Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.93
      1  1.93   thorpej /*	$NetBSD: pmap.c,v 1.93 2002/04/10 17:08:13 thorpej Exp $	*/
      2  1.12     chris 
      3  1.12     chris /*
      4  1.49   thorpej  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  1.12     chris  * Copyright (c) 2001 Richard Earnshaw
      6  1.12     chris  * Copyright (c) 2001 Christopher Gilbert
      7  1.12     chris  * All rights reserved.
      8  1.12     chris  *
      9  1.12     chris  * 1. Redistributions of source code must retain the above copyright
     10  1.12     chris  *    notice, this list of conditions and the following disclaimer.
     11  1.12     chris  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.12     chris  *    notice, this list of conditions and the following disclaimer in the
     13  1.12     chris  *    documentation and/or other materials provided with the distribution.
     14  1.12     chris  * 3. The name of the company nor the name of the author may be used to
     15  1.12     chris  *    endorse or promote products derived from this software without specific
     16  1.12     chris  *    prior written permission.
     17  1.12     chris  *
     18  1.12     chris  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  1.12     chris  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  1.12     chris  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  1.12     chris  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  1.12     chris  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  1.12     chris  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  1.12     chris  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.12     chris  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.12     chris  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.12     chris  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.12     chris  * SUCH DAMAGE.
     29  1.12     chris  */
     30   1.1      matt 
     31   1.1      matt /*-
     32   1.1      matt  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33   1.1      matt  * All rights reserved.
     34   1.1      matt  *
     35   1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
     36   1.1      matt  * by Charles M. Hannum.
     37   1.1      matt  *
     38   1.1      matt  * Redistribution and use in source and binary forms, with or without
     39   1.1      matt  * modification, are permitted provided that the following conditions
     40   1.1      matt  * are met:
     41   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     42   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     43   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     44   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     45   1.1      matt  *    documentation and/or other materials provided with the distribution.
     46   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     47   1.1      matt  *    must display the following acknowledgement:
     48   1.1      matt  *        This product includes software developed by the NetBSD
     49   1.1      matt  *        Foundation, Inc. and its contributors.
     50   1.1      matt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51   1.1      matt  *    contributors may be used to endorse or promote products derived
     52   1.1      matt  *    from this software without specific prior written permission.
     53   1.1      matt  *
     54   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55   1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     65   1.1      matt  */
     66   1.1      matt 
     67   1.1      matt /*
     68   1.1      matt  * Copyright (c) 1994-1998 Mark Brinicombe.
     69   1.1      matt  * Copyright (c) 1994 Brini.
     70   1.1      matt  * All rights reserved.
     71   1.1      matt  *
     72   1.1      matt  * This code is derived from software written for Brini by Mark Brinicombe
     73   1.1      matt  *
     74   1.1      matt  * Redistribution and use in source and binary forms, with or without
     75   1.1      matt  * modification, are permitted provided that the following conditions
     76   1.1      matt  * are met:
     77   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     78   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     79   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     80   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     81   1.1      matt  *    documentation and/or other materials provided with the distribution.
     82   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     83   1.1      matt  *    must display the following acknowledgement:
     84   1.1      matt  *	This product includes software developed by Mark Brinicombe.
     85   1.1      matt  * 4. The name of the author may not be used to endorse or promote products
     86   1.1      matt  *    derived from this software without specific prior written permission.
     87   1.1      matt  *
     88   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89   1.1      matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90   1.1      matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91   1.1      matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92   1.1      matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93   1.1      matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94   1.1      matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95   1.1      matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96   1.1      matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97   1.1      matt  *
     98   1.1      matt  * RiscBSD kernel project
     99   1.1      matt  *
    100   1.1      matt  * pmap.c
    101   1.1      matt  *
    102   1.1      matt  * Machine dependant vm stuff
    103   1.1      matt  *
    104   1.1      matt  * Created      : 20/09/94
    105   1.1      matt  */
    106   1.1      matt 
    107   1.1      matt /*
    108   1.1      matt  * Performance improvements, UVM changes, overhauls and part-rewrites
    109   1.1      matt  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110   1.1      matt  */
    111   1.1      matt 
    112   1.1      matt /*
    113   1.1      matt  * The dram block info is currently referenced from the bootconfig.
    114   1.1      matt  * This should be placed in a separate structure.
    115   1.1      matt  */
    116   1.1      matt 
    117   1.1      matt /*
    118   1.1      matt  * Special compilation symbols
    119   1.1      matt  * PMAP_DEBUG		- Build in pmap_debug_level code
    120   1.1      matt  */
    121   1.1      matt 
    122   1.1      matt /* Include header files */
    123   1.1      matt 
    124   1.1      matt #include "opt_pmap_debug.h"
    125   1.1      matt #include "opt_ddb.h"
    126   1.1      matt 
    127   1.1      matt #include <sys/types.h>
    128   1.1      matt #include <sys/param.h>
    129   1.1      matt #include <sys/kernel.h>
    130   1.1      matt #include <sys/systm.h>
    131   1.1      matt #include <sys/proc.h>
    132   1.1      matt #include <sys/malloc.h>
    133   1.1      matt #include <sys/user.h>
    134  1.10     chris #include <sys/pool.h>
    135  1.16     chris #include <sys/cdefs.h>
    136  1.16     chris 
    137   1.1      matt #include <uvm/uvm.h>
    138   1.1      matt 
    139   1.1      matt #include <machine/bootconfig.h>
    140   1.1      matt #include <machine/bus.h>
    141   1.1      matt #include <machine/pmap.h>
    142   1.1      matt #include <machine/pcb.h>
    143   1.1      matt #include <machine/param.h>
    144  1.32   thorpej #include <arm/arm32/katelib.h>
    145  1.16     chris 
    146  1.93   thorpej __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.93 2002/04/10 17:08:13 thorpej Exp $");
    147   1.1      matt #ifdef PMAP_DEBUG
    148   1.1      matt #define	PDEBUG(_lev_,_stat_) \
    149   1.1      matt 	if (pmap_debug_level >= (_lev_)) \
    150   1.1      matt         	((_stat_))
    151   1.1      matt int pmap_debug_level = -2;
    152  1.48     chris void pmap_dump_pvlist(vaddr_t phys, char *m);
    153  1.17     chris 
    154  1.17     chris /*
    155  1.17     chris  * for switching to potentially finer grained debugging
    156  1.17     chris  */
    157  1.17     chris #define	PDB_FOLLOW	0x0001
    158  1.17     chris #define	PDB_INIT	0x0002
    159  1.17     chris #define	PDB_ENTER	0x0004
    160  1.17     chris #define	PDB_REMOVE	0x0008
    161  1.17     chris #define	PDB_CREATE	0x0010
    162  1.17     chris #define	PDB_PTPAGE	0x0020
    163  1.48     chris #define	PDB_GROWKERN	0x0040
    164  1.17     chris #define	PDB_BITS	0x0080
    165  1.17     chris #define	PDB_COLLECT	0x0100
    166  1.17     chris #define	PDB_PROTECT	0x0200
    167  1.48     chris #define	PDB_MAP_L1	0x0400
    168  1.17     chris #define	PDB_BOOTSTRAP	0x1000
    169  1.17     chris #define	PDB_PARANOIA	0x2000
    170  1.17     chris #define	PDB_WIRING	0x4000
    171  1.17     chris #define	PDB_PVDUMP	0x8000
    172  1.17     chris 
    173  1.17     chris int debugmap = 0;
    174  1.17     chris int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175  1.17     chris #define	NPDEBUG(_lev_,_stat_) \
    176  1.17     chris 	if (pmapdebug & (_lev_)) \
    177  1.17     chris         	((_stat_))
    178  1.17     chris 
    179   1.1      matt #else	/* PMAP_DEBUG */
    180   1.1      matt #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181  1.48     chris #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182   1.1      matt #endif	/* PMAP_DEBUG */
    183   1.1      matt 
    184   1.1      matt struct pmap     kernel_pmap_store;
    185   1.1      matt 
    186  1.10     chris /*
    187  1.48     chris  * linked list of all non-kernel pmaps
    188  1.48     chris  */
    189  1.48     chris 
    190  1.69   thorpej static LIST_HEAD(, pmap) pmaps;
    191  1.48     chris 
    192  1.48     chris /*
    193  1.10     chris  * pool that pmap structures are allocated from
    194  1.10     chris  */
    195  1.10     chris 
    196  1.10     chris struct pool pmap_pmap_pool;
    197  1.10     chris 
    198  1.54   thorpej static pt_entry_t *csrc_pte, *cdst_pte;
    199  1.54   thorpej static vaddr_t csrcp, cdstp;
    200  1.54   thorpej 
    201   1.1      matt char *memhook;
    202   1.1      matt extern caddr_t msgbufaddr;
    203   1.1      matt 
    204   1.1      matt boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205  1.17     chris /*
    206  1.17     chris  * locking data structures
    207  1.17     chris  */
    208   1.1      matt 
    209  1.17     chris static struct lock pmap_main_lock;
    210  1.17     chris static struct simplelock pvalloc_lock;
    211  1.48     chris static struct simplelock pmaps_lock;
    212  1.17     chris #ifdef LOCKDEBUG
    213  1.17     chris #define PMAP_MAP_TO_HEAD_LOCK() \
    214  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215  1.17     chris #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217  1.17     chris 
    218  1.17     chris #define PMAP_HEAD_TO_MAP_LOCK() \
    219  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220  1.17     chris #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221  1.17     chris      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222  1.17     chris #else
    223  1.17     chris #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224  1.17     chris #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225  1.17     chris #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226  1.17     chris #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227  1.17     chris #endif /* LOCKDEBUG */
    228  1.17     chris 
    229  1.17     chris /*
    230  1.17     chris  * pv_page management structures: locked by pvalloc_lock
    231  1.17     chris  */
    232   1.1      matt 
    233  1.17     chris TAILQ_HEAD(pv_pagelist, pv_page);
    234  1.17     chris static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235  1.17     chris static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236  1.17     chris static int pv_nfpvents;			/* # of free pv entries */
    237  1.17     chris static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238  1.17     chris static vaddr_t pv_cachedva;		/* cached VA for later use */
    239  1.17     chris 
    240  1.17     chris #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241  1.17     chris #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242  1.17     chris 					/* high water mark */
    243  1.17     chris 
    244  1.17     chris /*
    245  1.17     chris  * local prototypes
    246  1.17     chris  */
    247  1.17     chris 
    248  1.17     chris static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249  1.17     chris static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250  1.17     chris #define ALLOCPV_NEED	0	/* need PV now */
    251  1.17     chris #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252  1.17     chris #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253  1.17     chris static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254  1.49   thorpej static void		 pmap_enter_pv __P((struct vm_page *,
    255  1.17     chris 					    struct pv_entry *, struct pmap *,
    256  1.17     chris 					    vaddr_t, struct vm_page *, int));
    257  1.17     chris static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258  1.17     chris static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259  1.17     chris static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260  1.17     chris static void		 pmap_free_pvpage __P((void));
    261  1.17     chris static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262  1.49   thorpej static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263  1.17     chris 			vaddr_t));
    264  1.17     chris #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265  1.17     chris #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266   1.1      matt 
    267  1.49   thorpej static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268  1.33     chris 	u_int, u_int));
    269  1.33     chris 
    270  1.69   thorpej /*
    271  1.69   thorpej  * Structure that describes and L1 table.
    272  1.69   thorpej  */
    273  1.69   thorpej struct l1pt {
    274  1.69   thorpej 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    275  1.69   thorpej 	struct pglist		pt_plist;	/* Allocated page list */
    276  1.69   thorpej 	vaddr_t			pt_va;		/* Allocated virtual address */
    277  1.69   thorpej 	int			pt_flags;	/* Flags */
    278  1.69   thorpej };
    279  1.69   thorpej #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    280  1.69   thorpej #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    281  1.69   thorpej #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    282  1.69   thorpej 
    283  1.33     chris static void pmap_free_l1pt __P((struct l1pt *));
    284  1.33     chris static int pmap_allocpagedir __P((struct pmap *));
    285  1.33     chris static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    286  1.49   thorpej static void pmap_remove_all __P((struct vm_page *));
    287  1.33     chris 
    288  1.93   thorpej static int pmap_alloc_ptpt(struct pmap *);
    289  1.93   thorpej static void pmap_free_ptpt(struct pmap *);
    290  1.93   thorpej 
    291  1.57   thorpej static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    292  1.57   thorpej static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    293  1.49   thorpej __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    294  1.17     chris 
    295   1.2      matt extern paddr_t physical_start;
    296   1.2      matt extern paddr_t physical_freestart;
    297   1.2      matt extern paddr_t physical_end;
    298   1.2      matt extern paddr_t physical_freeend;
    299   1.1      matt extern unsigned int free_pages;
    300   1.1      matt extern int max_processes;
    301   1.1      matt 
    302  1.54   thorpej vaddr_t virtual_avail;
    303   1.1      matt vaddr_t virtual_end;
    304  1.48     chris vaddr_t pmap_curmaxkvaddr;
    305   1.1      matt 
    306   1.1      matt vaddr_t avail_start;
    307   1.1      matt vaddr_t avail_end;
    308   1.1      matt 
    309   1.1      matt extern pv_addr_t systempage;
    310   1.1      matt 
    311   1.1      matt /* Variables used by the L1 page table queue code */
    312   1.1      matt SIMPLEQ_HEAD(l1pt_queue, l1pt);
    313  1.73   thorpej static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    314  1.73   thorpej static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    315  1.73   thorpej static int l1pt_static_create_count;	    /* static l1 items created */
    316  1.73   thorpej static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    317  1.73   thorpej static int l1pt_queue_count;		    /* items in the l1 queue */
    318  1.73   thorpej static int l1pt_create_count;		    /* stat - L1's create count */
    319  1.73   thorpej static int l1pt_reuse_count;		    /* stat - L1's reused count */
    320   1.1      matt 
    321   1.1      matt /* Local function prototypes (not used outside this file) */
    322  1.15     chris void pmap_pinit __P((struct pmap *));
    323  1.15     chris void pmap_freepagedir __P((struct pmap *));
    324   1.1      matt 
    325   1.1      matt /* Other function prototypes */
    326   1.1      matt extern void bzero_page __P((vaddr_t));
    327   1.1      matt extern void bcopy_page __P((vaddr_t, vaddr_t));
    328   1.1      matt 
    329   1.1      matt struct l1pt *pmap_alloc_l1pt __P((void));
    330  1.15     chris static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    331  1.17     chris      vaddr_t l2pa, boolean_t));
    332   1.1      matt 
    333  1.11     chris static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    334  1.17     chris static void pmap_unmap_ptes __P((struct pmap *));
    335  1.11     chris 
    336  1.49   thorpej __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    337  1.25  rearnsha     pt_entry_t *, boolean_t));
    338  1.49   thorpej static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    339  1.25  rearnsha     pt_entry_t *, boolean_t));
    340  1.49   thorpej static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    341  1.25  rearnsha     pt_entry_t *, boolean_t));
    342  1.11     chris 
    343  1.17     chris /*
    344  1.17     chris  * real definition of pv_entry.
    345  1.17     chris  */
    346  1.17     chris 
    347  1.17     chris struct pv_entry {
    348  1.17     chris 	struct pv_entry *pv_next;       /* next pv_entry */
    349  1.17     chris 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    350  1.17     chris 	vaddr_t         pv_va;          /* virtual address for mapping */
    351  1.17     chris 	int             pv_flags;       /* flags */
    352  1.17     chris 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    353  1.17     chris };
    354  1.17     chris 
    355  1.17     chris /*
    356  1.17     chris  * pv_entrys are dynamically allocated in chunks from a single page.
    357  1.17     chris  * we keep track of how many pv_entrys are in use for each page and
    358  1.17     chris  * we can free pv_entry pages if needed.  there is one lock for the
    359  1.17     chris  * entire allocation system.
    360  1.17     chris  */
    361  1.17     chris 
    362  1.17     chris struct pv_page_info {
    363  1.17     chris 	TAILQ_ENTRY(pv_page) pvpi_list;
    364  1.17     chris 	struct pv_entry *pvpi_pvfree;
    365  1.17     chris 	int pvpi_nfree;
    366  1.17     chris };
    367  1.17     chris 
    368  1.17     chris /*
    369  1.17     chris  * number of pv_entry's in a pv_page
    370  1.17     chris  * (note: won't work on systems where NPBG isn't a constant)
    371  1.17     chris  */
    372  1.17     chris 
    373  1.17     chris #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    374  1.17     chris 			sizeof(struct pv_entry))
    375  1.17     chris 
    376  1.17     chris /*
    377  1.17     chris  * a pv_page: where pv_entrys are allocated from
    378  1.17     chris  */
    379  1.17     chris 
    380  1.17     chris struct pv_page {
    381  1.17     chris 	struct pv_page_info pvinfo;
    382  1.17     chris 	struct pv_entry pvents[PVE_PER_PVPAGE];
    383  1.17     chris };
    384  1.17     chris 
    385   1.1      matt #ifdef MYCROFT_HACK
    386   1.1      matt int mycroft_hack = 0;
    387   1.1      matt #endif
    388   1.1      matt 
    389   1.1      matt /* Function to set the debug level of the pmap code */
    390   1.1      matt 
    391   1.1      matt #ifdef PMAP_DEBUG
    392   1.1      matt void
    393  1.73   thorpej pmap_debug(int level)
    394   1.1      matt {
    395   1.1      matt 	pmap_debug_level = level;
    396   1.1      matt 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    397   1.1      matt }
    398   1.1      matt #endif	/* PMAP_DEBUG */
    399   1.1      matt 
    400  1.22     chris __inline static boolean_t
    401  1.17     chris pmap_is_curpmap(struct pmap *pmap)
    402  1.17     chris {
    403  1.58   thorpej 
    404  1.58   thorpej 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    405  1.58   thorpej 	    pmap == pmap_kernel())
    406  1.58   thorpej 		return (TRUE);
    407  1.58   thorpej 
    408  1.58   thorpej 	return (FALSE);
    409  1.17     chris }
    410  1.58   thorpej 
    411   1.1      matt #include "isadma.h"
    412   1.1      matt 
    413   1.1      matt #if NISADMA > 0
    414   1.1      matt /*
    415   1.1      matt  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    416   1.1      matt  * pages into the system, memory intersects with any of these ranges,
    417   1.1      matt  * the intersecting memory will be loaded into a lower-priority free list.
    418   1.1      matt  */
    419   1.1      matt bus_dma_segment_t *pmap_isa_dma_ranges;
    420   1.1      matt int pmap_isa_dma_nranges;
    421   1.1      matt 
    422   1.1      matt /*
    423   1.1      matt  * Check if a memory range intersects with an ISA DMA range, and
    424   1.1      matt  * return the page-rounded intersection if it does.  The intersection
    425   1.1      matt  * will be placed on a lower-priority free list.
    426   1.1      matt  */
    427  1.73   thorpej static boolean_t
    428  1.73   thorpej pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
    429  1.73   thorpej     psize_t *sizep)
    430   1.1      matt {
    431   1.1      matt 	bus_dma_segment_t *ds;
    432   1.1      matt 	int i;
    433   1.1      matt 
    434   1.1      matt 	if (pmap_isa_dma_ranges == NULL)
    435   1.1      matt 		return (FALSE);
    436   1.1      matt 
    437   1.1      matt 	for (i = 0, ds = pmap_isa_dma_ranges;
    438   1.1      matt 	     i < pmap_isa_dma_nranges; i++, ds++) {
    439   1.1      matt 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    440   1.1      matt 			/*
    441   1.1      matt 			 * Beginning of region intersects with this range.
    442   1.1      matt 			 */
    443   1.1      matt 			*pap = trunc_page(pa);
    444   1.1      matt 			*sizep = round_page(min(pa + size,
    445   1.1      matt 			    ds->ds_addr + ds->ds_len) - pa);
    446   1.1      matt 			return (TRUE);
    447   1.1      matt 		}
    448   1.1      matt 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    449   1.1      matt 			/*
    450   1.1      matt 			 * End of region intersects with this range.
    451   1.1      matt 			 */
    452   1.1      matt 			*pap = trunc_page(ds->ds_addr);
    453   1.1      matt 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    454   1.1      matt 			    ds->ds_len));
    455   1.1      matt 			return (TRUE);
    456   1.1      matt 		}
    457   1.1      matt 	}
    458   1.1      matt 
    459   1.1      matt 	/*
    460   1.1      matt 	 * No intersection found.
    461   1.1      matt 	 */
    462   1.1      matt 	return (FALSE);
    463   1.1      matt }
    464   1.1      matt #endif /* NISADMA > 0 */
    465   1.1      matt 
    466   1.1      matt /*
    467  1.17     chris  * p v _ e n t r y   f u n c t i o n s
    468  1.17     chris  */
    469  1.17     chris 
    470  1.17     chris /*
    471  1.17     chris  * pv_entry allocation functions:
    472  1.17     chris  *   the main pv_entry allocation functions are:
    473  1.17     chris  *     pmap_alloc_pv: allocate a pv_entry structure
    474  1.17     chris  *     pmap_free_pv: free one pv_entry
    475  1.17     chris  *     pmap_free_pvs: free a list of pv_entrys
    476  1.17     chris  *
    477  1.17     chris  * the rest are helper functions
    478   1.1      matt  */
    479   1.1      matt 
    480   1.1      matt /*
    481  1.17     chris  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    482  1.17     chris  * => we lock pvalloc_lock
    483  1.17     chris  * => if we fail, we call out to pmap_alloc_pvpage
    484  1.17     chris  * => 3 modes:
    485  1.17     chris  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    486  1.17     chris  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    487  1.17     chris  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    488  1.17     chris  *			one now
    489  1.17     chris  *
    490  1.17     chris  * "try" is for optional functions like pmap_copy().
    491   1.1      matt  */
    492  1.17     chris 
    493  1.17     chris __inline static struct pv_entry *
    494  1.73   thorpej pmap_alloc_pv(struct pmap *pmap, int mode)
    495   1.1      matt {
    496  1.17     chris 	struct pv_page *pvpage;
    497  1.17     chris 	struct pv_entry *pv;
    498  1.17     chris 
    499  1.17     chris 	simple_lock(&pvalloc_lock);
    500  1.17     chris 
    501  1.51     chris 	pvpage = TAILQ_FIRST(&pv_freepages);
    502  1.51     chris 
    503  1.51     chris 	if (pvpage != NULL) {
    504  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;
    505  1.17     chris 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    506  1.17     chris 			/* nothing left in this one? */
    507  1.17     chris 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    508  1.17     chris 		}
    509  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    510  1.51     chris 		KASSERT(pv);
    511  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    512  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    513  1.17     chris 	} else {
    514  1.17     chris 		pv = NULL;		/* need more of them */
    515  1.17     chris 	}
    516  1.17     chris 
    517  1.17     chris 	/*
    518  1.17     chris 	 * if below low water mark or we didn't get a pv_entry we try and
    519  1.17     chris 	 * create more pv_entrys ...
    520  1.17     chris 	 */
    521  1.17     chris 
    522  1.17     chris 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    523  1.17     chris 		if (pv == NULL)
    524  1.17     chris 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    525  1.17     chris 					       mode : ALLOCPV_NEED);
    526  1.17     chris 		else
    527  1.17     chris 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    528  1.17     chris 	}
    529  1.17     chris 
    530  1.17     chris 	simple_unlock(&pvalloc_lock);
    531  1.17     chris 	return(pv);
    532  1.17     chris }
    533  1.17     chris 
    534  1.17     chris /*
    535  1.17     chris  * pmap_alloc_pvpage: maybe allocate a new pvpage
    536  1.17     chris  *
    537  1.17     chris  * if need_entry is false: try and allocate a new pv_page
    538  1.17     chris  * if need_entry is true: try and allocate a new pv_page and return a
    539  1.17     chris  *	new pv_entry from it.   if we are unable to allocate a pv_page
    540  1.17     chris  *	we make a last ditch effort to steal a pv_page from some other
    541  1.17     chris  *	mapping.    if that fails, we panic...
    542  1.17     chris  *
    543  1.17     chris  * => we assume that the caller holds pvalloc_lock
    544  1.17     chris  */
    545  1.17     chris 
    546  1.17     chris static struct pv_entry *
    547  1.73   thorpej pmap_alloc_pvpage(struct pmap *pmap, int mode)
    548  1.17     chris {
    549  1.17     chris 	struct vm_page *pg;
    550  1.17     chris 	struct pv_page *pvpage;
    551   1.1      matt 	struct pv_entry *pv;
    552  1.17     chris 	int s;
    553  1.17     chris 
    554  1.17     chris 	/*
    555  1.17     chris 	 * if we need_entry and we've got unused pv_pages, allocate from there
    556  1.17     chris 	 */
    557  1.17     chris 
    558  1.51     chris 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    559  1.51     chris 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    560  1.17     chris 
    561  1.17     chris 		/* move it to pv_freepages list */
    562  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    563  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    564  1.17     chris 
    565  1.17     chris 		/* allocate a pv_entry */
    566  1.17     chris 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    567  1.17     chris 		pv = pvpage->pvinfo.pvpi_pvfree;
    568  1.51     chris 		KASSERT(pv);
    569  1.17     chris 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    570  1.17     chris 
    571  1.17     chris 		pv_nfpvents--;  /* took one from pool */
    572  1.17     chris 		return(pv);
    573  1.17     chris 	}
    574   1.1      matt 
    575   1.1      matt 	/*
    576  1.17     chris 	 *  see if we've got a cached unmapped VA that we can map a page in.
    577  1.17     chris 	 * if not, try to allocate one.
    578   1.1      matt 	 */
    579   1.1      matt 
    580  1.23       chs 
    581  1.17     chris 	if (pv_cachedva == 0) {
    582  1.23       chs 		s = splvm();
    583  1.23       chs 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    584  1.17     chris 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    585  1.23       chs 		splx(s);
    586  1.17     chris 		if (pv_cachedva == 0) {
    587  1.17     chris 			return (NULL);
    588   1.1      matt 		}
    589   1.1      matt 	}
    590  1.17     chris 
    591  1.23       chs 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    592  1.23       chs 	    UVM_PGA_USERESERVE);
    593  1.17     chris 
    594  1.17     chris 	if (pg == NULL)
    595  1.17     chris 		return (NULL);
    596  1.51     chris 	pg->flags &= ~PG_BUSY;	/* never busy */
    597  1.17     chris 
    598  1.17     chris 	/*
    599  1.17     chris 	 * add a mapping for our new pv_page and free its entrys (save one!)
    600  1.17     chris 	 *
    601  1.17     chris 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    602  1.17     chris 	 * pmap is already locked!  (...but entering the mapping is safe...)
    603  1.17     chris 	 */
    604  1.17     chris 
    605  1.51     chris 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    606  1.51     chris 		VM_PROT_READ|VM_PROT_WRITE);
    607  1.19     chris 	pmap_update(pmap_kernel());
    608  1.17     chris 	pvpage = (struct pv_page *) pv_cachedva;
    609  1.17     chris 	pv_cachedva = 0;
    610  1.17     chris 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    611   1.1      matt }
    612   1.1      matt 
    613   1.1      matt /*
    614  1.17     chris  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    615  1.17     chris  *
    616  1.17     chris  * => caller must hold pvalloc_lock
    617  1.17     chris  * => if need_entry is true, we allocate and return one pv_entry
    618   1.1      matt  */
    619   1.1      matt 
    620  1.17     chris static struct pv_entry *
    621  1.73   thorpej pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    622   1.1      matt {
    623  1.17     chris 	int tofree, lcv;
    624  1.17     chris 
    625  1.17     chris 	/* do we need to return one? */
    626  1.17     chris 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    627   1.1      matt 
    628  1.17     chris 	pvp->pvinfo.pvpi_pvfree = NULL;
    629  1.17     chris 	pvp->pvinfo.pvpi_nfree = tofree;
    630  1.17     chris 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    631  1.17     chris 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    632  1.17     chris 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    633   1.1      matt 	}
    634  1.17     chris 	if (need_entry)
    635  1.17     chris 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    636  1.17     chris 	else
    637  1.17     chris 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    638  1.17     chris 	pv_nfpvents += tofree;
    639  1.17     chris 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    640   1.1      matt }
    641   1.1      matt 
    642  1.17     chris /*
    643  1.17     chris  * pmap_free_pv_doit: actually free a pv_entry
    644  1.17     chris  *
    645  1.17     chris  * => do not call this directly!  instead use either
    646  1.17     chris  *    1. pmap_free_pv ==> free a single pv_entry
    647  1.17     chris  *    2. pmap_free_pvs => free a list of pv_entrys
    648  1.17     chris  * => we must be holding pvalloc_lock
    649  1.17     chris  */
    650  1.17     chris 
    651  1.17     chris __inline static void
    652  1.73   thorpej pmap_free_pv_doit(struct pv_entry *pv)
    653   1.1      matt {
    654  1.17     chris 	struct pv_page *pvp;
    655   1.1      matt 
    656  1.17     chris 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    657  1.17     chris 	pv_nfpvents++;
    658  1.17     chris 	pvp->pvinfo.pvpi_nfree++;
    659   1.1      matt 
    660  1.17     chris 	/* nfree == 1 => fully allocated page just became partly allocated */
    661  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == 1) {
    662  1.17     chris 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    663   1.1      matt 	}
    664   1.1      matt 
    665  1.17     chris 	/* free it */
    666  1.17     chris 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    667  1.17     chris 	pvp->pvinfo.pvpi_pvfree = pv;
    668   1.1      matt 
    669  1.17     chris 	/*
    670  1.17     chris 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    671  1.17     chris 	 */
    672   1.1      matt 
    673  1.17     chris 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    674  1.17     chris 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    675  1.17     chris 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    676   1.1      matt 	}
    677   1.1      matt }
    678   1.1      matt 
    679   1.1      matt /*
    680  1.17     chris  * pmap_free_pv: free a single pv_entry
    681  1.17     chris  *
    682  1.17     chris  * => we gain the pvalloc_lock
    683   1.1      matt  */
    684   1.1      matt 
    685  1.17     chris __inline static void
    686  1.73   thorpej pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    687   1.1      matt {
    688  1.17     chris 	simple_lock(&pvalloc_lock);
    689  1.17     chris 	pmap_free_pv_doit(pv);
    690  1.17     chris 
    691  1.17     chris 	/*
    692  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    693  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    694  1.17     chris 	 */
    695  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    696  1.17     chris 	    pmap != pmap_kernel())
    697  1.17     chris 		pmap_free_pvpage();
    698  1.17     chris 
    699  1.17     chris 	simple_unlock(&pvalloc_lock);
    700  1.17     chris }
    701   1.1      matt 
    702  1.17     chris /*
    703  1.17     chris  * pmap_free_pvs: free a list of pv_entrys
    704  1.17     chris  *
    705  1.17     chris  * => we gain the pvalloc_lock
    706  1.17     chris  */
    707   1.1      matt 
    708  1.17     chris __inline static void
    709  1.73   thorpej pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    710  1.17     chris {
    711  1.17     chris 	struct pv_entry *nextpv;
    712   1.1      matt 
    713  1.17     chris 	simple_lock(&pvalloc_lock);
    714   1.1      matt 
    715  1.17     chris 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    716  1.17     chris 		nextpv = pvs->pv_next;
    717  1.17     chris 		pmap_free_pv_doit(pvs);
    718   1.1      matt 	}
    719   1.1      matt 
    720  1.17     chris 	/*
    721  1.17     chris 	 * Can't free the PV page if the PV entries were associated with
    722  1.17     chris 	 * the kernel pmap; the pmap is already locked.
    723  1.17     chris 	 */
    724  1.51     chris 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    725  1.17     chris 	    pmap != pmap_kernel())
    726  1.17     chris 		pmap_free_pvpage();
    727   1.1      matt 
    728  1.17     chris 	simple_unlock(&pvalloc_lock);
    729   1.1      matt }
    730   1.1      matt 
    731   1.1      matt 
    732   1.1      matt /*
    733  1.17     chris  * pmap_free_pvpage: try and free an unused pv_page structure
    734  1.17     chris  *
    735  1.17     chris  * => assume caller is holding the pvalloc_lock and that
    736  1.17     chris  *	there is a page on the pv_unusedpgs list
    737  1.17     chris  * => if we can't get a lock on the kmem_map we try again later
    738   1.1      matt  */
    739   1.1      matt 
    740  1.17     chris static void
    741  1.73   thorpej pmap_free_pvpage(void)
    742   1.1      matt {
    743  1.17     chris 	int s;
    744  1.17     chris 	struct vm_map *map;
    745  1.17     chris 	struct vm_map_entry *dead_entries;
    746  1.17     chris 	struct pv_page *pvp;
    747  1.17     chris 
    748  1.17     chris 	s = splvm(); /* protect kmem_map */
    749   1.1      matt 
    750  1.51     chris 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    751   1.1      matt 
    752   1.1      matt 	/*
    753  1.17     chris 	 * note: watch out for pv_initpage which is allocated out of
    754  1.17     chris 	 * kernel_map rather than kmem_map.
    755   1.1      matt 	 */
    756  1.17     chris 	if (pvp == pv_initpage)
    757  1.17     chris 		map = kernel_map;
    758  1.17     chris 	else
    759  1.17     chris 		map = kmem_map;
    760  1.17     chris 	if (vm_map_lock_try(map)) {
    761  1.17     chris 
    762  1.17     chris 		/* remove pvp from pv_unusedpgs */
    763  1.17     chris 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    764  1.17     chris 
    765  1.17     chris 		/* unmap the page */
    766  1.17     chris 		dead_entries = NULL;
    767  1.17     chris 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    768  1.17     chris 		    &dead_entries);
    769  1.17     chris 		vm_map_unlock(map);
    770  1.17     chris 
    771  1.17     chris 		if (dead_entries != NULL)
    772  1.17     chris 			uvm_unmap_detach(dead_entries, 0);
    773   1.1      matt 
    774  1.17     chris 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    775   1.1      matt 	}
    776  1.17     chris 	if (pvp == pv_initpage)
    777  1.17     chris 		/* no more initpage, we've freed it */
    778  1.17     chris 		pv_initpage = NULL;
    779   1.1      matt 
    780   1.1      matt 	splx(s);
    781   1.1      matt }
    782   1.1      matt 
    783   1.1      matt /*
    784  1.17     chris  * main pv_entry manipulation functions:
    785  1.49   thorpej  *   pmap_enter_pv: enter a mapping onto a vm_page list
    786  1.49   thorpej  *   pmap_remove_pv: remove a mappiing from a vm_page list
    787  1.17     chris  *
    788  1.17     chris  * NOTE: pmap_enter_pv expects to lock the pvh itself
    789  1.17     chris  *       pmap_remove_pv expects te caller to lock the pvh before calling
    790  1.17     chris  */
    791  1.17     chris 
    792  1.17     chris /*
    793  1.49   thorpej  * pmap_enter_pv: enter a mapping onto a vm_page lst
    794  1.17     chris  *
    795  1.17     chris  * => caller should hold the proper lock on pmap_main_lock
    796  1.17     chris  * => caller should have pmap locked
    797  1.49   thorpej  * => we will gain the lock on the vm_page and allocate the new pv_entry
    798  1.17     chris  * => caller should adjust ptp's wire_count before calling
    799  1.17     chris  * => caller should not adjust pmap's wire_count
    800  1.17     chris  */
    801  1.17     chris 
    802  1.17     chris __inline static void
    803  1.73   thorpej pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    804  1.73   thorpej     vaddr_t va, struct vm_page *ptp, int flags)
    805  1.17     chris {
    806  1.17     chris 	pve->pv_pmap = pmap;
    807  1.17     chris 	pve->pv_va = va;
    808  1.17     chris 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    809  1.17     chris 	pve->pv_flags = flags;
    810  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    811  1.49   thorpej 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    812  1.49   thorpej 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    813  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    814  1.78   thorpej 	if (pve->pv_flags & PVF_WIRED)
    815  1.17     chris 		++pmap->pm_stats.wired_count;
    816  1.17     chris }
    817  1.17     chris 
    818  1.17     chris /*
    819  1.17     chris  * pmap_remove_pv: try to remove a mapping from a pv_list
    820  1.17     chris  *
    821  1.17     chris  * => caller should hold proper lock on pmap_main_lock
    822  1.17     chris  * => pmap should be locked
    823  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    824  1.17     chris  * => caller should adjust ptp's wire_count and free PTP if needed
    825  1.17     chris  * => caller should NOT adjust pmap's wire_count
    826  1.17     chris  * => we return the removed pve
    827  1.17     chris  */
    828  1.17     chris 
    829  1.17     chris __inline static struct pv_entry *
    830  1.73   thorpej pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    831  1.17     chris {
    832  1.17     chris 	struct pv_entry *pve, **prevptr;
    833  1.17     chris 
    834  1.49   thorpej 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    835  1.17     chris 	pve = *prevptr;
    836  1.17     chris 	while (pve) {
    837  1.17     chris 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    838  1.17     chris 			*prevptr = pve->pv_next;		/* remove it! */
    839  1.78   thorpej 			if (pve->pv_flags & PVF_WIRED)
    840  1.17     chris 			    --pmap->pm_stats.wired_count;
    841  1.17     chris 			break;
    842  1.17     chris 		}
    843  1.17     chris 		prevptr = &pve->pv_next;		/* previous pointer */
    844  1.17     chris 		pve = pve->pv_next;			/* advance */
    845  1.17     chris 	}
    846  1.17     chris 	return(pve);				/* return removed pve */
    847  1.17     chris }
    848  1.17     chris 
    849  1.17     chris /*
    850  1.17     chris  *
    851  1.17     chris  * pmap_modify_pv: Update pv flags
    852  1.17     chris  *
    853  1.49   thorpej  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    854  1.17     chris  * => caller should NOT adjust pmap's wire_count
    855  1.29  rearnsha  * => caller must call pmap_vac_me_harder() if writable status of a page
    856  1.29  rearnsha  *    may have changed.
    857  1.17     chris  * => we return the old flags
    858  1.17     chris  *
    859   1.1      matt  * Modify a physical-virtual mapping in the pv table
    860   1.1      matt  */
    861   1.1      matt 
    862  1.73   thorpej static /* __inline */ u_int
    863  1.73   thorpej pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    864  1.73   thorpej     u_int bic_mask, u_int eor_mask)
    865   1.1      matt {
    866   1.1      matt 	struct pv_entry *npv;
    867   1.1      matt 	u_int flags, oflags;
    868   1.1      matt 
    869   1.1      matt 	/*
    870   1.1      matt 	 * There is at least one VA mapping this page.
    871   1.1      matt 	 */
    872   1.1      matt 
    873  1.49   thorpej 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    874   1.1      matt 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    875   1.1      matt 			oflags = npv->pv_flags;
    876   1.1      matt 			npv->pv_flags = flags =
    877   1.1      matt 			    ((oflags & ~bic_mask) ^ eor_mask);
    878  1.78   thorpej 			if ((flags ^ oflags) & PVF_WIRED) {
    879  1.78   thorpej 				if (flags & PVF_WIRED)
    880   1.1      matt 					++pmap->pm_stats.wired_count;
    881   1.1      matt 				else
    882   1.1      matt 					--pmap->pm_stats.wired_count;
    883   1.1      matt 			}
    884   1.1      matt 			return (oflags);
    885   1.1      matt 		}
    886   1.1      matt 	}
    887   1.1      matt 	return (0);
    888   1.1      matt }
    889   1.1      matt 
    890   1.1      matt /*
    891   1.1      matt  * Map the specified level 2 pagetable into the level 1 page table for
    892   1.1      matt  * the given pmap to cover a chunk of virtual address space starting from the
    893   1.1      matt  * address specified.
    894   1.1      matt  */
    895  1.73   thorpej static __inline void
    896  1.73   thorpej pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    897   1.1      matt {
    898   1.1      matt 	vaddr_t ptva;
    899   1.1      matt 
    900   1.1      matt 	/* Calculate the index into the L1 page table. */
    901  1.81   thorpej 	ptva = (va >> L1_S_SHIFT) & ~3;
    902   1.1      matt 
    903   1.1      matt 	/* Map page table into the L1. */
    904  1.83   thorpej 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    905  1.83   thorpej 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    906  1.83   thorpej 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    907  1.83   thorpej 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    908   1.1      matt 
    909   1.1      matt 	/* Map the page table into the page table area. */
    910  1.73   thorpej 	if (selfref)
    911  1.83   thorpej 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    912  1.83   thorpej 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
    913   1.1      matt }
    914   1.1      matt 
    915   1.1      matt #if 0
    916  1.73   thorpej static __inline void
    917  1.73   thorpej pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    918   1.1      matt {
    919   1.1      matt 	vaddr_t ptva;
    920   1.1      matt 
    921   1.1      matt 	/* Calculate the index into the L1 page table. */
    922  1.81   thorpej 	ptva = (va >> L1_S_SHIFT) & ~3;
    923   1.1      matt 
    924   1.1      matt 	/* Unmap page table from the L1. */
    925   1.1      matt 	pmap->pm_pdir[ptva + 0] = 0;
    926   1.1      matt 	pmap->pm_pdir[ptva + 1] = 0;
    927   1.1      matt 	pmap->pm_pdir[ptva + 2] = 0;
    928   1.1      matt 	pmap->pm_pdir[ptva + 3] = 0;
    929   1.1      matt 
    930   1.1      matt 	/* Unmap the page table from the page table area. */
    931   1.1      matt 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    932   1.1      matt }
    933   1.1      matt #endif
    934   1.1      matt 
    935   1.1      matt /*
    936   1.1      matt  *	Used to map a range of physical addresses into kernel
    937   1.1      matt  *	virtual address space.
    938   1.1      matt  *
    939   1.1      matt  *	For now, VM is already on, we only need to map the
    940   1.1      matt  *	specified memory.
    941   1.1      matt  */
    942   1.1      matt vaddr_t
    943  1.73   thorpej pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
    944   1.1      matt {
    945   1.1      matt 	while (spa < epa) {
    946  1.20     chris 		pmap_kenter_pa(va, spa, prot);
    947   1.1      matt 		va += NBPG;
    948   1.1      matt 		spa += NBPG;
    949   1.1      matt 	}
    950  1.19     chris 	pmap_update(pmap_kernel());
    951   1.1      matt 	return(va);
    952   1.1      matt }
    953   1.1      matt 
    954   1.1      matt 
    955   1.1      matt /*
    956   1.3      matt  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    957   1.1      matt  *
    958   1.1      matt  * bootstrap the pmap system. This is called from initarm and allows
    959   1.1      matt  * the pmap system to initailise any structures it requires.
    960   1.1      matt  *
    961   1.1      matt  * Currently this sets up the kernel_pmap that is statically allocated
    962   1.1      matt  * and also allocated virtual addresses for certain page hooks.
    963   1.1      matt  * Currently the only one page hook is allocated that is used
    964   1.1      matt  * to zero physical pages of memory.
    965   1.1      matt  * It also initialises the start and end address of the kernel data space.
    966   1.1      matt  */
    967   1.2      matt extern paddr_t physical_freestart;
    968   1.2      matt extern paddr_t physical_freeend;
    969   1.1      matt 
    970  1.17     chris char *boot_head;
    971   1.1      matt 
    972   1.1      matt void
    973  1.73   thorpej pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
    974   1.1      matt {
    975  1.54   thorpej 	pt_entry_t *pte;
    976   1.1      matt 	int loop;
    977   1.2      matt 	paddr_t start, end;
    978   1.1      matt #if NISADMA > 0
    979   1.2      matt 	paddr_t istart;
    980   1.2      matt 	psize_t isize;
    981   1.1      matt #endif
    982   1.1      matt 
    983  1.15     chris 	pmap_kernel()->pm_pdir = kernel_l1pt;
    984  1.15     chris 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
    985  1.15     chris 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
    986  1.15     chris 	simple_lock_init(&pmap_kernel()->pm_lock);
    987  1.16     chris 	pmap_kernel()->pm_obj.pgops = NULL;
    988  1.16     chris 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
    989  1.16     chris 	pmap_kernel()->pm_obj.uo_npages = 0;
    990  1.16     chris 	pmap_kernel()->pm_obj.uo_refs = 1;
    991  1.16     chris 
    992   1.1      matt 	/*
    993   1.1      matt 	 * Initialize PAGE_SIZE-dependent variables.
    994   1.1      matt 	 */
    995   1.1      matt 	uvm_setpagesize();
    996   1.1      matt 
    997   1.1      matt 	loop = 0;
    998   1.1      matt 	while (loop < bootconfig.dramblocks) {
    999   1.2      matt 		start = (paddr_t)bootconfig.dram[loop].address;
   1000   1.1      matt 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1001   1.1      matt 		if (start < physical_freestart)
   1002   1.1      matt 			start = physical_freestart;
   1003   1.1      matt 		if (end > physical_freeend)
   1004   1.1      matt 			end = physical_freeend;
   1005   1.1      matt #if 0
   1006   1.1      matt 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1007   1.1      matt #endif
   1008   1.1      matt #if NISADMA > 0
   1009   1.1      matt 		if (pmap_isa_dma_range_intersect(start, end - start,
   1010   1.1      matt 		    &istart, &isize)) {
   1011   1.1      matt 			/*
   1012   1.1      matt 			 * Place the pages that intersect with the
   1013   1.1      matt 			 * ISA DMA range onto the ISA DMA free list.
   1014   1.1      matt 			 */
   1015   1.1      matt #if 0
   1016   1.1      matt 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1017   1.1      matt 			    istart + isize - 1);
   1018   1.1      matt #endif
   1019   1.1      matt 			uvm_page_physload(atop(istart),
   1020   1.1      matt 			    atop(istart + isize), atop(istart),
   1021   1.1      matt 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1022  1.73   thorpej 
   1023   1.1      matt 			/*
   1024   1.1      matt 			 * Load the pieces that come before
   1025   1.1      matt 			 * the intersection into the default
   1026   1.1      matt 			 * free list.
   1027   1.1      matt 			 */
   1028   1.1      matt 			if (start < istart) {
   1029   1.1      matt #if 0
   1030   1.1      matt 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1031   1.1      matt 				    start, istart - 1);
   1032   1.1      matt #endif
   1033   1.1      matt 				uvm_page_physload(atop(start),
   1034   1.1      matt 				    atop(istart), atop(start),
   1035   1.1      matt 				    atop(istart), VM_FREELIST_DEFAULT);
   1036   1.1      matt 			}
   1037   1.1      matt 
   1038   1.1      matt 			/*
   1039   1.1      matt 			 * Load the pieces that come after
   1040   1.1      matt 			 * the intersection into the default
   1041   1.1      matt 			 * free list.
   1042   1.1      matt 			 */
   1043   1.1      matt 			if ((istart + isize) < end) {
   1044   1.1      matt #if 0
   1045   1.1      matt 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1046   1.1      matt 				    (istart + isize), end - 1);
   1047   1.1      matt #endif
   1048   1.1      matt 				uvm_page_physload(atop(istart + isize),
   1049   1.1      matt 				    atop(end), atop(istart + isize),
   1050   1.1      matt 				    atop(end), VM_FREELIST_DEFAULT);
   1051   1.1      matt 			}
   1052   1.1      matt 		} else {
   1053   1.1      matt 			uvm_page_physload(atop(start), atop(end),
   1054   1.1      matt 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1055   1.1      matt 		}
   1056   1.1      matt #else	/* NISADMA > 0 */
   1057   1.1      matt 		uvm_page_physload(atop(start), atop(end),
   1058   1.1      matt 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1059   1.1      matt #endif /* NISADMA > 0 */
   1060   1.1      matt 		++loop;
   1061   1.1      matt 	}
   1062   1.1      matt 
   1063  1.54   thorpej 	virtual_avail = KERNEL_VM_BASE;
   1064  1.74   thorpej 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1065   1.1      matt 
   1066   1.1      matt 	/*
   1067  1.54   thorpej 	 * now we allocate the "special" VAs which are used for tmp mappings
   1068  1.54   thorpej 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1069  1.54   thorpej 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1070  1.54   thorpej 	 * we find the PTE that maps the allocated VA via the linear PTE
   1071  1.54   thorpej 	 * mapping.
   1072   1.1      matt 	 */
   1073   1.1      matt 
   1074  1.54   thorpej 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1075  1.54   thorpej 
   1076  1.54   thorpej 	csrcp = virtual_avail; csrc_pte = pte;
   1077  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1078  1.54   thorpej 
   1079  1.54   thorpej 	cdstp = virtual_avail; cdst_pte = pte;
   1080  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1081  1.54   thorpej 
   1082  1.54   thorpej 	memhook = (char *) virtual_avail;	/* don't need pte */
   1083  1.54   thorpej 	virtual_avail += PAGE_SIZE; pte++;
   1084  1.54   thorpej 
   1085  1.54   thorpej 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1086  1.54   thorpej 	virtual_avail += round_page(MSGBUFSIZE);
   1087  1.54   thorpej 	pte += atop(round_page(MSGBUFSIZE));
   1088   1.1      matt 
   1089  1.17     chris 	/*
   1090  1.17     chris 	 * init the static-global locks and global lists.
   1091  1.17     chris 	 */
   1092  1.17     chris 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1093  1.17     chris 	simple_lock_init(&pvalloc_lock);
   1094  1.48     chris 	simple_lock_init(&pmaps_lock);
   1095  1.48     chris 	LIST_INIT(&pmaps);
   1096  1.17     chris 	TAILQ_INIT(&pv_freepages);
   1097  1.17     chris 	TAILQ_INIT(&pv_unusedpgs);
   1098   1.1      matt 
   1099  1.10     chris 	/*
   1100  1.10     chris 	 * initialize the pmap pool.
   1101  1.10     chris 	 */
   1102  1.10     chris 
   1103  1.10     chris 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1104  1.52   thorpej 		  &pool_allocator_nointr);
   1105  1.10     chris 
   1106  1.36   thorpej 	cpu_dcache_wbinv_all();
   1107   1.1      matt }
   1108   1.1      matt 
   1109   1.1      matt /*
   1110   1.1      matt  * void pmap_init(void)
   1111   1.1      matt  *
   1112   1.1      matt  * Initialize the pmap module.
   1113   1.1      matt  * Called by vm_init() in vm/vm_init.c in order to initialise
   1114   1.1      matt  * any structures that the pmap system needs to map virtual memory.
   1115   1.1      matt  */
   1116   1.1      matt 
   1117   1.1      matt extern int physmem;
   1118   1.1      matt 
   1119   1.1      matt void
   1120  1.73   thorpej pmap_init(void)
   1121   1.1      matt {
   1122   1.1      matt 
   1123   1.1      matt 	/*
   1124   1.1      matt 	 * Set the available memory vars - These do not map to real memory
   1125   1.1      matt 	 * addresses and cannot as the physical memory is fragmented.
   1126   1.1      matt 	 * They are used by ps for %mem calculations.
   1127   1.1      matt 	 * One could argue whether this should be the entire memory or just
   1128   1.1      matt 	 * the memory that is useable in a user process.
   1129   1.1      matt 	 */
   1130   1.1      matt 	avail_start = 0;
   1131   1.1      matt 	avail_end = physmem * NBPG;
   1132   1.1      matt 
   1133  1.17     chris 	/*
   1134  1.17     chris 	 * now we need to free enough pv_entry structures to allow us to get
   1135  1.17     chris 	 * the kmem_map/kmem_object allocated and inited (done after this
   1136  1.17     chris 	 * function is finished).  to do this we allocate one bootstrap page out
   1137  1.17     chris 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1138  1.17     chris 	 * structures.   we never free this page.
   1139  1.17     chris 	 */
   1140  1.17     chris 
   1141  1.17     chris 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1142  1.17     chris 	if (pv_initpage == NULL)
   1143  1.17     chris 		panic("pmap_init: pv_initpage");
   1144  1.17     chris 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1145  1.17     chris 	pv_nfpvents = 0;
   1146  1.17     chris 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1147  1.17     chris 
   1148   1.1      matt 	pmap_initialized = TRUE;
   1149   1.1      matt 
   1150   1.1      matt 	/* Initialise our L1 page table queues and counters */
   1151   1.1      matt 	SIMPLEQ_INIT(&l1pt_static_queue);
   1152   1.1      matt 	l1pt_static_queue_count = 0;
   1153   1.1      matt 	l1pt_static_create_count = 0;
   1154   1.1      matt 	SIMPLEQ_INIT(&l1pt_queue);
   1155   1.1      matt 	l1pt_queue_count = 0;
   1156   1.1      matt 	l1pt_create_count = 0;
   1157   1.1      matt 	l1pt_reuse_count = 0;
   1158   1.1      matt }
   1159   1.1      matt 
   1160   1.1      matt /*
   1161   1.1      matt  * pmap_postinit()
   1162   1.1      matt  *
   1163   1.1      matt  * This routine is called after the vm and kmem subsystems have been
   1164   1.1      matt  * initialised. This allows the pmap code to perform any initialisation
   1165   1.1      matt  * that can only be done one the memory allocation is in place.
   1166   1.1      matt  */
   1167   1.1      matt 
   1168   1.1      matt void
   1169  1.73   thorpej pmap_postinit(void)
   1170   1.1      matt {
   1171   1.1      matt 	int loop;
   1172   1.1      matt 	struct l1pt *pt;
   1173   1.1      matt 
   1174   1.1      matt #ifdef PMAP_STATIC_L1S
   1175   1.1      matt 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1176   1.1      matt #else	/* PMAP_STATIC_L1S */
   1177   1.1      matt 	for (loop = 0; loop < max_processes; ++loop) {
   1178   1.1      matt #endif	/* PMAP_STATIC_L1S */
   1179   1.1      matt 		/* Allocate a L1 page table */
   1180   1.1      matt 		pt = pmap_alloc_l1pt();
   1181   1.1      matt 		if (!pt)
   1182   1.1      matt 			panic("Cannot allocate static L1 page tables\n");
   1183   1.1      matt 
   1184   1.1      matt 		/* Clean it */
   1185  1.81   thorpej 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1186   1.1      matt 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1187   1.1      matt 		/* Add the page table to the queue */
   1188   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1189   1.1      matt 		++l1pt_static_queue_count;
   1190   1.1      matt 		++l1pt_static_create_count;
   1191   1.1      matt 	}
   1192   1.1      matt }
   1193   1.1      matt 
   1194   1.1      matt 
   1195   1.1      matt /*
   1196   1.1      matt  * Create and return a physical map.
   1197   1.1      matt  *
   1198   1.1      matt  * If the size specified for the map is zero, the map is an actual physical
   1199   1.1      matt  * map, and may be referenced by the hardware.
   1200   1.1      matt  *
   1201   1.1      matt  * If the size specified is non-zero, the map will be used in software only,
   1202   1.1      matt  * and is bounded by that size.
   1203   1.1      matt  */
   1204   1.1      matt 
   1205   1.1      matt pmap_t
   1206  1.73   thorpej pmap_create(void)
   1207   1.1      matt {
   1208  1.15     chris 	struct pmap *pmap;
   1209   1.1      matt 
   1210  1.10     chris 	/*
   1211  1.10     chris 	 * Fetch pmap entry from the pool
   1212  1.10     chris 	 */
   1213  1.10     chris 
   1214  1.10     chris 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1215  1.17     chris 	/* XXX is this really needed! */
   1216  1.17     chris 	memset(pmap, 0, sizeof(*pmap));
   1217   1.1      matt 
   1218  1.16     chris 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1219  1.16     chris 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1220  1.16     chris 	TAILQ_INIT(&pmap->pm_obj.memq);
   1221  1.16     chris 	pmap->pm_obj.uo_npages = 0;
   1222  1.16     chris 	pmap->pm_obj.uo_refs = 1;
   1223  1.16     chris 	pmap->pm_stats.wired_count = 0;
   1224  1.16     chris 	pmap->pm_stats.resident_count = 1;
   1225  1.70   thorpej 	pmap->pm_ptphint = NULL;
   1226  1.16     chris 
   1227   1.1      matt 	/* Now init the machine part of the pmap */
   1228   1.1      matt 	pmap_pinit(pmap);
   1229   1.1      matt 	return(pmap);
   1230   1.1      matt }
   1231   1.1      matt 
   1232   1.1      matt /*
   1233   1.1      matt  * pmap_alloc_l1pt()
   1234   1.1      matt  *
   1235   1.1      matt  * This routine allocates physical and virtual memory for a L1 page table
   1236   1.1      matt  * and wires it.
   1237   1.1      matt  * A l1pt structure is returned to describe the allocated page table.
   1238   1.1      matt  *
   1239   1.1      matt  * This routine is allowed to fail if the required memory cannot be allocated.
   1240   1.1      matt  * In this case NULL is returned.
   1241   1.1      matt  */
   1242   1.1      matt 
   1243   1.1      matt struct l1pt *
   1244   1.1      matt pmap_alloc_l1pt(void)
   1245   1.1      matt {
   1246   1.2      matt 	paddr_t pa;
   1247   1.2      matt 	vaddr_t va;
   1248   1.1      matt 	struct l1pt *pt;
   1249   1.1      matt 	int error;
   1250   1.9       chs 	struct vm_page *m;
   1251  1.92   thorpej 	pt_entry_t *pte;
   1252   1.1      matt 
   1253   1.1      matt 	/* Allocate virtual address space for the L1 page table */
   1254  1.81   thorpej 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1255   1.1      matt 	if (va == 0) {
   1256   1.1      matt #ifdef DIAGNOSTIC
   1257  1.26  rearnsha 		PDEBUG(0,
   1258  1.26  rearnsha 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1259   1.1      matt #endif	/* DIAGNOSTIC */
   1260   1.1      matt 		return(NULL);
   1261   1.1      matt 	}
   1262   1.1      matt 
   1263   1.1      matt 	/* Allocate memory for the l1pt structure */
   1264   1.1      matt 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1265   1.1      matt 
   1266   1.1      matt 	/*
   1267   1.1      matt 	 * Allocate pages from the VM system.
   1268   1.1      matt 	 */
   1269   1.1      matt 	TAILQ_INIT(&pt->pt_plist);
   1270  1.81   thorpej 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1271  1.81   thorpej 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1272   1.1      matt 	if (error) {
   1273   1.1      matt #ifdef DIAGNOSTIC
   1274  1.26  rearnsha 		PDEBUG(0,
   1275  1.26  rearnsha 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1276  1.26  rearnsha 		    error));
   1277   1.1      matt #endif	/* DIAGNOSTIC */
   1278   1.1      matt 		/* Release the resources we already have claimed */
   1279   1.1      matt 		free(pt, M_VMPMAP);
   1280  1.81   thorpej 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1281   1.1      matt 		return(NULL);
   1282   1.1      matt 	}
   1283   1.1      matt 
   1284   1.1      matt 	/* Map our physical pages into our virtual space */
   1285   1.1      matt 	pt->pt_va = va;
   1286  1.51     chris 	m = TAILQ_FIRST(&pt->pt_plist);
   1287  1.81   thorpej 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1288   1.1      matt 		pa = VM_PAGE_TO_PHYS(m);
   1289   1.1      matt 
   1290  1.92   thorpej 		pte = vtopte(va);
   1291  1.92   thorpej 
   1292  1.92   thorpej 		/*
   1293  1.92   thorpej 		 * Assert that the PTE is invalid.  If it's invalid,
   1294  1.92   thorpej 		 * then we are guaranteed that there won't be an entry
   1295  1.92   thorpej 		 * for this VA in the TLB.
   1296  1.92   thorpej 		 */
   1297  1.92   thorpej 		KDASSERT(pmap_pte_v(pte) == 0);
   1298   1.1      matt 
   1299  1.92   thorpej 		*pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
   1300  1.92   thorpej 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1301   1.1      matt 
   1302   1.1      matt 		va += NBPG;
   1303   1.1      matt 		m = m->pageq.tqe_next;
   1304   1.1      matt 	}
   1305   1.1      matt 
   1306   1.1      matt #ifdef DIAGNOSTIC
   1307   1.1      matt 	if (m)
   1308   1.1      matt 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1309   1.1      matt #endif	/* DIAGNOSTIC */
   1310   1.1      matt 
   1311   1.1      matt 	pt->pt_flags = 0;
   1312   1.1      matt 	return(pt);
   1313   1.1      matt }
   1314   1.1      matt 
   1315   1.1      matt /*
   1316   1.1      matt  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1317   1.1      matt  */
   1318  1.33     chris static void
   1319  1.73   thorpej pmap_free_l1pt(struct l1pt *pt)
   1320   1.1      matt {
   1321   1.1      matt 	/* Separate the physical memory for the virtual space */
   1322  1.81   thorpej 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1323  1.19     chris 	pmap_update(pmap_kernel());
   1324   1.1      matt 
   1325   1.1      matt 	/* Return the physical memory */
   1326   1.1      matt 	uvm_pglistfree(&pt->pt_plist);
   1327   1.1      matt 
   1328   1.1      matt 	/* Free the virtual space */
   1329  1.81   thorpej 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1330   1.1      matt 
   1331   1.1      matt 	/* Free the l1pt structure */
   1332   1.1      matt 	free(pt, M_VMPMAP);
   1333   1.1      matt }
   1334   1.1      matt 
   1335   1.1      matt /*
   1336  1.93   thorpej  * pmap_alloc_ptpt:
   1337  1.93   thorpej  *
   1338  1.93   thorpej  *	Allocate the page table that maps the PTE array.
   1339  1.93   thorpej  */
   1340  1.93   thorpej static int
   1341  1.93   thorpej pmap_alloc_ptpt(struct pmap *pmap)
   1342  1.93   thorpej {
   1343  1.93   thorpej 	struct vm_page *pg;
   1344  1.93   thorpej 	pt_entry_t *pte;
   1345  1.93   thorpej 
   1346  1.93   thorpej 	KASSERT(pmap->pm_vptpt == 0);
   1347  1.93   thorpej 
   1348  1.93   thorpej 	pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1349  1.93   thorpej 	if (pmap->pm_vptpt == 0) {
   1350  1.93   thorpej 		PDEBUG(0,
   1351  1.93   thorpej 		    printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
   1352  1.93   thorpej 		return (ENOMEM);
   1353  1.93   thorpej 	}
   1354  1.93   thorpej 
   1355  1.93   thorpej 	for (;;) {
   1356  1.93   thorpej 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1357  1.93   thorpej 		if (pg != NULL)
   1358  1.93   thorpej 			break;
   1359  1.93   thorpej 		uvm_wait("pmap_ptpt");
   1360  1.93   thorpej 	}
   1361  1.93   thorpej 
   1362  1.93   thorpej 	pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
   1363  1.93   thorpej 
   1364  1.93   thorpej 	pte = vtopte(pmap->pm_vptpt);
   1365  1.93   thorpej 
   1366  1.93   thorpej 	KDASSERT(pmap_pte_v(pte) == 0);
   1367  1.93   thorpej 
   1368  1.93   thorpej 	*pte = L2_S_PROTO | pmap->pm_pptpt |
   1369  1.93   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1370  1.93   thorpej 
   1371  1.93   thorpej 	return (0);
   1372  1.93   thorpej }
   1373  1.93   thorpej 
   1374  1.93   thorpej /*
   1375  1.93   thorpej  * pmap_free_ptpt:
   1376  1.93   thorpej  *
   1377  1.93   thorpej  *	Free the page table that maps the PTE array.
   1378  1.93   thorpej  */
   1379  1.93   thorpej static void
   1380  1.93   thorpej pmap_free_ptpt(struct pmap *pmap)
   1381  1.93   thorpej {
   1382  1.93   thorpej 
   1383  1.93   thorpej 	pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
   1384  1.93   thorpej 	pmap_update(pmap_kernel());
   1385  1.93   thorpej 
   1386  1.93   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
   1387  1.93   thorpej 
   1388  1.93   thorpej 	uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
   1389  1.93   thorpej }
   1390  1.93   thorpej 
   1391  1.93   thorpej /*
   1392   1.1      matt  * Allocate a page directory.
   1393   1.1      matt  * This routine will either allocate a new page directory from the pool
   1394   1.1      matt  * of L1 page tables currently held by the kernel or it will allocate
   1395   1.1      matt  * a new one via pmap_alloc_l1pt().
   1396   1.1      matt  * It will then initialise the l1 page table for use.
   1397   1.1      matt  */
   1398  1.33     chris static int
   1399  1.73   thorpej pmap_allocpagedir(struct pmap *pmap)
   1400   1.1      matt {
   1401   1.2      matt 	paddr_t pa;
   1402   1.1      matt 	struct l1pt *pt;
   1403  1.93   thorpej 	int error;
   1404   1.1      matt 
   1405   1.1      matt 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1406   1.1      matt 
   1407   1.1      matt 	/* Do we have any spare L1's lying around ? */
   1408   1.1      matt 	if (l1pt_static_queue_count) {
   1409   1.1      matt 		--l1pt_static_queue_count;
   1410   1.1      matt 		pt = l1pt_static_queue.sqh_first;
   1411   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1412   1.1      matt 	} else if (l1pt_queue_count) {
   1413   1.1      matt 		--l1pt_queue_count;
   1414   1.1      matt 		pt = l1pt_queue.sqh_first;
   1415   1.1      matt 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1416   1.1      matt 		++l1pt_reuse_count;
   1417   1.1      matt 	} else {
   1418   1.1      matt 		pt = pmap_alloc_l1pt();
   1419   1.1      matt 		if (!pt)
   1420   1.1      matt 			return(ENOMEM);
   1421   1.1      matt 		++l1pt_create_count;
   1422   1.1      matt 	}
   1423   1.1      matt 
   1424   1.1      matt 	/* Store the pointer to the l1 descriptor in the pmap. */
   1425   1.1      matt 	pmap->pm_l1pt = pt;
   1426   1.1      matt 
   1427   1.1      matt 	/* Get the physical address of the start of the l1 */
   1428  1.51     chris 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1429   1.1      matt 
   1430   1.1      matt 	/* Store the virtual address of the l1 in the pmap. */
   1431   1.1      matt 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1432   1.1      matt 
   1433   1.1      matt 	/* Clean the L1 if it is dirty */
   1434   1.1      matt 	if (!(pt->pt_flags & PTFLAG_CLEAN))
   1435  1.81   thorpej 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1436   1.1      matt 
   1437   1.1      matt 	/* Allocate a page table to map all the page tables for this pmap */
   1438  1.93   thorpej 	if ((error = pmap_alloc_ptpt(pmap)) != 0) {
   1439  1.93   thorpej 		pmap_freepagedir(pmap);
   1440  1.93   thorpej 		return (error);
   1441   1.5    toshii 	}
   1442   1.5    toshii 
   1443  1.93   thorpej 	/* need to lock this all up for growkernel */
   1444  1.48     chris 	simple_lock(&pmaps_lock);
   1445  1.48     chris 
   1446  1.64   thorpej 	/* Duplicate the kernel mappings. */
   1447  1.81   thorpej 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1448  1.81   thorpej 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1449  1.48     chris 		KERNEL_PD_SIZE);
   1450  1.48     chris 
   1451   1.1      matt 	/* Wire in this page table */
   1452  1.53   thorpej 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1453   1.1      matt 
   1454   1.1      matt 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1455  1.48     chris 
   1456   1.1      matt 	/*
   1457  1.64   thorpej 	 * Map the kernel page tables into the new PT map.
   1458   1.1      matt 	 */
   1459  1.53   thorpej 	bcopy((char *)(PTE_BASE
   1460  1.53   thorpej 	    + (PTE_BASE >> (PGSHIFT - 2))
   1461  1.81   thorpej 	    + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1462  1.81   thorpej 	    (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1463   1.1      matt 	    (KERNEL_PD_SIZE >> 2));
   1464   1.1      matt 
   1465  1.48     chris 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1466  1.48     chris 	simple_unlock(&pmaps_lock);
   1467  1.48     chris 
   1468   1.1      matt 	return(0);
   1469   1.1      matt }
   1470   1.1      matt 
   1471   1.1      matt 
   1472   1.1      matt /*
   1473   1.1      matt  * Initialize a preallocated and zeroed pmap structure,
   1474   1.1      matt  * such as one in a vmspace structure.
   1475   1.1      matt  */
   1476   1.1      matt 
   1477   1.1      matt void
   1478  1.73   thorpej pmap_pinit(struct pmap *pmap)
   1479   1.1      matt {
   1480  1.26  rearnsha 	int backoff = 6;
   1481  1.26  rearnsha 	int retry = 10;
   1482  1.26  rearnsha 
   1483   1.1      matt 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1484   1.1      matt 
   1485   1.1      matt 	/* Keep looping until we succeed in allocating a page directory */
   1486   1.1      matt 	while (pmap_allocpagedir(pmap) != 0) {
   1487   1.1      matt 		/*
   1488   1.1      matt 		 * Ok we failed to allocate a suitable block of memory for an
   1489   1.1      matt 		 * L1 page table. This means that either:
   1490   1.1      matt 		 * 1. 16KB of virtual address space could not be allocated
   1491   1.1      matt 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1492   1.1      matt 		 *    could not be allocated.
   1493   1.1      matt 		 *
   1494   1.1      matt 		 * Since we cannot fail we will sleep for a while and try
   1495  1.17     chris 		 * again.
   1496  1.26  rearnsha 		 *
   1497  1.26  rearnsha 		 * Searching for a suitable L1 PT is expensive:
   1498  1.26  rearnsha 		 * to avoid hogging the system when memory is really
   1499  1.26  rearnsha 		 * scarce, use an exponential back-off so that
   1500  1.26  rearnsha 		 * eventually we won't retry more than once every 8
   1501  1.26  rearnsha 		 * seconds.  This should allow other processes to run
   1502  1.26  rearnsha 		 * to completion and free up resources.
   1503   1.1      matt 		 */
   1504  1.26  rearnsha 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1505  1.26  rearnsha 		    NULL);
   1506  1.26  rearnsha 		if (--retry == 0) {
   1507  1.26  rearnsha 			retry = 10;
   1508  1.26  rearnsha 			if (backoff)
   1509  1.26  rearnsha 				--backoff;
   1510  1.26  rearnsha 		}
   1511   1.1      matt 	}
   1512   1.1      matt 
   1513  1.76   thorpej 	if (vector_page < KERNEL_BASE) {
   1514  1.76   thorpej 		/*
   1515  1.76   thorpej 		 * Map the vector page.  This will also allocate and map
   1516  1.76   thorpej 		 * an L2 table for it.
   1517  1.76   thorpej 		 */
   1518  1.76   thorpej 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1519  1.76   thorpej 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1520  1.76   thorpej 		pmap_update(pmap);
   1521  1.76   thorpej 	}
   1522   1.1      matt }
   1523   1.1      matt 
   1524   1.1      matt 
   1525   1.1      matt void
   1526  1.73   thorpej pmap_freepagedir(struct pmap *pmap)
   1527   1.1      matt {
   1528   1.1      matt 	/* Free the memory used for the page table mapping */
   1529   1.5    toshii 	if (pmap->pm_vptpt != 0)
   1530  1.93   thorpej 		pmap_free_ptpt(pmap);
   1531   1.1      matt 
   1532   1.1      matt 	/* junk the L1 page table */
   1533   1.1      matt 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1534   1.1      matt 		/* Add the page table to the queue */
   1535   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1536   1.1      matt 		++l1pt_static_queue_count;
   1537   1.1      matt 	} else if (l1pt_queue_count < 8) {
   1538   1.1      matt 		/* Add the page table to the queue */
   1539   1.1      matt 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1540   1.1      matt 		++l1pt_queue_count;
   1541   1.1      matt 	} else
   1542   1.1      matt 		pmap_free_l1pt(pmap->pm_l1pt);
   1543   1.1      matt }
   1544   1.1      matt 
   1545   1.1      matt 
   1546   1.1      matt /*
   1547   1.1      matt  * Retire the given physical map from service.
   1548   1.1      matt  * Should only be called if the map contains no valid mappings.
   1549   1.1      matt  */
   1550   1.1      matt 
   1551   1.1      matt void
   1552  1.73   thorpej pmap_destroy(struct pmap *pmap)
   1553   1.1      matt {
   1554  1.17     chris 	struct vm_page *page;
   1555   1.1      matt 	int count;
   1556   1.1      matt 
   1557   1.1      matt 	if (pmap == NULL)
   1558   1.1      matt 		return;
   1559   1.1      matt 
   1560   1.1      matt 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1561  1.17     chris 
   1562  1.17     chris 	/*
   1563  1.17     chris 	 * Drop reference count
   1564  1.17     chris 	 */
   1565  1.17     chris 	simple_lock(&pmap->pm_obj.vmobjlock);
   1566  1.16     chris 	count = --pmap->pm_obj.uo_refs;
   1567  1.17     chris 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1568  1.17     chris 	if (count > 0) {
   1569  1.17     chris 		return;
   1570   1.1      matt 	}
   1571   1.1      matt 
   1572  1.17     chris 	/*
   1573  1.17     chris 	 * reference count is zero, free pmap resources and then free pmap.
   1574  1.17     chris 	 */
   1575  1.48     chris 
   1576  1.48     chris 	/*
   1577  1.48     chris 	 * remove it from global list of pmaps
   1578  1.48     chris 	 */
   1579  1.48     chris 
   1580  1.48     chris 	simple_lock(&pmaps_lock);
   1581  1.48     chris 	LIST_REMOVE(pmap, pm_list);
   1582  1.48     chris 	simple_unlock(&pmaps_lock);
   1583  1.17     chris 
   1584  1.77   thorpej 	if (vector_page < KERNEL_BASE) {
   1585  1.77   thorpej 		/* Remove the vector page mapping */
   1586  1.77   thorpej 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1587  1.77   thorpej 		pmap_update(pmap);
   1588  1.77   thorpej 	}
   1589   1.1      matt 
   1590   1.1      matt 	/*
   1591   1.1      matt 	 * Free any page tables still mapped
   1592   1.1      matt 	 * This is only temporay until pmap_enter can count the number
   1593   1.1      matt 	 * of mappings made in a page table. Then pmap_remove() can
   1594   1.1      matt 	 * reduce the count and free the pagetable when the count
   1595  1.16     chris 	 * reaches zero.  Note that entries in this list should match the
   1596  1.16     chris 	 * contents of the ptpt, however this is faster than walking a 1024
   1597  1.16     chris 	 * entries looking for pt's
   1598  1.16     chris 	 * taken from i386 pmap.c
   1599   1.1      matt 	 */
   1600  1.51     chris 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1601  1.51     chris 		KASSERT((page->flags & PG_BUSY) == 0);
   1602  1.16     chris 		page->wire_count = 0;
   1603  1.16     chris 		uvm_pagefree(page);
   1604   1.1      matt 	}
   1605  1.16     chris 
   1606   1.1      matt 	/* Free the page dir */
   1607   1.1      matt 	pmap_freepagedir(pmap);
   1608  1.17     chris 
   1609  1.17     chris 	/* return the pmap to the pool */
   1610  1.17     chris 	pool_put(&pmap_pmap_pool, pmap);
   1611   1.1      matt }
   1612   1.1      matt 
   1613   1.1      matt 
   1614   1.1      matt /*
   1615  1.15     chris  * void pmap_reference(struct pmap *pmap)
   1616   1.1      matt  *
   1617   1.1      matt  * Add a reference to the specified pmap.
   1618   1.1      matt  */
   1619   1.1      matt 
   1620   1.1      matt void
   1621  1.73   thorpej pmap_reference(struct pmap *pmap)
   1622   1.1      matt {
   1623   1.1      matt 	if (pmap == NULL)
   1624   1.1      matt 		return;
   1625   1.1      matt 
   1626   1.1      matt 	simple_lock(&pmap->pm_lock);
   1627  1.16     chris 	pmap->pm_obj.uo_refs++;
   1628   1.1      matt 	simple_unlock(&pmap->pm_lock);
   1629   1.1      matt }
   1630   1.1      matt 
   1631   1.1      matt /*
   1632   1.1      matt  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1633   1.1      matt  *
   1634   1.1      matt  * Return the start and end addresses of the kernel's virtual space.
   1635   1.1      matt  * These values are setup in pmap_bootstrap and are updated as pages
   1636   1.1      matt  * are allocated.
   1637   1.1      matt  */
   1638   1.1      matt 
   1639   1.1      matt void
   1640  1.73   thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1641   1.1      matt {
   1642  1.54   thorpej 	*start = virtual_avail;
   1643   1.1      matt 	*end = virtual_end;
   1644   1.1      matt }
   1645   1.1      matt 
   1646   1.1      matt /*
   1647   1.1      matt  * Activate the address space for the specified process.  If the process
   1648   1.1      matt  * is the current process, load the new MMU context.
   1649   1.1      matt  */
   1650   1.1      matt void
   1651  1.73   thorpej pmap_activate(struct proc *p)
   1652   1.1      matt {
   1653  1.15     chris 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1654   1.1      matt 	struct pcb *pcb = &p->p_addr->u_pcb;
   1655   1.1      matt 
   1656  1.15     chris 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1657   1.1      matt 	    (paddr_t *)&pcb->pcb_pagedir);
   1658   1.1      matt 
   1659   1.1      matt 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1660   1.1      matt 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1661   1.1      matt 
   1662   1.1      matt 	if (p == curproc) {
   1663   1.1      matt 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1664   1.1      matt 		setttb((u_int)pcb->pcb_pagedir);
   1665   1.1      matt 	}
   1666   1.1      matt }
   1667   1.1      matt 
   1668   1.1      matt /*
   1669   1.1      matt  * Deactivate the address space of the specified process.
   1670   1.1      matt  */
   1671   1.1      matt void
   1672  1.73   thorpej pmap_deactivate(struct proc *p)
   1673   1.1      matt {
   1674   1.1      matt }
   1675   1.1      matt 
   1676  1.31   thorpej /*
   1677  1.31   thorpej  * Perform any deferred pmap operations.
   1678  1.31   thorpej  */
   1679  1.31   thorpej void
   1680  1.31   thorpej pmap_update(struct pmap *pmap)
   1681  1.31   thorpej {
   1682  1.31   thorpej 
   1683  1.31   thorpej 	/*
   1684  1.31   thorpej 	 * We haven't deferred any pmap operations, but we do need to
   1685  1.31   thorpej 	 * make sure TLB/cache operations have completed.
   1686  1.31   thorpej 	 */
   1687  1.31   thorpej 	cpu_cpwait();
   1688  1.31   thorpej }
   1689   1.1      matt 
   1690   1.1      matt /*
   1691   1.1      matt  * pmap_clean_page()
   1692   1.1      matt  *
   1693   1.1      matt  * This is a local function used to work out the best strategy to clean
   1694   1.1      matt  * a single page referenced by its entry in the PV table. It's used by
   1695   1.1      matt  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1696   1.1      matt  *
   1697   1.1      matt  * Its policy is effectively:
   1698   1.1      matt  *  o If there are no mappings, we don't bother doing anything with the cache.
   1699   1.1      matt  *  o If there is one mapping, we clean just that page.
   1700   1.1      matt  *  o If there are multiple mappings, we clean the entire cache.
   1701   1.1      matt  *
   1702   1.1      matt  * So that some functions can be further optimised, it returns 0 if it didn't
   1703   1.1      matt  * clean the entire cache, or 1 if it did.
   1704   1.1      matt  *
   1705   1.1      matt  * XXX One bug in this routine is that if the pv_entry has a single page
   1706   1.1      matt  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1707   1.1      matt  * just the 1 page. Since this should not occur in everyday use and if it does
   1708   1.1      matt  * it will just result in not the most efficient clean for the page.
   1709   1.1      matt  */
   1710   1.1      matt static int
   1711  1.73   thorpej pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1712   1.1      matt {
   1713  1.17     chris 	struct pmap *pmap;
   1714  1.17     chris 	struct pv_entry *npv;
   1715   1.1      matt 	int cache_needs_cleaning = 0;
   1716   1.1      matt 	vaddr_t page_to_clean = 0;
   1717   1.1      matt 
   1718  1.17     chris 	if (pv == NULL)
   1719  1.17     chris 		/* nothing mapped in so nothing to flush */
   1720  1.17     chris 		return (0);
   1721  1.17     chris 
   1722  1.17     chris 	/* Since we flush the cache each time we change curproc, we
   1723  1.17     chris 	 * only need to flush the page if it is in the current pmap.
   1724  1.17     chris 	 */
   1725  1.17     chris 	if (curproc)
   1726  1.17     chris 		pmap = curproc->p_vmspace->vm_map.pmap;
   1727  1.17     chris 	else
   1728  1.17     chris 		pmap = pmap_kernel();
   1729  1.17     chris 
   1730  1.17     chris 	for (npv = pv; npv; npv = npv->pv_next) {
   1731  1.17     chris 		if (npv->pv_pmap == pmap) {
   1732  1.17     chris 			/* The page is mapped non-cacheable in
   1733  1.17     chris 			 * this map.  No need to flush the cache.
   1734  1.17     chris 			 */
   1735  1.78   thorpej 			if (npv->pv_flags & PVF_NC) {
   1736  1.17     chris #ifdef DIAGNOSTIC
   1737  1.17     chris 				if (cache_needs_cleaning)
   1738  1.17     chris 					panic("pmap_clean_page: "
   1739  1.17     chris 							"cache inconsistency");
   1740  1.17     chris #endif
   1741  1.17     chris 				break;
   1742  1.17     chris 			}
   1743  1.17     chris #if 0
   1744  1.17     chris 			/* This doesn't work, because pmap_protect
   1745  1.17     chris 			   doesn't flush changes on pages that it
   1746  1.17     chris 			   has write-protected.  */
   1747  1.21     chris 
   1748  1.25  rearnsha 			/* If the page is not writable and this
   1749  1.17     chris 			   is the source, then there is no need
   1750  1.17     chris 			   to flush it from the cache.  */
   1751  1.78   thorpej 			else if (is_src && ! (npv->pv_flags & PVF_WRITE))
   1752  1.17     chris 				continue;
   1753  1.17     chris #endif
   1754  1.17     chris 			if (cache_needs_cleaning){
   1755  1.17     chris 				page_to_clean = 0;
   1756  1.17     chris 				break;
   1757  1.17     chris 			}
   1758  1.17     chris 			else
   1759  1.17     chris 				page_to_clean = npv->pv_va;
   1760  1.17     chris 			cache_needs_cleaning = 1;
   1761  1.17     chris 		}
   1762   1.1      matt 	}
   1763   1.1      matt 
   1764   1.1      matt 	if (page_to_clean)
   1765  1.36   thorpej 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1766   1.1      matt 	else if (cache_needs_cleaning) {
   1767  1.36   thorpej 		cpu_idcache_wbinv_all();
   1768   1.1      matt 		return (1);
   1769   1.1      matt 	}
   1770   1.1      matt 	return (0);
   1771   1.1      matt }
   1772   1.1      matt 
   1773   1.1      matt /*
   1774   1.1      matt  * pmap_zero_page()
   1775   1.1      matt  *
   1776   1.1      matt  * Zero a given physical page by mapping it at a page hook point.
   1777   1.1      matt  * In doing the zero page op, the page we zero is mapped cachable, as with
   1778   1.1      matt  * StrongARM accesses to non-cached pages are non-burst making writing
   1779   1.1      matt  * _any_ bulk data very slow.
   1780   1.1      matt  */
   1781  1.88   thorpej #if ARM_MMU_GENERIC == 1
   1782   1.1      matt void
   1783  1.88   thorpej pmap_zero_page_generic(paddr_t phys)
   1784   1.1      matt {
   1785  1.71   thorpej #ifdef DEBUG
   1786  1.71   thorpej 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1787  1.71   thorpej 
   1788  1.71   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1789  1.71   thorpej 		panic("pmap_zero_page: page has mappings");
   1790  1.71   thorpej #endif
   1791   1.1      matt 
   1792  1.79   thorpej 	KDASSERT((phys & PGOFSET) == 0);
   1793  1.79   thorpej 
   1794   1.1      matt 	/*
   1795   1.1      matt 	 * Hook in the page, zero it, and purge the cache for that
   1796   1.1      matt 	 * zeroed page. Invalidate the TLB as needed.
   1797   1.1      matt 	 */
   1798  1.83   thorpej 	*cdst_pte = L2_S_PROTO | phys |
   1799  1.86   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1800  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1801  1.32   thorpej 	cpu_cpwait();
   1802  1.54   thorpej 	bzero_page(cdstp);
   1803  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1804   1.1      matt }
   1805  1.88   thorpej #endif /* ARM_MMU_GENERIC == 1 */
   1806  1.88   thorpej 
   1807  1.88   thorpej #if ARM_MMU_XSCALE == 1
   1808  1.88   thorpej void
   1809  1.88   thorpej pmap_zero_page_xscale(paddr_t phys)
   1810  1.88   thorpej {
   1811  1.88   thorpej #ifdef DEBUG
   1812  1.88   thorpej 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1813  1.88   thorpej 
   1814  1.88   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1815  1.88   thorpej 		panic("pmap_zero_page: page has mappings");
   1816  1.88   thorpej #endif
   1817  1.88   thorpej 
   1818  1.88   thorpej 	KDASSERT((phys & PGOFSET) == 0);
   1819  1.88   thorpej 
   1820  1.88   thorpej 	/*
   1821  1.88   thorpej 	 * Hook in the page, zero it, and purge the cache for that
   1822  1.88   thorpej 	 * zeroed page. Invalidate the TLB as needed.
   1823  1.88   thorpej 	 */
   1824  1.88   thorpej 	*cdst_pte = L2_S_PROTO | phys |
   1825  1.88   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1826  1.88   thorpej 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1827  1.88   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1828  1.88   thorpej 	cpu_cpwait();
   1829  1.88   thorpej 	bzero_page(cdstp);
   1830  1.88   thorpej 	xscale_cache_clean_minidata();
   1831  1.88   thorpej }
   1832  1.88   thorpej #endif /* ARM_MMU_XSCALE == 1 */
   1833   1.1      matt 
   1834  1.17     chris /* pmap_pageidlezero()
   1835  1.17     chris  *
   1836  1.17     chris  * The same as above, except that we assume that the page is not
   1837  1.17     chris  * mapped.  This means we never have to flush the cache first.  Called
   1838  1.17     chris  * from the idle loop.
   1839  1.17     chris  */
   1840  1.17     chris boolean_t
   1841  1.73   thorpej pmap_pageidlezero(paddr_t phys)
   1842  1.17     chris {
   1843  1.17     chris 	int i, *ptr;
   1844  1.17     chris 	boolean_t rv = TRUE;
   1845  1.71   thorpej #ifdef DEBUG
   1846  1.49   thorpej 	struct vm_page *pg;
   1847  1.17     chris 
   1848  1.49   thorpej 	pg = PHYS_TO_VM_PAGE(phys);
   1849  1.49   thorpej 	if (pg->mdpage.pvh_list != NULL)
   1850  1.71   thorpej 		panic("pmap_pageidlezero: page has mappings");
   1851  1.17     chris #endif
   1852  1.79   thorpej 
   1853  1.79   thorpej 	KDASSERT((phys & PGOFSET) == 0);
   1854  1.79   thorpej 
   1855  1.17     chris 	/*
   1856  1.17     chris 	 * Hook in the page, zero it, and purge the cache for that
   1857  1.17     chris 	 * zeroed page. Invalidate the TLB as needed.
   1858  1.17     chris 	 */
   1859  1.83   thorpej 	*cdst_pte = L2_S_PROTO | phys |
   1860  1.86   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1861  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1862  1.32   thorpej 	cpu_cpwait();
   1863  1.32   thorpej 
   1864  1.54   thorpej 	for (i = 0, ptr = (int *)cdstp;
   1865  1.17     chris 			i < (NBPG / sizeof(int)); i++) {
   1866  1.17     chris 		if (sched_whichqs != 0) {
   1867  1.17     chris 			/*
   1868  1.17     chris 			 * A process has become ready.  Abort now,
   1869  1.17     chris 			 * so we don't keep it waiting while we
   1870  1.17     chris 			 * do slow memory access to finish this
   1871  1.17     chris 			 * page.
   1872  1.17     chris 			 */
   1873  1.17     chris 			rv = FALSE;
   1874  1.17     chris 			break;
   1875  1.17     chris 		}
   1876  1.17     chris 		*ptr++ = 0;
   1877  1.17     chris 	}
   1878  1.17     chris 
   1879  1.17     chris 	if (rv)
   1880  1.17     chris 		/*
   1881  1.17     chris 		 * if we aborted we'll rezero this page again later so don't
   1882  1.17     chris 		 * purge it unless we finished it
   1883  1.17     chris 		 */
   1884  1.54   thorpej 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1885  1.17     chris 	return (rv);
   1886  1.17     chris }
   1887  1.17     chris 
   1888   1.1      matt /*
   1889   1.1      matt  * pmap_copy_page()
   1890   1.1      matt  *
   1891   1.1      matt  * Copy one physical page into another, by mapping the pages into
   1892   1.1      matt  * hook points. The same comment regarding cachability as in
   1893   1.1      matt  * pmap_zero_page also applies here.
   1894   1.1      matt  */
   1895  1.88   thorpej #if ARM_MMU_GENERIC == 1
   1896   1.1      matt void
   1897  1.88   thorpej pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1898   1.1      matt {
   1899  1.71   thorpej 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1900  1.71   thorpej #ifdef DEBUG
   1901  1.71   thorpej 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1902  1.71   thorpej 
   1903  1.71   thorpej 	if (dst_pg->mdpage.pvh_list != NULL)
   1904  1.71   thorpej 		panic("pmap_copy_page: dst page has mappings");
   1905  1.71   thorpej #endif
   1906  1.71   thorpej 
   1907  1.79   thorpej 	KDASSERT((src & PGOFSET) == 0);
   1908  1.79   thorpej 	KDASSERT((dst & PGOFSET) == 0);
   1909  1.79   thorpej 
   1910  1.71   thorpej 	/*
   1911  1.71   thorpej 	 * Clean the source page.  Hold the source page's lock for
   1912  1.71   thorpej 	 * the duration of the copy so that no other mappings can
   1913  1.71   thorpej 	 * be created while we have a potentially aliased mapping.
   1914  1.71   thorpej 	 */
   1915  1.49   thorpej 	simple_lock(&src_pg->mdpage.pvh_slock);
   1916  1.71   thorpej 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1917   1.1      matt 
   1918   1.1      matt 	/*
   1919   1.1      matt 	 * Map the pages into the page hook points, copy them, and purge
   1920   1.1      matt 	 * the cache for the appropriate page. Invalidate the TLB
   1921   1.1      matt 	 * as required.
   1922   1.1      matt 	 */
   1923  1.83   thorpej 	*csrc_pte = L2_S_PROTO | src |
   1924  1.86   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1925  1.83   thorpej 	*cdst_pte = L2_S_PROTO | dst |
   1926  1.86   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1927  1.54   thorpej 	cpu_tlb_flushD_SE(csrcp);
   1928  1.54   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1929  1.32   thorpej 	cpu_cpwait();
   1930  1.54   thorpej 	bcopy_page(csrcp, cdstp);
   1931  1.65     chris 	cpu_dcache_inv_range(csrcp, NBPG);
   1932  1.71   thorpej 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1933  1.54   thorpej 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1934   1.1      matt }
   1935  1.88   thorpej #endif /* ARM_MMU_GENERIC == 1 */
   1936  1.88   thorpej 
   1937  1.88   thorpej #if ARM_MMU_XSCALE == 1
   1938  1.88   thorpej void
   1939  1.88   thorpej pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   1940  1.88   thorpej {
   1941  1.88   thorpej 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1942  1.88   thorpej #ifdef DEBUG
   1943  1.88   thorpej 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1944  1.88   thorpej 
   1945  1.88   thorpej 	if (dst_pg->mdpage.pvh_list != NULL)
   1946  1.88   thorpej 		panic("pmap_copy_page: dst page has mappings");
   1947  1.88   thorpej #endif
   1948  1.88   thorpej 
   1949  1.88   thorpej 	KDASSERT((src & PGOFSET) == 0);
   1950  1.88   thorpej 	KDASSERT((dst & PGOFSET) == 0);
   1951  1.88   thorpej 
   1952  1.88   thorpej 	/*
   1953  1.88   thorpej 	 * Clean the source page.  Hold the source page's lock for
   1954  1.88   thorpej 	 * the duration of the copy so that no other mappings can
   1955  1.88   thorpej 	 * be created while we have a potentially aliased mapping.
   1956  1.88   thorpej 	 */
   1957  1.88   thorpej 	simple_lock(&src_pg->mdpage.pvh_slock);
   1958  1.88   thorpej 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1959  1.88   thorpej 
   1960  1.88   thorpej 	/*
   1961  1.88   thorpej 	 * Map the pages into the page hook points, copy them, and purge
   1962  1.88   thorpej 	 * the cache for the appropriate page. Invalidate the TLB
   1963  1.88   thorpej 	 * as required.
   1964  1.88   thorpej 	 */
   1965  1.88   thorpej 	*csrc_pte = L2_S_PROTO | src |
   1966  1.89   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   1967  1.89   thorpej 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1968  1.88   thorpej 	*cdst_pte = L2_S_PROTO | dst |
   1969  1.88   thorpej 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1970  1.88   thorpej 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1971  1.88   thorpej 	cpu_tlb_flushD_SE(csrcp);
   1972  1.88   thorpej 	cpu_tlb_flushD_SE(cdstp);
   1973  1.88   thorpej 	cpu_cpwait();
   1974  1.88   thorpej 	bcopy_page(csrcp, cdstp);
   1975  1.88   thorpej 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   1976  1.88   thorpej 	xscale_cache_clean_minidata();
   1977  1.88   thorpej }
   1978  1.88   thorpej #endif /* ARM_MMU_XSCALE == 1 */
   1979   1.1      matt 
   1980   1.1      matt #if 0
   1981   1.1      matt void
   1982  1.73   thorpej pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   1983   1.1      matt {
   1984   1.1      matt 	pd_entry_t *pde;
   1985   1.2      matt 	paddr_t pa;
   1986   1.1      matt 	struct vm_page *m;
   1987   1.1      matt 
   1988   1.1      matt 	if (pmap == pmap_kernel())
   1989   1.1      matt 		return;
   1990   1.1      matt 
   1991  1.81   thorpej 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   1992   1.1      matt 	pa = pmap_pte_pa(pde);
   1993   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   1994   1.1      matt 	++m->wire_count;
   1995   1.1      matt #ifdef MYCROFT_HACK
   1996   1.1      matt 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   1997   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   1998   1.1      matt #endif
   1999   1.1      matt }
   2000   1.1      matt 
   2001   1.1      matt void
   2002  1.73   thorpej pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   2003   1.1      matt {
   2004   1.1      matt 	pd_entry_t *pde;
   2005   1.2      matt 	paddr_t pa;
   2006   1.1      matt 	struct vm_page *m;
   2007   1.1      matt 
   2008   1.1      matt 	if (pmap == pmap_kernel())
   2009   1.1      matt 		return;
   2010   1.1      matt 
   2011  1.81   thorpej 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   2012   1.1      matt 	pa = pmap_pte_pa(pde);
   2013   1.1      matt 	m = PHYS_TO_VM_PAGE(pa);
   2014   1.1      matt 	--m->wire_count;
   2015   1.1      matt #ifdef MYCROFT_HACK
   2016   1.1      matt 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2017   1.1      matt 	    pmap, va, pde, pa, m, m->wire_count);
   2018   1.1      matt #endif
   2019   1.1      matt 	if (m->wire_count == 0) {
   2020   1.1      matt #ifdef MYCROFT_HACK
   2021   1.1      matt 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2022   1.1      matt 		    pmap, va, pde, pa, m);
   2023   1.1      matt #endif
   2024   1.1      matt 		pmap_unmap_in_l1(pmap, va);
   2025   1.1      matt 		uvm_pagefree(m);
   2026   1.1      matt 		--pmap->pm_stats.resident_count;
   2027   1.1      matt 	}
   2028   1.1      matt }
   2029   1.1      matt #else
   2030   1.1      matt #define	pmap_pte_addref(pmap, va)
   2031   1.1      matt #define	pmap_pte_delref(pmap, va)
   2032   1.1      matt #endif
   2033   1.1      matt 
   2034   1.1      matt /*
   2035   1.1      matt  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2036   1.1      matt  * there is more than one mapping and at least one of them is writable.
   2037   1.1      matt  * Since we purge the cache on every context switch, we only need to check for
   2038   1.1      matt  * other mappings within the same pmap, or kernel_pmap.
   2039   1.1      matt  * This function is also called when a page is unmapped, to possibly reenable
   2040   1.1      matt  * caching on any remaining mappings.
   2041  1.28  rearnsha  *
   2042  1.28  rearnsha  * The code implements the following logic, where:
   2043  1.28  rearnsha  *
   2044  1.28  rearnsha  * KW = # of kernel read/write pages
   2045  1.28  rearnsha  * KR = # of kernel read only pages
   2046  1.28  rearnsha  * UW = # of user read/write pages
   2047  1.28  rearnsha  * UR = # of user read only pages
   2048  1.28  rearnsha  * OW = # of user read/write pages in another pmap, then
   2049  1.28  rearnsha  *
   2050  1.28  rearnsha  * KC = kernel mapping is cacheable
   2051  1.28  rearnsha  * UC = user mapping is cacheable
   2052  1.28  rearnsha  *
   2053  1.28  rearnsha  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2054  1.28  rearnsha  *                   +---------------------------------------------
   2055  1.28  rearnsha  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2056  1.28  rearnsha  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2057  1.28  rearnsha  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2058  1.28  rearnsha  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2059  1.28  rearnsha  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2060  1.11     chris  *
   2061  1.11     chris  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2062   1.1      matt  */
   2063  1.25  rearnsha __inline static void
   2064  1.49   thorpej pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2065  1.12     chris 	boolean_t clear_cache)
   2066   1.1      matt {
   2067  1.25  rearnsha 	if (pmap == pmap_kernel())
   2068  1.49   thorpej 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2069  1.25  rearnsha 	else
   2070  1.49   thorpej 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2071  1.25  rearnsha }
   2072  1.25  rearnsha 
   2073  1.25  rearnsha static void
   2074  1.49   thorpej pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2075  1.25  rearnsha 	boolean_t clear_cache)
   2076  1.25  rearnsha {
   2077  1.25  rearnsha 	int user_entries = 0;
   2078  1.25  rearnsha 	int user_writable = 0;
   2079  1.25  rearnsha 	int user_cacheable = 0;
   2080  1.25  rearnsha 	int kernel_entries = 0;
   2081  1.25  rearnsha 	int kernel_writable = 0;
   2082  1.25  rearnsha 	int kernel_cacheable = 0;
   2083  1.25  rearnsha 	struct pv_entry *pv;
   2084  1.25  rearnsha 	struct pmap *last_pmap = pmap;
   2085  1.25  rearnsha 
   2086  1.25  rearnsha #ifdef DIAGNOSTIC
   2087  1.25  rearnsha 	if (pmap != pmap_kernel())
   2088  1.25  rearnsha 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2089  1.25  rearnsha #endif
   2090  1.25  rearnsha 
   2091  1.25  rearnsha 	/*
   2092  1.25  rearnsha 	 * Pass one, see if there are both kernel and user pmaps for
   2093  1.25  rearnsha 	 * this page.  Calculate whether there are user-writable or
   2094  1.25  rearnsha 	 * kernel-writable pages.
   2095  1.25  rearnsha 	 */
   2096  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2097  1.25  rearnsha 		if (pv->pv_pmap != pmap) {
   2098  1.25  rearnsha 			user_entries++;
   2099  1.78   thorpej 			if (pv->pv_flags & PVF_WRITE)
   2100  1.25  rearnsha 				user_writable++;
   2101  1.78   thorpej 			if ((pv->pv_flags & PVF_NC) == 0)
   2102  1.25  rearnsha 				user_cacheable++;
   2103  1.25  rearnsha 		} else {
   2104  1.25  rearnsha 			kernel_entries++;
   2105  1.78   thorpej 			if (pv->pv_flags & PVF_WRITE)
   2106  1.25  rearnsha 				kernel_writable++;
   2107  1.78   thorpej 			if ((pv->pv_flags & PVF_NC) == 0)
   2108  1.25  rearnsha 				kernel_cacheable++;
   2109  1.25  rearnsha 		}
   2110  1.25  rearnsha 	}
   2111  1.25  rearnsha 
   2112  1.25  rearnsha 	/*
   2113  1.25  rearnsha 	 * We know we have just been updating a kernel entry, so if
   2114  1.25  rearnsha 	 * all user pages are already cacheable, then there is nothing
   2115  1.25  rearnsha 	 * further to do.
   2116  1.25  rearnsha 	 */
   2117  1.25  rearnsha 	if (kernel_entries == 0 &&
   2118  1.25  rearnsha 	    user_cacheable == user_entries)
   2119  1.25  rearnsha 		return;
   2120  1.25  rearnsha 
   2121  1.25  rearnsha 	if (user_entries) {
   2122  1.25  rearnsha 		/*
   2123  1.25  rearnsha 		 * Scan over the list again, for each entry, if it
   2124  1.25  rearnsha 		 * might not be set correctly, call pmap_vac_me_user
   2125  1.25  rearnsha 		 * to recalculate the settings.
   2126  1.25  rearnsha 		 */
   2127  1.49   thorpej 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2128  1.25  rearnsha 			/*
   2129  1.25  rearnsha 			 * We know kernel mappings will get set
   2130  1.25  rearnsha 			 * correctly in other calls.  We also know
   2131  1.25  rearnsha 			 * that if the pmap is the same as last_pmap
   2132  1.25  rearnsha 			 * then we've just handled this entry.
   2133  1.25  rearnsha 			 */
   2134  1.25  rearnsha 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2135  1.25  rearnsha 				continue;
   2136  1.25  rearnsha 			/*
   2137  1.25  rearnsha 			 * If there are kernel entries and this page
   2138  1.25  rearnsha 			 * is writable but non-cacheable, then we can
   2139  1.25  rearnsha 			 * skip this entry also.
   2140  1.25  rearnsha 			 */
   2141  1.25  rearnsha 			if (kernel_entries > 0 &&
   2142  1.78   thorpej 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2143  1.78   thorpej 			    (PVF_NC | PVF_WRITE))
   2144  1.25  rearnsha 				continue;
   2145  1.25  rearnsha 			/*
   2146  1.25  rearnsha 			 * Similarly if there are no kernel-writable
   2147  1.25  rearnsha 			 * entries and the page is already
   2148  1.25  rearnsha 			 * read-only/cacheable.
   2149  1.25  rearnsha 			 */
   2150  1.25  rearnsha 			if (kernel_writable == 0 &&
   2151  1.78   thorpej 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2152  1.25  rearnsha 				continue;
   2153  1.25  rearnsha 			/*
   2154  1.25  rearnsha 			 * For some of the remaining cases, we know
   2155  1.25  rearnsha 			 * that we must recalculate, but for others we
   2156  1.25  rearnsha 			 * can't tell if they are correct or not, so
   2157  1.25  rearnsha 			 * we recalculate anyway.
   2158  1.25  rearnsha 			 */
   2159  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2160  1.25  rearnsha 			last_pmap = pv->pv_pmap;
   2161  1.25  rearnsha 			ptes = pmap_map_ptes(last_pmap);
   2162  1.49   thorpej 			pmap_vac_me_user(last_pmap, pg, ptes,
   2163  1.25  rearnsha 			    pmap_is_curpmap(last_pmap));
   2164  1.25  rearnsha 		}
   2165  1.25  rearnsha 		/* Restore the pte mapping that was passed to us.  */
   2166  1.25  rearnsha 		if (last_pmap != pmap) {
   2167  1.25  rearnsha 			pmap_unmap_ptes(last_pmap);
   2168  1.25  rearnsha 			ptes = pmap_map_ptes(pmap);
   2169  1.25  rearnsha 		}
   2170  1.25  rearnsha 		if (kernel_entries == 0)
   2171  1.25  rearnsha 			return;
   2172  1.25  rearnsha 	}
   2173  1.25  rearnsha 
   2174  1.49   thorpej 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2175  1.25  rearnsha 	return;
   2176  1.25  rearnsha }
   2177  1.25  rearnsha 
   2178  1.25  rearnsha static void
   2179  1.49   thorpej pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2180  1.25  rearnsha 	boolean_t clear_cache)
   2181  1.25  rearnsha {
   2182  1.25  rearnsha 	struct pmap *kpmap = pmap_kernel();
   2183  1.17     chris 	struct pv_entry *pv, *npv;
   2184   1.1      matt 	int entries = 0;
   2185  1.25  rearnsha 	int writable = 0;
   2186  1.12     chris 	int cacheable_entries = 0;
   2187  1.25  rearnsha 	int kern_cacheable = 0;
   2188  1.25  rearnsha 	int other_writable = 0;
   2189   1.1      matt 
   2190  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2191  1.11     chris 	KASSERT(ptes != NULL);
   2192   1.1      matt 
   2193   1.1      matt 	/*
   2194   1.1      matt 	 * Count mappings and writable mappings in this pmap.
   2195  1.25  rearnsha 	 * Include kernel mappings as part of our own.
   2196   1.1      matt 	 * Keep a pointer to the first one.
   2197   1.1      matt 	 */
   2198   1.1      matt 	for (npv = pv; npv; npv = npv->pv_next) {
   2199   1.1      matt 		/* Count mappings in the same pmap */
   2200  1.25  rearnsha 		if (pmap == npv->pv_pmap ||
   2201  1.25  rearnsha 		    kpmap == npv->pv_pmap) {
   2202   1.1      matt 			if (entries++ == 0)
   2203   1.1      matt 				pv = npv;
   2204  1.12     chris 			/* Cacheable mappings */
   2205  1.78   thorpej 			if ((npv->pv_flags & PVF_NC) == 0) {
   2206  1.12     chris 				cacheable_entries++;
   2207  1.25  rearnsha 				if (kpmap == npv->pv_pmap)
   2208  1.25  rearnsha 					kern_cacheable++;
   2209  1.25  rearnsha 			}
   2210  1.25  rearnsha 			/* Writable mappings */
   2211  1.78   thorpej 			if (npv->pv_flags & PVF_WRITE)
   2212  1.25  rearnsha 				++writable;
   2213  1.78   thorpej 		} else if (npv->pv_flags & PVF_WRITE)
   2214  1.25  rearnsha 			other_writable = 1;
   2215   1.1      matt 	}
   2216   1.1      matt 
   2217  1.12     chris 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2218  1.25  rearnsha 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2219  1.12     chris 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2220  1.12     chris 
   2221   1.1      matt 	/*
   2222   1.1      matt 	 * Enable or disable caching as necessary.
   2223  1.25  rearnsha 	 * Note: the first entry might be part of the kernel pmap,
   2224  1.25  rearnsha 	 * so we can't assume this is indicative of the state of the
   2225  1.25  rearnsha 	 * other (maybe non-kpmap) entries.
   2226   1.1      matt 	 */
   2227  1.25  rearnsha 	if ((entries > 1 && writable) ||
   2228  1.25  rearnsha 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2229  1.12     chris 		if (cacheable_entries == 0)
   2230  1.12     chris 		    return;
   2231  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2232  1.25  rearnsha 			if ((pmap == npv->pv_pmap
   2233  1.25  rearnsha 			    || kpmap == npv->pv_pmap) &&
   2234  1.78   thorpej 			    (npv->pv_flags & PVF_NC) == 0) {
   2235  1.91   thorpej 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2236  1.78   thorpej  				npv->pv_flags |= PVF_NC;
   2237  1.25  rearnsha 				/*
   2238  1.25  rearnsha 				 * If this page needs flushing from the
   2239  1.25  rearnsha 				 * cache, and we aren't going to do it
   2240  1.25  rearnsha 				 * below, do it now.
   2241  1.25  rearnsha 				 */
   2242  1.25  rearnsha 				if ((cacheable_entries < 4 &&
   2243  1.25  rearnsha 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2244  1.25  rearnsha 				    (npv->pv_pmap == kpmap &&
   2245  1.25  rearnsha 				    !clear_cache && kern_cacheable < 4)) {
   2246  1.36   thorpej 					cpu_idcache_wbinv_range(npv->pv_va,
   2247  1.12     chris 					    NBPG);
   2248  1.12     chris 					cpu_tlb_flushID_SE(npv->pv_va);
   2249  1.12     chris 				}
   2250   1.1      matt 			}
   2251   1.1      matt 		}
   2252  1.25  rearnsha 		if ((clear_cache && cacheable_entries >= 4) ||
   2253  1.25  rearnsha 		    kern_cacheable >= 4) {
   2254  1.36   thorpej 			cpu_idcache_wbinv_all();
   2255  1.12     chris 			cpu_tlb_flushID();
   2256  1.12     chris 		}
   2257  1.32   thorpej 		cpu_cpwait();
   2258   1.1      matt 	} else if (entries > 0) {
   2259  1.25  rearnsha 		/*
   2260  1.25  rearnsha 		 * Turn cacheing back on for some pages.  If it is a kernel
   2261  1.25  rearnsha 		 * page, only do so if there are no other writable pages.
   2262  1.25  rearnsha 		 */
   2263  1.25  rearnsha 		for (npv = pv; npv; npv = npv->pv_next) {
   2264  1.25  rearnsha 			if ((pmap == npv->pv_pmap ||
   2265  1.25  rearnsha 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2266  1.78   thorpej 			    (npv->pv_flags & PVF_NC)) {
   2267  1.86   thorpej 				ptes[arm_btop(npv->pv_va)] |=
   2268  1.86   thorpej 				    pte_l2_s_cache_mode;
   2269  1.78   thorpej 				npv->pv_flags &= ~PVF_NC;
   2270   1.1      matt 			}
   2271   1.1      matt 		}
   2272   1.1      matt 	}
   2273   1.1      matt }
   2274   1.1      matt 
   2275   1.1      matt /*
   2276   1.1      matt  * pmap_remove()
   2277   1.1      matt  *
   2278   1.1      matt  * pmap_remove is responsible for nuking a number of mappings for a range
   2279   1.1      matt  * of virtual address space in the current pmap. To do this efficiently
   2280   1.1      matt  * is interesting, because in a number of cases a wide virtual address
   2281   1.1      matt  * range may be supplied that contains few actual mappings. So, the
   2282   1.1      matt  * optimisations are:
   2283   1.1      matt  *  1. Try and skip over hunks of address space for which an L1 entry
   2284   1.1      matt  *     does not exist.
   2285   1.1      matt  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2286   1.1      matt  *     maybe do just a partial cache clean. This path of execution is
   2287   1.1      matt  *     complicated by the fact that the cache must be flushed _before_
   2288   1.1      matt  *     the PTE is nuked, being a VAC :-)
   2289   1.1      matt  *  3. Maybe later fast-case a single page, but I don't think this is
   2290   1.1      matt  *     going to make _that_ much difference overall.
   2291   1.1      matt  */
   2292   1.1      matt 
   2293   1.1      matt #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2294   1.1      matt 
   2295   1.1      matt void
   2296  1.73   thorpej pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2297   1.1      matt {
   2298   1.1      matt 	int cleanlist_idx = 0;
   2299   1.1      matt 	struct pagelist {
   2300   1.1      matt 		vaddr_t va;
   2301   1.1      matt 		pt_entry_t *pte;
   2302   1.1      matt 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2303  1.11     chris 	pt_entry_t *pte = 0, *ptes;
   2304   1.2      matt 	paddr_t pa;
   2305   1.1      matt 	int pmap_active;
   2306  1.49   thorpej 	struct vm_page *pg;
   2307   1.1      matt 
   2308   1.1      matt 	/* Exit quick if there is no pmap */
   2309   1.1      matt 	if (!pmap)
   2310   1.1      matt 		return;
   2311   1.1      matt 
   2312  1.79   thorpej 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2313  1.79   thorpej 	    pmap, sva, eva));
   2314   1.1      matt 
   2315  1.17     chris 	/*
   2316  1.49   thorpej 	 * we lock in the pmap => vm_page direction
   2317  1.17     chris 	 */
   2318  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2319  1.17     chris 
   2320  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2321   1.1      matt 	/* Get a page table pointer */
   2322   1.1      matt 	while (sva < eva) {
   2323  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2324   1.1      matt 			break;
   2325  1.81   thorpej 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2326   1.1      matt 	}
   2327  1.11     chris 
   2328  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2329   1.1      matt 	/* Note if the pmap is active thus require cache and tlb cleans */
   2330  1.58   thorpej 	pmap_active = pmap_is_curpmap(pmap);
   2331   1.1      matt 
   2332   1.1      matt 	/* Now loop along */
   2333   1.1      matt 	while (sva < eva) {
   2334   1.1      matt 		/* Check if we can move to the next PDE (l1 chunk) */
   2335  1.81   thorpej 		if (!(sva & L2_ADDR_BITS))
   2336  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2337  1.81   thorpej 				sva += L1_S_SIZE;
   2338  1.81   thorpej 				pte += arm_btop(L1_S_SIZE);
   2339   1.1      matt 				continue;
   2340   1.1      matt 			}
   2341   1.1      matt 
   2342   1.1      matt 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2343   1.1      matt 		if (pmap_pte_v(pte)) {
   2344   1.1      matt 			/* Update statistics */
   2345   1.1      matt 			--pmap->pm_stats.resident_count;
   2346   1.1      matt 
   2347   1.1      matt 			/*
   2348   1.1      matt 			 * Add this page to our cache remove list, if we can.
   2349   1.1      matt 			 * If, however the cache remove list is totally full,
   2350   1.1      matt 			 * then do a complete cache invalidation taking note
   2351   1.1      matt 			 * to backtrack the PTE table beforehand, and ignore
   2352   1.1      matt 			 * the lists in future because there's no longer any
   2353   1.1      matt 			 * point in bothering with them (we've paid the
   2354   1.1      matt 			 * penalty, so will carry on unhindered). Otherwise,
   2355   1.1      matt 			 * when we fall out, we just clean the list.
   2356   1.1      matt 			 */
   2357   1.1      matt 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2358   1.1      matt 			pa = pmap_pte_pa(pte);
   2359   1.1      matt 
   2360   1.1      matt 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2361   1.1      matt 				/* Add to the clean list. */
   2362   1.1      matt 				cleanlist[cleanlist_idx].pte = pte;
   2363   1.1      matt 				cleanlist[cleanlist_idx].va = sva;
   2364   1.1      matt 				cleanlist_idx++;
   2365   1.1      matt 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2366   1.1      matt 				int cnt;
   2367   1.1      matt 
   2368   1.1      matt 				/* Nuke everything if needed. */
   2369   1.1      matt 				if (pmap_active) {
   2370  1.36   thorpej 					cpu_idcache_wbinv_all();
   2371   1.1      matt 					cpu_tlb_flushID();
   2372   1.1      matt 				}
   2373   1.1      matt 
   2374   1.1      matt 				/*
   2375   1.1      matt 				 * Roll back the previous PTE list,
   2376   1.1      matt 				 * and zero out the current PTE.
   2377   1.1      matt 				 */
   2378   1.1      matt 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2379   1.1      matt 					*cleanlist[cnt].pte = 0;
   2380   1.1      matt 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2381   1.1      matt 				}
   2382   1.1      matt 				*pte = 0;
   2383   1.1      matt 				pmap_pte_delref(pmap, sva);
   2384   1.1      matt 				cleanlist_idx++;
   2385   1.1      matt 			} else {
   2386   1.1      matt 				/*
   2387   1.1      matt 				 * We've already nuked the cache and
   2388   1.1      matt 				 * TLB, so just carry on regardless,
   2389   1.1      matt 				 * and we won't need to do it again
   2390   1.1      matt 				 */
   2391   1.1      matt 				*pte = 0;
   2392   1.1      matt 				pmap_pte_delref(pmap, sva);
   2393   1.1      matt 			}
   2394   1.1      matt 
   2395   1.1      matt 			/*
   2396   1.1      matt 			 * Update flags. In a number of circumstances,
   2397   1.1      matt 			 * we could cluster a lot of these and do a
   2398   1.1      matt 			 * number of sequential pages in one go.
   2399   1.1      matt 			 */
   2400  1.49   thorpej 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2401  1.17     chris 				struct pv_entry *pve;
   2402  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2403  1.49   thorpej 				pve = pmap_remove_pv(pg, pmap, sva);
   2404  1.17     chris 				pmap_free_pv(pmap, pve);
   2405  1.49   thorpej 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2406  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2407   1.1      matt 			}
   2408   1.1      matt 		}
   2409   1.1      matt 		sva += NBPG;
   2410   1.1      matt 		pte++;
   2411   1.1      matt 	}
   2412   1.1      matt 
   2413  1.11     chris 	pmap_unmap_ptes(pmap);
   2414   1.1      matt 	/*
   2415   1.1      matt 	 * Now, if we've fallen through down to here, chances are that there
   2416   1.1      matt 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2417   1.1      matt 	 */
   2418   1.1      matt 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2419   1.1      matt 		u_int cnt;
   2420   1.1      matt 
   2421   1.1      matt 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2422   1.1      matt 			if (pmap_active) {
   2423  1.36   thorpej 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2424  1.36   thorpej 				    NBPG);
   2425   1.1      matt 				*cleanlist[cnt].pte = 0;
   2426   1.1      matt 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2427   1.1      matt 			} else
   2428   1.1      matt 				*cleanlist[cnt].pte = 0;
   2429   1.1      matt 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2430   1.1      matt 		}
   2431   1.1      matt 	}
   2432  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2433   1.1      matt }
   2434   1.1      matt 
   2435   1.1      matt /*
   2436   1.1      matt  * Routine:	pmap_remove_all
   2437   1.1      matt  * Function:
   2438   1.1      matt  *		Removes this physical page from
   2439   1.1      matt  *		all physical maps in which it resides.
   2440   1.1      matt  *		Reflects back modify bits to the pager.
   2441   1.1      matt  */
   2442   1.1      matt 
   2443  1.33     chris static void
   2444  1.73   thorpej pmap_remove_all(struct vm_page *pg)
   2445   1.1      matt {
   2446  1.17     chris 	struct pv_entry *pv, *npv;
   2447  1.15     chris 	struct pmap *pmap;
   2448  1.11     chris 	pt_entry_t *pte, *ptes;
   2449   1.1      matt 
   2450  1.49   thorpej 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2451   1.1      matt 
   2452  1.49   thorpej 	/* set vm_page => pmap locking */
   2453  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   2454   1.1      matt 
   2455  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2456  1.17     chris 
   2457  1.49   thorpej 	pv = pg->mdpage.pvh_list;
   2458  1.49   thorpej 	if (pv == NULL) {
   2459  1.49   thorpej 		PDEBUG(0, printf("free page\n"));
   2460  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2461  1.49   thorpej 		PMAP_HEAD_TO_MAP_UNLOCK();
   2462  1.49   thorpej 		return;
   2463   1.1      matt 	}
   2464  1.17     chris 	pmap_clean_page(pv, FALSE);
   2465   1.1      matt 
   2466   1.1      matt 	while (pv) {
   2467   1.1      matt 		pmap = pv->pv_pmap;
   2468  1.11     chris 		ptes = pmap_map_ptes(pmap);
   2469  1.56   thorpej 		pte = &ptes[arm_btop(pv->pv_va)];
   2470   1.1      matt 
   2471   1.1      matt 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2472   1.1      matt 		    pv->pv_va, pv->pv_flags));
   2473   1.1      matt #ifdef DEBUG
   2474  1.79   thorpej 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2475  1.79   thorpej 		    pmap_pte_v(pte) == 0 ||
   2476  1.79   thorpej 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2477   1.1      matt 			panic("pmap_remove_all: bad mapping");
   2478   1.1      matt #endif	/* DEBUG */
   2479   1.1      matt 
   2480   1.1      matt 		/*
   2481   1.1      matt 		 * Update statistics
   2482   1.1      matt 		 */
   2483   1.1      matt 		--pmap->pm_stats.resident_count;
   2484   1.1      matt 
   2485   1.1      matt 		/* Wired bit */
   2486  1.78   thorpej 		if (pv->pv_flags & PVF_WIRED)
   2487   1.1      matt 			--pmap->pm_stats.wired_count;
   2488   1.1      matt 
   2489   1.1      matt 		/*
   2490   1.1      matt 		 * Invalidate the PTEs.
   2491   1.1      matt 		 * XXX: should cluster them up and invalidate as many
   2492   1.1      matt 		 * as possible at once.
   2493   1.1      matt 		 */
   2494   1.1      matt 
   2495   1.1      matt #ifdef needednotdone
   2496   1.1      matt reduce wiring count on page table pages as references drop
   2497   1.1      matt #endif
   2498   1.1      matt 
   2499   1.1      matt 		*pte = 0;
   2500   1.1      matt 		pmap_pte_delref(pmap, pv->pv_va);
   2501   1.1      matt 
   2502   1.1      matt 		npv = pv->pv_next;
   2503  1.17     chris 		pmap_free_pv(pmap, pv);
   2504   1.1      matt 		pv = npv;
   2505  1.11     chris 		pmap_unmap_ptes(pmap);
   2506   1.1      matt 	}
   2507  1.49   thorpej 	pg->mdpage.pvh_list = NULL;
   2508  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   2509  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   2510   1.1      matt 
   2511   1.1      matt 	PDEBUG(0, printf("done\n"));
   2512   1.1      matt 	cpu_tlb_flushID();
   2513  1.32   thorpej 	cpu_cpwait();
   2514   1.1      matt }
   2515   1.1      matt 
   2516   1.1      matt 
   2517   1.1      matt /*
   2518   1.1      matt  * Set the physical protection on the specified range of this map as requested.
   2519   1.1      matt  */
   2520   1.1      matt 
   2521   1.1      matt void
   2522  1.73   thorpej pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2523   1.1      matt {
   2524  1.11     chris 	pt_entry_t *pte = NULL, *ptes;
   2525  1.49   thorpej 	struct vm_page *pg;
   2526   1.1      matt 	int armprot;
   2527   1.1      matt 	int flush = 0;
   2528   1.2      matt 	paddr_t pa;
   2529   1.1      matt 
   2530   1.1      matt 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2531   1.1      matt 	    pmap, sva, eva, prot));
   2532   1.1      matt 
   2533   1.1      matt 	if (~prot & VM_PROT_READ) {
   2534   1.1      matt 		/* Just remove the mappings. */
   2535   1.1      matt 		pmap_remove(pmap, sva, eva);
   2536  1.33     chris 		/* pmap_update not needed as it should be called by the caller
   2537  1.33     chris 		 * of pmap_protect */
   2538   1.1      matt 		return;
   2539   1.1      matt 	}
   2540   1.1      matt 	if (prot & VM_PROT_WRITE) {
   2541   1.1      matt 		/*
   2542   1.1      matt 		 * If this is a read->write transition, just ignore it and let
   2543   1.1      matt 		 * uvm_fault() take care of it later.
   2544   1.1      matt 		 */
   2545   1.1      matt 		return;
   2546   1.1      matt 	}
   2547   1.1      matt 
   2548  1.17     chris 	/* Need to lock map->head */
   2549  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2550  1.17     chris 
   2551  1.11     chris 	ptes = pmap_map_ptes(pmap);
   2552   1.1      matt 	/*
   2553   1.1      matt 	 * We need to acquire a pointer to a page table page before entering
   2554   1.1      matt 	 * the following loop.
   2555   1.1      matt 	 */
   2556   1.1      matt 	while (sva < eva) {
   2557  1.30  rearnsha 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2558   1.1      matt 			break;
   2559  1.81   thorpej 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2560   1.1      matt 	}
   2561  1.11     chris 
   2562  1.56   thorpej 	pte = &ptes[arm_btop(sva)];
   2563  1.17     chris 
   2564   1.1      matt 	while (sva < eva) {
   2565   1.1      matt 		/* only check once in a while */
   2566  1.81   thorpej 		if ((sva & L2_ADDR_BITS) == 0) {
   2567  1.30  rearnsha 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2568   1.1      matt 				/* We can race ahead here, to the next pde. */
   2569  1.81   thorpej 				sva += L1_S_SIZE;
   2570  1.81   thorpej 				pte += arm_btop(L1_S_SIZE);
   2571   1.1      matt 				continue;
   2572   1.1      matt 			}
   2573   1.1      matt 		}
   2574   1.1      matt 
   2575   1.1      matt 		if (!pmap_pte_v(pte))
   2576   1.1      matt 			goto next;
   2577   1.1      matt 
   2578   1.1      matt 		flush = 1;
   2579   1.1      matt 
   2580   1.1      matt 		armprot = 0;
   2581   1.1      matt 		if (sva < VM_MAXUSER_ADDRESS)
   2582  1.83   thorpej 			armprot |= L2_S_PROT_U;
   2583   1.1      matt 		else if (sva < VM_MAX_ADDRESS)
   2584  1.83   thorpej 			armprot |= L2_S_PROT_W;  /* XXX Ekk what is this ? */
   2585   1.1      matt 		*pte = (*pte & 0xfffff00f) | armprot;
   2586   1.1      matt 
   2587   1.1      matt 		pa = pmap_pte_pa(pte);
   2588   1.1      matt 
   2589   1.1      matt 		/* Get the physical page index */
   2590   1.1      matt 
   2591   1.1      matt 		/* Clear write flag */
   2592  1.49   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2593  1.49   thorpej 			simple_lock(&pg->mdpage.pvh_slock);
   2594  1.78   thorpej 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2595  1.49   thorpej 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2596  1.49   thorpej 			simple_unlock(&pg->mdpage.pvh_slock);
   2597   1.1      matt 		}
   2598   1.1      matt 
   2599   1.1      matt next:
   2600   1.1      matt 		sva += NBPG;
   2601   1.1      matt 		pte++;
   2602   1.1      matt 	}
   2603  1.11     chris 	pmap_unmap_ptes(pmap);
   2604  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2605   1.1      matt 	if (flush)
   2606   1.1      matt 		cpu_tlb_flushID();
   2607   1.1      matt }
   2608   1.1      matt 
   2609   1.1      matt /*
   2610  1.15     chris  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2611   1.1      matt  * int flags)
   2612   1.1      matt  *
   2613   1.1      matt  *      Insert the given physical page (p) at
   2614   1.1      matt  *      the specified virtual address (v) in the
   2615   1.1      matt  *      target physical map with the protection requested.
   2616   1.1      matt  *
   2617   1.1      matt  *      If specified, the page will be wired down, meaning
   2618   1.1      matt  *      that the related pte can not be reclaimed.
   2619   1.1      matt  *
   2620   1.1      matt  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2621   1.1      matt  *      or lose information.  That is, this routine must actually
   2622   1.1      matt  *      insert this page into the given map NOW.
   2623   1.1      matt  */
   2624   1.1      matt 
   2625   1.1      matt int
   2626  1.73   thorpej pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2627  1.73   thorpej     int flags)
   2628   1.1      matt {
   2629  1.66   thorpej 	pt_entry_t *ptes, opte, npte;
   2630   1.2      matt 	paddr_t opa;
   2631   1.1      matt 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2632  1.49   thorpej 	struct vm_page *pg;
   2633  1.17     chris 	struct pv_entry *pve;
   2634  1.66   thorpej 	int error, nflags;
   2635   1.1      matt 
   2636   1.1      matt 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2637   1.1      matt 	    va, pa, pmap, prot, wired));
   2638   1.1      matt 
   2639   1.1      matt #ifdef DIAGNOSTIC
   2640   1.1      matt 	/* Valid address ? */
   2641  1.48     chris 	if (va >= (pmap_curmaxkvaddr))
   2642   1.1      matt 		panic("pmap_enter: too big");
   2643   1.1      matt 	if (pmap != pmap_kernel() && va != 0) {
   2644   1.1      matt 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2645   1.1      matt 			panic("pmap_enter: kernel page in user map");
   2646   1.1      matt 	} else {
   2647   1.1      matt 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2648   1.1      matt 			panic("pmap_enter: user page in kernel map");
   2649   1.1      matt 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2650   1.1      matt 			panic("pmap_enter: entering PT page");
   2651   1.1      matt 	}
   2652   1.1      matt #endif
   2653  1.79   thorpej 
   2654  1.79   thorpej 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2655  1.79   thorpej 
   2656  1.49   thorpej 	/*
   2657  1.49   thorpej 	 * Get a pointer to the page.  Later on in this function, we
   2658  1.49   thorpej 	 * test for a managed page by checking pg != NULL.
   2659  1.49   thorpej 	 */
   2660  1.55   thorpej 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2661  1.49   thorpej 
   2662  1.17     chris 	/* get lock */
   2663  1.17     chris 	PMAP_MAP_TO_HEAD_LOCK();
   2664  1.66   thorpej 
   2665   1.1      matt 	/*
   2666  1.66   thorpej 	 * map the ptes.  If there's not already an L2 table for this
   2667  1.66   thorpej 	 * address, allocate one.
   2668   1.1      matt 	 */
   2669  1.66   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2670  1.66   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2671  1.17     chris 		struct vm_page *ptp;
   2672  1.57   thorpej 
   2673  1.57   thorpej 		/* kernel should be pre-grown */
   2674  1.57   thorpej 		KASSERT(pmap != pmap_kernel());
   2675  1.17     chris 
   2676  1.17     chris 		/* if failure is allowed then don't try too hard */
   2677  1.81   thorpej 		ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
   2678  1.17     chris 		if (ptp == NULL) {
   2679  1.17     chris 			if (flags & PMAP_CANFAIL) {
   2680  1.17     chris 				error = ENOMEM;
   2681  1.17     chris 				goto out;
   2682  1.17     chris 			}
   2683  1.17     chris 			panic("pmap_enter: get ptp failed");
   2684   1.1      matt 		}
   2685   1.1      matt 	}
   2686  1.66   thorpej 	opte = ptes[arm_btop(va)];
   2687   1.1      matt 
   2688   1.1      matt 	nflags = 0;
   2689   1.1      matt 	if (prot & VM_PROT_WRITE)
   2690  1.78   thorpej 		nflags |= PVF_WRITE;
   2691   1.1      matt 	if (wired)
   2692  1.78   thorpej 		nflags |= PVF_WIRED;
   2693   1.1      matt 
   2694   1.1      matt 	/* Is the pte valid ? If so then this page is already mapped */
   2695  1.66   thorpej 	if (l2pte_valid(opte)) {
   2696   1.1      matt 		/* Get the physical address of the current page mapped */
   2697  1.66   thorpej 		opa = l2pte_pa(opte);
   2698   1.1      matt 
   2699   1.1      matt 		/* Are we mapping the same page ? */
   2700   1.1      matt 		if (opa == pa) {
   2701   1.1      matt 			/* Has the wiring changed ? */
   2702  1.49   thorpej 			if (pg != NULL) {
   2703  1.49   thorpej 				simple_lock(&pg->mdpage.pvh_slock);
   2704  1.49   thorpej 				(void) pmap_modify_pv(pmap, va, pg,
   2705  1.78   thorpej 				    PVF_WRITE | PVF_WIRED, nflags);
   2706  1.49   thorpej 				simple_unlock(&pg->mdpage.pvh_slock);
   2707  1.49   thorpej  			}
   2708   1.1      matt 		} else {
   2709  1.49   thorpej 			struct vm_page *opg;
   2710  1.49   thorpej 
   2711   1.1      matt 			/* We are replacing the page with a new one. */
   2712  1.36   thorpej 			cpu_idcache_wbinv_range(va, NBPG);
   2713   1.1      matt 
   2714   1.1      matt 			/*
   2715   1.1      matt 			 * If it is part of our managed memory then we
   2716   1.1      matt 			 * must remove it from the PV list
   2717   1.1      matt 			 */
   2718  1.49   thorpej 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2719  1.49   thorpej 				simple_lock(&opg->mdpage.pvh_slock);
   2720  1.49   thorpej 				pve = pmap_remove_pv(opg, pmap, va);
   2721  1.49   thorpej 				simple_unlock(&opg->mdpage.pvh_slock);
   2722  1.17     chris 			} else {
   2723  1.17     chris 				pve = NULL;
   2724   1.1      matt 			}
   2725   1.1      matt 
   2726   1.1      matt 			goto enter;
   2727   1.1      matt 		}
   2728   1.1      matt 	} else {
   2729   1.1      matt 		opa = 0;
   2730  1.17     chris 		pve = NULL;
   2731   1.1      matt 		pmap_pte_addref(pmap, va);
   2732   1.1      matt 
   2733   1.1      matt 		/* pte is not valid so we must be hooking in a new page */
   2734   1.1      matt 		++pmap->pm_stats.resident_count;
   2735   1.1      matt 
   2736   1.1      matt 	enter:
   2737   1.1      matt 		/*
   2738   1.1      matt 		 * Enter on the PV list if part of our managed memory
   2739   1.1      matt 		 */
   2740  1.55   thorpej 		if (pg != NULL) {
   2741  1.17     chris 			if (pve == NULL) {
   2742  1.17     chris 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2743  1.17     chris 				if (pve == NULL) {
   2744  1.17     chris 					if (flags & PMAP_CANFAIL) {
   2745  1.17     chris 						error = ENOMEM;
   2746  1.17     chris 						goto out;
   2747  1.17     chris 					}
   2748  1.66   thorpej 					panic("pmap_enter: no pv entries "
   2749  1.66   thorpej 					    "available");
   2750  1.17     chris 				}
   2751  1.17     chris 			}
   2752  1.17     chris 			/* enter_pv locks pvh when adding */
   2753  1.49   thorpej 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2754  1.17     chris 		} else {
   2755  1.17     chris 			if (pve != NULL)
   2756  1.17     chris 				pmap_free_pv(pmap, pve);
   2757   1.1      matt 		}
   2758   1.1      matt 	}
   2759   1.1      matt 
   2760   1.1      matt 	/* Construct the pte, giving the correct access. */
   2761  1.79   thorpej 	npte = pa;
   2762   1.1      matt 
   2763   1.1      matt 	/* VA 0 is magic. */
   2764  1.77   thorpej 	if (pmap != pmap_kernel() && va != vector_page)
   2765  1.83   thorpej 		npte |= L2_S_PROT_U;
   2766   1.1      matt 
   2767  1.55   thorpej 	if (pg != NULL) {
   2768   1.1      matt #ifdef DIAGNOSTIC
   2769   1.1      matt 		if ((flags & VM_PROT_ALL) & ~prot)
   2770   1.1      matt 			panic("pmap_enter: access_type exceeds prot");
   2771   1.1      matt #endif
   2772  1.86   thorpej 		npte |= pte_l2_s_cache_mode;
   2773   1.1      matt 		if (flags & VM_PROT_WRITE) {
   2774  1.84   thorpej 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2775  1.78   thorpej 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2776   1.1      matt 		} else if (flags & VM_PROT_ALL) {
   2777  1.84   thorpej 			npte |= L2_S_PROTO;
   2778  1.78   thorpej 			pg->mdpage.pvh_attrs |= PVF_REF;
   2779   1.1      matt 		} else
   2780  1.81   thorpej 			npte |= L2_TYPE_INV;
   2781   1.1      matt 	} else {
   2782   1.1      matt 		if (prot & VM_PROT_WRITE)
   2783  1.84   thorpej 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2784   1.1      matt 		else if (prot & VM_PROT_ALL)
   2785  1.84   thorpej 			npte |= L2_S_PROTO;
   2786   1.1      matt 		else
   2787  1.81   thorpej 			npte |= L2_TYPE_INV;
   2788   1.1      matt 	}
   2789   1.1      matt 
   2790  1.66   thorpej 	ptes[arm_btop(va)] = npte;
   2791   1.1      matt 
   2792  1.55   thorpej 	if (pg != NULL) {
   2793  1.49   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2794  1.59   thorpej  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2795  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2796  1.11     chris 	}
   2797   1.1      matt 
   2798   1.1      matt 	/* Better flush the TLB ... */
   2799   1.1      matt 	cpu_tlb_flushID_SE(va);
   2800  1.17     chris 	error = 0;
   2801  1.17     chris out:
   2802  1.66   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2803  1.17     chris 	PMAP_MAP_TO_HEAD_UNLOCK();
   2804   1.1      matt 
   2805  1.17     chris 	return error;
   2806   1.1      matt }
   2807   1.1      matt 
   2808  1.48     chris /*
   2809  1.48     chris  * pmap_kenter_pa: enter a kernel mapping
   2810  1.48     chris  *
   2811  1.48     chris  * => no need to lock anything assume va is already allocated
   2812  1.48     chris  * => should be faster than normal pmap enter function
   2813  1.48     chris  */
   2814   1.1      matt void
   2815  1.73   thorpej pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2816   1.1      matt {
   2817  1.13     chris 	pt_entry_t *pte;
   2818  1.13     chris 
   2819  1.13     chris 	pte = vtopte(va);
   2820  1.14       chs 	KASSERT(!pmap_pte_v(pte));
   2821  1.83   thorpej 
   2822  1.83   thorpej 	*pte = L2_S_PROTO | pa |
   2823  1.90   thorpej 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2824   1.1      matt }
   2825   1.1      matt 
   2826   1.1      matt void
   2827  1.73   thorpej pmap_kremove(vaddr_t va, vsize_t len)
   2828   1.1      matt {
   2829  1.14       chs 	pt_entry_t *pte;
   2830  1.14       chs 
   2831   1.1      matt 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2832  1.13     chris 
   2833  1.14       chs 		/*
   2834  1.14       chs 		 * We assume that we will only be called with small
   2835  1.14       chs 		 * regions of memory.
   2836  1.14       chs 		 */
   2837  1.14       chs 
   2838  1.30  rearnsha 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2839  1.13     chris 		pte = vtopte(va);
   2840  1.36   thorpej 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2841  1.13     chris 		*pte = 0;
   2842  1.13     chris 		cpu_tlb_flushID_SE(va);
   2843   1.1      matt 	}
   2844   1.1      matt }
   2845   1.1      matt 
   2846   1.1      matt /*
   2847   1.1      matt  * pmap_page_protect:
   2848   1.1      matt  *
   2849   1.1      matt  * Lower the permission for all mappings to a given page.
   2850   1.1      matt  */
   2851   1.1      matt 
   2852   1.1      matt void
   2853  1.73   thorpej pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2854   1.1      matt {
   2855   1.1      matt 
   2856  1.49   thorpej 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2857  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), prot));
   2858   1.1      matt 
   2859   1.1      matt 	switch(prot) {
   2860  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2861  1.17     chris 	case VM_PROT_READ|VM_PROT_WRITE:
   2862  1.17     chris 		return;
   2863  1.17     chris 
   2864   1.1      matt 	case VM_PROT_READ:
   2865   1.1      matt 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2866  1.78   thorpej 		pmap_clearbit(pg, PVF_WRITE);
   2867   1.1      matt 		break;
   2868   1.1      matt 
   2869   1.1      matt 	default:
   2870  1.49   thorpej 		pmap_remove_all(pg);
   2871   1.1      matt 		break;
   2872   1.1      matt 	}
   2873   1.1      matt }
   2874   1.1      matt 
   2875   1.1      matt 
   2876   1.1      matt /*
   2877   1.1      matt  * Routine:	pmap_unwire
   2878   1.1      matt  * Function:	Clear the wired attribute for a map/virtual-address
   2879   1.1      matt  *		pair.
   2880   1.1      matt  * In/out conditions:
   2881   1.1      matt  *		The mapping must already exist in the pmap.
   2882   1.1      matt  */
   2883   1.1      matt 
   2884   1.1      matt void
   2885  1.73   thorpej pmap_unwire(struct pmap *pmap, vaddr_t va)
   2886   1.1      matt {
   2887  1.60   thorpej 	pt_entry_t *ptes;
   2888  1.60   thorpej 	struct vm_page *pg;
   2889   1.2      matt 	paddr_t pa;
   2890   1.1      matt 
   2891  1.60   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   2892  1.60   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2893   1.1      matt 
   2894  1.60   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   2895  1.60   thorpej #ifdef DIAGNOSTIC
   2896  1.60   thorpej 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   2897  1.60   thorpej 			panic("pmap_unwire: invalid L2 PTE");
   2898  1.60   thorpej #endif
   2899  1.60   thorpej 		/* Extract the physical address of the page */
   2900  1.60   thorpej 		pa = l2pte_pa(ptes[arm_btop(va)]);
   2901   1.1      matt 
   2902  1.60   thorpej 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   2903  1.60   thorpej 			goto out;
   2904   1.1      matt 
   2905  1.60   thorpej 		/* Update the wired bit in the pv entry for this page. */
   2906  1.60   thorpej 		simple_lock(&pg->mdpage.pvh_slock);
   2907  1.78   thorpej 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   2908  1.60   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   2909  1.60   thorpej 	}
   2910  1.60   thorpej #ifdef DIAGNOSTIC
   2911  1.60   thorpej 	else {
   2912  1.60   thorpej 		panic("pmap_unwire: invalid L1 PTE");
   2913  1.60   thorpej 	}
   2914  1.60   thorpej #endif
   2915  1.60   thorpej  out:
   2916  1.60   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2917  1.60   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   2918   1.1      matt }
   2919   1.1      matt 
   2920   1.1      matt /*
   2921   1.1      matt  * Routine:  pmap_extract
   2922   1.1      matt  * Function:
   2923   1.1      matt  *           Extract the physical page address associated
   2924   1.1      matt  *           with the given map/virtual_address pair.
   2925   1.1      matt  */
   2926   1.1      matt boolean_t
   2927  1.73   thorpej pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   2928   1.1      matt {
   2929  1.34   thorpej 	pd_entry_t *pde;
   2930  1.11     chris 	pt_entry_t *pte, *ptes;
   2931   1.1      matt 	paddr_t pa;
   2932   1.1      matt 
   2933  1.82   thorpej 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   2934  1.82   thorpej 
   2935  1.82   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2936   1.1      matt 
   2937  1.34   thorpej 	pde = pmap_pde(pmap, va);
   2938  1.56   thorpej 	pte = &ptes[arm_btop(va)];
   2939   1.1      matt 
   2940  1.82   thorpej 	if (pmap_pde_section(pde)) {
   2941  1.82   thorpej 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   2942  1.82   thorpej 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   2943  1.82   thorpej 		goto out;
   2944  1.82   thorpej 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   2945  1.82   thorpej 		PDEBUG(5, printf("no mapping\n"));
   2946  1.82   thorpej 		goto failed;
   2947  1.82   thorpej 	}
   2948  1.75   reinoud 
   2949  1.82   thorpej 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   2950  1.82   thorpej 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   2951  1.82   thorpej 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   2952  1.82   thorpej 		goto out;
   2953  1.82   thorpej 	}
   2954   1.1      matt 
   2955  1.82   thorpej 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   2956  1.82   thorpej 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   2957   1.1      matt 
   2958  1.82   thorpej  out:
   2959  1.82   thorpej 	if (pap != NULL)
   2960  1.82   thorpej 		*pap = pa;
   2961   1.1      matt 
   2962  1.82   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2963  1.82   thorpej 	return (TRUE);
   2964  1.34   thorpej 
   2965  1.82   thorpej  failed:
   2966  1.82   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2967  1.82   thorpej 	return (FALSE);
   2968   1.1      matt }
   2969   1.1      matt 
   2970   1.1      matt 
   2971   1.1      matt /*
   2972  1.73   thorpej  * pmap_copy:
   2973   1.1      matt  *
   2974  1.73   thorpej  *	Copy the range specified by src_addr/len from the source map to the
   2975  1.73   thorpej  *	range dst_addr/len in the destination map.
   2976  1.73   thorpej  *
   2977  1.73   thorpej  *	This routine is only advisory and need not do anything.
   2978   1.1      matt  */
   2979  1.73   thorpej /* Call deleted in <arm/arm32/pmap.h> */
   2980   1.1      matt 
   2981   1.1      matt #if defined(PMAP_DEBUG)
   2982   1.1      matt void
   2983   1.1      matt pmap_dump_pvlist(phys, m)
   2984   1.1      matt 	vaddr_t phys;
   2985   1.1      matt 	char *m;
   2986   1.1      matt {
   2987  1.49   thorpej 	struct vm_page *pg;
   2988   1.1      matt 	struct pv_entry *pv;
   2989   1.1      matt 
   2990  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   2991   1.1      matt 		printf("INVALID PA\n");
   2992   1.1      matt 		return;
   2993   1.1      matt 	}
   2994  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   2995   1.1      matt 	printf("%s %08lx:", m, phys);
   2996  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   2997   1.1      matt 		printf(" no mappings\n");
   2998   1.1      matt 		return;
   2999   1.1      matt 	}
   3000   1.1      matt 
   3001  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3002   1.1      matt 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3003   1.1      matt 		    pv->pv_va, pv->pv_flags);
   3004   1.1      matt 
   3005   1.1      matt 	printf("\n");
   3006  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3007   1.1      matt }
   3008   1.1      matt 
   3009   1.1      matt #endif	/* PMAP_DEBUG */
   3010   1.1      matt 
   3011  1.11     chris static pt_entry_t *
   3012  1.11     chris pmap_map_ptes(struct pmap *pmap)
   3013  1.11     chris {
   3014  1.72   thorpej 	struct proc *p;
   3015  1.17     chris 
   3016  1.17     chris     	/* the kernel's pmap is always accessible */
   3017  1.17     chris 	if (pmap == pmap_kernel()) {
   3018  1.72   thorpej 		return (pt_entry_t *)PTE_BASE;
   3019  1.17     chris 	}
   3020  1.17     chris 
   3021  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   3022  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3023  1.53   thorpej 		return (pt_entry_t *)PTE_BASE;
   3024  1.17     chris 	}
   3025  1.72   thorpej 
   3026  1.17     chris 	p = curproc;
   3027  1.72   thorpej 	KDASSERT(p != NULL);
   3028  1.17     chris 
   3029  1.17     chris 	/* need to lock both curpmap and pmap: use ordered locking */
   3030  1.72   thorpej 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3031  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3032  1.72   thorpej 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3033  1.17     chris 	} else {
   3034  1.72   thorpej 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3035  1.17     chris 		simple_lock(&pmap->pm_obj.vmobjlock);
   3036  1.17     chris 	}
   3037  1.11     chris 
   3038  1.72   thorpej 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   3039  1.72   thorpej 	    FALSE);
   3040  1.17     chris 	cpu_tlb_flushD();
   3041  1.32   thorpej 	cpu_cpwait();
   3042  1.53   thorpej 	return (pt_entry_t *)APTE_BASE;
   3043  1.17     chris }
   3044  1.17     chris 
   3045  1.17     chris /*
   3046  1.17     chris  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3047  1.17     chris  */
   3048  1.17     chris 
   3049  1.17     chris static void
   3050  1.73   thorpej pmap_unmap_ptes(struct pmap *pmap)
   3051  1.17     chris {
   3052  1.72   thorpej 
   3053  1.17     chris 	if (pmap == pmap_kernel()) {
   3054  1.17     chris 		return;
   3055  1.17     chris 	}
   3056  1.17     chris 	if (pmap_is_curpmap(pmap)) {
   3057  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3058  1.17     chris 	} else {
   3059  1.72   thorpej 		KDASSERT(curproc != NULL);
   3060  1.17     chris 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3061  1.72   thorpej 		simple_unlock(
   3062  1.72   thorpej 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3063  1.17     chris 	}
   3064  1.11     chris }
   3065   1.1      matt 
   3066   1.1      matt /*
   3067   1.1      matt  * Modify pte bits for all ptes corresponding to the given physical address.
   3068   1.1      matt  * We use `maskbits' rather than `clearbits' because we're always passing
   3069   1.1      matt  * constants and the latter would require an extra inversion at run-time.
   3070   1.1      matt  */
   3071   1.1      matt 
   3072  1.22     chris static void
   3073  1.73   thorpej pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3074   1.1      matt {
   3075   1.1      matt 	struct pv_entry *pv;
   3076  1.59   thorpej 	pt_entry_t *ptes;
   3077   1.1      matt 	vaddr_t va;
   3078  1.49   thorpej 	int tlbentry;
   3079   1.1      matt 
   3080   1.1      matt 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3081  1.49   thorpej 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3082  1.21     chris 
   3083  1.21     chris 	tlbentry = 0;
   3084  1.21     chris 
   3085  1.17     chris 	PMAP_HEAD_TO_MAP_LOCK();
   3086  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3087  1.17     chris 
   3088   1.1      matt 	/*
   3089   1.1      matt 	 * Clear saved attributes (modify, reference)
   3090   1.1      matt 	 */
   3091  1.49   thorpej 	pg->mdpage.pvh_attrs &= ~maskbits;
   3092   1.1      matt 
   3093  1.49   thorpej 	if (pg->mdpage.pvh_list == NULL) {
   3094  1.49   thorpej 		simple_unlock(&pg->mdpage.pvh_slock);
   3095  1.17     chris 		PMAP_HEAD_TO_MAP_UNLOCK();
   3096   1.1      matt 		return;
   3097   1.1      matt 	}
   3098   1.1      matt 
   3099   1.1      matt 	/*
   3100   1.1      matt 	 * Loop over all current mappings setting/clearing as appropos
   3101   1.1      matt 	 */
   3102  1.49   thorpej 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3103   1.1      matt 		va = pv->pv_va;
   3104   1.1      matt 		pv->pv_flags &= ~maskbits;
   3105  1.59   thorpej 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3106  1.59   thorpej 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3107  1.78   thorpej 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3108  1.78   thorpej 			if ((pv->pv_flags & PVF_NC)) {
   3109  1.29  rearnsha 				/*
   3110  1.29  rearnsha 				 * Entry is not cacheable: reenable
   3111  1.29  rearnsha 				 * the cache, nothing to flush
   3112  1.29  rearnsha 				 *
   3113  1.29  rearnsha 				 * Don't turn caching on again if this
   3114  1.29  rearnsha 				 * is a modified emulation.  This
   3115  1.29  rearnsha 				 * would be inconsitent with the
   3116  1.29  rearnsha 				 * settings created by
   3117  1.29  rearnsha 				 * pmap_vac_me_harder().
   3118  1.29  rearnsha 				 *
   3119  1.29  rearnsha 				 * There's no need to call
   3120  1.29  rearnsha 				 * pmap_vac_me_harder() here: all
   3121  1.29  rearnsha 				 * pages are loosing their write
   3122  1.29  rearnsha 				 * permission.
   3123  1.29  rearnsha 				 *
   3124  1.29  rearnsha 				 */
   3125  1.78   thorpej 				if (maskbits & PVF_WRITE) {
   3126  1.86   thorpej 					ptes[arm_btop(va)] |=
   3127  1.86   thorpej 					    pte_l2_s_cache_mode;
   3128  1.78   thorpej 					pv->pv_flags &= ~PVF_NC;
   3129  1.29  rearnsha 				}
   3130  1.59   thorpej 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3131  1.29  rearnsha 				/*
   3132  1.29  rearnsha 				 * Entry is cacheable: check if pmap is
   3133  1.29  rearnsha 				 * current if it is flush it,
   3134  1.29  rearnsha 				 * otherwise it won't be in the cache
   3135  1.29  rearnsha 				 */
   3136  1.36   thorpej 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3137  1.59   thorpej 			}
   3138  1.29  rearnsha 
   3139  1.29  rearnsha 			/* make the pte read only */
   3140  1.83   thorpej 			ptes[arm_btop(va)] &= ~L2_S_PROT_W;
   3141  1.29  rearnsha 		}
   3142  1.29  rearnsha 
   3143  1.78   thorpej 		if (maskbits & PVF_REF)
   3144  1.59   thorpej 			ptes[arm_btop(va)] =
   3145  1.81   thorpej 			    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3146  1.21     chris 
   3147  1.59   thorpej 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3148  1.21     chris 			/*
   3149  1.29  rearnsha 			 * if we had cacheable pte's we'd clean the
   3150  1.29  rearnsha 			 * pte out to memory here
   3151  1.29  rearnsha 			 *
   3152  1.21     chris 			 * flush tlb entry as it's in the current pmap
   3153  1.21     chris 			 */
   3154  1.21     chris 			cpu_tlb_flushID_SE(pv->pv_va);
   3155  1.59   thorpej 		}
   3156  1.59   thorpej 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3157  1.29  rearnsha 	}
   3158  1.32   thorpej 	cpu_cpwait();
   3159  1.21     chris 
   3160  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3161  1.17     chris 	PMAP_HEAD_TO_MAP_UNLOCK();
   3162   1.1      matt }
   3163   1.1      matt 
   3164  1.50   thorpej /*
   3165  1.50   thorpej  * pmap_clear_modify:
   3166  1.50   thorpej  *
   3167  1.50   thorpej  *	Clear the "modified" attribute for a page.
   3168  1.50   thorpej  */
   3169   1.1      matt boolean_t
   3170  1.73   thorpej pmap_clear_modify(struct vm_page *pg)
   3171   1.1      matt {
   3172   1.1      matt 	boolean_t rv;
   3173   1.1      matt 
   3174  1.78   thorpej 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3175  1.50   thorpej 		rv = TRUE;
   3176  1.78   thorpej 		pmap_clearbit(pg, PVF_MOD);
   3177  1.50   thorpej 	} else
   3178  1.50   thorpej 		rv = FALSE;
   3179  1.50   thorpej 
   3180  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3181  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3182  1.50   thorpej 
   3183  1.50   thorpej 	return (rv);
   3184   1.1      matt }
   3185   1.1      matt 
   3186  1.50   thorpej /*
   3187  1.50   thorpej  * pmap_clear_reference:
   3188  1.50   thorpej  *
   3189  1.50   thorpej  *	Clear the "referenced" attribute for a page.
   3190  1.50   thorpej  */
   3191   1.1      matt boolean_t
   3192  1.73   thorpej pmap_clear_reference(struct vm_page *pg)
   3193   1.1      matt {
   3194   1.1      matt 	boolean_t rv;
   3195   1.1      matt 
   3196  1.78   thorpej 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3197  1.50   thorpej 		rv = TRUE;
   3198  1.78   thorpej 		pmap_clearbit(pg, PVF_REF);
   3199  1.50   thorpej 	} else
   3200  1.50   thorpej 		rv = FALSE;
   3201  1.50   thorpej 
   3202  1.50   thorpej 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3203  1.50   thorpej 	    VM_PAGE_TO_PHYS(pg), rv));
   3204  1.50   thorpej 
   3205  1.50   thorpej 	return (rv);
   3206   1.1      matt }
   3207   1.1      matt 
   3208  1.50   thorpej /*
   3209  1.50   thorpej  * pmap_is_modified:
   3210  1.50   thorpej  *
   3211  1.50   thorpej  *	Test if a page has the "modified" attribute.
   3212  1.50   thorpej  */
   3213  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3214  1.39   thorpej 
   3215  1.50   thorpej /*
   3216  1.50   thorpej  * pmap_is_referenced:
   3217  1.50   thorpej  *
   3218  1.50   thorpej  *	Test if a page has the "referenced" attribute.
   3219  1.50   thorpej  */
   3220  1.50   thorpej /* See <arm/arm32/pmap.h> */
   3221   1.1      matt 
   3222   1.1      matt int
   3223  1.73   thorpej pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3224   1.1      matt {
   3225  1.61   thorpej 	pt_entry_t *ptes;
   3226  1.61   thorpej 	struct vm_page *pg;
   3227   1.2      matt 	paddr_t pa;
   3228   1.1      matt 	u_int flags;
   3229  1.61   thorpej 	int rv = 0;
   3230   1.1      matt 
   3231   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3232   1.1      matt 
   3233  1.61   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3234  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3235  1.61   thorpej 
   3236  1.61   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3237  1.61   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3238  1.61   thorpej 		goto out;
   3239   1.1      matt 	}
   3240   1.1      matt 
   3241  1.61   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3242   1.1      matt 
   3243  1.61   thorpej 	/* Check for a invalid pte */
   3244  1.61   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3245  1.61   thorpej 		goto out;
   3246   1.1      matt 
   3247   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3248  1.83   thorpej 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3249  1.61   thorpej 		goto out;
   3250   1.1      matt 
   3251   1.1      matt 	/* Extract the physical address of the page */
   3252  1.61   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3253  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3254  1.61   thorpej 		goto out;
   3255   1.1      matt 
   3256  1.49   thorpej 	/* Get the current flags for this page. */
   3257  1.49   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3258  1.17     chris 
   3259  1.49   thorpej 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3260   1.1      matt 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3261   1.1      matt 
   3262   1.1      matt 	/*
   3263   1.1      matt 	 * Do the flags say this page is writable ? If not then it is a
   3264   1.1      matt 	 * genuine write fault. If yes then the write fault is our fault
   3265   1.1      matt 	 * as we did not reflect the write access in the PTE. Now we know
   3266   1.1      matt 	 * a write has occurred we can correct this and also set the
   3267   1.1      matt 	 * modified bit
   3268   1.1      matt 	 */
   3269  1.78   thorpej 	if (~flags & PVF_WRITE) {
   3270  1.49   thorpej 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3271  1.61   thorpej 		goto out;
   3272  1.17     chris 	}
   3273   1.1      matt 
   3274  1.61   thorpej 	PDEBUG(0,
   3275  1.61   thorpej 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3276  1.61   thorpej 	    va, ptes[arm_btop(va)]));
   3277  1.78   thorpej 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3278  1.29  rearnsha 
   3279  1.29  rearnsha 	/*
   3280  1.29  rearnsha 	 * Re-enable write permissions for the page.  No need to call
   3281  1.29  rearnsha 	 * pmap_vac_me_harder(), since this is just a
   3282  1.78   thorpej 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3283  1.78   thorpej 	 * We've already set the cacheable bits based on the assumption
   3284  1.78   thorpej 	 * that we can write to this page.
   3285  1.29  rearnsha 	 */
   3286  1.61   thorpej 	ptes[arm_btop(va)] =
   3287  1.84   thorpej 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3288  1.61   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3289   1.1      matt 
   3290  1.49   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3291  1.61   thorpej 
   3292   1.1      matt 	cpu_tlb_flushID_SE(va);
   3293  1.32   thorpej 	cpu_cpwait();
   3294  1.61   thorpej 	rv = 1;
   3295  1.61   thorpej  out:
   3296  1.61   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3297  1.61   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3298  1.61   thorpej 	return (rv);
   3299   1.1      matt }
   3300   1.1      matt 
   3301   1.1      matt int
   3302  1.73   thorpej pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3303   1.1      matt {
   3304  1.62   thorpej 	pt_entry_t *ptes;
   3305  1.62   thorpej 	struct vm_page *pg;
   3306   1.2      matt 	paddr_t pa;
   3307  1.62   thorpej 	int rv = 0;
   3308   1.1      matt 
   3309   1.1      matt 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3310   1.1      matt 
   3311  1.63   thorpej 	PMAP_MAP_TO_HEAD_LOCK();
   3312  1.62   thorpej 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3313  1.62   thorpej 
   3314  1.62   thorpej 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3315  1.62   thorpej 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3316  1.62   thorpej 		goto out;
   3317   1.1      matt 	}
   3318   1.1      matt 
   3319  1.62   thorpej 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3320   1.1      matt 
   3321  1.62   thorpej 	/* Check for invalid pte */
   3322  1.62   thorpej 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3323  1.62   thorpej 		goto out;
   3324   1.1      matt 
   3325   1.1      matt 	/* This can happen if user code tries to access kernel memory. */
   3326  1.81   thorpej 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3327  1.62   thorpej 		goto out;
   3328   1.1      matt 
   3329   1.1      matt 	/* Extract the physical address of the page */
   3330  1.62   thorpej 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3331  1.49   thorpej 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3332  1.62   thorpej 		goto out;
   3333   1.1      matt 
   3334  1.63   thorpej 	simple_lock(&pg->mdpage.pvh_slock);
   3335  1.63   thorpej 
   3336   1.1      matt 	/*
   3337   1.1      matt 	 * Ok we just enable the pte and mark the attibs as handled
   3338  1.63   thorpej 	 * XXX Should we traverse the PV list and enable all PTEs?
   3339   1.1      matt 	 */
   3340  1.62   thorpej 	PDEBUG(0,
   3341  1.62   thorpej 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3342  1.62   thorpej 	    va, ptes[arm_btop(va)]));
   3343  1.78   thorpej 	pg->mdpage.pvh_attrs |= PVF_REF;
   3344   1.1      matt 
   3345  1.84   thorpej 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3346  1.62   thorpej 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3347  1.62   thorpej 
   3348  1.63   thorpej 	simple_unlock(&pg->mdpage.pvh_slock);
   3349  1.63   thorpej 
   3350   1.1      matt 	cpu_tlb_flushID_SE(va);
   3351  1.32   thorpej 	cpu_cpwait();
   3352  1.62   thorpej 	rv = 1;
   3353  1.62   thorpej  out:
   3354  1.62   thorpej 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3355  1.63   thorpej 	PMAP_MAP_TO_HEAD_UNLOCK();
   3356  1.62   thorpej 	return (rv);
   3357   1.1      matt }
   3358  1.17     chris 
   3359   1.1      matt /*
   3360   1.1      matt  * pmap_collect: free resources held by a pmap
   3361   1.1      matt  *
   3362   1.1      matt  * => optional function.
   3363   1.1      matt  * => called when a process is swapped out to free memory.
   3364   1.1      matt  */
   3365   1.1      matt 
   3366   1.1      matt void
   3367  1.73   thorpej pmap_collect(struct pmap *pmap)
   3368   1.1      matt {
   3369   1.1      matt }
   3370   1.1      matt 
   3371   1.1      matt /*
   3372   1.1      matt  * Routine:	pmap_procwr
   3373   1.1      matt  *
   3374   1.1      matt  * Function:
   3375   1.1      matt  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3376   1.1      matt  *
   3377   1.1      matt  */
   3378   1.1      matt void
   3379  1.73   thorpej pmap_procwr(struct proc *p, vaddr_t va, int len)
   3380   1.1      matt {
   3381   1.1      matt 	/* We only need to do anything if it is the current process. */
   3382   1.1      matt 	if (p == curproc)
   3383  1.36   thorpej 		cpu_icache_sync_range(va, len);
   3384  1.17     chris }
   3385  1.17     chris /*
   3386  1.17     chris  * PTP functions
   3387  1.17     chris  */
   3388  1.17     chris 
   3389  1.17     chris /*
   3390  1.17     chris  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3391  1.17     chris  *
   3392  1.17     chris  * => pmap should NOT be pmap_kernel()
   3393  1.17     chris  * => pmap should be locked
   3394  1.17     chris  */
   3395  1.17     chris 
   3396  1.17     chris static struct vm_page *
   3397  1.57   thorpej pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3398  1.17     chris {
   3399  1.57   thorpej 	struct vm_page *ptp;
   3400  1.17     chris 
   3401  1.57   thorpej 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3402  1.17     chris 
   3403  1.57   thorpej 		/* valid... check hint (saves us a PA->PG lookup) */
   3404  1.57   thorpej 		if (pmap->pm_ptphint &&
   3405  1.81   thorpej 		    (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
   3406  1.57   thorpej 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3407  1.57   thorpej 			return (pmap->pm_ptphint);
   3408  1.57   thorpej 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3409  1.17     chris #ifdef DIAGNOSTIC
   3410  1.57   thorpej 		if (ptp == NULL)
   3411  1.57   thorpej 			panic("pmap_get_ptp: unmanaged user PTP");
   3412  1.17     chris #endif
   3413  1.70   thorpej 		pmap->pm_ptphint = ptp;
   3414  1.57   thorpej 		return(ptp);
   3415  1.57   thorpej 	}
   3416  1.17     chris 
   3417  1.57   thorpej 	/* allocate a new PTP (updates ptphint) */
   3418  1.57   thorpej 	return(pmap_alloc_ptp(pmap, va));
   3419  1.17     chris }
   3420  1.17     chris 
   3421  1.17     chris /*
   3422  1.17     chris  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3423  1.17     chris  *
   3424  1.17     chris  * => pmap should already be locked by caller
   3425  1.17     chris  * => we use the ptp's wire_count to count the number of active mappings
   3426  1.17     chris  *	in the PTP (we start it at one to prevent any chance this PTP
   3427  1.17     chris  *	will ever leak onto the active/inactive queues)
   3428  1.17     chris  */
   3429  1.17     chris 
   3430  1.17     chris /*__inline */ static struct vm_page *
   3431  1.57   thorpej pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3432  1.17     chris {
   3433  1.17     chris 	struct vm_page *ptp;
   3434  1.17     chris 
   3435  1.17     chris 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3436  1.17     chris 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3437  1.57   thorpej 	if (ptp == NULL)
   3438  1.17     chris 		return (NULL);
   3439  1.17     chris 
   3440  1.17     chris 	/* got one! */
   3441  1.17     chris 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3442  1.17     chris 	ptp->wire_count = 1;	/* no mappings yet */
   3443  1.17     chris 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3444  1.17     chris 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3445  1.70   thorpej 	pmap->pm_ptphint = ptp;
   3446  1.17     chris 	return (ptp);
   3447   1.1      matt }
   3448  1.48     chris 
   3449  1.48     chris vaddr_t
   3450  1.73   thorpej pmap_growkernel(vaddr_t maxkvaddr)
   3451  1.48     chris {
   3452  1.48     chris 	struct pmap *kpm = pmap_kernel(), *pm;
   3453  1.48     chris 	int s;
   3454  1.48     chris 	paddr_t ptaddr;
   3455  1.48     chris 	struct vm_page *ptp;
   3456  1.48     chris 
   3457  1.48     chris 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3458  1.48     chris 		goto out;		/* we are OK */
   3459  1.48     chris 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3460  1.48     chris 		    pmap_curmaxkvaddr, maxkvaddr));
   3461  1.48     chris 
   3462  1.48     chris 	/*
   3463  1.48     chris 	 * whoops!   we need to add kernel PTPs
   3464  1.48     chris 	 */
   3465  1.48     chris 
   3466  1.48     chris 	s = splhigh();	/* to be safe */
   3467  1.48     chris 	simple_lock(&kpm->pm_obj.vmobjlock);
   3468  1.48     chris 	/* due to the way the arm pmap works we map 4MB at a time */
   3469  1.70   thorpej 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3470  1.81   thorpej 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3471  1.48     chris 
   3472  1.48     chris 		if (uvm.page_init_done == FALSE) {
   3473  1.48     chris 
   3474  1.48     chris 			/*
   3475  1.48     chris 			 * we're growing the kernel pmap early (from
   3476  1.48     chris 			 * uvm_pageboot_alloc()).  this case must be
   3477  1.48     chris 			 * handled a little differently.
   3478  1.48     chris 			 */
   3479  1.48     chris 
   3480  1.48     chris 			if (uvm_page_physget(&ptaddr) == FALSE)
   3481  1.48     chris 				panic("pmap_growkernel: out of memory");
   3482  1.48     chris 			pmap_zero_page(ptaddr);
   3483  1.48     chris 
   3484  1.48     chris 			/* map this page in */
   3485  1.70   thorpej 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3486  1.48     chris 
   3487  1.48     chris 			/* count PTP as resident */
   3488  1.48     chris 			kpm->pm_stats.resident_count++;
   3489  1.48     chris 			continue;
   3490  1.48     chris 		}
   3491  1.48     chris 
   3492  1.48     chris 		/*
   3493  1.48     chris 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3494  1.48     chris 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3495  1.48     chris 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3496  1.48     chris 		 */
   3497  1.48     chris 
   3498  1.70   thorpej 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3499  1.48     chris 			panic("pmap_growkernel: alloc ptp failed");
   3500  1.48     chris 
   3501  1.48     chris 		/* distribute new kernel PTP to all active pmaps */
   3502  1.48     chris 		simple_lock(&pmaps_lock);
   3503  1.48     chris 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3504  1.70   thorpej 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3505  1.70   thorpej 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3506  1.48     chris 		}
   3507  1.48     chris 
   3508  1.48     chris 		simple_unlock(&pmaps_lock);
   3509  1.48     chris 	}
   3510  1.48     chris 
   3511  1.48     chris 	/*
   3512  1.48     chris 	 * flush out the cache, expensive but growkernel will happen so
   3513  1.48     chris 	 * rarely
   3514  1.48     chris 	 */
   3515  1.48     chris 	cpu_tlb_flushD();
   3516  1.48     chris 	cpu_cpwait();
   3517  1.48     chris 
   3518  1.48     chris 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3519  1.48     chris 	splx(s);
   3520  1.48     chris 
   3521  1.48     chris out:
   3522  1.48     chris 	return (pmap_curmaxkvaddr);
   3523  1.48     chris }
   3524  1.48     chris 
   3525  1.76   thorpej /************************ Utility routines ****************************/
   3526  1.76   thorpej 
   3527  1.76   thorpej /*
   3528  1.76   thorpej  * vector_page_setprot:
   3529  1.76   thorpej  *
   3530  1.76   thorpej  *	Manipulate the protection of the vector page.
   3531  1.76   thorpej  */
   3532  1.76   thorpej void
   3533  1.76   thorpej vector_page_setprot(int prot)
   3534  1.76   thorpej {
   3535  1.76   thorpej 	pt_entry_t *pte;
   3536  1.76   thorpej 
   3537  1.76   thorpej 	pte = vtopte(vector_page);
   3538  1.48     chris 
   3539  1.83   thorpej 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3540  1.76   thorpej 	cpu_tlb_flushD_SE(vector_page);
   3541  1.76   thorpej 	cpu_cpwait();
   3542  1.76   thorpej }
   3543   1.1      matt 
   3544  1.40   thorpej /************************ Bootstrapping routines ****************************/
   3545  1.40   thorpej 
   3546  1.40   thorpej /*
   3547  1.46   thorpej  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3548  1.46   thorpej  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3549  1.46   thorpej  * find them as necessary.
   3550  1.46   thorpej  *
   3551  1.46   thorpej  * Note that the data on this list is not valid after initarm() returns.
   3552  1.46   thorpej  */
   3553  1.46   thorpej SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3554  1.46   thorpej 
   3555  1.46   thorpej static vaddr_t
   3556  1.46   thorpej kernel_pt_lookup(paddr_t pa)
   3557  1.46   thorpej {
   3558  1.46   thorpej 	pv_addr_t *pv;
   3559  1.46   thorpej 
   3560  1.46   thorpej 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3561  1.46   thorpej 		if (pv->pv_pa == pa)
   3562  1.46   thorpej 			return (pv->pv_va);
   3563  1.46   thorpej 	}
   3564  1.46   thorpej 	return (0);
   3565  1.46   thorpej }
   3566  1.46   thorpej 
   3567  1.46   thorpej /*
   3568  1.40   thorpej  * pmap_map_section:
   3569  1.40   thorpej  *
   3570  1.40   thorpej  *	Create a single section mapping.
   3571  1.40   thorpej  */
   3572  1.40   thorpej void
   3573  1.40   thorpej pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3574  1.40   thorpej {
   3575  1.40   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3576  1.86   thorpej 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3577  1.40   thorpej 
   3578  1.81   thorpej 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3579  1.40   thorpej 
   3580  1.83   thorpej 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3581  1.83   thorpej 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3582  1.41   thorpej }
   3583  1.41   thorpej 
   3584  1.41   thorpej /*
   3585  1.41   thorpej  * pmap_map_entry:
   3586  1.41   thorpej  *
   3587  1.41   thorpej  *	Create a single page mapping.
   3588  1.41   thorpej  */
   3589  1.41   thorpej void
   3590  1.47   thorpej pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3591  1.41   thorpej {
   3592  1.47   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3593  1.86   thorpej 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3594  1.47   thorpej 	pt_entry_t *pte;
   3595  1.41   thorpej 
   3596  1.41   thorpej 	KASSERT(((va | pa) & PGOFSET) == 0);
   3597  1.41   thorpej 
   3598  1.81   thorpej 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3599  1.47   thorpej 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3600  1.47   thorpej 
   3601  1.47   thorpej 	pte = (pt_entry_t *)
   3602  1.81   thorpej 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3603  1.47   thorpej 	if (pte == NULL)
   3604  1.47   thorpej 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3605  1.47   thorpej 
   3606  1.83   thorpej 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3607  1.83   thorpej 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3608  1.42   thorpej }
   3609  1.42   thorpej 
   3610  1.42   thorpej /*
   3611  1.42   thorpej  * pmap_link_l2pt:
   3612  1.42   thorpej  *
   3613  1.42   thorpej  *	Link the L2 page table specified by "pa" into the L1
   3614  1.42   thorpej  *	page table at the slot for "va".
   3615  1.42   thorpej  */
   3616  1.42   thorpej void
   3617  1.46   thorpej pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3618  1.42   thorpej {
   3619  1.42   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3620  1.81   thorpej 	u_int slot = va >> L1_S_SHIFT;
   3621  1.42   thorpej 
   3622  1.46   thorpej 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3623  1.46   thorpej 
   3624  1.83   thorpej 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3625  1.83   thorpej 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3626  1.83   thorpej 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3627  1.83   thorpej 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3628  1.42   thorpej 
   3629  1.46   thorpej 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3630  1.43   thorpej }
   3631  1.43   thorpej 
   3632  1.43   thorpej /*
   3633  1.43   thorpej  * pmap_map_chunk:
   3634  1.43   thorpej  *
   3635  1.43   thorpej  *	Map a chunk of memory using the most efficient mappings
   3636  1.43   thorpej  *	possible (section, large page, small page) into the
   3637  1.43   thorpej  *	provided L1 and L2 tables at the specified virtual address.
   3638  1.43   thorpej  */
   3639  1.43   thorpej vsize_t
   3640  1.46   thorpej pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3641  1.46   thorpej     int prot, int cache)
   3642  1.43   thorpej {
   3643  1.43   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3644  1.86   thorpej 	pt_entry_t *pte, fl;
   3645  1.43   thorpej 	vsize_t resid;
   3646  1.43   thorpej 	int i;
   3647  1.43   thorpej 
   3648  1.43   thorpej 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3649  1.43   thorpej 
   3650  1.44   thorpej 	if (l1pt == 0)
   3651  1.44   thorpej 		panic("pmap_map_chunk: no L1 table provided");
   3652  1.44   thorpej 
   3653  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3654  1.43   thorpej 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3655  1.43   thorpej 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3656  1.43   thorpej #endif
   3657  1.43   thorpej 
   3658  1.43   thorpej 	size = resid;
   3659  1.43   thorpej 
   3660  1.43   thorpej 	while (resid > 0) {
   3661  1.43   thorpej 		/* See if we can use a section mapping. */
   3662  1.81   thorpej 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3663  1.81   thorpej 		    resid >= L1_S_SIZE) {
   3664  1.86   thorpej 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3665  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3666  1.43   thorpej 			printf("S");
   3667  1.43   thorpej #endif
   3668  1.83   thorpej 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3669  1.83   thorpej 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3670  1.81   thorpej 			va += L1_S_SIZE;
   3671  1.81   thorpej 			pa += L1_S_SIZE;
   3672  1.81   thorpej 			resid -= L1_S_SIZE;
   3673  1.43   thorpej 			continue;
   3674  1.43   thorpej 		}
   3675  1.45   thorpej 
   3676  1.45   thorpej 		/*
   3677  1.45   thorpej 		 * Ok, we're going to use an L2 table.  Make sure
   3678  1.45   thorpej 		 * one is actually in the corresponding L1 slot
   3679  1.45   thorpej 		 * for the current VA.
   3680  1.45   thorpej 		 */
   3681  1.81   thorpej 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3682  1.46   thorpej 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3683  1.46   thorpej 
   3684  1.46   thorpej 		pte = (pt_entry_t *)
   3685  1.81   thorpej 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3686  1.46   thorpej 		if (pte == NULL)
   3687  1.46   thorpej 			panic("pmap_map_chunk: can't find L2 table for VA"
   3688  1.46   thorpej 			    "0x%08lx", va);
   3689  1.43   thorpej 
   3690  1.43   thorpej 		/* See if we can use a L2 large page mapping. */
   3691  1.81   thorpej 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3692  1.81   thorpej 		    resid >= L2_L_SIZE) {
   3693  1.86   thorpej 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3694  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3695  1.43   thorpej 			printf("L");
   3696  1.43   thorpej #endif
   3697  1.43   thorpej 			for (i = 0; i < 16; i++) {
   3698  1.43   thorpej 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3699  1.83   thorpej 				    L2_L_PROTO | pa |
   3700  1.83   thorpej 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3701  1.43   thorpej 			}
   3702  1.81   thorpej 			va += L2_L_SIZE;
   3703  1.81   thorpej 			pa += L2_L_SIZE;
   3704  1.81   thorpej 			resid -= L2_L_SIZE;
   3705  1.43   thorpej 			continue;
   3706  1.43   thorpej 		}
   3707  1.43   thorpej 
   3708  1.43   thorpej 		/* Use a small page mapping. */
   3709  1.86   thorpej 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3710  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3711  1.43   thorpej 		printf("P");
   3712  1.43   thorpej #endif
   3713  1.83   thorpej 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3714  1.83   thorpej 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3715  1.43   thorpej 		va += NBPG;
   3716  1.43   thorpej 		pa += NBPG;
   3717  1.43   thorpej 		resid -= NBPG;
   3718  1.43   thorpej 	}
   3719  1.43   thorpej #ifdef VERBOSE_INIT_ARM
   3720  1.43   thorpej 	printf("\n");
   3721  1.43   thorpej #endif
   3722  1.43   thorpej 	return (size);
   3723  1.40   thorpej }
   3724  1.85   thorpej 
   3725  1.85   thorpej /********************** PTE initialization routines **************************/
   3726  1.85   thorpej 
   3727  1.85   thorpej /*
   3728  1.85   thorpej  * These routines are called when the CPU type is identified to set up
   3729  1.85   thorpej  * the PTE prototypes, cache modes, etc.
   3730  1.85   thorpej  *
   3731  1.85   thorpej  * The variables are always here, just in case LKMs need to reference
   3732  1.85   thorpej  * them (though, they shouldn't).
   3733  1.85   thorpej  */
   3734  1.85   thorpej 
   3735  1.86   thorpej pt_entry_t	pte_l1_s_cache_mode;
   3736  1.86   thorpej pt_entry_t	pte_l1_s_cache_mask;
   3737  1.86   thorpej 
   3738  1.86   thorpej pt_entry_t	pte_l2_l_cache_mode;
   3739  1.86   thorpej pt_entry_t	pte_l2_l_cache_mask;
   3740  1.86   thorpej 
   3741  1.86   thorpej pt_entry_t	pte_l2_s_cache_mode;
   3742  1.86   thorpej pt_entry_t	pte_l2_s_cache_mask;
   3743  1.85   thorpej 
   3744  1.85   thorpej pt_entry_t	pte_l2_s_prot_u;
   3745  1.85   thorpej pt_entry_t	pte_l2_s_prot_w;
   3746  1.85   thorpej pt_entry_t	pte_l2_s_prot_mask;
   3747  1.85   thorpej 
   3748  1.85   thorpej pt_entry_t	pte_l1_s_proto;
   3749  1.85   thorpej pt_entry_t	pte_l1_c_proto;
   3750  1.85   thorpej pt_entry_t	pte_l2_s_proto;
   3751  1.85   thorpej 
   3752  1.88   thorpej void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3753  1.88   thorpej void		(*pmap_zero_page_func)(paddr_t);
   3754  1.88   thorpej 
   3755  1.85   thorpej #if ARM_MMU_GENERIC == 1
   3756  1.85   thorpej void
   3757  1.85   thorpej pmap_pte_init_generic(void)
   3758  1.85   thorpej {
   3759  1.85   thorpej 
   3760  1.86   thorpej 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3761  1.86   thorpej 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3762  1.86   thorpej 
   3763  1.86   thorpej 	pte_l2_l_cache_mode = L2_B|L2_C;
   3764  1.86   thorpej 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3765  1.86   thorpej 
   3766  1.86   thorpej 	pte_l2_s_cache_mode = L2_B|L2_C;
   3767  1.86   thorpej 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3768  1.85   thorpej 
   3769  1.85   thorpej 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3770  1.85   thorpej 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3771  1.85   thorpej 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3772  1.85   thorpej 
   3773  1.85   thorpej 	pte_l1_s_proto = L1_S_PROTO_generic;
   3774  1.85   thorpej 	pte_l1_c_proto = L1_C_PROTO_generic;
   3775  1.85   thorpej 	pte_l2_s_proto = L2_S_PROTO_generic;
   3776  1.88   thorpej 
   3777  1.88   thorpej 	pmap_copy_page_func = pmap_copy_page_generic;
   3778  1.88   thorpej 	pmap_zero_page_func = pmap_zero_page_generic;
   3779  1.85   thorpej }
   3780  1.85   thorpej 
   3781  1.85   thorpej #if defined(CPU_ARM9)
   3782  1.85   thorpej void
   3783  1.85   thorpej pmap_pte_init_arm9(void)
   3784  1.85   thorpej {
   3785  1.85   thorpej 
   3786  1.85   thorpej 	/*
   3787  1.85   thorpej 	 * ARM9 is compatible with generic, but we want to use
   3788  1.85   thorpej 	 * write-through caching for now.
   3789  1.85   thorpej 	 */
   3790  1.85   thorpej 	pmap_pte_init_generic();
   3791  1.86   thorpej 
   3792  1.86   thorpej 	pte_l1_s_cache_mode = L1_S_C;
   3793  1.86   thorpej 	pte_l2_l_cache_mode = L2_C;
   3794  1.86   thorpej 	pte_l2_s_cache_mode = L2_C;
   3795  1.85   thorpej }
   3796  1.85   thorpej #endif /* CPU_ARM9 */
   3797  1.85   thorpej #endif /* ARM_MMU_GENERIC == 1 */
   3798  1.85   thorpej 
   3799  1.85   thorpej #if ARM_MMU_XSCALE == 1
   3800  1.85   thorpej void
   3801  1.85   thorpej pmap_pte_init_xscale(void)
   3802  1.85   thorpej {
   3803  1.85   thorpej 
   3804  1.86   thorpej 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3805  1.86   thorpej 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   3806  1.86   thorpej 
   3807  1.86   thorpej 	pte_l2_l_cache_mode = L2_B|L2_C;
   3808  1.86   thorpej 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   3809  1.86   thorpej 
   3810  1.86   thorpej 	pte_l2_s_cache_mode = L2_B|L2_C;
   3811  1.86   thorpej 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   3812  1.85   thorpej 
   3813  1.85   thorpej 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   3814  1.85   thorpej 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   3815  1.85   thorpej 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   3816  1.85   thorpej 
   3817  1.85   thorpej 	pte_l1_s_proto = L1_S_PROTO_xscale;
   3818  1.85   thorpej 	pte_l1_c_proto = L1_C_PROTO_xscale;
   3819  1.85   thorpej 	pte_l2_s_proto = L2_S_PROTO_xscale;
   3820  1.88   thorpej 
   3821  1.88   thorpej 	pmap_copy_page_func = pmap_copy_page_xscale;
   3822  1.88   thorpej 	pmap_zero_page_func = pmap_zero_page_xscale;
   3823  1.85   thorpej }
   3824  1.85   thorpej 
   3825  1.85   thorpej #if defined(CPU_XSCALE_80200)
   3826  1.85   thorpej void
   3827  1.85   thorpej pmap_pte_init_i80200(void)
   3828  1.85   thorpej {
   3829  1.85   thorpej 
   3830  1.85   thorpej 	/*
   3831  1.85   thorpej 	 * Use write-through caching on the i80200.
   3832  1.85   thorpej 	 */
   3833  1.85   thorpej 	pmap_pte_init_xscale();
   3834  1.86   thorpej 	pte_l1_s_cache_mode = L1_S_C;
   3835  1.86   thorpej 	pte_l2_l_cache_mode = L2_C;
   3836  1.86   thorpej 	pte_l2_s_cache_mode = L2_C;
   3837  1.85   thorpej }
   3838  1.85   thorpej #endif /* CPU_XSCALE_80200 */
   3839  1.87   thorpej 
   3840  1.87   thorpej /*
   3841  1.87   thorpej  * xscale_setup_minidata:
   3842  1.87   thorpej  *
   3843  1.87   thorpej  *	Set up the mini-data cache clean area.  We require the
   3844  1.87   thorpej  *	caller to allocate the right amount of physically and
   3845  1.87   thorpej  *	virtually contiguous space.
   3846  1.87   thorpej  */
   3847  1.87   thorpej void
   3848  1.87   thorpej xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   3849  1.87   thorpej {
   3850  1.87   thorpej 	extern vaddr_t xscale_minidata_clean_addr;
   3851  1.87   thorpej 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   3852  1.87   thorpej 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3853  1.87   thorpej 	pt_entry_t *pte;
   3854  1.87   thorpej 	vsize_t size;
   3855  1.87   thorpej 
   3856  1.87   thorpej 	xscale_minidata_clean_addr = va;
   3857  1.87   thorpej 
   3858  1.87   thorpej 	/* Round it to page size. */
   3859  1.87   thorpej 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   3860  1.87   thorpej 
   3861  1.87   thorpej 	for (; size != 0;
   3862  1.87   thorpej 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   3863  1.87   thorpej 		pte = (pt_entry_t *)
   3864  1.87   thorpej 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3865  1.87   thorpej 		if (pte == NULL)
   3866  1.87   thorpej 			panic("xscale_setup_minidata: can't find L2 table for "
   3867  1.87   thorpej 			    "VA 0x%08lx", va);
   3868  1.87   thorpej 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3869  1.87   thorpej 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   3870  1.87   thorpej 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   3871  1.87   thorpej 	}
   3872  1.87   thorpej }
   3873  1.85   thorpej #endif /* ARM_MMU_XSCALE == 1 */
   3874