* Add the page table to the queue */
   1192   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1193   1.1      matt 		++l1pt_static_queue_count;
   1194   1.1      matt 		++l1pt_static_create_count;
   1195   1.1      matt 	}
   1196   1.1      matt }
   1197   1.1      matt 
   1198   1.1      matt 
   1199   1.1      matt /*
   1200   1.1      matt  * Create and return a physical map.
   1201   1.1      matt  *
   1202   1.1      matt  * If the size specified for the map is zero, the map is an actual physical
   1203   1.1      matt  * map, and may be referenced by the hardware.
   1204   1.1      matt  *
   1205   1.1      matt  * If the size specified is non-zero, the map will be used in software only,
   1206   1.1      matt  * and is bounded by that size.
   1207   1.1      matt  */
   1208   1.1      matt 
   1209   1.1      matt pmap_t
   1210  1.73   thorpej pmap_create(void)
   1211   1.1      matt {
   1212  1.15     chris 	struct pmap *pmap;
   1213   1.1      matt 
   1214  1.10     chris 	/*
   1215  1.10     chris 	 * Fetch pmap entry from the pool
   1216  1.10     chris 	 */
   1217  1.10     chris 
   1218  1.10     chris 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1219  1.17     chris 	/* XXX is this really needed! */
   1220  1.17     chris 	memset(pmap, 0, sizeof(*pmap));
   1221   1.1      matt 
   1222  1.16     chris 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1223  1.16     chris 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1224  1.16     chris 	TAILQ_INIT(&pmap->pm_obj.memq);
   1225  1.16     chris 	pmap->pm_obj.uo_npages = 0;
   1226  1.16     chris 	pmap->pm_obj.uo_refs = 1;
   1227  1.16     chris 	pmap->pm_stats.wired_count = 0;
   1228  1.16     chris 	pmap->pm_stats.resident_count = 1;
   1229  1.70   thorpej 	pmap->pm_ptphint = NULL;
   1230  1.16     chris 
   1231   1.1      matt 	/* Now init the machine part of the pmap */
   1232   1.1      matt 	pmap_pinit(pmap);
   1233   1.1      matt 	return(pmap);
   1234   1.1      matt }
   1235   1.1      matt 
   1236   1.1      matt /*
   1237   1.1      matt  * pmap_alloc_l1pt()
   1238   1.1      matt  *
   1239   1.1      matt  * This routine allocates physical and virtual memory for a L1 page table
   1240   1.1      matt  * and wires it.
   1241   1.1      matt  * A l1pt structure is returned to describe the allocated page table.
   1242   1.1      matt  *
   1243   1.1      matt  * This routine is allowed to fail if the required memory cannot be allocated.
   1244   1.1      matt  * In this case NULL is returned.
   1245   1.1      matt  */
   1246   1.1      matt 
   1247   1.1      matt struct l1pt *
   1248   1.1      matt pmap_alloc_l1pt(void)
   1249   1.1      matt {
   1250   1.2      matt 	paddr_t pa;
   1251   1.2      matt 	vaddr_t va;
   1252   1.1      matt 	struct l1pt *pt;
   1253   1.1      matt 	int error;
   1254   1.9       chs 	struct vm_page *m;
   1255  1.11     chris 	pt_entry_t *ptes;
   1256   1.1      matt 
   1257   1.1      matt 	/* Allocate virtual address space for the L1 page table */
   1258   1.1      matt 	va = uvm_km_valloc(kernel_map, PD_SIZE);
   1259   1.1      matt 	if (va == 0) {
   1260   1.1      matt #ifdef DIAGNOSTIC
   1261  1.26  rearnsha 		PDEBUG(0,
   1262  1.26  rearnsha 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1263   1.1      matt #endif	/* DIAGNOSTIC */
   1264   1.1      matt 		return(NULL);
   1265   1.1      matt 	}
   1266   1.1      matt 
   1267   1.1      matt 	/* Allocate memory for the l1pt structure */
   1268   1.1      matt 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1269   1.1      matt 
   1270   1.1      matt 	/*
   1271   1.1      matt 	 * Allocate pages from the VM system.
   1272   1.1      matt 	 */
   1273   1.1      matt 	TAILQ_INIT(&pt->pt_plist);
   1274   1.1      matt 	error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
   1275   1.1      matt 	    PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1276   1.1      matt 	if (error) {
   1277   1.1      matt #ifdef DIAGNOSTIC
   1278  1.26  rearnsha 		PDEBUG(0,
   1279  1.26  rearnsha 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1280  1.26  rearnsha 		    error));
   1281   1.1      matt #endif	/* DIAGNOSTIC */
   1282   1.1      matt 		/* Release the resources we already have claimed */
   1283   1.1      matt 		free(pt, M_VMPMAP);
   1284   1.1      matt 		uvm_km_free(kernel_map, va, PD_SIZE);
   1285   1.1      matt 		return(NULL);
   1286   1.1      matt 	}
   1287   1.1      matt 
   1288   1.1      matt 	/* Map our physical pages into our virtual space */
   1289   1.1      matt 	pt->pt_va = va;
   1290  1.51     chris 	m = TAILQ_FIRST(&pt->pt_plist);
   1291  1.11     chris 	ptes = pmap_map_ptes(pmap_kernel());
   1292   1.1      matt 	while (m && va < (pt->pt_va + PD_SIZE)) {
   1293   1.1      matt 		pa = VM_PAGE_TO_PHYS(m);
   1294   1.1      matt 
   1295  1.20     chris 		pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE);
   1296   1.1      matt 
   1297   1.1      matt 		/* Revoke cacheability and bufferability */
   1298   1.1      matt 		/* XXX should be done better than this */
   1299  1.56   thorpej 		ptes[arm_btop(va)] &= ~(PT_C | PT_B);
   1300   1.1      matt 
   1301   1.1      matt 		va += NBPG;
   1302   1.1      matt 		m = m->pageq.tqe_next;
   1303   1.1      matt 	}
   1304  1.11     chris 	pmap_unmap_ptes(pmap_kernel());
   1305  1.19     chris 	pmap_update(pmap_kernel());
   1306   1.1      matt 
   1307   1.1      matt #ifdef DIAGNOSTIC
   1308   1.1      matt 	if (m)
   1309   1.1      matt 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1310   1.1      matt #endif	/* DIAGNOSTIC */
   1311   1.1      matt 
   1312   1.1      matt 	pt->pt_flags = 0;
   1313   1.1      matt 	return(pt);
   1314   1.1      matt }
   1315   1.1      matt 
   1316   1.1      matt /*
   1317   1.1      matt  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1318   1.1      matt  */
   1319  1.33     chris static void
   1320  1.73   thorpej pmap_free_l1pt(struct l1pt *pt)
   1321   1.1      matt {
   1322   1.1      matt 	/* Separate the physical memory for the virtual space */
   1323  1.20     chris 	pmap_kremove(pt->pt_va, PD_SIZE);
   1324  1.19     chris 	pmap_update(pmap_kernel());
   1325   1.1      matt 
   1326   1.1      matt 	/* Return the physical memory */
   1327   1.1      matt 	uvm_pglistfree(&pt->pt_plist);
   1328   1.1      matt 
   1329   1.1      matt 	/* Free the virtual space */
   1330   1.1      matt 	uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
   1331   1.1      matt 
   1332   1.1      matt 	/* Free the l1pt structure */
   1333   1.1      matt 	free(pt, M_VMPMAP);
   1334   1.1      matt }
   1335   1.1      matt 
   1336   1.1      matt /*
   1337   1.1      matt  * Allocate a page directory.
   1338   1.1      matt  * This routine will either allocate a new page directory from the pool
   1339   1.1      matt  * of L1 page tables currently held by the kernel or it will allocate
   1340   1.1      matt  * a new one via pmap_alloc_l1pt().
   1341   1.1      matt  * It will then initialise the l1 page table for use.
   1342  1.48     chris  *
   1343  1.48     chris  * XXX must tidy up and fix this code, not happy about how it does the pmaps_locking
   1344   1.1      matt  */
   1345  1.33     chris static int
   1346  1.73   thorpej pmap_allocpagedir(struct pmap *pmap)
   1347   1.1      matt {
   1348   1.2      matt 	paddr_t pa;
   1349   1.1      matt 	struct l1pt *pt;
   1350   1.1      matt 	pt_entry_t *pte;
   1351   1.1      matt 
   1352   1.1      matt 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1353   1.1      matt 
   1354   1.1      matt 	/* Do we have any spare L1's lying around ? */
   1355   1.1      matt 	if (l1pt_static_queue_count) {
   1356   1.1      matt 		--l1pt_static_queue_count;
   1357   1.1      matt 		pt = l1pt_static_queue.sqh_first;
   1358   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1359   1.1      matt 	} else if (l1pt_queue_count) {
   1360   1.1      matt 		--l1pt_queue_count;
   1361   1.1      matt 		pt = l1pt_queue.sqh_first;
   1362   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1363   1.1      matt 		++l1pt_reuse_count;
   1364   1.1      matt 	} else {
   1365   1.1      matt 		pt = pmap_alloc_l1pt();
   1366   1.1      matt 		if (!pt)
   1367   1.1      matt 			return(ENOMEM);
   1368   1.1      matt 		++l1pt_create_count;
   1369   1.1      matt 	}
   1370   1.1      matt 
   1371   1.1      matt 	/* Store the pointer to the l1 descriptor in the pmap. */
   1372   1.1      matt 	pmap->pm_l1pt = pt;
   1373   1.1      matt 
   1374   1.1      matt 	/* Get the physical address of the start of the l1 */
   1375  1.51     chris 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1376   1.1      matt 
   1377   1.1      matt 	/* Store the virtual address of the l1 in the pmap. */
   1378   1.1      matt 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1379   1.1      matt 
   1380   1.1      matt 	/* Clean the L1 if it is dirty */
   1381   1.1      matt 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1382   1.1      matt 		bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
   1383   1.1      matt 
   1384   1.1      matt 	/* Allocate a page table to map all the page tables for this pmap */
   1385   1.1      matt 
   1386   1.1      matt #ifdef DIAGNOSTIC
   1387   1.1      matt 	if (pmap->pm_vptpt) {
   1388   1.1      matt 		/* XXX What if we have one already ? */
   1389   1.1      matt 		panic("pmap_allocpagedir: have pt already\n");
   1390   1.1      matt 	}
   1391   1.1      matt #endif	/* DIAGNOSTIC */
   1392   1.1      matt 	pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
   1393   1.5    toshii 	if (pmap->pm_vptpt == 0) {
   1394  1.48     chris 	    pmap_freepagedir(pmap);
   1395  1.48     chris     	    return(ENOMEM);
   1396   1.5    toshii 	}
   1397   1.5    toshii 
   1398  1.48     chris 	/* need to lock this all up  for growkernel */
   1399  1.48     chris 	simple_lock(&pmaps_lock);
   1400  1.48     chris 	/* wish we didn't have to keep this locked... */
   1401  1.48     chris 
   1402  1.64   thorpej 	/* Duplicate the kernel mappings. */
   1403  1.48     chris 	bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1404  1.48     chris 		(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
   1405  1.48     chris 		KERNEL_PD_SIZE);
   1406  1.48     chris 
   1407  1.64   thorpej 	pte = vtopte(pmap->pm_vptpt);
   1408  1.64   thorpej 	pmap->pm_pptpt = l2pte_pa(*pte);
   1409  1.64   thorpej 
   1410   1.1      matt 	/* Revoke cacheability and bufferability */
   1411   1.1      matt 	/* XXX should be done better than this */
   1412  1.64   thorpej 	*pte &= ~(PT_C | PT_B);
   1413   1.1      matt 
   1414   1.1      matt 	/* Wire in this page table */
   1415  1.53   thorpej 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1416   1.1      matt 
   1417   1.1      matt 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1418  1.48     chris 
   1419   1.1      matt 	/*
   1420  1.64   thorpej 	 * Map the kernel page tables into the new PT map.
   1421   1.1      matt 	 */
   1422  1.53   thorpej 	bcopy((char *)(PTE_BASE
   1423  1.53   thorpej 	    + (PTE_BASE >> (PGSHIFT - 2))
   1424   1.1      matt 	    + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
   1425   1.1      matt 	    (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
   1426   1.1      matt 	    (KERNEL_PD_SIZE >> 2));
   1427   1.1      matt 
   1428  1.48     chris 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1429  1.48     chris 	simple_unlock(&pmaps_lock);
   1430  1.48     chris 
   1431   1.1      matt 	return(0);
   1432   1.1      matt }
   1433   1.1      matt 
   1434   1.1      matt 
   1435   1.1      matt /*
   1436   1.1      matt  * Initialize a preallocated and zeroed pmap structure,
   1437   1.1      matt  * such as one in a vmspace structure.
   1438   1.1      matt  */
   1439   1.1      matt 
   1440   1.1      matt void
   1441  1.73   thorpej pmap_pinit(struct pmap *pmap)
   1442   1.1      matt {
   1443  1.26  rearnsha 	int backoff = 6;
   1444  1.26  rearnsha 	int retry = 10;
   1445  1.26  rearnsha 
   1446   1.1      matt 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1447   1.1      matt 
   1448   1.1      matt 	/* Keep looping until we succeed in allocating a page directory */
   1449   1.1      matt 	while (pmap_allocpagedir(pmap) != 0) {
   1450   1.1      matt 		/*
   1451   1.1      matt 		 * Ok we failed to allocate a suitable block of memory for an
   1452   1.1      matt 		 * L1 page table. This means that either:
   1453   1.1      matt 		 * 1. 16KB of virtual address space could not be allocated
   1454   1.1      matt 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1455   1.1      matt 		 *    could not be allocated.
   1456   1.1      matt 		 *
   1457   1.1      matt 		 * Since we cannot fail we will sleep for a while and try
   1458  1.17     chris 		 * again.
   1459  1.26  rearnsha 		 *
   1460  1.26  rearnsha 		 * Searching for a suitable L1 PT is expensive:
   1461  1.26  rearnsha 		 * to avoid hogging the system when memory is really
   1462  1.26  rearnsha 		 * scarce, use an exponential back-off so that
   1463  1.26  rearnsha 		 * eventually we won't retry more than once every 8
   1464  1.26  rearnsha 		 * seconds.  This should allow other processes to run
   1465  1.26  rearnsha 		 * to completion and free up resources.
   1466   1.1      matt 		 */
   1467  1.26  rearnsha 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1468  1.26  rearnsha 		    NULL);
   1469  1.26  rearnsha 		if (--retry == 0) {
   1470  1.26  rearnsha 			retry = 10;
   1471  1.26  rearnsha 			if (backoff)
   1472  1.26  rearnsha 				--backoff;
   1473  1.26  rearnsha 		}
   1474   1.1      matt 	}
   1475   1.1      matt 
   1476   1.1      matt 	/* Map zero page for the pmap. This will also map the L2 for it */
   1477   1.1      matt 	pmap_enter(pmap, 0x00000000, systempage.pv_pa,
   1478   1.1      matt 	    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1479  1.19     chris 	pmap_update(pmap);
   1480   1.1      matt }
   1481   1.1      matt 
   1482   1.1      matt 
   1483   1.1      matt void
   1484  1.73   thorpej pmap_freepagedir(struct pmap *pmap)
   1485   1.1      matt {
   1486   1.1      matt 	/* Free the memory used for the page table mapping */
   1487   1.5    toshii 	if (pmap->pm_vptpt != 0)
   1488   1.5    toshii 		uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
   1489   1.1      matt 
   1490   1.1      matt 	/* junk the L1 page table */
   1491   1.1      matt 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1492   1.1      matt 		/* Add the page table to the queue */
   1493   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1494   1.1      matt 		++l1pt_static_queue_count;
   1495   1.1      matt 	} else if (l1pt_queue_count < 8) {
   1496   1.1      matt 		/* Add the page table to the queue */
   1497   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1498   1.1      matt 		++l1pt_queue_count;
   1499   1.1      matt 	} else
   1500   1.1      matt 		pmap_free_l1pt(pmap->pm_l1pt);
   1501   1.1      matt }
   1502   1.1      matt 
   1503   1.1      matt 
   1504   1.1      matt /*
   1505   1.1      matt  * Retire the given physical map from service.
   1506   1.1      matt  * Should only be called if the map contains no valid mappings.
   1507   1.1      matt  */
   1508   1.1      matt 
   1509   1.1      matt void
   1510  1.73   thorpej pmap_destroy(struct pmap *pmap)
   1511   1.1      matt {
   1512  1.17     chris 	struct vm_page *page;
   1513   1.1      matt 	int count;
   1514   1.1      matt 
   1515   1.1      matt 	if (pmap == NULL)
   1516   1.1      matt 		return;
   1517   1.1      matt 
   1518   1.1      matt 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1519  1.17     chris 
   1520  1.17     chris 	/*
   1521  1.17     chris 	 * Drop reference count
   1522  1.17     chris 	 */
   1523  1.17     chris 	simple_lock(&pmap->pm_obj.vmobjlock);
   1524  1.16     chris 	count = --pmap->pm_obj.uo_refs;
   1525  1.17     chris 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1526  1.17     chris 	if (count > 0) {
   1527  1.17     chris 		return;
   1528   1.1      matt 	}
   1529   1.1      matt 
   1530  1.17     chris 	/*
   1531  1.17     chris 	 * reference count is zero, free pmap resources and then free pmap.
   1532  1.17     chris 	 */
   1533  1.48     chris 
   1534  1.48     chris 	/*
   1535  1.48     chris 	 * remove it from global list of pmaps
   1536  1.48     chris 	 */
   1537  1.48     chris 
   1538  1.48     chris 	simple_lock(&pmaps_lock);
   1539  1.48     chris 	LIST_REMOVE(pmap, pm_list);
   1540  1.48     chris 	simple_unlock(&pmaps_lock);
   1541  1.17     chris 
   1542   1.1      matt 	/* Remove the zero page mapping */
   1543   1.1      matt 	pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
   1544  1.19     chris 	pmap_update(pmap);
   1545   1.1      matt 
   1546   1.1      matt 	/*
   1547   1.1      matt 	 * Free any page tables still mapped
   1548   1.1      matt 	 * This is only temporay until pmap_enter can count the number
   1549   1.1      matt 	 * of mappings made in a page table. Then pmap_remove() can
   1550   1.1      matt 	 * reduce the count and free the pagetable when the count
   1551  1.16     chris 	 * reaches zero.  Note that entries in this list should match the
   1552  1.16     chris 	 * contents of the ptpt, however this is faster than walking a 1024
   1553  1.16     chris 	 * entries looking for pt's
   1554  1.16     chris 	 * taken from i386 pmap.c
   1555   1.1      matt 	 */
   1556  1.51     chris 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1557  1.51     chris 		KASSERT((page->flags & PG_BUSY) == 0);
   1558  1.16     chris 		page->wire_count = 0;
   1559  1.16     chris 		uvm_pagefree(page);
   1560   1.1      matt 	}
   1561  1.16     chris 
   1562   1.1      matt 	/* Free the page dir */
   1563   1.1      matt 	pmap_freepagedir(pmap);
   1564  1.17     chris 
   1565  1.17     chris 	/* return the pmap to the pool */
   1566  1.17     chris 	pool_put(&pmap_pmap_pool, pmap);
   1567   1.1      matt }
   1568   1.1      matt 
   1569   1.1      matt 
   1570   1.1      matt /*
   1571  1.15     chris  * void pmap_reference(struct pmap *pmap)
   1572   1.1      matt  *
   1573   1.1      matt  * Add a reference to the specified pmap.
   1574   1.1      matt  */
   1575   1.1      matt 
   1576   1.1      matt void
   1577  1.73   thorpej pmap_reference(struct pmap *pmap)
   1578   1.1      matt {
   1579   1.1      matt 	if (pmap == NULL)
   1580   1.1      matt 		return;
   1581   1.1      matt 
   1582   1.1      matt 	simple_lock(&pmap->pm_lock);
   1583  1.16     chris 	pmap->pm_obj.uo_refs++;
   1584   1.1      matt 	simple_unlock(&pmap->pm_lock);
   1585   1.1      matt }
   1586   1.1      matt 
   1587   1.1      matt /*
   1588   1.1      matt  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1589   1.1      matt  *
   1590   1.1      matt  * Return the start and end addresses of the kernel's virtual space.
   1591   1.1      matt  * These values are setup in pmap_bootstrap and are updated as pages
   1592   1.1      matt  * are allocated.
   1593   1.1      matt  */
   1594   1.1      matt 
   1595   1.1      matt void
   1596  1.73   thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1597   1.1      matt {
   1598  1.54   thorpej 	*start = virtual_avail;
   1599   1.1      matt 	*end = virtual_end;
   1600   1.1      matt }
   1601   1.1      matt 
   1602   1.1      matt /*
   1603   1.1      matt  * Activate the address space for the specified process.  If the process
   1604   1.1      matt  * is the current process, load the new MMU context.
   1605   1.1      matt  */
   1606   1.1      matt void
   1607  1.73   thorpej pmap_activate(struct proc *p)
   1608   1.1      matt {
   1609  1.15     chris 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1610   1.1      matt 	struct pcb *pcb = &p->p_addr->u_pcb;
   1611   1.1      matt 
   1612  1.15     chris 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1613   1.1      matt 	    (paddr_t *)&pcb->pcb_pagedir);
   1614   1.1      matt 
   1615   1.1      matt 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1616   1.1      matt 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1617   1.1      matt 
   1618   1.1      matt 	if (p == curproc) {
   1619   1.1      matt 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1620   1.1      matt 		setttb((u_int)pcb->pcb_pagedir);
   1621   1.1      matt 	}
   1622   1.1      matt }
   1623   1.1      matt 
   1624   1.1      matt /*
   1625   1.1      matt  * Deactivate the address space of the specified process.
   1626   1.1      matt  */
   1627   1.1      matt void
   1628  1.73   thorpej pmap_deactivate(struct proc *p)
   1629   1.1      matt {
   1630   1.1      matt }
   1631   1.1      matt 
   1632  1.31   thorpej /*
   1633  1.31   thorpej  * Perform any deferred pmap operations.
   1634  1.31   thorpej  */
   1635  1.31   thorpej void
   1636  1.31   thorpej pmap_update(struct pmap *pmap)
   1637  1.31   thorpej {
   1638  1.31   thorpej 
   1639  1.31   thorpej 	/*
   1640  1.31   thorpej 	 * We haven't deferred any pmap operations, but we do need to
   1641  1.31   thorpej 	 * make sure TLB/cache operations have completed.
   1642  1.31   thorpej 	 */
   1643  1.31   thorpej 	cpu_cpwait();
   1644  1.31   thorpej }
   1645   1.1      matt 
   1646   1.1      matt /*
   1647   1.1      matt  * pmap_clean_page()
   1648   1.1      matt  *
   1649   1.1      matt  * This is a local function used to work out the best strategy to clean
   1650   1.1      matt  * a single page referenced by its entry in the PV table. It's used by
   1651   1.1      matt  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1652   1.1      matt  *
   1653   1.1      matt  * Its policy is effectively:
   1654   1.1      matt  *  o If there are no mappings, we don't bother doing anything with the cache.
   1655   1.1      matt  *  o If there is one mapping, we clean just that page.
   1656   1.1      matt  *  o If there are multiple mappings, we clean the entire cache.
   1657   1.1      matt  *
   1658   1.1      matt  * So that some functions can be further optimised, it returns 0 if it didn't
   1659   1.1      matt  * clean the entire cache, or 1 if it did.
   1660   1.1      matt  *
   1661   1.1      matt  * XXX One bug in this routine is that if the pv_entry has a single page
   1662   1.1      matt  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1663   1.1      matt  * just the 1 page. Since this should not occur in everyday use and if it does
   1664   1.1      matt  * it will just result in not the most efficient clean for the page.
   1665   1.1      matt  */
   1666   1.1      matt static int
   1667  1.73   thorpej pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1668   1.1      matt {
   1669  1.17     chris 	struct pmap *pmap;
   1670  1.17     chris 	struct pv_entry *npv;
   1671   1.1      matt 	int cache_needs_cleaning = 0;
   1672   1.1      matt 	vaddr_t page_to_clean = 0;
   1673   1.1      matt 
   1674  1.17     chris 	if (pv == NULL)
   1675  1.17     chris 		/* nothing mapped in so nothing to flush */
   1676  1.17     chris 		return (0);
   1677  1.17     chris 
   1678  1.17     chris 	/* Since we flush the cache each time we change curproc, we
   1679  1.17     chris 	 * only need to flush the page if it is in the current pmap.
   1680  1.17     chris 	 */
   1681  1.17     chris 	if (curproc)
   1682  1.17     chris 		pmap = curproc->p_vmspace->vm_map.pmap;
   1683  1.17     chris 	else
   1684  1.17     chris 		pmap = pmap_kernel();
   1685  1.17     chris 
   1686  1.17     chris 	for (npv = pv; npv; npv = npv->pv_next) {
   1687  1.17     chris 		if (npv->pv_pmap == pmap) {
   1688  1.17     chris 			/* The page is mapped non-cacheable in
   1689  1.17     chris 			 * this map.  No need to flush the cache.
   1690  1.17     chris 			 */
   1691  1.17     chris 			if (npv->pv_flags & PT_NC) {
   1692  1.17     chris #ifdef DIAGNOSTIC
   1693  1.17     chris 				if (cache_needs_cleaning)
   1694  1.17     chris 					panic("pmap_clean_page: "
   1695  1.17     chris 							"cache inconsistency");
   1696  1.17     chris #endif
   1697  1.17     chris 				break;
   1698  1.17     chris 			}
   1699  1.17     chris #if 0
   1700  1.17     chris 			/* This doesn't work, because pmap_protect
   1701  1.17     chris 			   doesn't flush changes on pages that it
   1702  1.17     chris 			   has write-protected.  */
   1703  1.21     chris 
   1704  1.25  rearnsha 			/* If the page is not writable and this
   1705  1.17     chris 			   is the source, then there is no need
   1706  1.17     chris 			   to flush it from the cache.  */
   1707  1.17     chris 			else if (is_src && ! (npv->pv_flags & PT_Wr))
   1708  1.17     chris 				continue;
   1709  1.17     chris #endif
   1710  1.17     chris 			if (cache_needs_cleaning){
   1711  1.17     chris 				page_to_clean = 0;
   1712  1.17     chris 				break;
   1713  1.17     chris 			}
   1714  1.17     chris 			else
   1715  1.17     chris 				page_to_clean = npv->pv_va;
   1716  1.17     chris 			cache_needs_cleaning = 1;
   1717  1.17     chris 		}
   1718   1.1      matt 	}
   1719   1.1      matt 
   1720   1.1      matt 	if (page_to_clean)
   1721  1.36   thorpej 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1722   1.1      matt 	else if (cache_needs_cleaning) {
   1723  1.36   thorpej 		cpu_idcache_wbinv_all();
   1724   1.1      matt 		return (1);
   1725   1.1      matt 	}
   1726   1.1      matt 	return (0);
   1727   1.1      matt }
   1728   1.1      matt 
   1729   1.1      matt /*
   1730   1.1      matt  * pmap_zero_page()
   1731   1.1      matt  *
   1732   1.1      matt  * Zero a given physical page by mapping it at a page hook point.
   1733   1.1      matt  * In doing the zero page op, the page we zero is mapped cachable, as with
   1734   1.1      matt  * StrongARM accesses to non-cached pages are non-burst making writing
   1735   1.1      matt  * _any_ bulk data very slow.
   1736   1.1      matt  */
   1737   1.1      matt void
   1738  1.73   thorpej pmap_zero_page(paddr_t phys)
   1739   1.1      matt {
   1740  1.71   thorpej #ifdef DEBUG
   1741  1.71   thorpej 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1742  1.71   thorpej 
   1743  1.71   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1744  1.71   thorpej 		panic("pmap_zero_page: page has mappings");
   1745  1.71   thorpej #endif
   1746   1.1      matt 
   1747   1.1      matt 	/*
   1748   1.1      matt 	 * Hook in the page, zero it, and purge the cache for that
   1749   1.1      matt 	 * zeroed page. Invalidate the TLB as needed.
   1750   1.1      matt 	 */
   1751  1.54   thorpej 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1752  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1753  1.32   thorpej 	cpu_cpwait();
   1754  1.54   thorpej 	bzero_page(cdstp);
   1755  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1756   1.1      matt }
   1757   1.1      matt 
   1758  1.17     chris /* pmap_pageidlezero()
   1759  1.17     chris  *
   1760  1.17     chris  * The same as above, except that we assume that the page is not
   1761  1.17     chris  * mapped.  This means we never have to flush the cache first.  Called
   1762  1.17     chris  * from the idle loop.
   1763  1.17     chris  */
   1764  1.17     chris boolean_t
   1765  1.73   thorpej pmap_pageidlezero(paddr_t phys)
   1766  1.17     chris {
   1767  1.17     chris 	int i, *ptr;
   1768  1.17     chris 	boolean_t rv = TRUE;
   1769  1.71   thorpej #ifdef DEBUG
   1770  1.49   thorpej 	struct vm_page *pg;
   1771  1.17     chris 
   1772  1.49   thorpej 	pg = PHYS_TO_VM_PAGE(phys);
   1773  1.49   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1774  1.71   thorpej 		panic("pmap_pageidlezero: page has mappings");
   1775  1.17     chris #endif
   1776  1.17     chris 
   1777  1.17     chris 	/*
   1778  1.17     chris 	 * Hook in the page, zero it, and purge the cache for that
   1779  1.17     chris 	 * zeroed page. Invalidate the TLB as needed.
   1780  1.17     chris 	 */
   1781  1.54   thorpej 	*cdst_pte = L2_PTE(phys & PG_FRAME, AP_KRW);
   1782  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1783  1.32   thorpej 	cpu_cpwait();
   1784  1.32   thorpej 
   1785  1.54   thorpej 	for (i = 0, ptr = (int *)cdstp;
   1786  1.17     chris 			i < (NBPG / sizeof(int)); i++) {
   1787  1.17     chris 		if (sched_whichqs != 0) {
   1788  1.17     chris 			/*
   1789  1.17     chris 			 * A process has become ready.  Abort now,
   1790  1.17     chris 			 * so we don't keep it waiting while we
   1791  1.17     chris 			 * do slow memory access to finish this
   1792  1.17     chris 			 * page.
   1793  1.17     chris 			 */
   1794  1.17     chris 			rv = FALSE;
   1795  1.17     chris 			break;
   1796  1.17     chris 		}
   1797  1.17     chris 		*ptr++ = 0;
   1798  1.17     chris 	}
   1799  1.17     chris 
   1800  1.17     chris 	if (rv)
   1801  1.17     chris 		/*
   1802  1.17     chris 		 * if we aborted we'll rezero this page again later so don't
   1803  1.17     chris 		 * purge it unless we finished it
   1804  1.17     chris 		 */
   1805  1.54   thorpej 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1806  1.17     chris 	return (rv);
   1807  1.17     chris }
   1808  1.17     chris 
   1809   1.1      matt /*
   1810   1.1      matt  * pmap_copy_page()
   1811   1.1      matt  *
   1812   1.1      matt  * Copy one physical page into another, by mapping the pages into
   1813   1.1      matt  * hook points. The same comment regarding cachability as in
   1814   1.1      matt  * pmap_zero_page also applies here.
   1815   1.1      matt  */
   1816   1.1      matt void
   1817  1.73   thorpej pmap_copy_page(paddr_t src, paddr_t dst)
   1818   1.1      matt {
   1819  1.71   thorpej 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1820  1.71   thorpej #ifdef DEBUG
   1821  1.71   thorpej 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1822  1.71   thorpej 
   1823  1.71   thorpej 	if (dst_pg->mdpage.pvh_list != NULL)
   1824  1.71   thorpej 		panic("pmap_copy_page: dst page has mappings");
   1825  1.71   thorpej #endif
   1826  1.71   thorpej 
   1827  1.71   thorpej 	/*
   1828  1.71   thorpej 	 * Clean the source page.  Hold the source page's lock for
   1829  1.71   thorpej 	 * the duration of the copy so that no other mappings can
   1830  1.71   thorpej 	 * be created while we have a potentially aliased mapping.
   1831  1.71   thorpej 	 */
   1832  1.49   thorpej 	simple_lock(&src_pg->mdpage.pvh_slock);
   1833  1.71   thorpej 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1834   1.1      matt 
   1835   1.1      matt 	/*
   1836   1.1      matt 	 * Map the pages into the page hook points, copy them, and purge
   1837   1.1      matt 	 * the cache for the appropriate page. Invalidate the TLB
   1838   1.1      matt 	 * as required.
   1839   1.1      matt 	 */
   1840  1.65     chris 	*csrc_pte = L2_PTE(src & PG_FRAME, AP_KR);
   1841  1.71   thorpej 	*cdst_pte = L2_PTE(dst & PG_FRAME, AP_KRW);
   1842  1.54   thorpej 	cpu_tlb_flushD_SE(csrcp);
   1843  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1844  1.32   thorpej 	cpu_cpwait();
   1845  1.54   thorpej 	bcopy_page(csrcp, cdstp);
   1846  1.65     chris 	cpu_dcache_inv_range(csrcp, NBPG);
   1847  1.71   thorpej 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1848  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1849   1.1      matt }
   1850   1.1      matt 
   1851   1.1      matt #if 0
   1852   1.1      matt void
   1853  1.73   thorpej pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1854   1.1      matt {
   1855   1.1      matt 	pd_entry_t *pde;
   1856   1.2      matt 	paddr_t pa;
   1857   1.1      matt 	struct vm_page *m;
   1858   1.1      matt 
   1859   1.1      matt 	if (pmap == pmap_kernel())
   1860   1.1      matt 		return;
   1861   1.1      matt 
   1862   1.1      matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1863   1.1      matt 	pa = pmap_pte_pa(pde);
   1864   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   1865   1.1      matt 	++m->wire_count;
   1866   1.1      matt #ifdef MYCROFT_HACK
   1867   1.1      matt 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1868   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   1869   1.1      matt #endif
   1870   1.1      matt }
   1871   1.1      matt 
   1872   1.1      matt void
   1873  1.73   thorpej pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   1874   1.1      matt {
   1875   1.1      matt 	pd_entry_t *pde;
   1876   1.2      matt 	paddr_t pa;
   1877   1.1      matt 	struct vm_page *m;
   1878   1.1      matt 
   1879   1.1      matt 	if (pmap == pmap_kernel())
   1880   1.1      matt 		return;
   1881   1.1      matt 
   1882   1.1      matt 	pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
   1883   1.1      matt 	pa = pmap_pte_pa(pde);
   1884   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   1885   1.1      matt 	--m->wire_count;
   1886   1.1      matt #ifdef MYCROFT_HACK
   1887   1.1      matt 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1888   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   1889   1.1      matt #endif
   1890   1.1      matt 	if (m->wire_count == 0) {
   1891   1.1      matt #ifdef MYCROFT_HACK
   1892   1.1      matt 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   1893   1.1      matt 		    pmap, va, pde, pa, m);
   1894   1.1      matt #endif
   1895   1.1      matt 		pmap_unmap_in_l1(pmap, va);
   1896   1.1      matt 		uvm_pagefree(m);
   1897   1.1      matt 		--pmap->pm_stats.resident_count;
   1898   1.1      matt 	}
   1899   1.1      matt }
   1900   1.1      matt #else
   1901   1.1      matt #define	pmap_pte_addref(pmap, va)
   1902   1.1      matt #define	pmap_pte_delref(pmap, va)
   1903   1.1      matt #endif
   1904   1.1      matt 
   1905   1.1      matt /*
   1906   1.1      matt  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1907   1.1      matt  * there is more than one mapping and at least one of them is writable.
   1908   1.1      matt  * Since we purge the cache on every context switch, we only need to check for
   1909   1.1      matt  * other mappings within the same pmap, or kernel_pmap.
   1910   1.1      matt  * This function is also called when a page is unmapped, to possibly reenable
   1911   1.1      matt  * caching on any remaining mappings.
   1912  1.28  rearnsha  *
   1913  1.28  rearnsha  * The code implements the following logic, where:
   1914  1.28  rearnsha  *
   1915  1.28  rearnsha  * KW = # of kernel read/write pages
   1916  1.28  rearnsha  * KR = # of kernel read only pages
   1917  1.28  rearnsha  * UW = # of user read/write pages
   1918  1.28  rearnsha  * UR = # of user read only pages
   1919  1.28  rearnsha  * OW = # of user read/write pages in another pmap, then
   1920  1.28  rearnsha  *
   1921  1.28  rearnsha  * KC = kernel mapping is cacheable
   1922  1.28  rearnsha  * UC = user mapping is cacheable
   1923  1.28  rearnsha  *
   1924  1.28  rearnsha  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1925  1.28  rearnsha  *                   +---------------------------------------------
   1926  1.28  rearnsha  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   1927  1.28  rearnsha  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1928  1.28  rearnsha  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   1929  1.28  rearnsha  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1930  1.28  rearnsha  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1931  1.11     chris  *
   1932  1.11     chris  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   1933   1.1      matt  */
   1934  1.25  rearnsha __inline static void
   1935  1.49   thorpej pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   1936  1.12     chris 	boolean_t clear_cache)
   1937   1.1      matt {
   1938  1.25  rearnsha 	if (pmap == pmap_kernel())
   1939  1.49   thorpej 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   1940  1.25  rearnsha 	else
   1941  1.49   thorpej 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   1942  1.25  rearnsha }
   1943  1.25  rearnsha 
   1944  1.25  rearnsha static void
   1945  1.49   thorpej pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   1946  1.25  rearnsha 	boolean_t clear_cache)
   1947  1.25  rearnsha {
   1948  1.25  rearnsha 	int user_entries = 0;
   1949  1.25  rearnsha 	int user_writable = 0;
   1950  1.25  rearnsha 	int user_cacheable = 0;
   1951  1.25  rearnsha 	int kernel_entries = 0;
   1952  1.25  rearnsha 	int kernel_writable = 0;
   1953  1.25  rearnsha 	int kernel_cacheable = 0;
   1954  1.25  rearnsha 	struct pv_entry *pv;
   1955  1.25  rearnsha 	struct pmap *last_pmap = pmap;
   1956  1.25  rearnsha 
   1957  1.25  rearnsha #ifdef DIAGNOSTIC
   1958  1.25  rearnsha 	if (pmap != pmap_kernel())
   1959  1.25  rearnsha 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   1960  1.25  rearnsha #endif
   1961  1.25  rearnsha 
   1962  1.25  rearnsha 	/*
   1963  1.25  rearnsha 	 * Pass one, see if there are both kernel and user pmaps for
   1964  1.25  rearnsha 	 * this page.  Calculate whether there are user-writable or
   1965  1.25  rearnsha 	 * kernel-writable pages.
   1966  1.25  rearnsha 	 */
   1967  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   1968  1.25  rearnsha 		if (pv->pv_pmap != pmap) {
   1969  1.25  rearnsha 			user_entries++;
   1970  1.25  rearnsha 			if (pv->pv_flags & PT_Wr)
   1971  1.25  rearnsha 				user_writable++;
   1972  1.25  rearnsha 			if ((pv->pv_flags & PT_NC) == 0)
   1973  1.25  rearnsha 				user_cacheable++;
   1974  1.25  rearnsha 		} else {
   1975  1.25  rearnsha 			kernel_entries++;
   1976  1.25  rearnsha 			if (pv->pv_flags & PT_Wr)
   1977  1.25  rearnsha 				kernel_writable++;
   1978  1.25  rearnsha 			if ((pv->pv_flags & PT_NC) == 0)
   1979  1.25  rearnsha 				kernel_cacheable++;
   1980  1.25  rearnsha 		}
   1981  1.25  rearnsha 	}
   1982  1.25  rearnsha 
   1983  1.25  rearnsha 	/*
   1984  1.25  rearnsha 	 * We know we have just been updating a kernel entry, so if
   1985  1.25  rearnsha 	 * all user pages are already cacheable, then there is nothing
   1986  1.25  rearnsha 	 * further to do.
   1987  1.25  rearnsha 	 */
   1988  1.25  rearnsha 	if (kernel_entries == 0 &&
   1989  1.25  rearnsha 	    user_cacheable == user_entries)
   1990  1.25  rearnsha 		return;
   1991  1.25  rearnsha 
   1992  1.25  rearnsha 	if (user_entries) {
   1993  1.25  rearnsha 		/*
   1994  1.25  rearnsha 		 * Scan over the list again, for each entry, if it
   1995  1.25  rearnsha 		 * might not be set correctly, call pmap_vac_me_user
   1996  1.25  rearnsha 		 * to recalculate the settings.
   1997  1.25  rearnsha 		 */
   1998  1.49   thorpej 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   1999  1.25  rearnsha 			/*
   2000  1.25  rearnsha 			 * We know kernel mappings will get set
   2001  1.25  rearnsha 			 * correctly in other calls.  We also know
   2002  1.25  rearnsha 			 * that if the pmap is the same as last_pmap
   2003  1.25  rearnsha 			 * then we've just handled this entry.
   2004  1.25  rearnsha 			 */
   2005  1.25  rearnsha 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2006  1.25  rearnsha 				continue;
   2007  1.25  rearnsha 			/*
   2008  1.25  rearnsha 			 * If there are kernel entries and this page
   2009  1.25  rearnsha 			 * is writable but non-cacheable, then we can
   2010  1.25  rearnsha 			 * skip this entry also.
   2011  1.25  rearnsha 			 */
   2012  1.25  rearnsha 			if (kernel_entries > 0 &&
   2013  1.25  rearnsha 			    (pv->pv_flags & (PT_NC | PT_Wr)) ==
   2014  1.25  rearnsha 			    (PT_NC | PT_Wr))
   2015  1.25  rearnsha 				continue;
   2016  1.25  rearnsha 			/*
   2017  1.25  rearnsha 			 * Similarly if there are no kernel-writable
   2018  1.25  rearnsha 			 * entries and the page is already
   2019  1.25  rearnsha 			 * read-only/cacheable.
   2020  1.25  rearnsha 			 */
   2021  1.25  rearnsha 			if (kernel_writable == 0 &&
   2022  1.25  rearnsha 			    (pv->pv_flags & (PT_NC | PT_Wr)) == 0)
   2023  1.25  rearnsha 				continue;
   2024  1.25  rearnsha 			/*
   2025  1.25  rearnsha 			 * For some of the remaining cases, we know
   2026  1.25  rearnsha 			 * that we must recalculate, but for others we
   2027  1.25  rearnsha 			 * can't tell if they are correct or not, so
   2028  1.25  rearnsha 			 * we recalculate anyway.
   2029  1.25  rearnsha 			 */
   2030  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2031  1.25  rearnsha 			last_pmap = pv->pv_pmap;
   2032  1.25  rearnsha 			ptes = pmap_map_ptes(last_pmap);
   2033  1.49   thorpej 			pmap_vac_me_user(last_pmap, pg, ptes,
   2034  1.25  rearnsha 			    pmap_is_curpmap(last_pmap));
   2035  1.25  rearnsha 		}
   2036  1.25  rearnsha 		/* Restore the pte mapping that was passed to us.  */
   2037  1.25  rearnsha 		if (last_pmap != pmap) {
   2038  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2039  1.25  rearnsha 			ptes = pmap_map_ptes(pmap);
   2040  1.25  rearnsha 		}
   2041  1.25  rearnsha 		if (kernel_entries == 0)
   2042  1.25  rearnsha 			return;
   2043  1.25  rearnsha 	}
   2044  1.25  rearnsha 
   2045  1.49   thorpej 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2046  1.25  rearnsha 	return;
   2047  1.25  rearnsha }
   2048  1.25  rearnsha 
   2049  1.25  rearnsha static void
   2050  1.49   thorpej pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2051  1.25  rearnsha 	boolean_t clear_cache)
   2052  1.25  rearnsha {
   2053  1.25  rearnsha 	struct pmap *kpmap = pmap_kernel();
   2054  1.17     chris 	struct pv_entry *pv, *npv;
   2055   1.1      matt 	int entries = 0;
   2056  1.25  rearnsha 	int writable = 0;
   2057  1.12     chris 	int cacheable_entries = 0;
   2058  1.25  rearnsha 	int kern_cacheable = 0;
   2059  1.25  rearnsha 	int other_writable = 0;
   2060   1.1      matt 
   2061  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2062  1.11     chris 	KASSERT(ptes != NULL);
   2063   1.1      matt 
   2064   1.1      matt 	/*
   2065   1.1      matt 	 * Count mappings and writable mappings in this pmap.
   2066  1.25  rearnsha 	 * Include kernel mappings as part of our own.
   2067   1.1      matt 	 * Keep a pointer to the first one.
   2068   1.1      matt 	 */
   2069   1.1      matt 	for (npv = pv; npv; npv = npv->pv_next) {
   2070   1.1      matt 		/* Count mappings in the same pmap */
   2071  1.25  rearnsha 		if (pmap == npv->pv_pmap ||
   2072  1.25  rearnsha 		    kpmap == npv->pv_pmap) {
   2073   1.1      matt 			if (entries++ == 0)
   2074   1.1      matt 				pv = npv;
   2075  1.12     chris 			/* Cacheable mappings */
   2076  1.25  rearnsha 			if ((npv->pv_flags & PT_NC) == 0) {
   2077  1.12     chris 				cacheable_entries++;
   2078  1.25  rearnsha 				if (kpmap == npv->pv_pmap)
   2079  1.25  rearnsha 					kern_cacheable++;
   2080  1.25  rearnsha 			}
   2081  1.25  rearnsha 			/* Writable mappings */
   2082   1.1      matt 			if (npv->pv_flags & PT_Wr)
   2083  1.25  rearnsha 				++writable;
   2084  1.25  rearnsha 		} else if (npv->pv_flags & PT_Wr)
   2085  1.25  rearnsha 			other_writable = 1;
   2086   1.1      matt 	}
   2087   1.1      matt 
   2088  1.12     chris 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2089  1.25  rearnsha 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2090  1.12     chris 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2091  1.12     chris 
   2092   1.1      matt 	/*
   2093   1.1      matt 	 * Enable or disable caching as necessary.
   2094  1.25  rearnsha 	 * Note: the first entry might be part of the kernel pmap,
   2095  1.25  rearnsha 	 * so we can't assume this is indicative of the state of the
   2096  1.25  rearnsha 	 * other (maybe non-kpmap) entries.
   2097   1.1      matt 	 */
   2098  1.25  rearnsha 	if ((entries > 1 && writable) ||
   2099  1.25  rearnsha 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2100  1.12     chris 		if (cacheable_entries == 0)
   2101  1.12     chris 		    return;
   2102  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2103  1.25  rearnsha 			if ((pmap == npv->pv_pmap
   2104  1.25  rearnsha 			    || kpmap == npv->pv_pmap) &&
   2105  1.12     chris 			    (npv->pv_flags & PT_NC) == 0) {
   2106  1.56   thorpej 				ptes[arm_btop(npv->pv_va)] &= ~(PT_C | PT_B);
   2107  1.12     chris  				npv->pv_flags |= PT_NC;
   2108  1.25  rearnsha 				/*
   2109  1.25  rearnsha 				 * If this page needs flushing from the
   2110  1.25  rearnsha 				 * cache, and we aren't going to do it
   2111  1.25  rearnsha 				 * below, do it now.
   2112  1.25  rearnsha 				 */
   2113  1.25  rearnsha 				if ((cacheable_entries < 4 &&
   2114  1.25  rearnsha 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2115  1.25  rearnsha 				    (npv->pv_pmap == kpmap &&
   2116  1.25  rearnsha 				    !clear_cache && kern_cacheable < 4)) {
   2117  1.36   thorpej 					cpu_idcache_wbinv_range(npv->pv_va,
   2118  1.12     chris 					    NBPG);
   2119  1.12     chris 					cpu_tlb_flushID_SE(npv->pv_va);
   2120  1.12     chris 				}
   2121   1.1      matt 			}
   2122   1.1      matt 		}
   2123  1.25  rearnsha 		if ((clear_cache && cacheable_entries >= 4) ||
   2124  1.25  rearnsha 		    kern_cacheable >= 4) {
   2125  1.36   thorpej 			cpu_idcache_wbinv_all();
   2126  1.12     chris 			cpu_tlb_flushID();
   2127  1.12     chris 		}
   2128  1.32   thorpej 		cpu_cpwait();
   2129   1.1      matt 	} else if (entries > 0) {
   2130  1.25  rearnsha 		/*
   2131  1.25  rearnsha 		 * Turn cacheing back on for some pages.  If it is a kernel
   2132  1.25  rearnsha 		 * page, only do so if there are no other writable pages.
   2133  1.25  rearnsha 		 */
   2134  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2135  1.25  rearnsha 			if ((pmap == npv->pv_pmap ||
   2136  1.25  rearnsha 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2137  1.25  rearnsha 			    (npv->pv_flags & PT_NC)) {
   2138  1.56   thorpej 				ptes[arm_btop(npv->pv_va)] |= pte_cache_mode;
   2139  1.12     chris 				npv->pv_flags &= ~PT_NC;
   2140   1.1      matt 			}
   2141   1.1      matt 		}
   2142   1.1      matt 	}
   2143   1.1      matt }
   2144   1.1      matt 
   2145   1.1      matt /*
   2146   1.1      matt  * pmap_remove()
   2147   1.1      matt  *
   2148   1.1      matt  * pmap_remove is responsible for nuking a number of mappings for a range
   2149   1.1      matt  * of virtual address space in the current pmap. To do this efficiently
   2150   1.1      matt  * is interesting, because in a number of cases a wide virtual address
   2151   1.1      matt  * range may be supplied that contains few actual mappings. So, the
   2152   1.1      matt  * optimisations are:
   2153   1.1      matt  *  1. Try and skip over hunks of address space for which an L1 entry
   2154   1.1      matt  *     does not exist.
   2155   1.1      matt  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2156   1.1      matt  *     maybe do just a partial cache clean. This path of execution is
   2157   1.1      matt  *     complicated by the fact that the cache must be flushed _before_
   2158   1.1      matt  *     the PTE is nuked, being a VAC :-)
   2159   1.1      matt  *  3. Maybe later fast-case a single page, but I don't think this is
   2160   1.1      matt  *     going to make _that_ much difference overall.
   2161   1.1      matt  */
   2162   1.1      matt 
   2163   1.1      matt #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2164   1.1      matt 
   2165   1.1      matt void
   2166  1.73   thorpej pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2167   1.1      matt {
   2168   1.1      matt 	int cleanlist_idx = 0;
   2169   1.1      matt 	struct pagelist {
   2170   1.1      matt 		vaddr_t va;
   2171   1.1      matt 		pt_entry_t *pte;
   2172   1.1      matt 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2173  1.11     chris 	pt_entry_t *pte = 0, *ptes;
   2174   1.2      matt 	paddr_t pa;
   2175   1.1      matt 	int pmap_active;
   2176  1.49   thorpej 	struct vm_page *pg;
   2177   1.1      matt 
   2178   1.1      matt 	/* Exit quick if there is no pmap */
   2179   1.1      matt 	if (!pmap)
   2180   1.1      matt 		return;
   2181   1.1      matt 
   2182   1.1      matt 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
   2183   1.1      matt 
   2184   1.1      matt 	sva &= PG_FRAME;
   2185   1.1      matt 	eva &= PG_FRAME;
   2186   1.1      matt 
   2187  1.17     chris 	/*
   2188  1.49   thorpej 	 * we lock in the pmap => vm_page direction
   2189  1.17     chris 	 */
   2190  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2191  1.17     chris 
   2192  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2193   1.1      matt 	/* Get a page table pointer */
   2194   1.1      matt 	while (sva < eva) {
   2195  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2196   1.1      matt 			break;
   2197   1.1      matt 		sva = (sva & PD_MASK) + NBPD;
   2198   1.1      matt 	}
   2199  1.11     chris 
   2200  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2201   1.1      matt 	/* Note if the pmap is active thus require cache and tlb cleans */
   2202  1.58   thorpej 	pmap_active = pmap_is_curpmap(pmap);
   2203   1.1      matt 
   2204   1.1      matt 	/* Now loop along */
   2205   1.1      matt 	while (sva < eva) {
   2206   1.1      matt 		/* Check if we can move to the next PDE (l1 chunk) */
   2207   1.1      matt 		if (!(sva & PT_MASK))
   2208  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2209   1.1      matt 				sva += NBPD;
   2210  1.56   thorpej 				pte += arm_btop(NBPD);
   2211   1.1      matt 				continue;
   2212   1.1      matt 			}
   2213   1.1      matt 
   2214   1.1      matt 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2215   1.1      matt 		if (pmap_pte_v(pte)) {
   2216   1.1      matt 			/* Update statistics */
   2217   1.1      matt 			--pmap->pm_stats.resident_count;
   2218   1.1      matt 
   2219   1.1      matt 			/*
   2220   1.1      matt 			 * Add this page to our cache remove list, if we can.
   2221   1.1      matt 			 * If, however the cache remove list is totally full,
   2222   1.1      matt 			 * then do a complete cache invalidation taking note
   2223   1.1      matt 			 * to backtrack the PTE table beforehand, and ignore
   2224   1.1      matt 			 * the lists in future because there's no longer any
   2225   1.1      matt 			 * point in bothering with them (we've paid the
   2226   1.1      matt 			 * penalty, so will carry on unhindered). Otherwise,
   2227   1.1      matt 			 * when we fall out, we just clean the list.
   2228   1.1      matt 			 */
   2229   1.1      matt 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2230   1.1      matt 			pa = pmap_pte_pa(pte);
   2231   1.1      matt 
   2232   1.1      matt 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2233   1.1      matt 				/* Add to the clean list. */
   2234   1.1      matt 				cleanlist[cleanlist_idx].pte = pte;
   2235   1.1      matt 				cleanlist[cleanlist_idx].va = sva;
   2236   1.1      matt 				cleanlist_idx++;
   2237   1.1      matt 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2238   1.1      matt 				int cnt;
   2239   1.1      matt 
   2240   1.1      matt 				/* Nuke everything if needed. */
   2241   1.1      matt 				if (pmap_active) {
   2242  1.36   thorpej 					cpu_idcache_wbinv_all();
   2243   1.1      matt 					cpu_tlb_flushID();
   2244   1.1      matt 				}
   2245   1.1      matt 
   2246   1.1      matt 				/*
   2247   1.1      matt 				 * Roll back the previous PTE list,
   2248   1.1      matt 				 * and zero out the current PTE.
   2249   1.1      matt 				 */
   2250   1.1      matt 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2251   1.1      matt 					*cleanlist[cnt].pte = 0;
   2252   1.1      matt 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2253   1.1      matt 				}
   2254   1.1      matt 				*pte = 0;
   2255   1.1      matt 				pmap_pte_delref(pmap, sva);
   2256   1.1      matt 				cleanlist_idx++;
   2257   1.1      matt 			} else {
   2258   1.1      matt 				/*
   2259   1.1      matt 				 * We've already nuked the cache and
   2260   1.1      matt 				 * TLB, so just carry on regardless,
   2261   1.1      matt 				 * and we won't need to do it again
   2262   1.1      matt 				 */
   2263   1.1      matt 				*pte = 0;
   2264   1.1      matt 				pmap_pte_delref(pmap, sva);
   2265   1.1      matt 			}
   2266   1.1      matt 
   2267   1.1      matt 			/*
   2268   1.1      matt 			 * Update flags. In a number of circumstances,
   2269   1.1      matt 			 * we could cluster a lot of these and do a
   2270   1.1      matt 			 * number of sequential pages in one go.
   2271   1.1      matt 			 */
   2272  1.49   thorpej 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2273  1.17     chris 				struct pv_entry *pve;
   2274  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2275  1.49   thorpej 				pve = pmap_remove_pv(pg, pmap, sva);
   2276  1.17     chris 				pmap_free_pv(pmap, pve);
   2277  1.49   thorpej 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2278  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2279   1.1      matt 			}
   2280   1.1      matt 		}
   2281   1.1      matt 		sva += NBPG;
   2282   1.1      matt 		pte++;
   2283   1.1      matt 	}
   2284   1.1      matt 
   2285  1.11     chris 	pmap_unmap_ptes(pmap);
   2286   1.1      matt 	/*
   2287   1.1      matt 	 * Now, if we've fallen through down to here, chances are that there
   2288   1.1      matt 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2289   1.1      matt 	 */
   2290   1.1      matt 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2291   1.1      matt 		u_int cnt;
   2292   1.1      matt 
   2293   1.1      matt 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2294   1.1      matt 			if (pmap_active) {
   2295  1.36   thorpej 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2296  1.36   thorpej 				    NBPG);
   2297   1.1      matt 				*cleanlist[cnt].pte = 0;
   2298   1.1      matt 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2299   1.1      matt 			} else
   2300   1.1      matt 				*cleanlist[cnt].pte = 0;
   2301   1.1      matt 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2302   1.1      matt 		}
   2303   1.1      matt 	}
   2304  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2305   1.1      matt }
   2306   1.1      matt 
   2307   1.1      matt /*
   2308   1.1      matt  * Routine:	pmap_remove_all
   2309   1.1      matt  * Function:
   2310   1.1      matt  *		Removes this physical page from
   2311   1.1      matt  *		all physical maps in which it resides.
   2312   1.1      matt  *		Reflects back modify bits to the pager.
   2313   1.1      matt  */
   2314   1.1      matt 
   2315  1.33     chris static void
   2316  1.73   thorpej pmap_remove_all(struct vm_page *pg)
   2317   1.1      matt {
   2318  1.17     chris 	struct pv_entry *pv, *npv;
   2319  1.15     chris 	struct pmap *pmap;
   2320  1.11     chris 	pt_entry_t *pte, *ptes;
   2321   1.1      matt 
   2322  1.49   thorpej 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2323   1.1      matt 
   2324  1.49   thorpej 	/* set vm_page => pmap locking */
   2325  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   2326   1.1      matt 
   2327  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2328  1.17     chris 
   2329  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2330  1.49   thorpej 	if (pv == NULL) {
   2331  1.49   thorpej 		PDEBUG(0, printf("free page\n"));
   2332  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2333  1.49   thorpej 		PMAP_HEAD_TO_MAP_UNLOCK();
   2334  1.49   thorpej 		return;
   2335   1.1      matt 	}
   2336  1.17     chris 	pmap_clean_page(pv, FALSE);
   2337   1.1      matt 
   2338   1.1      matt 	while (pv) {
   2339   1.1      matt 		pmap = pv->pv_pmap;
   2340  1.11     chris 		ptes = pmap_map_ptes(pmap);
   2341  1.56   thorpej 		pte = &ptes[arm_btop(pv->pv_va)];
   2342   1.1      matt 
   2343   1.1      matt 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2344   1.1      matt 		    pv->pv_va, pv->pv_flags));
   2345   1.1      matt #ifdef DEBUG
   2346  1.32   thorpej 		if (!pmap_pde_page(pmap_pde(pmap, pv->pv_va)) ||
   2347  1.30  rearnsha 		    !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
   2348   1.1      matt 			panic("pmap_remove_all: bad mapping");
   2349   1.1      matt #endif	/* DEBUG */
   2350   1.1      matt 
   2351   1.1      matt 		/*
   2352   1.1      matt 		 * Update statistics
   2353   1.1      matt 		 */
   2354   1.1      matt 		--pmap->pm_stats.resident_count;
   2355   1.1      matt 
   2356   1.1      matt 		/* Wired bit */
   2357   1.1      matt 		if (pv->pv_flags & PT_W)
   2358   1.1      matt 			--pmap->pm_stats.wired_count;
   2359   1.1      matt 
   2360   1.1      matt 		/*
   2361   1.1      matt 		 * Invalidate the PTEs.
   2362   1.1      matt 		 * XXX: should cluster them up and invalidate as many
   2363   1.1      matt 		 * as possible at once.
   2364   1.1      matt 		 */
   2365   1.1      matt 
   2366   1.1      matt #ifdef needednotdone
   2367   1.1      matt reduce wiring count on page table pages as references drop
   2368   1.1      matt #endif
   2369   1.1      matt 
   2370   1.1      matt 		*pte = 0;
   2371   1.1      matt 		pmap_pte_delref(pmap, pv->pv_va);
   2372   1.1      matt 
   2373   1.1      matt 		npv = pv->pv_next;
   2374  1.17     chris 		pmap_free_pv(pmap, pv);
   2375   1.1      matt 		pv = npv;
   2376  1.11     chris 		pmap_unmap_ptes(pmap);
   2377   1.1      matt 	}
   2378  1.49   thorpej 	pg->mdpage.pvh_list = NULL;
   2379  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   2380  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   2381   1.1      matt 
   2382   1.1      matt 	PDEBUG(0, printf("done\n"));
   2383   1.1      matt 	cpu_tlb_flushID();
   2384  1.32   thorpej 	cpu_cpwait();
   2385   1.1      matt }
   2386   1.1      matt 
   2387   1.1      matt 
   2388   1.1      matt /*
   2389   1.1      matt  * Set the physical protection on the specified range of this map as requested.
   2390   1.1      matt  */
   2391   1.1      matt 
   2392   1.1      matt void
   2393  1.73   thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2394   1.1      matt {
   2395  1.11     chris 	pt_entry_t *pte = NULL, *ptes;
   2396  1.49   thorpej 	struct vm_page *pg;
   2397   1.1      matt 	int armprot;
   2398   1.1      matt 	int flush = 0;
   2399   1.2      matt 	paddr_t pa;
   2400   1.1      matt 
   2401   1.1      matt 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2402   1.1      matt 	    pmap, sva, eva, prot));
   2403   1.1      matt 
   2404   1.1      matt 	if (~prot & VM_PROT_READ) {
   2405   1.1      matt 		/* Just remove the mappings. */
   2406   1.1      matt 		pmap_remove(pmap, sva, eva);
   2407  1.33     chris 		/* pmap_update not needed as it should be called by the caller
   2408  1.33     chris 		 * of pmap_protect */
   2409   1.1      matt 		return;
   2410   1.1      matt 	}
   2411   1.1      matt 	if (prot & VM_PROT_WRITE) {
   2412   1.1      matt 		/*
   2413   1.1      matt 		 * If this is a read->write transition, just ignore it and let
   2414   1.1      matt 		 * uvm_fault() take care of it later.
   2415   1.1      matt 		 */
   2416   1.1      matt 		return;
   2417   1.1      matt 	}
   2418   1.1      matt 
   2419   1.1      matt 	sva &= PG_FRAME;
   2420   1.1      matt 	eva &= PG_FRAME;
   2421   1.1      matt 
   2422  1.17     chris 	/* Need to lock map->head */
   2423  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2424  1.17     chris 
   2425  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2426   1.1      matt 	/*
   2427   1.1      matt 	 * We need to acquire a pointer to a page table page before entering
   2428   1.1      matt 	 * the following loop.
   2429   1.1      matt 	 */
   2430   1.1      matt 	while (sva < eva) {
   2431  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2432   1.1      matt 			break;
   2433   1.1      matt 		sva = (sva & PD_MASK) + NBPD;
   2434   1.1      matt 	}
   2435  1.11     chris 
   2436  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2437  1.17     chris 
   2438   1.1      matt 	while (sva < eva) {
   2439   1.1      matt 		/* only check once in a while */
   2440   1.1      matt 		if ((sva & PT_MASK) == 0) {
   2441  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2442   1.1      matt 				/* We can race ahead here, to the next pde. */
   2443   1.1      matt 				sva += NBPD;
   2444  1.56   thorpej 				pte += arm_btop(NBPD);
   2445   1.1      matt 				continue;
   2446   1.1      matt 			}
   2447   1.1      matt 		}
   2448   1.1      matt 
   2449   1.1      matt 		if (!pmap_pte_v(pte))
   2450   1.1      matt 			goto next;
   2451   1.1      matt 
   2452   1.1      matt 		flush = 1;
   2453   1.1      matt 
   2454   1.1      matt 		armprot = 0;
   2455   1.1      matt 		if (sva < VM_MAXUSER_ADDRESS)
   2456   1.1      matt 			armprot |= PT_AP(AP_U);
   2457   1.1      matt 		else if (sva < VM_MAX_ADDRESS)
   2458   1.1      matt 			armprot |= PT_AP(AP_W);  /* XXX Ekk what is this ? */
   2459   1.1      matt 		*pte = (*pte & 0xfffff00f) | armprot;
   2460   1.1      matt 
   2461   1.1      matt 		pa = pmap_pte_pa(pte);
   2462   1.1      matt 
   2463   1.1      matt 		/* Get the physical page index */
   2464   1.1      matt 
   2465   1.1      matt 		/* Clear write flag */
   2466  1.49   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2467  1.49   thorpej 			simple_lock(&pg->mdpage.pvh_slock);
   2468  1.49   thorpej 			(void) pmap_modify_pv(pmap, sva, pg, PT_Wr, 0);
   2469  1.49   thorpej 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2470  1.49   thorpej 			simple_unlock(&pg->mdpage.pvh_slock);
   2471   1.1      matt 		}
   2472   1.1      matt 
   2473   1.1      matt next:
   2474   1.1      matt 		sva += NBPG;
   2475   1.1      matt 		pte++;
   2476   1.1      matt 	}
   2477  1.11     chris 	pmap_unmap_ptes(pmap);
   2478  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2479   1.1      matt 	if (flush)
   2480   1.1      matt 		cpu_tlb_flushID();
   2481   1.1      matt }
   2482   1.1      matt 
   2483   1.1      matt /*
   2484  1.15     chris  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2485   1.1      matt  * int flags)
   2486   1.1      matt  *
   2487   1.1      matt  *      Insert the given physical page (p) at
   2488   1.1      matt  *      the specified virtual address (v) in the
   2489   1.1      matt  *      target physical map with the protection requested.
   2490   1.1      matt  *
   2491   1.1      matt  *      If specified, the page will be wired down, meaning
   2492   1.1      matt  *      that the related pte can not be reclaimed.
   2493   1.1      matt  *
   2494   1.1      matt  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2495   1.1      matt  *      or lose information.  That is, this routine must actually
   2496   1.1      matt  *      insert this page into the given map NOW.
   2497   1.1      matt  */
   2498   1.1      matt 
   2499   1.1      matt int
   2500  1.73   thorpej pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2501  1.73   thorpej     int flags)
   2502   1.1      matt {
   2503  1.66   thorpej 	pt_entry_t *ptes, opte, npte;
   2504   1.2      matt 	paddr_t opa;
   2505   1.1      matt 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2506  1.49   thorpej 	struct vm_page *pg;
   2507  1.17     chris 	struct pv_entry *pve;
   2508  1.66   thorpej 	int error, nflags;
   2509   1.1      matt 
   2510   1.1      matt 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2511   1.1      matt 	    va, pa, pmap, prot, wired));
   2512   1.1      matt 
   2513   1.1      matt #ifdef DIAGNOSTIC
   2514   1.1      matt 	/* Valid address ? */
   2515  1.48     chris 	if (va >= (pmap_curmaxkvaddr))
   2516   1.1      matt 		panic("pmap_enter: too big");
   2517   1.1      matt 	if (pmap != pmap_kernel() && va != 0) {
   2518   1.1      matt 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2519   1.1      matt 			panic("pmap_enter: kernel page in user map");
   2520   1.1      matt 	} else {
   2521   1.1      matt 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2522   1.1      matt 			panic("pmap_enter: user page in kernel map");
   2523   1.1      matt 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2524   1.1      matt 			panic("pmap_enter: entering PT page");
   2525   1.1      matt 	}
   2526   1.1      matt #endif
   2527  1.49   thorpej 	/*
   2528  1.49   thorpej 	 * Get a pointer to the page.  Later on in this function, we
   2529  1.49   thorpej 	 * test for a managed page by checking pg != NULL.
   2530  1.49   thorpej 	 */
   2531  1.55   thorpej 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2532  1.49   thorpej 
   2533  1.17     chris 	/* get lock */
   2534  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2535  1.66   thorpej 
   2536   1.1      matt 	/*
   2537  1.66   thorpej 	 * map the ptes.  If there's not already an L2 table for this
   2538  1.66   thorpej 	 * address, allocate one.
   2539   1.1      matt 	 */
   2540  1.66   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2541  1.66   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2542  1.17     chris 		struct vm_page *ptp;
   2543  1.57   thorpej 
   2544  1.57   thorpej 		/* kernel should be pre-grown */
   2545  1.57   thorpej 		KASSERT(pmap != pmap_kernel());
   2546  1.17     chris 
   2547  1.17     chris 		/* if failure is allowed then don't try too hard */
   2548  1.70   thorpej 		ptp = pmap_get_ptp(pmap, va & PD_MASK);
   2549  1.17     chris 		if (ptp == NULL) {
   2550  1.17     chris 			if (flags & PMAP_CANFAIL) {
   2551  1.17     chris 				error = ENOMEM;
   2552  1.17     chris 				goto out;
   2553  1.17     chris 			}
   2554  1.17     chris 			panic("pmap_enter: get ptp failed");
   2555   1.1      matt 		}
   2556   1.1      matt 	}
   2557  1.66   thorpej 	opte = ptes[arm_btop(va)];
   2558   1.1      matt 
   2559   1.1      matt 	nflags = 0;
   2560   1.1      matt 	if (prot & VM_PROT_WRITE)
   2561   1.1      matt 		nflags |= PT_Wr;
   2562   1.1      matt 	if (wired)
   2563   1.1      matt 		nflags |= PT_W;
   2564   1.1      matt 
   2565   1.1      matt 	/* Is the pte valid ? If so then this page is already mapped */
   2566  1.66   thorpej 	if (l2pte_valid(opte)) {
   2567   1.1      matt 		/* Get the physical address of the current page mapped */
   2568  1.66   thorpej 		opa = l2pte_pa(opte);
   2569   1.1      matt 
   2570   1.1      matt 		/* Are we mapping the same page ? */
   2571   1.1      matt 		if (opa == pa) {
   2572   1.1      matt 			/* Has the wiring changed ? */
   2573  1.49   thorpej 			if (pg != NULL) {
   2574  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2575  1.49   thorpej 				(void) pmap_modify_pv(pmap, va, pg,
   2576   1.1      matt 				    PT_Wr | PT_W, nflags);
   2577  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2578  1.49   thorpej  			}
   2579   1.1      matt 		} else {
   2580  1.49   thorpej 			struct vm_page *opg;
   2581  1.49   thorpej 
   2582   1.1      matt 			/* We are replacing the page with a new one. */
   2583  1.36   thorpej 			cpu_idcache_wbinv_range(va, NBPG);
   2584   1.1      matt 
   2585   1.1      matt 			/*
   2586   1.1      matt 			 * If it is part of our managed memory then we
   2587   1.1      matt 			 * must remove it from the PV list
   2588   1.1      matt 			 */
   2589  1.49   thorpej 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2590  1.49   thorpej 				simple_lock(&opg->mdpage.pvh_slock);
   2591  1.49   thorpej 				pve = pmap_remove_pv(opg, pmap, va);
   2592  1.49   thorpej 				simple_unlock(&opg->mdpage.pvh_slock);
   2593  1.17     chris 			} else {
   2594  1.17     chris 				pve = NULL;
   2595   1.1      matt 			}
   2596   1.1      matt 
   2597   1.1      matt 			goto enter;
   2598   1.1      matt 		}
   2599   1.1      matt 	} else {
   2600   1.1      matt 		opa = 0;
   2601  1.17     chris 		pve = NULL;
   2602   1.1      matt 		pmap_pte_addref(pmap, va);
   2603   1.1      matt 
   2604   1.1      matt 		/* pte is not valid so we must be hooking in a new page */
   2605   1.1      matt 		++pmap->pm_stats.resident_count;
   2606   1.1      matt 
   2607   1.1      matt 	enter:
   2608   1.1      matt 		/*
   2609   1.1      matt 		 * Enter on the PV list if part of our managed memory
   2610   1.1      matt 		 */
   2611  1.55   thorpej 		if (pg != NULL) {
   2612  1.17     chris 			if (pve == NULL) {
   2613  1.17     chris 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2614  1.17     chris 				if (pve == NULL) {
   2615  1.17     chris 					if (flags & PMAP_CANFAIL) {
   2616  1.17     chris 						error = ENOMEM;
   2617  1.17     chris 						goto out;
   2618  1.17     chris 					}
   2619  1.66   thorpej 					panic("pmap_enter: no pv entries "
   2620  1.66   thorpej 					    "available");
   2621  1.17     chris 				}
   2622  1.17     chris 			}
   2623  1.17     chris 			/* enter_pv locks pvh when adding */
   2624  1.49   thorpej 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2625  1.17     chris 		} else {
   2626  1.17     chris 			if (pve != NULL)
   2627  1.17     chris 				pmap_free_pv(pmap, pve);
   2628   1.1      matt 		}
   2629   1.1      matt 	}
   2630   1.1      matt 
   2631   1.1      matt 	/* Construct the pte, giving the correct access. */
   2632   1.1      matt 	npte = (pa & PG_FRAME);
   2633   1.1      matt 
   2634   1.1      matt 	/* VA 0 is magic. */
   2635   1.1      matt 	if (pmap != pmap_kernel() && va != 0)
   2636   1.1      matt 		npte |= PT_AP(AP_U);
   2637   1.1      matt 
   2638  1.55   thorpej 	if (pg != NULL) {
   2639   1.1      matt #ifdef DIAGNOSTIC
   2640   1.1      matt 		if ((flags & VM_PROT_ALL) & ~prot)
   2641   1.1      matt 			panic("pmap_enter: access_type exceeds prot");
   2642   1.1      matt #endif
   2643  1.27  rearnsha 		npte |= pte_cache_mode;
   2644   1.1      matt 		if (flags & VM_PROT_WRITE) {
   2645   1.1      matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2646  1.49   thorpej 			pg->mdpage.pvh_attrs |= PT_H | PT_M;
   2647   1.1      matt 		} else if (flags & VM_PROT_ALL) {
   2648   1.1      matt 			npte |= L2_SPAGE;
   2649  1.49   thorpej 			pg->mdpage.pvh_attrs |= PT_H;
   2650   1.1      matt 		} else
   2651   1.1      matt 			npte |= L2_INVAL;
   2652   1.1      matt 	} else {
   2653   1.1      matt 		if (prot & VM_PROT_WRITE)
   2654   1.1      matt 			npte |= L2_SPAGE | PT_AP(AP_W);
   2655   1.1      matt 		else if (prot & VM_PROT_ALL)
   2656   1.1      matt 			npte |= L2_SPAGE;
   2657   1.1      matt 		else
   2658   1.1      matt 			npte |= L2_INVAL;
   2659   1.1      matt 	}
   2660   1.1      matt 
   2661  1.66   thorpej 	ptes[arm_btop(va)] = npte;
   2662   1.1      matt 
   2663  1.55   thorpej 	if (pg != NULL) {
   2664  1.49   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2665  1.59   thorpej  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2666  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2667  1.11     chris 	}
   2668   1.1      matt 
   2669   1.1      matt 	/* Better flush the TLB ... */
   2670   1.1      matt 	cpu_tlb_flushID_SE(va);
   2671  1.17     chris 	error = 0;
   2672  1.17     chris out:
   2673  1.66   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2674  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2675   1.1      matt 
   2676  1.17     chris 	return error;
   2677   1.1      matt }
   2678   1.1      matt 
   2679  1.48     chris /*
   2680  1.48     chris  * pmap_kenter_pa: enter a kernel mapping
   2681  1.48     chris  *
   2682  1.48     chris  * => no need to lock anything assume va is already allocated
   2683  1.48     chris  * => should be faster than normal pmap enter function
   2684  1.48     chris  */
   2685   1.1      matt void
   2686  1.73   thorpej pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2687   1.1      matt {
   2688  1.13     chris 	pt_entry_t *pte;
   2689  1.13     chris 
   2690  1.13     chris 	pte = vtopte(va);
   2691  1.14       chs 	KASSERT(!pmap_pte_v(pte));
   2692  1.13     chris 	*pte = L2_PTE(pa, AP_KRW);
   2693   1.1      matt }
   2694   1.1      matt 
   2695   1.1      matt void
   2696  1.73   thorpej pmap_kremove(vaddr_t va, vsize_t len)
   2697   1.1      matt {
   2698  1.14       chs 	pt_entry_t *pte;
   2699  1.14       chs 
   2700   1.1      matt 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2701  1.13     chris 
   2702  1.14       chs 		/*
   2703  1.14       chs 		 * We assume that we will only be called with small
   2704  1.14       chs 		 * regions of memory.
   2705  1.14       chs 		 */
   2706  1.14       chs 
   2707  1.30  rearnsha 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2708  1.13     chris 		pte = vtopte(va);
   2709  1.36   thorpej 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2710  1.13     chris 		*pte = 0;
   2711  1.13     chris 		cpu_tlb_flushID_SE(va);
   2712   1.1      matt 	}
   2713   1.1      matt }
   2714   1.1      matt 
   2715   1.1      matt /*
   2716   1.1      matt  * pmap_page_protect:
   2717   1.1      matt  *
   2718   1.1      matt  * Lower the permission for all mappings to a given page.
   2719   1.1      matt  */
   2720   1.1      matt 
   2721   1.1      matt void
   2722  1.73   thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2723   1.1      matt {
   2724   1.1      matt 
   2725  1.49   thorpej 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2726  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), prot));
   2727   1.1      matt 
   2728   1.1      matt 	switch(prot) {
   2729  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2730  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE:
   2731  1.17     chris 		return;
   2732  1.17     chris 
   2733   1.1      matt 	case VM_PROT_READ:
   2734   1.1      matt 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2735  1.73   thorpej 		pmap_clearbit(pg, PT_Wr);
   2736   1.1      matt 		break;
   2737   1.1      matt 
   2738   1.1      matt 	default:
   2739  1.49   thorpej 		pmap_remove_all(pg);
   2740   1.1      matt 		break;
   2741   1.1      matt 	}
   2742   1.1      matt }
   2743   1.1      matt 
   2744   1.1      matt 
   2745   1.1      matt /*
   2746   1.1      matt  * Routine:	pmap_unwire
   2747   1.1      matt  * Function:	Clear the wired attribute for a map/virtual-address
   2748   1.1      matt  *		pair.
   2749   1.1      matt  * In/out conditions:
   2750   1.1      matt  *		The mapping must already exist in the pmap.
   2751   1.1      matt  */
   2752   1.1      matt 
   2753   1.1      matt void
   2754  1.73   thorpej pmap_unwire(struct pmap *pmap, vaddr_t va)
   2755   1.1      matt {
   2756  1.60   thorpej 	pt_entry_t *ptes;
   2757  1.60   thorpej 	struct vm_page *pg;
   2758   1.2      matt 	paddr_t pa;
   2759   1.1      matt 
   2760  1.60   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2761  1.60   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2762   1.1      matt 
   2763  1.60   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2764  1.60   thorpej #ifdef DIAGNOSTIC
   2765  1.60   thorpej 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2766  1.60   thorpej 			panic("pmap_unwire: invalid L2 PTE");
   2767  1.60   thorpej #endif
   2768  1.60   thorpej 		/* Extract the physical address of the page */
   2769  1.60   thorpej 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2770   1.1      matt 
   2771  1.60   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2772  1.60   thorpej 			goto out;
   2773   1.1      matt 
   2774  1.60   thorpej 		/* Update the wired bit in the pv entry for this page. */
   2775  1.60   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2776  1.60   thorpej 		(void) pmap_modify_pv(pmap, va, pg, PT_W, 0);
   2777  1.60   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2778  1.60   thorpej 	}
   2779  1.60   thorpej #ifdef DIAGNOSTIC
   2780  1.60   thorpej 	else {
   2781  1.60   thorpej 		panic("pmap_unwire: invalid L1 PTE");
   2782  1.60   thorpej 	}
   2783  1.60   thorpej #endif
   2784  1.60   thorpej  out:
   2785  1.60   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2786  1.60   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2787   1.1      matt }
   2788   1.1      matt 
   2789   1.1      matt /*
   2790   1.1      matt  * Routine:  pmap_extract
   2791   1.1      matt  * Function:
   2792   1.1      matt  *           Extract the physical page address associated
   2793   1.1      matt  *           with the given map/virtual_address pair.
   2794   1.1      matt  */
   2795   1.1      matt boolean_t
   2796  1.73   thorpej pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   2797   1.1      matt {
   2798  1.34   thorpej 	pd_entry_t *pde;
   2799  1.11     chris 	pt_entry_t *pte, *ptes;
   2800   1.1      matt 	paddr_t pa;
   2801  1.75   reinoud 	boolean_t rv = FALSE;
   2802  1.75   reinoud 	int l1_ptype, l2_ptype;
   2803   1.1      matt 
   2804   1.1      matt 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
   2805   1.1      matt 
   2806   1.1      matt 	/*
   2807  1.11     chris 	 * Get the pte for this virtual address.
   2808   1.1      matt 	 */
   2809  1.34   thorpej 	pde = pmap_pde(pmap, va);
   2810  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2811  1.56   thorpej 	pte = &ptes[arm_btop(va)];
   2812   1.1      matt 
   2813  1.75   reinoud 	l1_ptype = *pde & L1_MASK;
   2814  1.75   reinoud 
   2815  1.75   reinoud 	if (l1_ptype == L1_SECTION) {
   2816  1.75   reinoud 		/* Extract the physical address from the pde */
   2817  1.34   thorpej 		pa = (*pde & PD_MASK) | (va & (L1_SEC_SIZE - 1));
   2818  1.75   reinoud 		rv = TRUE;
   2819  1.75   reinoud 	} else if (l1_ptype == L1_PAGE) {
   2820   1.1      matt 
   2821  1.75   reinoud 		l2_ptype = *pte & L2_MASK;
   2822   1.1      matt 
   2823  1.75   reinoud 		if (l2_ptype == L2_LPAGE) {
   2824  1.75   reinoud 			/* Extract the physical address from the pte */
   2825  1.75   reinoud 			pa  = *pte & ~(L2_LPAGE_SIZE - 1);
   2826  1.75   reinoud 			pa |=  va  &  (L2_LPAGE_SIZE - 1);
   2827  1.75   reinoud 			rv = TRUE;
   2828  1.75   reinoud 		} else if (l2_ptype == L2_SPAGE) {
   2829  1.75   reinoud 			/* Extract the physical address from the pte */
   2830  1.75   reinoud 			pa  = *pte & ~(L2_SPAGE_SIZE - 1);
   2831  1.75   reinoud 			pa |=  va  &  (L2_SPAGE_SIZE - 1);
   2832  1.75   reinoud 			rv = TRUE;
   2833  1.75   reinoud 		};
   2834  1.75   reinoud 	};
   2835  1.75   reinoud 	/* if `rv' is still false then it wasnt meant to be .. and return FALSE */
   2836   1.1      matt 
   2837  1.75   reinoud 	if (rv && (pap != NULL)) *pap = pa;	/* only return when valid */
   2838  1.34   thorpej 
   2839  1.11     chris 	pmap_unmap_ptes(pmap);
   2840  1.34   thorpej 	return (rv);
   2841   1.1      matt }
   2842   1.1      matt 
   2843   1.1      matt 
   2844   1.1      matt /*
   2845  1.73   thorpej  * pmap_copy:
   2846   1.1      matt  *
   2847  1.73   thorpej  *	Copy the range specified by src_addr/len from the source map to the
   2848  1.73   thorpej  *	range dst_addr/len in the destination map.
   2849  1.73   thorpej  *
   2850  1.73   thorpej  *	This routine is only advisory and need not do anything.
   2851   1.1      matt  */
   2852  1.73   thorpej /* Call deleted in <arm/arm32/pmap.h> */
   2853   1.1      matt 
   2854   1.1      matt #if defined(PMAP_DEBUG)
   2855   1.1      matt void
   2856   1.1      matt pmap_dump_pvlist(phys, m)
   2857   1.1      matt 	vaddr_t phys;
   2858   1.1      matt 	char *m;
   2859   1.1      matt {
   2860  1.49   thorpej 	struct vm_page *pg;
   2861   1.1      matt 	struct pv_entry *pv;
   2862   1.1      matt 
   2863  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   2864   1.1      matt 		printf("INVALID PA\n");
   2865   1.1      matt 		return;
   2866   1.1      matt 	}
   2867  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2868   1.1      matt 	printf("%s %08lx:", m, phys);
   2869  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   2870   1.1      matt 		printf(" no mappings\n");
   2871   1.1      matt 		return;
   2872   1.1      matt 	}
   2873   1.1      matt 
   2874  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   2875   1.1      matt 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   2876   1.1      matt 		    pv->pv_va, pv->pv_flags);
   2877   1.1      matt 
   2878   1.1      matt 	printf("\n");
   2879  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   2880   1.1      matt }
   2881   1.1      matt 
   2882   1.1      matt #endif	/* PMAP_DEBUG */
   2883   1.1      matt 
   2884  1.11     chris static pt_entry_t *
   2885  1.11     chris pmap_map_ptes(struct pmap *pmap)
   2886  1.11     chris {
   2887  1.72   thorpej 	struct proc *p;
   2888  1.17     chris 
   2889  1.17     chris     	/* the kernel's pmap is always accessible */
   2890  1.17     chris 	if (pmap == pmap_kernel()) {
   2891  1.72   thorpej 		return (pt_entry_t *)PTE_BASE;
   2892  1.17     chris 	}
   2893  1.17     chris 
   2894  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   2895  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   2896  1.53   thorpej 		return (pt_entry_t *)PTE_BASE;
   2897  1.17     chris 	}
   2898  1.72   thorpej 
   2899  1.17     chris 	p = curproc;
   2900  1.72   thorpej 	KDASSERT(p != NULL);
   2901  1.17     chris 
   2902  1.17     chris 	/* need to lock both curpmap and pmap: use ordered locking */
   2903  1.72   thorpej 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   2904  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   2905  1.72   thorpej 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2906  1.17     chris 	} else {
   2907  1.72   thorpej 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2908  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   2909  1.17     chris 	}
   2910  1.11     chris 
   2911  1.72   thorpej 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   2912  1.72   thorpej 	    FALSE);
   2913  1.17     chris 	cpu_tlb_flushD();
   2914  1.32   thorpej 	cpu_cpwait();
   2915  1.53   thorpej 	return (pt_entry_t *)APTE_BASE;
   2916  1.17     chris }
   2917  1.17     chris 
   2918  1.17     chris /*
   2919  1.17     chris  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   2920  1.17     chris  */
   2921  1.17     chris 
   2922  1.17     chris static void
   2923  1.73   thorpej pmap_unmap_ptes(struct pmap *pmap)
   2924  1.17     chris {
   2925  1.72   thorpej 
   2926  1.17     chris 	if (pmap == pmap_kernel()) {
   2927  1.17     chris 		return;
   2928  1.17     chris 	}
   2929  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   2930  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   2931  1.17     chris 	} else {
   2932  1.72   thorpej 		KDASSERT(curproc != NULL);
   2933  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   2934  1.72   thorpej 		simple_unlock(
   2935  1.72   thorpej 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   2936  1.17     chris 	}
   2937  1.11     chris }
   2938   1.1      matt 
   2939   1.1      matt /*
   2940   1.1      matt  * Modify pte bits for all ptes corresponding to the given physical address.
   2941   1.1      matt  * We use `maskbits' rather than `clearbits' because we're always passing
   2942   1.1      matt  * constants and the latter would require an extra inversion at run-time.
   2943   1.1      matt  */
   2944   1.1      matt 
   2945  1.22     chris static void
   2946  1.73   thorpej pmap_clearbit(struct vm_page *pg, u_int maskbits)
   2947   1.1      matt {
   2948   1.1      matt 	struct pv_entry *pv;
   2949  1.59   thorpej 	pt_entry_t *ptes;
   2950   1.1      matt 	vaddr_t va;
   2951  1.49   thorpej 	int tlbentry;
   2952   1.1      matt 
   2953   1.1      matt 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   2954  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), maskbits));
   2955  1.21     chris 
   2956  1.21     chris 	tlbentry = 0;
   2957  1.21     chris 
   2958  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   2959  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2960  1.17     chris 
   2961   1.1      matt 	/*
   2962   1.1      matt 	 * Clear saved attributes (modify, reference)
   2963   1.1      matt 	 */
   2964  1.49   thorpej 	pg->mdpage.pvh_attrs &= ~maskbits;
   2965   1.1      matt 
   2966  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   2967  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2968  1.17     chris 		PMAP_HEAD_TO_MAP_UNLOCK();
   2969   1.1      matt 		return;
   2970   1.1      matt 	}
   2971   1.1      matt 
   2972   1.1      matt 	/*
   2973   1.1      matt 	 * Loop over all current mappings setting/clearing as appropos
   2974   1.1      matt 	 */
   2975  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2976   1.1      matt 		va = pv->pv_va;
   2977   1.1      matt 		pv->pv_flags &= ~maskbits;
   2978  1.59   thorpej 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   2979  1.59   thorpej 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   2980  1.29  rearnsha 		if (maskbits & (PT_Wr|PT_M)) {
   2981  1.29  rearnsha 			if ((pv->pv_flags & PT_NC)) {
   2982  1.29  rearnsha 				/*
   2983  1.29  rearnsha 				 * Entry is not cacheable: reenable
   2984  1.29  rearnsha 				 * the cache, nothing to flush
   2985  1.29  rearnsha 				 *
   2986  1.29  rearnsha 				 * Don't turn caching on again if this
   2987  1.29  rearnsha 				 * is a modified emulation.  This
   2988  1.29  rearnsha 				 * would be inconsitent with the
   2989  1.29  rearnsha 				 * settings created by
   2990  1.29  rearnsha 				 * pmap_vac_me_harder().
   2991  1.29  rearnsha 				 *
   2992  1.29  rearnsha 				 * There's no need to call
   2993  1.29  rearnsha 				 * pmap_vac_me_harder() here: all
   2994  1.29  rearnsha 				 * pages are loosing their write
   2995  1.29  rearnsha 				 * permission.
   2996  1.29  rearnsha 				 *
   2997  1.29  rearnsha 				 */
   2998  1.29  rearnsha 				if (maskbits & PT_Wr) {
   2999  1.59   thorpej 					ptes[arm_btop(va)] |= pte_cache_mode;
   3000  1.29  rearnsha 					pv->pv_flags &= ~PT_NC;
   3001  1.29  rearnsha 				}
   3002  1.59   thorpej 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3003  1.29  rearnsha 				/*
   3004  1.29  rearnsha 				 * Entry is cacheable: check if pmap is
   3005  1.29  rearnsha 				 * current if it is flush it,
   3006  1.29  rearnsha 				 * otherwise it won't be in the cache
   3007  1.29  rearnsha 				 */
   3008  1.36   thorpej 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3009  1.59   thorpej 			}
   3010  1.29  rearnsha 
   3011  1.29  rearnsha 			/* make the pte read only */
   3012  1.59   thorpej 			ptes[arm_btop(va)] &= ~PT_AP(AP_W);
   3013  1.29  rearnsha 		}
   3014  1.29  rearnsha 
   3015  1.29  rearnsha 		if (maskbits & PT_H)
   3016  1.59   thorpej 			ptes[arm_btop(va)] =
   3017  1.59   thorpej 			    (ptes[arm_btop(va)] & ~L2_MASK) | L2_INVAL;
   3018  1.21     chris 
   3019  1.59   thorpej 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3020  1.21     chris 			/*
   3021  1.29  rearnsha 			 * if we had cacheable pte's we'd clean the
   3022  1.29  rearnsha 			 * pte out to memory here
   3023  1.29  rearnsha 			 *
   3024  1.21     chris 			 * flush tlb entry as it's in the current pmap
   3025  1.21     chris 			 */
   3026  1.21     chris 			cpu_tlb_flushID_SE(pv->pv_va);
   3027  1.59   thorpej 		}
   3028  1.59   thorpej 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3029  1.29  rearnsha 	}
   3030  1.32   thorpej 	cpu_cpwait();
   3031  1.21     chris 
   3032  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3033  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   3034   1.1      matt }
   3035   1.1      matt 
   3036  1.50   thorpej /*
   3037  1.50   thorpej  * pmap_clear_modify:
   3038  1.50   thorpej  *
   3039  1.50   thorpej  *	Clear the "modified" attribute for a page.
   3040  1.50   thorpej  */
   3041   1.1      matt boolean_t
   3042  1.73   thorpej pmap_clear_modify(struct vm_page *pg)
   3043   1.1      matt {
   3044   1.1      matt 	boolean_t rv;
   3045   1.1      matt 
   3046  1.50   thorpej 	if (pg->mdpage.pvh_attrs & PT_M) {
   3047  1.50   thorpej 		rv = TRUE;
   3048  1.50   thorpej 		pmap_clearbit(pg, PT_M);
   3049  1.50   thorpej 	} else
   3050  1.50   thorpej 		rv = FALSE;
   3051  1.50   thorpej 
   3052  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3053  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3054  1.50   thorpej 
   3055  1.50   thorpej 	return (rv);
   3056   1.1      matt }
   3057   1.1      matt 
   3058  1.50   thorpej /*
   3059  1.50   thorpej  * pmap_clear_reference:
   3060  1.50   thorpej  *
   3061  1.50   thorpej  *	Clear the "referenced" attribute for a page.
   3062  1.50   thorpej  */
   3063   1.1      matt boolean_t
   3064  1.73   thorpej pmap_clear_reference(struct vm_page *pg)
   3065   1.1      matt {
   3066   1.1      matt 	boolean_t rv;
   3067   1.1      matt 
   3068  1.50   thorpej 	if (pg->mdpage.pvh_attrs & PT_H) {
   3069  1.50   thorpej 		rv = TRUE;
   3070  1.50   thorpej 		pmap_clearbit(pg, PT_H);
   3071  1.50   thorpej 	} else
   3072  1.50   thorpej 		rv = FALSE;
   3073  1.50   thorpej 
   3074  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3075  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3076  1.50   thorpej 
   3077  1.50   thorpej 	return (rv);
   3078   1.1      matt }
   3079   1.1      matt 
   3080  1.50   thorpej /*
   3081  1.50   thorpej  * pmap_is_modified:
   3082  1.50   thorpej  *
   3083  1.50   thorpej  *	Test if a page has the "modified" attribute.
   3084  1.50   thorpej  */
   3085  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3086  1.39   thorpej 
   3087  1.50   thorpej /*
   3088  1.50   thorpej  * pmap_is_referenced:
   3089  1.50   thorpej  *
   3090  1.50   thorpej  *	Test if a page has the "referenced" attribute.
   3091  1.50   thorpej  */
   3092  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3093   1.1      matt 
   3094   1.1      matt int
   3095  1.73   thorpej pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3096   1.1      matt {
   3097  1.61   thorpej 	pt_entry_t *ptes;
   3098  1.61   thorpej 	struct vm_page *pg;
   3099   1.2      matt 	paddr_t pa;
   3100   1.1      matt 	u_int flags;
   3101  1.61   thorpej 	int rv = 0;
   3102   1.1      matt 
   3103   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3104   1.1      matt 
   3105  1.61   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3106  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3107  1.61   thorpej 
   3108  1.61   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3109  1.61   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3110  1.61   thorpej 		goto out;
   3111   1.1      matt 	}
   3112   1.1      matt 
   3113  1.61   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3114   1.1      matt 
   3115  1.61   thorpej 	/* Check for a invalid pte */
   3116  1.61   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3117  1.61   thorpej 		goto out;
   3118   1.1      matt 
   3119   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3120  1.61   thorpej 	if ((ptes[arm_btop(va)] & PT_AP(AP_W)) != 0)
   3121  1.61   thorpej 		goto out;
   3122   1.1      matt 
   3123   1.1      matt 	/* Extract the physical address of the page */
   3124  1.61   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3125  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3126  1.61   thorpej 		goto out;
   3127   1.1      matt 
   3128  1.49   thorpej 	/* Get the current flags for this page. */
   3129  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3130  1.17     chris 
   3131  1.49   thorpej 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3132   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3133   1.1      matt 
   3134   1.1      matt 	/*
   3135   1.1      matt 	 * Do the flags say this page is writable ? If not then it is a
   3136   1.1      matt 	 * genuine write fault. If yes then the write fault is our fault
   3137   1.1      matt 	 * as we did not reflect the write access in the PTE. Now we know
   3138   1.1      matt 	 * a write has occurred we can correct this and also set the
   3139   1.1      matt 	 * modified bit
   3140   1.1      matt 	 */
   3141  1.17     chris 	if (~flags & PT_Wr) {
   3142  1.49   thorpej 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3143  1.61   thorpej 		goto out;
   3144  1.17     chris 	}
   3145   1.1      matt 
   3146  1.61   thorpej 	PDEBUG(0,
   3147  1.61   thorpej 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3148  1.61   thorpej 	    va, ptes[arm_btop(va)]));
   3149  1.49   thorpej 	pg->mdpage.pvh_attrs |= PT_H | PT_M;
   3150  1.29  rearnsha 
   3151  1.29  rearnsha 	/*
   3152  1.29  rearnsha 	 * Re-enable write permissions for the page.  No need to call
   3153  1.29  rearnsha 	 * pmap_vac_me_harder(), since this is just a
   3154  1.29  rearnsha 	 * modified-emulation fault, and the PT_Wr bit isn't changing.  We've
   3155  1.29  rearnsha 	 * already set the cacheable bits based on the assumption that we
   3156  1.29  rearnsha 	 * can write to this page.
   3157  1.29  rearnsha 	 */
   3158  1.61   thorpej 	ptes[arm_btop(va)] =
   3159  1.61   thorpej 	    (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
   3160  1.61   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3161   1.1      matt 
   3162  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3163  1.61   thorpej 
   3164   1.1      matt 	cpu_tlb_flushID_SE(va);
   3165  1.32   thorpej 	cpu_cpwait();
   3166  1.61   thorpej 	rv = 1;
   3167  1.61   thorpej  out:
   3168  1.61   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3169  1.61   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3170  1.61   thorpej 	return (rv);
   3171   1.1      matt }
   3172   1.1      matt 
   3173   1.1      matt int
   3174  1.73   thorpej pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3175   1.1      matt {
   3176  1.62   thorpej 	pt_entry_t *ptes;
   3177  1.62   thorpej 	struct vm_page *pg;
   3178   1.2      matt 	paddr_t pa;
   3179  1.62   thorpej 	int rv = 0;
   3180   1.1      matt 
   3181   1.1      matt 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3182   1.1      matt 
   3183  1.63   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3184  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3185  1.62   thorpej 
   3186  1.62   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3187  1.62   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3188  1.62   thorpej 		goto out;
   3189   1.1      matt 	}
   3190   1.1      matt 
   3191  1.62   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3192   1.1      matt 
   3193  1.62   thorpej 	/* Check for invalid pte */
   3194  1.62   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3195  1.62   thorpej 		goto out;
   3196   1.1      matt 
   3197   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3198  1.62   thorpej 	if ((ptes[arm_btop(va)] & L2_MASK) != L2_INVAL)
   3199  1.62   thorpej 		goto out;
   3200   1.1      matt 
   3201   1.1      matt 	/* Extract the physical address of the page */
   3202  1.62   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3203  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3204  1.62   thorpej 		goto out;
   3205   1.1      matt 
   3206  1.63   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3207  1.63   thorpej 
   3208   1.1      matt 	/*
   3209   1.1      matt 	 * Ok we just enable the pte and mark the attibs as handled
   3210  1.63   thorpej 	 * XXX Should we traverse the PV list and enable all PTEs?
   3211   1.1      matt 	 */
   3212  1.62   thorpej 	PDEBUG(0,
   3213  1.62   thorpej 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3214  1.62   thorpej 	    va, ptes[arm_btop(va)]));
   3215  1.49   thorpej 	pg->mdpage.pvh_attrs |= PT_H;
   3216   1.1      matt 
   3217  1.62   thorpej 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_MASK) | L2_SPAGE;
   3218  1.62   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3219  1.62   thorpej 
   3220  1.63   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3221  1.63   thorpej 
   3222   1.1      matt 	cpu_tlb_flushID_SE(va);
   3223  1.32   thorpej 	cpu_cpwait();
   3224  1.62   thorpej 	rv = 1;
   3225  1.62   thorpej  out:
   3226  1.62   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3227  1.63   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3228  1.62   thorpej 	return (rv);
   3229   1.1      matt }
   3230  1.17     chris 
   3231   1.1      matt /*
   3232   1.1      matt  * pmap_collect: free resources held by a pmap
   3233   1.1      matt  *
   3234   1.1      matt  * => optional function.
   3235   1.1      matt  * => called when a process is swapped out to free memory.
   3236   1.1      matt  */
   3237   1.1      matt 
   3238   1.1      matt void
   3239  1.73   thorpej pmap_collect(struct pmap *pmap)
   3240   1.1      matt {
   3241   1.1      matt }
   3242   1.1      matt 
   3243   1.1      matt /*
   3244   1.1      matt  * Routine:	pmap_procwr
   3245   1.1      matt  *
   3246   1.1      matt  * Function:
   3247   1.1      matt  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3248   1.1      matt  *
   3249   1.1      matt  */
   3250   1.1      matt void
   3251  1.73   thorpej pmap_procwr(struct proc *p, vaddr_t va, int len)
   3252   1.1      matt {
   3253   1.1      matt 	/* We only need to do anything if it is the current process. */
   3254   1.1      matt 	if (p == curproc)
   3255  1.36   thorpej 		cpu_icache_sync_range(va, len);
   3256  1.17     chris }
   3257  1.17     chris /*
   3258  1.17     chris  * PTP functions
   3259  1.17     chris  */
   3260  1.17     chris 
   3261  1.17     chris /*
   3262  1.17     chris  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3263  1.17     chris  *
   3264  1.17     chris  * => pmap should NOT be pmap_kernel()
   3265  1.17     chris  * => pmap should be locked
   3266  1.17     chris  */
   3267  1.17     chris 
   3268  1.17     chris static struct vm_page *
   3269  1.57   thorpej pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3270  1.17     chris {
   3271  1.57   thorpej 	struct vm_page *ptp;
   3272  1.17     chris 
   3273  1.57   thorpej 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3274  1.17     chris 
   3275  1.57   thorpej 		/* valid... check hint (saves us a PA->PG lookup) */
   3276  1.57   thorpej 		if (pmap->pm_ptphint &&
   3277  1.70   thorpej 		    (pmap->pm_pdir[pmap_pdei(va)] & PG_FRAME) ==
   3278  1.57   thorpej 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3279  1.57   thorpej 			return (pmap->pm_ptphint);
   3280  1.57   thorpej 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3281  1.17     chris #ifdef DIAGNOSTIC
   3282  1.57   thorpej 		if (ptp == NULL)
   3283  1.57   thorpej 			panic("pmap_get_ptp: unmanaged user PTP");
   3284  1.17     chris #endif
   3285  1.70   thorpej 		pmap->pm_ptphint = ptp;
   3286  1.57   thorpej 		return(ptp);
   3287  1.57   thorpej 	}
   3288  1.17     chris 
   3289  1.57   thorpej 	/* allocate a new PTP (updates ptphint) */
   3290  1.57   thorpej 	return(pmap_alloc_ptp(pmap, va));
   3291  1.17     chris }
   3292  1.17     chris 
   3293  1.17     chris /*
   3294  1.17     chris  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3295  1.17     chris  *
   3296  1.17     chris  * => pmap should already be locked by caller
   3297  1.17     chris  * => we use the ptp's wire_count to count the number of active mappings
   3298  1.17     chris  *	in the PTP (we start it at one to prevent any chance this PTP
   3299  1.17     chris  *	will ever leak onto the active/inactive queues)
   3300  1.17     chris  */
   3301  1.17     chris 
   3302  1.17     chris /*__inline */ static struct vm_page *
   3303  1.57   thorpej pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3304  1.17     chris {
   3305  1.17     chris 	struct vm_page *ptp;
   3306  1.17     chris 
   3307  1.17     chris 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3308  1.17     chris 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3309  1.57   thorpej 	if (ptp == NULL)
   3310  1.17     chris 		return (NULL);
   3311  1.17     chris 
   3312  1.17     chris 	/* got one! */
   3313  1.17     chris 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3314  1.17     chris 	ptp->wire_count = 1;	/* no mappings yet */
   3315  1.17     chris 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3316  1.17     chris 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3317  1.70   thorpej 	pmap->pm_ptphint = ptp;
   3318  1.17     chris 	return (ptp);
   3319   1.1      matt }
   3320  1.48     chris 
   3321  1.48     chris vaddr_t
   3322  1.73   thorpej pmap_growkernel(vaddr_t maxkvaddr)
   3323  1.48     chris {
   3324  1.48     chris 	struct pmap *kpm = pmap_kernel(), *pm;
   3325  1.48     chris 	int s;
   3326  1.48     chris 	paddr_t ptaddr;
   3327  1.48     chris 	struct vm_page *ptp;
   3328  1.48     chris 
   3329  1.48     chris 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3330  1.48     chris 		goto out;		/* we are OK */
   3331  1.48     chris 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3332  1.48     chris 		    pmap_curmaxkvaddr, maxkvaddr));
   3333  1.48     chris 
   3334  1.48     chris 	/*
   3335  1.48     chris 	 * whoops!   we need to add kernel PTPs
   3336  1.48     chris 	 */
   3337  1.48     chris 
   3338  1.48     chris 	s = splhigh();	/* to be safe */
   3339  1.48     chris 	simple_lock(&kpm->pm_obj.vmobjlock);
   3340  1.48     chris 	/* due to the way the arm pmap works we map 4MB at a time */
   3341  1.70   thorpej 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3342  1.70   thorpej 	     pmap_curmaxkvaddr += 4 * NBPD) {
   3343  1.48     chris 
   3344  1.48     chris 		if (uvm.page_init_done == FALSE) {
   3345  1.48     chris 
   3346  1.48     chris 			/*
   3347  1.48     chris 			 * we're growing the kernel pmap early (from
   3348  1.48     chris 			 * uvm_pageboot_alloc()).  this case must be
   3349  1.48     chris 			 * handled a little differently.
   3350  1.48     chris 			 */
   3351  1.48     chris 
   3352  1.48     chris 			if (uvm_page_physget(&ptaddr) == FALSE)
   3353  1.48     chris 				panic("pmap_growkernel: out of memory");
   3354  1.48     chris 			pmap_zero_page(ptaddr);
   3355  1.48     chris 
   3356  1.48     chris 			/* map this page in */
   3357  1.70   thorpej 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3358  1.48     chris 
   3359  1.48     chris 			/* count PTP as resident */
   3360  1.48     chris 			kpm->pm_stats.resident_count++;
   3361  1.48     chris 			continue;
   3362  1.48     chris 		}
   3363  1.48     chris 
   3364  1.48     chris 		/*
   3365  1.48     chris 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3366  1.48     chris 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3367  1.48     chris 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3368  1.48     chris 		 */
   3369  1.48     chris 
   3370  1.70   thorpej 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3371  1.48     chris 			panic("pmap_growkernel: alloc ptp failed");
   3372  1.48     chris 
   3373  1.48     chris 		/* distribute new kernel PTP to all active pmaps */
   3374  1.48     chris 		simple_lock(&pmaps_lock);
   3375  1.48     chris 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3376  1.70   thorpej 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3377  1.70   thorpej 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3378  1.48     chris 		}
   3379  1.48     chris 
   3380  1.48     chris 		simple_unlock(&pmaps_lock);
   3381  1.48     chris 	}
   3382  1.48     chris 
   3383  1.48     chris 	/*
   3384  1.48     chris 	 * flush out the cache, expensive but growkernel will happen so
   3385  1.48     chris 	 * rarely
   3386  1.48     chris 	 */
   3387  1.48     chris 	cpu_tlb_flushD();
   3388  1.48     chris 	cpu_cpwait();
   3389  1.48     chris 
   3390  1.48     chris 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3391  1.48     chris 	splx(s);
   3392  1.48     chris 
   3393  1.48     chris out:
   3394  1.48     chris 	return (pmap_curmaxkvaddr);
   3395  1.48     chris }
   3396  1.48     chris 
   3397  1.48     chris 
   3398   1.1      matt 
   3399  1.40   thorpej /************************ Bootstrapping routines ****************************/
   3400  1.40   thorpej 
   3401  1.40   thorpej /*
   3402  1.46   thorpej  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3403  1.46   thorpej  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3404  1.46   thorpej  * find them as necessary.
   3405  1.46   thorpej  *
   3406  1.46   thorpej  * Note that the data on this list is not valid after initarm() returns.
   3407  1.46   thorpej  */
   3408  1.46   thorpej SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3409  1.46   thorpej 
   3410  1.46   thorpej static vaddr_t
   3411  1.46   thorpej kernel_pt_lookup(paddr_t pa)
   3412  1.46   thorpej {
   3413  1.46   thorpej 	pv_addr_t *pv;
   3414  1.46   thorpej 
   3415  1.46   thorpej 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3416  1.46   thorpej 		if (pv->pv_pa == pa)
   3417  1.46   thorpej 			return (pv->pv_va);
   3418  1.46   thorpej 	}
   3419  1.46   thorpej 	return (0);
   3420  1.46   thorpej }
   3421  1.46   thorpej 
   3422  1.46   thorpej /*
   3423  1.40   thorpej  * pmap_map_section:
   3424  1.40   thorpej  *
   3425  1.40   thorpej  *	Create a single section mapping.
   3426  1.40   thorpej  */
   3427  1.40   thorpej void
   3428  1.40   thorpej pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3429  1.40   thorpej {
   3430  1.40   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3431  1.43   thorpej 	pd_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3432  1.43   thorpej 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3433  1.40   thorpej 
   3434  1.40   thorpej 	KASSERT(((va | pa) & (L1_SEC_SIZE - 1)) == 0);
   3435  1.40   thorpej 
   3436  1.43   thorpej 	pde[va >> PDSHIFT] = L1_SECPTE(pa & PD_MASK, ap, fl);
   3437  1.41   thorpej }
   3438  1.41   thorpej 
   3439  1.41   thorpej /*
   3440  1.41   thorpej  * pmap_map_entry:
   3441  1.41   thorpej  *
   3442  1.41   thorpej  *	Create a single page mapping.
   3443  1.41   thorpej  */
   3444  1.41   thorpej void
   3445  1.47   thorpej pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3446  1.41   thorpej {
   3447  1.47   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3448  1.41   thorpej 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3449  1.41   thorpej 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3450  1.47   thorpej 	pt_entry_t *pte;
   3451  1.41   thorpej 
   3452  1.41   thorpej 	KASSERT(((va | pa) & PGOFSET) == 0);
   3453  1.41   thorpej 
   3454  1.47   thorpej 	if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3455  1.47   thorpej 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3456  1.47   thorpej 
   3457  1.47   thorpej 	pte = (pt_entry_t *)
   3458  1.47   thorpej 	    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3459  1.47   thorpej 	if (pte == NULL)
   3460  1.47   thorpej 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3461  1.47   thorpej 
   3462  1.41   thorpej 	pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa & PG_FRAME, ap, fl);
   3463  1.42   thorpej }
   3464  1.42   thorpej 
   3465  1.42   thorpej /*
   3466  1.42   thorpej  * pmap_link_l2pt:
   3467  1.42   thorpej  *
   3468  1.42   thorpej  *	Link the L2 page table specified by "pa" into the L1
   3469  1.42   thorpej  *	page table at the slot for "va".
   3470  1.42   thorpej  */
   3471  1.42   thorpej void
   3472  1.46   thorpej pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3473  1.42   thorpej {
   3474  1.42   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3475  1.42   thorpej 	u_int slot = va >> PDSHIFT;
   3476  1.42   thorpej 
   3477  1.46   thorpej 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3478  1.46   thorpej 
   3479  1.46   thorpej 	pde[slot + 0] = L1_PTE(l2pv->pv_pa + 0x000);
   3480  1.46   thorpej 	pde[slot + 1] = L1_PTE(l2pv->pv_pa + 0x400);
   3481  1.46   thorpej 	pde[slot + 2] = L1_PTE(l2pv->pv_pa + 0x800);
   3482  1.46   thorpej 	pde[slot + 3] = L1_PTE(l2pv->pv_pa + 0xc00);
   3483  1.42   thorpej 
   3484  1.46   thorpej 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3485  1.43   thorpej }
   3486  1.43   thorpej 
   3487  1.43   thorpej /*
   3488  1.43   thorpej  * pmap_map_chunk:
   3489  1.43   thorpej  *
   3490  1.43   thorpej  *	Map a chunk of memory using the most efficient mappings
   3491  1.43   thorpej  *	possible (section, large page, small page) into the
   3492  1.43   thorpej  *	provided L1 and L2 tables at the specified virtual address.
   3493  1.43   thorpej  */
   3494  1.43   thorpej vsize_t
   3495  1.46   thorpej pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3496  1.46   thorpej     int prot, int cache)
   3497  1.43   thorpej {
   3498  1.43   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3499  1.43   thorpej 	pt_entry_t ap = (prot & VM_PROT_WRITE) ? AP_KRW : AP_KR;
   3500  1.43   thorpej 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_cache_mode : 0;
   3501  1.46   thorpej 	pt_entry_t *pte;
   3502  1.43   thorpej 	vsize_t resid;
   3503  1.43   thorpej 	int i;
   3504  1.43   thorpej 
   3505  1.43   thorpej 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3506  1.43   thorpej 
   3507  1.44   thorpej 	if (l1pt == 0)
   3508  1.44   thorpej 		panic("pmap_map_chunk: no L1 table provided");
   3509  1.44   thorpej 
   3510  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3511  1.43   thorpej 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3512  1.43   thorpej 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3513  1.43   thorpej #endif
   3514  1.43   thorpej 
   3515  1.43   thorpej 	size = resid;
   3516  1.43   thorpej 
   3517  1.43   thorpej 	while (resid > 0) {
   3518  1.43   thorpej 		/* See if we can use a section mapping. */
   3519  1.44   thorpej 		if (((pa | va) & (L1_SEC_SIZE - 1)) == 0 &&
   3520  1.43   thorpej 		    resid >= L1_SEC_SIZE) {
   3521  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3522  1.43   thorpej 			printf("S");
   3523  1.43   thorpej #endif
   3524  1.43   thorpej 			pde[va >> PDSHIFT] = L1_SECPTE(pa, ap, fl);
   3525  1.43   thorpej 			va += L1_SEC_SIZE;
   3526  1.43   thorpej 			pa += L1_SEC_SIZE;
   3527  1.43   thorpej 			resid -= L1_SEC_SIZE;
   3528  1.43   thorpej 			continue;
   3529  1.43   thorpej 		}
   3530  1.45   thorpej 
   3531  1.45   thorpej 		/*
   3532  1.45   thorpej 		 * Ok, we're going to use an L2 table.  Make sure
   3533  1.45   thorpej 		 * one is actually in the corresponding L1 slot
   3534  1.45   thorpej 		 * for the current VA.
   3535  1.45   thorpej 		 */
   3536  1.45   thorpej 		if ((pde[va >> PDSHIFT] & L1_MASK) != L1_PAGE)
   3537  1.46   thorpej 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3538  1.46   thorpej 
   3539  1.46   thorpej 		pte = (pt_entry_t *)
   3540  1.46   thorpej 		    kernel_pt_lookup(pde[va >> PDSHIFT] & PG_FRAME);
   3541  1.46   thorpej 		if (pte == NULL)
   3542  1.46   thorpej 			panic("pmap_map_chunk: can't find L2 table for VA"
   3543  1.46   thorpej 			    "0x%08lx", va);
   3544  1.43   thorpej 
   3545  1.43   thorpej 		/* See if we can use a L2 large page mapping. */
   3546  1.43   thorpej 		if (((pa | va) & (L2_LPAGE_SIZE - 1)) == 0 &&
   3547  1.43   thorpej 		    resid >= L2_LPAGE_SIZE) {
   3548  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3549  1.43   thorpej 			printf("L");
   3550  1.43   thorpej #endif
   3551  1.43   thorpej 			for (i = 0; i < 16; i++) {
   3552  1.43   thorpej 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3553  1.43   thorpej 				    L2_LPTE(pa, ap, fl);
   3554  1.43   thorpej 			}
   3555  1.43   thorpej 			va += L2_LPAGE_SIZE;
   3556  1.43   thorpej 			pa += L2_LPAGE_SIZE;
   3557  1.43   thorpej 			resid -= L2_LPAGE_SIZE;
   3558  1.43   thorpej 			continue;
   3559  1.43   thorpej 		}
   3560  1.43   thorpej 
   3561  1.43   thorpej 		/* Use a small page mapping. */
   3562  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3563  1.43   thorpej 		printf("P");
   3564  1.43   thorpej #endif
   3565  1.43   thorpej 		pte[(va >> PGSHIFT) & 0x3ff] = L2_SPTE(pa, ap, fl);
   3566  1.43   thorpej 		va += NBPG;
   3567  1.43   thorpej 		pa += NBPG;
   3568  1.43   thorpej 		resid -= NBPG;
   3569  1.43   thorpej 	}
   3570  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3571  1.43   thorpej 	printf("\n");
   3572  1.43   thorpej #endif
   3573  1.43   thorpej 	return (size);
   3574  1.40   thorpej }
   3575