pmap.c revision 1.10 1 /* $NetBSD: pmap.c,v 1.10 2001/06/22 09:09:42 chris Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1994-1998 Mark Brinicombe.
41 * Copyright (c) 1994 Brini.
42 * All rights reserved.
43 *
44 * This code is derived from software written for Brini by Mark Brinicombe
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by Mark Brinicombe.
57 * 4. The name of the author may not be used to endorse or promote products
58 * derived from this software without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 *
70 * RiscBSD kernel project
71 *
72 * pmap.c
73 *
74 * Machine dependant vm stuff
75 *
76 * Created : 20/09/94
77 */
78
79 /*
80 * Performance improvements, UVM changes, overhauls and part-rewrites
81 * were contributed by Neil A. Carson <neil (at) causality.com>.
82 */
83
84 /*
85 * The dram block info is currently referenced from the bootconfig.
86 * This should be placed in a separate structure.
87 */
88
89 /*
90 * Special compilation symbols
91 * PMAP_DEBUG - Build in pmap_debug_level code
92 */
93
94 /* Include header files */
95
96 #include "opt_pmap_debug.h"
97 #include "opt_ddb.h"
98
99 #include <sys/types.h>
100 #include <sys/param.h>
101 #include <sys/kernel.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/malloc.h>
105 #include <sys/user.h>
106 #include <sys/pool.h>
107
108 #include <uvm/uvm.h>
109
110 #include <machine/bootconfig.h>
111 #include <machine/bus.h>
112 #include <machine/pmap.h>
113 #include <machine/pcb.h>
114 #include <machine/param.h>
115 #include <machine/katelib.h>
116
117 #ifdef PMAP_DEBUG
118 #define PDEBUG(_lev_,_stat_) \
119 if (pmap_debug_level >= (_lev_)) \
120 ((_stat_))
121 int pmap_debug_level = -2;
122 #else /* PMAP_DEBUG */
123 #define PDEBUG(_lev_,_stat_) /* Nothing */
124 #endif /* PMAP_DEBUG */
125
126 struct pmap kernel_pmap_store;
127 pmap_t kernel_pmap;
128
129 /*
130 * pool that pmap structures are allocated from
131 */
132
133 struct pool pmap_pmap_pool;
134
135 pagehook_t page_hook0;
136 pagehook_t page_hook1;
137 char *memhook;
138 pt_entry_t msgbufpte;
139 extern caddr_t msgbufaddr;
140
141 #ifdef DIAGNOSTIC
142 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
143 #endif
144
145 TAILQ_HEAD(pv_page_list, pv_page) pv_page_freelist;
146
147 int pv_nfree = 0;
148
149 vsize_t npages;
150
151 extern paddr_t physical_start;
152 extern paddr_t physical_freestart;
153 extern paddr_t physical_end;
154 extern paddr_t physical_freeend;
155 extern unsigned int free_pages;
156 extern int max_processes;
157
158 vaddr_t virtual_start;
159 vaddr_t virtual_end;
160
161 vaddr_t avail_start;
162 vaddr_t avail_end;
163
164 extern pv_addr_t systempage;
165
166 #define ALLOC_PAGE_HOOK(x, s) \
167 x.va = virtual_start; \
168 x.pte = (pt_entry_t *)pmap_pte(kernel_pmap, virtual_start); \
169 virtual_start += s;
170
171 /* Variables used by the L1 page table queue code */
172 SIMPLEQ_HEAD(l1pt_queue, l1pt);
173 struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
174 int l1pt_static_queue_count; /* items in the static l1 queue */
175 int l1pt_static_create_count; /* static l1 items created */
176 struct l1pt_queue l1pt_queue; /* head of our l1 queue */
177 int l1pt_queue_count; /* items in the l1 queue */
178 int l1pt_create_count; /* stat - L1's create count */
179 int l1pt_reuse_count; /* stat - L1's reused count */
180
181 /* Local function prototypes (not used outside this file) */
182 pt_entry_t *pmap_pte __P((pmap_t pmap, vaddr_t va));
183 void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
184 paddr_t pa, unsigned int flags));
185 void pmap_copy_on_write __P((paddr_t pa));
186 void pmap_pinit __P((pmap_t));
187 void pmap_freepagedir __P((pmap_t));
188 void pmap_release __P((pmap_t));
189
190 /* Other function prototypes */
191 extern void bzero_page __P((vaddr_t));
192 extern void bcopy_page __P((vaddr_t, vaddr_t));
193
194 struct l1pt *pmap_alloc_l1pt __P((void));
195 static __inline void pmap_map_in_l1 __P((pmap_t pmap, vaddr_t va,
196 vaddr_t l2pa));
197
198 #ifdef MYCROFT_HACK
199 int mycroft_hack = 0;
200 #endif
201
202 /* Function to set the debug level of the pmap code */
203
204 #ifdef PMAP_DEBUG
205 void
206 pmap_debug(level)
207 int level;
208 {
209 pmap_debug_level = level;
210 printf("pmap_debug: level=%d\n", pmap_debug_level);
211 }
212 #endif /* PMAP_DEBUG */
213
214 #include "isadma.h"
215
216 #if NISADMA > 0
217 /*
218 * Used to protect memory for ISA DMA bounce buffers. If, when loading
219 * pages into the system, memory intersects with any of these ranges,
220 * the intersecting memory will be loaded into a lower-priority free list.
221 */
222 bus_dma_segment_t *pmap_isa_dma_ranges;
223 int pmap_isa_dma_nranges;
224
225 boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
226 paddr_t *, psize_t *));
227
228 /*
229 * Check if a memory range intersects with an ISA DMA range, and
230 * return the page-rounded intersection if it does. The intersection
231 * will be placed on a lower-priority free list.
232 */
233 boolean_t
234 pmap_isa_dma_range_intersect(pa, size, pap, sizep)
235 paddr_t pa;
236 psize_t size;
237 paddr_t *pap;
238 psize_t *sizep;
239 {
240 bus_dma_segment_t *ds;
241 int i;
242
243 if (pmap_isa_dma_ranges == NULL)
244 return (FALSE);
245
246 for (i = 0, ds = pmap_isa_dma_ranges;
247 i < pmap_isa_dma_nranges; i++, ds++) {
248 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
249 /*
250 * Beginning of region intersects with this range.
251 */
252 *pap = trunc_page(pa);
253 *sizep = round_page(min(pa + size,
254 ds->ds_addr + ds->ds_len) - pa);
255 return (TRUE);
256 }
257 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
258 /*
259 * End of region intersects with this range.
260 */
261 *pap = trunc_page(ds->ds_addr);
262 *sizep = round_page(min((pa + size) - ds->ds_addr,
263 ds->ds_len));
264 return (TRUE);
265 }
266 }
267
268 /*
269 * No intersection found.
270 */
271 return (FALSE);
272 }
273 #endif /* NISADMA > 0 */
274
275 /*
276 * Functions for manipluation pv_entry structures. These are used to keep a
277 * record of the mappings of virtual addresses and the associated physical
278 * pages.
279 */
280
281 /*
282 * Allocate a new pv_entry structure from the freelist. If the list is
283 * empty allocate a new page and fill the freelist.
284 */
285 struct pv_entry *
286 pmap_alloc_pv()
287 {
288 struct pv_page *pvp;
289 struct pv_entry *pv;
290 int i;
291
292 /*
293 * Do we have any free pv_entry structures left ?
294 * If not allocate a page of them
295 */
296
297 if (pv_nfree == 0) {
298 /* NOTE: can't lock kernel_map here */
299 MALLOC(pvp, struct pv_page *, NBPG, M_VMPVENT, M_WAITOK);
300 if (pvp == 0)
301 panic("pmap_alloc_pv: kmem_alloc() failed");
302 pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1];
303 for (i = NPVPPG - 2; i; i--, pv++)
304 pv->pv_next = pv + 1;
305 pv->pv_next = 0;
306 pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1;
307 TAILQ_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
308 pv = &pvp->pvp_pv[0];
309 } else {
310 --pv_nfree;
311 pvp = pv_page_freelist.tqh_first;
312 if (--pvp->pvp_pgi.pgi_nfree == 0) {
313 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
314 }
315 pv = pvp->pvp_pgi.pgi_freelist;
316 #ifdef DIAGNOSTIC
317 if (pv == 0)
318 panic("pmap_alloc_pv: pgi_nfree inconsistent");
319 #endif /* DIAGNOSTIC */
320 pvp->pvp_pgi.pgi_freelist = pv->pv_next;
321 }
322 return pv;
323 }
324
325 /*
326 * Release a pv_entry structure putting it back on the freelist.
327 */
328
329 void
330 pmap_free_pv(pv)
331 struct pv_entry *pv;
332 {
333 struct pv_page *pvp;
334
335 pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
336 switch (++pvp->pvp_pgi.pgi_nfree) {
337 case 1:
338 TAILQ_INSERT_TAIL(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
339 default:
340 pv->pv_next = pvp->pvp_pgi.pgi_freelist;
341 pvp->pvp_pgi.pgi_freelist = pv;
342 ++pv_nfree;
343 break;
344 case NPVPPG:
345 pv_nfree -= NPVPPG - 1;
346 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
347 FREE((vaddr_t)pvp, M_VMPVENT);
348 break;
349 }
350 }
351
352 #if 0
353 void
354 pmap_collect_pv()
355 {
356 struct pv_page_list pv_page_collectlist;
357 struct pv_page *pvp, *npvp;
358 struct pv_entry *ph, *ppv, *pv, *npv;
359 int s;
360
361 TAILQ_INIT(&pv_page_collectlist);
362
363 for (pvp = pv_page_freelist.tqh_first; pvp; pvp = npvp) {
364 if (pv_nfree < NPVPPG)
365 break;
366 npvp = pvp->pvp_pgi.pgi_list.tqe_next;
367 if (pvp->pvp_pgi.pgi_nfree > NPVPPG / 3) {
368 TAILQ_REMOVE(&pv_page_freelist, pvp, pvp_pgi.pgi_list);
369 TAILQ_INSERT_TAIL(&pv_page_collectlist, pvp,
370 pvp_pgi.pgi_list);
371 pv_nfree -= NPVPPG;
372 pvp->pvp_pgi.pgi_nfree = -1;
373 }
374 }
375
376 if (pv_page_collectlist.tqh_first == 0)
377 return;
378
379 for (ph = &pv_table[npages - 1]; ph >= &pv_table[0]; ph--) {
380 if (ph->pv_pmap == 0)
381 continue;
382 s = splvm();
383 for (ppv = ph; (pv = ppv->pv_next) != 0; ) {
384 pvp = (struct pv_page *) trunc_page((vaddr_t)pv);
385 if (pvp->pvp_pgi.pgi_nfree == -1) {
386 pvp = pv_page_freelist.tqh_first;
387 if (--pvp->pvp_pgi.pgi_nfree == 0) {
388 TAILQ_REMOVE(&pv_page_freelist,
389 pvp, pvp_pgi.pgi_list);
390 }
391 npv = pvp->pvp_pgi.pgi_freelist;
392 #ifdef DIAGNOSTIC
393 if (npv == 0)
394 panic("pmap_collect_pv: pgi_nfree inconsistent");
395 #endif /* DIAGNOSTIC */
396 pvp->pvp_pgi.pgi_freelist = npv->pv_next;
397 *npv = *pv;
398 ppv->pv_next = npv;
399 ppv = npv;
400 } else
401 ppv = pv;
402 }
403 splx(s);
404 }
405
406 for (pvp = pv_page_collectlist.tqh_first; pvp; pvp = npvp) {
407 npvp = pvp->pvp_pgi.pgi_list.tqe_next;
408 FREE((vaddr_t)pvp, M_VMPVENT);
409 }
410 }
411 #endif
412
413 /*
414 * Enter a new physical-virtual mapping into the pv table
415 */
416
417 /*__inline*/ void
418 pmap_enter_pv(pmap, va, pv, flags)
419 pmap_t pmap;
420 vaddr_t va;
421 struct pv_entry *pv;
422 u_int flags;
423 {
424 struct pv_entry *npv;
425 u_int s;
426
427 #ifdef DIAGNOSTIC
428 if (!pmap_initialized)
429 panic("pmap_enter_pv: !pmap_initialized");
430 #endif
431
432 s = splvm();
433
434 PDEBUG(5, printf("pmap_enter_pv: pv %p: %08lx/%p/%p\n",
435 pv, pv->pv_va, pv->pv_pmap, pv->pv_next));
436
437 if (pv->pv_pmap == NULL) {
438 /*
439 * No entries yet, use header as the first entry
440 */
441 pv->pv_va = va;
442 pv->pv_pmap = pmap;
443 pv->pv_next = NULL;
444 pv->pv_flags = flags;
445 } else {
446 /*
447 * There is at least one other VA mapping this page.
448 * Place this entry after the header.
449 */
450 #ifdef PMAP_DEBUG
451 for (npv = pv; npv; npv = npv->pv_next)
452 if (pmap == npv->pv_pmap && va == npv->pv_va)
453 panic("pmap_enter_pv: already in pv_tab pv %p: %08lx/%p/%p",
454 pv, pv->pv_va, pv->pv_pmap, pv->pv_next);
455 #endif
456 npv = pmap_alloc_pv();
457 npv->pv_va = va;
458 npv->pv_pmap = pmap;
459 npv->pv_flags = flags;
460 npv->pv_next = pv->pv_next;
461 pv->pv_next = npv;
462 }
463
464 if (flags & PT_W)
465 ++pmap->pm_stats.wired_count;
466
467 splx(s);
468 }
469
470
471 /*
472 * Remove a physical-virtual mapping from the pv table
473 */
474
475 /*__inline*/ void
476 pmap_remove_pv(pmap, va, pv)
477 pmap_t pmap;
478 vaddr_t va;
479 struct pv_entry *pv;
480 {
481 struct pv_entry *npv;
482 u_int s;
483 u_int flags = 0;
484
485 #ifdef DIAGNOSTIC
486 if (!pmap_initialized)
487 panic("pmap_remove_pv: !pmap_initialized");
488 #endif
489
490 s = splvm();
491
492 /*
493 * If it is the first entry on the list, it is actually
494 * in the header and we must copy the following entry up
495 * to the header. Otherwise we must search the list for
496 * the entry. In either case we free the now unused entry.
497 */
498
499 if (pmap == pv->pv_pmap && va == pv->pv_va) {
500 npv = pv->pv_next;
501 if (npv) {
502 *pv = *npv;
503 flags = npv->pv_flags;
504 pmap_free_pv(npv);
505 } else {
506 flags = pv->pv_flags;
507 pv->pv_pmap = NULL;
508 }
509 } else {
510 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
511 if (pmap == npv->pv_pmap && va == npv->pv_va)
512 break;
513 }
514 if (npv) {
515 pv->pv_next = npv->pv_next;
516 flags = npv->pv_flags;
517 pmap_free_pv(npv);
518 } else
519 panic("pmap_remove_pv: lost entry");
520 }
521
522 if (flags & PT_W)
523 --pmap->pm_stats.wired_count;
524
525 splx(s);
526 }
527
528 /*
529 * Modify a physical-virtual mapping in the pv table
530 */
531
532 /*__inline */ u_int
533 pmap_modify_pv(pmap, va, pv, bic_mask, eor_mask)
534 pmap_t pmap;
535 vaddr_t va;
536 struct pv_entry *pv;
537 u_int bic_mask;
538 u_int eor_mask;
539 {
540 struct pv_entry *npv;
541 u_int s;
542 u_int flags, oflags;
543
544 PDEBUG(5, printf("pmap_modify_pv(pmap=%p, va=%08lx, pv=%p, bic_mask=%08x, eor_mask=%08x)\n",
545 pmap, va, pv, bic_mask, eor_mask));
546
547 #ifdef DIAGNOSTIC
548 if (!pmap_initialized)
549 panic("pmap_modify_pv: !pmap_initialized");
550 #endif
551
552 s = splvm();
553
554 PDEBUG(5, printf("pmap_modify_pv: pv %p: %08lx/%p/%p/%08x ",
555 pv, pv->pv_va, pv->pv_pmap, pv->pv_next, pv->pv_flags));
556
557 /*
558 * There is at least one VA mapping this page.
559 */
560
561 for (npv = pv; npv; npv = npv->pv_next) {
562 if (pmap == npv->pv_pmap && va == npv->pv_va) {
563 oflags = npv->pv_flags;
564 npv->pv_flags = flags =
565 ((oflags & ~bic_mask) ^ eor_mask);
566 if ((flags ^ oflags) & PT_W) {
567 if (flags & PT_W)
568 ++pmap->pm_stats.wired_count;
569 else
570 --pmap->pm_stats.wired_count;
571 }
572 PDEBUG(0, printf("done flags=%08x\n", flags));
573 splx(s);
574 return (oflags);
575 }
576 }
577
578 PDEBUG(0, printf("done.\n"));
579 splx(s);
580 return (0);
581 }
582
583
584 /*
585 * Map the specified level 2 pagetable into the level 1 page table for
586 * the given pmap to cover a chunk of virtual address space starting from the
587 * address specified.
588 */
589 static /*__inline*/ void
590 pmap_map_in_l1(pmap, va, l2pa)
591 pmap_t pmap;
592 vaddr_t va, l2pa;
593 {
594 vaddr_t ptva;
595
596 /* Calculate the index into the L1 page table. */
597 ptva = (va >> PDSHIFT) & ~3;
598
599 PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
600 pmap->pm_pdir, L1_PTE(l2pa), ptva));
601
602 /* Map page table into the L1. */
603 pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
604 pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
605 pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
606 pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
607
608 PDEBUG(0, printf("pt self reference %lx in %lx\n",
609 L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
610
611 /* Map the page table into the page table area. */
612 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_PTE_NC_NB(l2pa, AP_KRW);
613
614 /* XXX should be a purge */
615 /* cpu_tlb_flushD();*/
616 }
617
618 #if 0
619 static /*__inline*/ void
620 pmap_unmap_in_l1(pmap, va)
621 pmap_t pmap;
622 vaddr_t va;
623 {
624 vaddr_t ptva;
625
626 /* Calculate the index into the L1 page table. */
627 ptva = (va >> PDSHIFT) & ~3;
628
629 /* Unmap page table from the L1. */
630 pmap->pm_pdir[ptva + 0] = 0;
631 pmap->pm_pdir[ptva + 1] = 0;
632 pmap->pm_pdir[ptva + 2] = 0;
633 pmap->pm_pdir[ptva + 3] = 0;
634
635 /* Unmap the page table from the page table area. */
636 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
637
638 /* XXX should be a purge */
639 /* cpu_tlb_flushD();*/
640 }
641 #endif
642
643
644 /*
645 * Used to map a range of physical addresses into kernel
646 * virtual address space.
647 *
648 * For now, VM is already on, we only need to map the
649 * specified memory.
650 */
651 vaddr_t
652 pmap_map(va, spa, epa, prot)
653 vaddr_t va, spa, epa;
654 int prot;
655 {
656 while (spa < epa) {
657 pmap_enter(pmap_kernel(), va, spa, prot, 0);
658 va += NBPG;
659 spa += NBPG;
660 }
661 pmap_update();
662 return(va);
663 }
664
665
666 /*
667 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
668 *
669 * bootstrap the pmap system. This is called from initarm and allows
670 * the pmap system to initailise any structures it requires.
671 *
672 * Currently this sets up the kernel_pmap that is statically allocated
673 * and also allocated virtual addresses for certain page hooks.
674 * Currently the only one page hook is allocated that is used
675 * to zero physical pages of memory.
676 * It also initialises the start and end address of the kernel data space.
677 */
678 extern paddr_t physical_freestart;
679 extern paddr_t physical_freeend;
680
681 struct pv_entry *boot_pvent;
682 char *boot_attrs;
683
684 void
685 pmap_bootstrap(kernel_l1pt, kernel_ptpt)
686 pd_entry_t *kernel_l1pt;
687 pv_addr_t kernel_ptpt;
688 {
689 int loop;
690 paddr_t start, end;
691 #if NISADMA > 0
692 paddr_t istart;
693 psize_t isize;
694 #endif
695 vsize_t size;
696
697 kernel_pmap = &kernel_pmap_store;
698
699 kernel_pmap->pm_pdir = kernel_l1pt;
700 kernel_pmap->pm_pptpt = kernel_ptpt.pv_pa;
701 kernel_pmap->pm_vptpt = kernel_ptpt.pv_va;
702 simple_lock_init(&kernel_pmap->pm_lock);
703 kernel_pmap->pm_count = 1;
704
705 /*
706 * Initialize PAGE_SIZE-dependent variables.
707 */
708 uvm_setpagesize();
709
710 npages = 0;
711 loop = 0;
712 while (loop < bootconfig.dramblocks) {
713 start = (paddr_t)bootconfig.dram[loop].address;
714 end = start + (bootconfig.dram[loop].pages * NBPG);
715 if (start < physical_freestart)
716 start = physical_freestart;
717 if (end > physical_freeend)
718 end = physical_freeend;
719 #if 0
720 printf("%d: %lx -> %lx\n", loop, start, end - 1);
721 #endif
722 #if NISADMA > 0
723 if (pmap_isa_dma_range_intersect(start, end - start,
724 &istart, &isize)) {
725 /*
726 * Place the pages that intersect with the
727 * ISA DMA range onto the ISA DMA free list.
728 */
729 #if 0
730 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
731 istart + isize - 1);
732 #endif
733 uvm_page_physload(atop(istart),
734 atop(istart + isize), atop(istart),
735 atop(istart + isize), VM_FREELIST_ISADMA);
736 npages += atop(istart + isize) - atop(istart);
737
738 /*
739 * Load the pieces that come before
740 * the intersection into the default
741 * free list.
742 */
743 if (start < istart) {
744 #if 0
745 printf(" BEFORE 0x%lx -> 0x%lx\n",
746 start, istart - 1);
747 #endif
748 uvm_page_physload(atop(start),
749 atop(istart), atop(start),
750 atop(istart), VM_FREELIST_DEFAULT);
751 npages += atop(istart) - atop(start);
752 }
753
754 /*
755 * Load the pieces that come after
756 * the intersection into the default
757 * free list.
758 */
759 if ((istart + isize) < end) {
760 #if 0
761 printf(" AFTER 0x%lx -> 0x%lx\n",
762 (istart + isize), end - 1);
763 #endif
764 uvm_page_physload(atop(istart + isize),
765 atop(end), atop(istart + isize),
766 atop(end), VM_FREELIST_DEFAULT);
767 npages += atop(end) - atop(istart + isize);
768 }
769 } else {
770 uvm_page_physload(atop(start), atop(end),
771 atop(start), atop(end), VM_FREELIST_DEFAULT);
772 npages += atop(end) - atop(start);
773 }
774 #else /* NISADMA > 0 */
775 uvm_page_physload(atop(start), atop(end),
776 atop(start), atop(end), VM_FREELIST_DEFAULT);
777 npages += atop(end) - atop(start);
778 #endif /* NISADMA > 0 */
779 ++loop;
780 }
781
782 #ifdef MYCROFT_HACK
783 printf("npages = %ld\n", npages);
784 #endif
785
786 virtual_start = KERNEL_VM_BASE;
787 virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
788
789 ALLOC_PAGE_HOOK(page_hook0, NBPG);
790 ALLOC_PAGE_HOOK(page_hook1, NBPG);
791
792 /*
793 * The mem special device needs a virtual hook but we don't
794 * need a pte
795 */
796 memhook = (char *)virtual_start;
797 virtual_start += NBPG;
798
799 msgbufaddr = (caddr_t)virtual_start;
800 msgbufpte = (pt_entry_t)pmap_pte(kernel_pmap, virtual_start);
801 virtual_start += round_page(MSGBUFSIZE);
802
803 size = npages * sizeof(struct pv_entry);
804 boot_pvent = (struct pv_entry *)uvm_pageboot_alloc(size);
805 bzero(boot_pvent, size);
806 size = npages * sizeof(char);
807 boot_attrs = (char *)uvm_pageboot_alloc(size);
808 bzero(boot_attrs, size);
809
810 /*
811 * initialize the pmap pool.
812 */
813
814 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
815 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
816
817 cpu_cache_cleanD();
818 }
819
820 /*
821 * void pmap_init(void)
822 *
823 * Initialize the pmap module.
824 * Called by vm_init() in vm/vm_init.c in order to initialise
825 * any structures that the pmap system needs to map virtual memory.
826 */
827
828 extern int physmem;
829
830 void
831 pmap_init()
832 {
833 int lcv;
834
835 #ifdef MYCROFT_HACK
836 printf("physmem = %d\n", physmem);
837 #endif
838
839 /*
840 * Set the available memory vars - These do not map to real memory
841 * addresses and cannot as the physical memory is fragmented.
842 * They are used by ps for %mem calculations.
843 * One could argue whether this should be the entire memory or just
844 * the memory that is useable in a user process.
845 */
846 avail_start = 0;
847 avail_end = physmem * NBPG;
848
849 /* Set up pmap info for physsegs. */
850 for (lcv = 0; lcv < vm_nphysseg; lcv++) {
851 vm_physmem[lcv].pmseg.pvent = boot_pvent;
852 boot_pvent += vm_physmem[lcv].end - vm_physmem[lcv].start;
853 vm_physmem[lcv].pmseg.attrs = boot_attrs;
854 boot_attrs += vm_physmem[lcv].end - vm_physmem[lcv].start;
855 }
856 #ifdef MYCROFT_HACK
857 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
858 printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
859 lcv,
860 vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
861 vm_physmem[lcv].start, vm_physmem[lcv].end);
862 }
863 #endif
864 TAILQ_INIT(&pv_page_freelist);
865
866 #ifdef DIAGNOSTIC
867 /* Now it is safe to enable pv_entry recording. */
868 pmap_initialized = TRUE;
869 #endif
870
871 /* Initialise our L1 page table queues and counters */
872 SIMPLEQ_INIT(&l1pt_static_queue);
873 l1pt_static_queue_count = 0;
874 l1pt_static_create_count = 0;
875 SIMPLEQ_INIT(&l1pt_queue);
876 l1pt_queue_count = 0;
877 l1pt_create_count = 0;
878 l1pt_reuse_count = 0;
879 }
880
881 /*
882 * pmap_postinit()
883 *
884 * This routine is called after the vm and kmem subsystems have been
885 * initialised. This allows the pmap code to perform any initialisation
886 * that can only be done one the memory allocation is in place.
887 */
888
889 void
890 pmap_postinit()
891 {
892 int loop;
893 struct l1pt *pt;
894
895 #ifdef PMAP_STATIC_L1S
896 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
897 #else /* PMAP_STATIC_L1S */
898 for (loop = 0; loop < max_processes; ++loop) {
899 #endif /* PMAP_STATIC_L1S */
900 /* Allocate a L1 page table */
901 pt = pmap_alloc_l1pt();
902 if (!pt)
903 panic("Cannot allocate static L1 page tables\n");
904
905 /* Clean it */
906 bzero((void *)pt->pt_va, PD_SIZE);
907 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
908 /* Add the page table to the queue */
909 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
910 ++l1pt_static_queue_count;
911 ++l1pt_static_create_count;
912 }
913 }
914
915
916 /*
917 * Create and return a physical map.
918 *
919 * If the size specified for the map is zero, the map is an actual physical
920 * map, and may be referenced by the hardware.
921 *
922 * If the size specified is non-zero, the map will be used in software only,
923 * and is bounded by that size.
924 */
925
926 pmap_t
927 pmap_create()
928 {
929 pmap_t pmap;
930
931 /*
932 * Fetch pmap entry from the pool
933 */
934
935 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
936 bzero(pmap, sizeof(*pmap));
937
938 /* Now init the machine part of the pmap */
939 pmap_pinit(pmap);
940 return(pmap);
941 }
942
943 /*
944 * pmap_alloc_l1pt()
945 *
946 * This routine allocates physical and virtual memory for a L1 page table
947 * and wires it.
948 * A l1pt structure is returned to describe the allocated page table.
949 *
950 * This routine is allowed to fail if the required memory cannot be allocated.
951 * In this case NULL is returned.
952 */
953
954 struct l1pt *
955 pmap_alloc_l1pt(void)
956 {
957 paddr_t pa;
958 vaddr_t va;
959 struct l1pt *pt;
960 int error;
961 struct vm_page *m;
962 pt_entry_t *pte;
963
964 /* Allocate virtual address space for the L1 page table */
965 va = uvm_km_valloc(kernel_map, PD_SIZE);
966 if (va == 0) {
967 #ifdef DIAGNOSTIC
968 printf("pmap: Cannot allocate pageable memory for L1\n");
969 #endif /* DIAGNOSTIC */
970 return(NULL);
971 }
972
973 /* Allocate memory for the l1pt structure */
974 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
975
976 /*
977 * Allocate pages from the VM system.
978 */
979 TAILQ_INIT(&pt->pt_plist);
980 error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
981 PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
982 if (error) {
983 #ifdef DIAGNOSTIC
984 printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
985 error);
986 #endif /* DIAGNOSTIC */
987 /* Release the resources we already have claimed */
988 free(pt, M_VMPMAP);
989 uvm_km_free(kernel_map, va, PD_SIZE);
990 return(NULL);
991 }
992
993 /* Map our physical pages into our virtual space */
994 pt->pt_va = va;
995 m = pt->pt_plist.tqh_first;
996 while (m && va < (pt->pt_va + PD_SIZE)) {
997 pa = VM_PAGE_TO_PHYS(m);
998
999 pmap_enter(pmap_kernel(), va, pa,
1000 VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
1001
1002 /* Revoke cacheability and bufferability */
1003 /* XXX should be done better than this */
1004 pte = pmap_pte(pmap_kernel(), va);
1005 *pte = *pte & ~(PT_C | PT_B);
1006
1007 va += NBPG;
1008 m = m->pageq.tqe_next;
1009 }
1010 pmap_update();
1011
1012 #ifdef DIAGNOSTIC
1013 if (m)
1014 panic("pmap_alloc_l1pt: pglist not empty\n");
1015 #endif /* DIAGNOSTIC */
1016
1017 pt->pt_flags = 0;
1018 return(pt);
1019 }
1020
1021 /*
1022 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1023 */
1024 void
1025 pmap_free_l1pt(pt)
1026 struct l1pt *pt;
1027 {
1028 /* Separate the physical memory for the virtual space */
1029 pmap_remove(kernel_pmap, pt->pt_va, pt->pt_va + PD_SIZE);
1030 pmap_update();
1031
1032 /* Return the physical memory */
1033 uvm_pglistfree(&pt->pt_plist);
1034
1035 /* Free the virtual space */
1036 uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
1037
1038 /* Free the l1pt structure */
1039 free(pt, M_VMPMAP);
1040 }
1041
1042 /*
1043 * Allocate a page directory.
1044 * This routine will either allocate a new page directory from the pool
1045 * of L1 page tables currently held by the kernel or it will allocate
1046 * a new one via pmap_alloc_l1pt().
1047 * It will then initialise the l1 page table for use.
1048 */
1049 int
1050 pmap_allocpagedir(pmap)
1051 struct pmap *pmap;
1052 {
1053 paddr_t pa;
1054 struct l1pt *pt;
1055 pt_entry_t *pte;
1056
1057 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1058
1059 /* Do we have any spare L1's lying around ? */
1060 if (l1pt_static_queue_count) {
1061 --l1pt_static_queue_count;
1062 pt = l1pt_static_queue.sqh_first;
1063 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1064 } else if (l1pt_queue_count) {
1065 --l1pt_queue_count;
1066 pt = l1pt_queue.sqh_first;
1067 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1068 ++l1pt_reuse_count;
1069 } else {
1070 pt = pmap_alloc_l1pt();
1071 if (!pt)
1072 return(ENOMEM);
1073 ++l1pt_create_count;
1074 }
1075
1076 /* Store the pointer to the l1 descriptor in the pmap. */
1077 pmap->pm_l1pt = pt;
1078
1079 /* Get the physical address of the start of the l1 */
1080 pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
1081
1082 /* Store the virtual address of the l1 in the pmap. */
1083 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1084
1085 /* Clean the L1 if it is dirty */
1086 if (!(pt->pt_flags & PTFLAG_CLEAN))
1087 bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
1088
1089 /* Do we already have the kernel mappings ? */
1090 if (!(pt->pt_flags & PTFLAG_KPT)) {
1091 /* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
1092
1093 bcopy((char *)kernel_pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1094 (char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
1095 KERNEL_PD_SIZE);
1096 pt->pt_flags |= PTFLAG_KPT;
1097 }
1098
1099 /* Allocate a page table to map all the page tables for this pmap */
1100
1101 #ifdef DIAGNOSTIC
1102 if (pmap->pm_vptpt) {
1103 /* XXX What if we have one already ? */
1104 panic("pmap_allocpagedir: have pt already\n");
1105 }
1106 #endif /* DIAGNOSTIC */
1107 pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
1108 if (pmap->pm_vptpt == 0) {
1109 pmap_freepagedir(pmap);
1110 return(ENOMEM);
1111 }
1112
1113 (void) pmap_extract(kernel_pmap, pmap->pm_vptpt, &pmap->pm_pptpt);
1114 pmap->pm_pptpt &= PG_FRAME;
1115 /* Revoke cacheability and bufferability */
1116 /* XXX should be done better than this */
1117 pte = pmap_pte(kernel_pmap, pmap->pm_vptpt);
1118 *pte = *pte & ~(PT_C | PT_B);
1119
1120 /* Wire in this page table */
1121 pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt);
1122
1123 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1124
1125 /*
1126 * Map the kernel page tables for 0xf0000000 +
1127 * into the page table used to map the
1128 * pmap's page tables
1129 */
1130 bcopy((char *)(PROCESS_PAGE_TBLS_BASE
1131 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
1132 + ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
1133 (char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
1134 (KERNEL_PD_SIZE >> 2));
1135
1136 pmap->pm_count = 1;
1137 simple_lock_init(&pmap->pm_lock);
1138
1139 return(0);
1140 }
1141
1142
1143 /*
1144 * Initialize a preallocated and zeroed pmap structure,
1145 * such as one in a vmspace structure.
1146 */
1147
1148 static int pmap_pagedir_ident; /* tsleep() ident */
1149
1150 void
1151 pmap_pinit(pmap)
1152 struct pmap *pmap;
1153 {
1154 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1155
1156 /* Keep looping until we succeed in allocating a page directory */
1157 while (pmap_allocpagedir(pmap) != 0) {
1158 /*
1159 * Ok we failed to allocate a suitable block of memory for an
1160 * L1 page table. This means that either:
1161 * 1. 16KB of virtual address space could not be allocated
1162 * 2. 16KB of physically contiguous memory on a 16KB boundary
1163 * could not be allocated.
1164 *
1165 * Since we cannot fail we will sleep for a while and try
1166 * again. Although we will be wakened when another page table
1167 * is freed other memory releasing and swapping may occur
1168 * that will mean we can succeed so we will keep trying
1169 * regularly just in case.
1170 */
1171
1172 if (tsleep((caddr_t)&pmap_pagedir_ident, PZERO,
1173 "l1ptwait", 1000) == EWOULDBLOCK)
1174 printf("pmap: Cannot allocate L1 page table, sleeping ...\n");
1175 }
1176
1177 /* Map zero page for the pmap. This will also map the L2 for it */
1178 pmap_enter(pmap, 0x00000000, systempage.pv_pa,
1179 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1180 pmap_update();
1181 }
1182
1183
1184 void
1185 pmap_freepagedir(pmap)
1186 pmap_t pmap;
1187 {
1188 /* Free the memory used for the page table mapping */
1189 if (pmap->pm_vptpt != 0)
1190 uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
1191
1192 /* junk the L1 page table */
1193 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1194 /* Add the page table to the queue */
1195 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1196 ++l1pt_static_queue_count;
1197 /* Wake up any sleeping processes waiting for a l1 page table */
1198 wakeup((caddr_t)&pmap_pagedir_ident);
1199 } else if (l1pt_queue_count < 8) {
1200 /* Add the page table to the queue */
1201 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1202 ++l1pt_queue_count;
1203 /* Wake up any sleeping processes waiting for a l1 page table */
1204 wakeup((caddr_t)&pmap_pagedir_ident);
1205 } else
1206 pmap_free_l1pt(pmap->pm_l1pt);
1207 }
1208
1209
1210 /*
1211 * Retire the given physical map from service.
1212 * Should only be called if the map contains no valid mappings.
1213 */
1214
1215 void
1216 pmap_destroy(pmap)
1217 pmap_t pmap;
1218 {
1219 int count;
1220
1221 if (pmap == NULL)
1222 return;
1223
1224 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1225 simple_lock(&pmap->pm_lock);
1226 count = --pmap->pm_count;
1227 simple_unlock(&pmap->pm_lock);
1228 if (count == 0) {
1229 pmap_release(pmap);
1230 pool_put(&pmap_pmap_pool, pmap);
1231 }
1232 }
1233
1234
1235 /*
1236 * Release any resources held by the given physical map.
1237 * Called when a pmap initialized by pmap_pinit is being released.
1238 * Should only be called if the map contains no valid mappings.
1239 */
1240
1241 void
1242 pmap_release(pmap)
1243 pmap_t pmap;
1244 {
1245 struct vm_page *page;
1246 pt_entry_t *pte;
1247 int loop;
1248
1249 PDEBUG(0, printf("pmap_release(%p)\n", pmap));
1250
1251 #if 0
1252 if (pmap->pm_count != 1) /* XXX: needs sorting */
1253 panic("pmap_release count %d", pmap->pm_count);
1254 #endif
1255
1256 /* Remove the zero page mapping */
1257 pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
1258 pmap_update();
1259
1260 /*
1261 * Free any page tables still mapped
1262 * This is only temporay until pmap_enter can count the number
1263 * of mappings made in a page table. Then pmap_remove() can
1264 * reduce the count and free the pagetable when the count
1265 * reaches zero.
1266 */
1267 for (loop = 0; loop < (((PD_SIZE - KERNEL_PD_SIZE) >> 4) - 1); ++loop) {
1268 pte = (pt_entry_t *)(pmap->pm_vptpt + loop * 4);
1269 if (*pte != 0) {
1270 PDEBUG(0, printf("%x: pte=%p:%08x\n", loop, pte, *pte));
1271 page = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
1272 if (page == NULL)
1273 panic("pmap_release: bad address for phys page");
1274 uvm_pagefree(page);
1275 }
1276 }
1277 /* Free the page dir */
1278 pmap_freepagedir(pmap);
1279 }
1280
1281
1282 /*
1283 * void pmap_reference(pmap_t pmap)
1284 *
1285 * Add a reference to the specified pmap.
1286 */
1287
1288 void
1289 pmap_reference(pmap)
1290 pmap_t pmap;
1291 {
1292 if (pmap == NULL)
1293 return;
1294
1295 simple_lock(&pmap->pm_lock);
1296 pmap->pm_count++;
1297 simple_unlock(&pmap->pm_lock);
1298 }
1299
1300 /*
1301 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1302 *
1303 * Return the start and end addresses of the kernel's virtual space.
1304 * These values are setup in pmap_bootstrap and are updated as pages
1305 * are allocated.
1306 */
1307
1308 void
1309 pmap_virtual_space(start, end)
1310 vaddr_t *start;
1311 vaddr_t *end;
1312 {
1313 *start = virtual_start;
1314 *end = virtual_end;
1315 }
1316
1317
1318 /*
1319 * Activate the address space for the specified process. If the process
1320 * is the current process, load the new MMU context.
1321 */
1322 void
1323 pmap_activate(p)
1324 struct proc *p;
1325 {
1326 pmap_t pmap = p->p_vmspace->vm_map.pmap;
1327 struct pcb *pcb = &p->p_addr->u_pcb;
1328
1329 (void) pmap_extract(kernel_pmap, (vaddr_t)pmap->pm_pdir,
1330 (paddr_t *)&pcb->pcb_pagedir);
1331
1332 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1333 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1334
1335 if (p == curproc) {
1336 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1337 setttb((u_int)pcb->pcb_pagedir);
1338 }
1339 #if 0
1340 pmap->pm_pdchanged = FALSE;
1341 #endif
1342 }
1343
1344
1345 /*
1346 * Deactivate the address space of the specified process.
1347 */
1348 void
1349 pmap_deactivate(p)
1350 struct proc *p;
1351 {
1352 }
1353
1354
1355 /*
1356 * pmap_clean_page()
1357 *
1358 * This is a local function used to work out the best strategy to clean
1359 * a single page referenced by its entry in the PV table. It's used by
1360 * pmap_copy_page, pmap_zero page and maybe some others later on.
1361 *
1362 * Its policy is effectively:
1363 * o If there are no mappings, we don't bother doing anything with the cache.
1364 * o If there is one mapping, we clean just that page.
1365 * o If there are multiple mappings, we clean the entire cache.
1366 *
1367 * So that some functions can be further optimised, it returns 0 if it didn't
1368 * clean the entire cache, or 1 if it did.
1369 *
1370 * XXX One bug in this routine is that if the pv_entry has a single page
1371 * mapped at 0x00000000 a whole cache clean will be performed rather than
1372 * just the 1 page. Since this should not occur in everyday use and if it does
1373 * it will just result in not the most efficient clean for the page.
1374 */
1375 static int
1376 pmap_clean_page(pv)
1377 struct pv_entry *pv;
1378 {
1379 int s;
1380 int cache_needs_cleaning = 0;
1381 vaddr_t page_to_clean = 0;
1382
1383 /* Go to splvm() so we get exclusive lock for a mo */
1384 s = splvm();
1385 if (pv->pv_pmap) {
1386 cache_needs_cleaning = 1;
1387 if (!pv->pv_next)
1388 page_to_clean = pv->pv_va;
1389 }
1390 splx(s);
1391
1392 /* Do cache ops outside the splvm. */
1393 if (page_to_clean)
1394 cpu_cache_purgeID_rng(page_to_clean, NBPG);
1395 else if (cache_needs_cleaning) {
1396 cpu_cache_purgeID();
1397 return (1);
1398 }
1399 return (0);
1400 }
1401
1402 /*
1403 * pmap_find_pv()
1404 *
1405 * This is a local function that finds a PV entry for a given physical page.
1406 * This is a common op, and this function removes loads of ifdefs in the code.
1407 */
1408 static __inline struct pv_entry *
1409 pmap_find_pv(phys)
1410 paddr_t phys;
1411 {
1412 int bank, off;
1413 struct pv_entry *pv;
1414
1415 #ifdef DIAGNOSTIC
1416 if (!pmap_initialized)
1417 panic("pmap_find_pv: !pmap_initialized");
1418 #endif
1419
1420 if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
1421 panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
1422 pv = &vm_physmem[bank].pmseg.pvent[off];
1423 return (pv);
1424 }
1425
1426 /*
1427 * pmap_zero_page()
1428 *
1429 * Zero a given physical page by mapping it at a page hook point.
1430 * In doing the zero page op, the page we zero is mapped cachable, as with
1431 * StrongARM accesses to non-cached pages are non-burst making writing
1432 * _any_ bulk data very slow.
1433 */
1434 void
1435 pmap_zero_page(phys)
1436 paddr_t phys;
1437 {
1438 struct pv_entry *pv;
1439
1440 /* Get an entry for this page, and clean it it. */
1441 pv = pmap_find_pv(phys);
1442 pmap_clean_page(pv);
1443
1444 /*
1445 * Hook in the page, zero it, and purge the cache for that
1446 * zeroed page. Invalidate the TLB as needed.
1447 */
1448 *page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
1449 cpu_tlb_flushD_SE(page_hook0.va);
1450 bzero_page(page_hook0.va);
1451 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1452 }
1453
1454 /*
1455 * pmap_copy_page()
1456 *
1457 * Copy one physical page into another, by mapping the pages into
1458 * hook points. The same comment regarding cachability as in
1459 * pmap_zero_page also applies here.
1460 */
1461 void
1462 pmap_copy_page(src, dest)
1463 paddr_t src;
1464 paddr_t dest;
1465 {
1466 struct pv_entry *src_pv, *dest_pv;
1467
1468 /* Get PV entries for the pages, and clean them if needed. */
1469 src_pv = pmap_find_pv(src);
1470 dest_pv = pmap_find_pv(dest);
1471 if (!pmap_clean_page(src_pv))
1472 pmap_clean_page(dest_pv);
1473
1474 /*
1475 * Map the pages into the page hook points, copy them, and purge
1476 * the cache for the appropriate page. Invalidate the TLB
1477 * as required.
1478 */
1479 *page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
1480 *page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
1481 cpu_tlb_flushD_SE(page_hook0.va);
1482 cpu_tlb_flushD_SE(page_hook1.va);
1483 bcopy_page(page_hook0.va, page_hook1.va);
1484 cpu_cache_purgeD_rng(page_hook0.va, NBPG);
1485 cpu_cache_purgeD_rng(page_hook1.va, NBPG);
1486 }
1487
1488 /*
1489 * int pmap_next_phys_page(paddr_t *addr)
1490 *
1491 * Allocate another physical page returning true or false depending
1492 * on whether a page could be allocated.
1493 */
1494
1495 paddr_t
1496 pmap_next_phys_page(addr)
1497 paddr_t addr;
1498
1499 {
1500 int loop;
1501
1502 if (addr < bootconfig.dram[0].address)
1503 return(bootconfig.dram[0].address);
1504
1505 loop = 0;
1506
1507 while (bootconfig.dram[loop].address != 0
1508 && addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
1509 ++loop;
1510
1511 if (bootconfig.dram[loop].address == 0)
1512 return(0);
1513
1514 addr += NBPG;
1515
1516 if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
1517 if (bootconfig.dram[loop + 1].address == 0)
1518 return(0);
1519 addr = bootconfig.dram[loop + 1].address;
1520 }
1521
1522 return(addr);
1523 }
1524
1525 #if 0
1526 void
1527 pmap_pte_addref(pmap, va)
1528 pmap_t pmap;
1529 vaddr_t va;
1530 {
1531 pd_entry_t *pde;
1532 paddr_t pa;
1533 struct vm_page *m;
1534
1535 if (pmap == pmap_kernel())
1536 return;
1537
1538 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1539 pa = pmap_pte_pa(pde);
1540 m = PHYS_TO_VM_PAGE(pa);
1541 ++m->wire_count;
1542 #ifdef MYCROFT_HACK
1543 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1544 pmap, va, pde, pa, m, m->wire_count);
1545 #endif
1546 }
1547
1548 void
1549 pmap_pte_delref(pmap, va)
1550 pmap_t pmap;
1551 vaddr_t va;
1552 {
1553 pd_entry_t *pde;
1554 paddr_t pa;
1555 struct vm_page *m;
1556
1557 if (pmap == pmap_kernel())
1558 return;
1559
1560 pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
1561 pa = pmap_pte_pa(pde);
1562 m = PHYS_TO_VM_PAGE(pa);
1563 --m->wire_count;
1564 #ifdef MYCROFT_HACK
1565 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1566 pmap, va, pde, pa, m, m->wire_count);
1567 #endif
1568 if (m->wire_count == 0) {
1569 #ifdef MYCROFT_HACK
1570 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1571 pmap, va, pde, pa, m);
1572 #endif
1573 pmap_unmap_in_l1(pmap, va);
1574 uvm_pagefree(m);
1575 --pmap->pm_stats.resident_count;
1576 }
1577 }
1578 #else
1579 #define pmap_pte_addref(pmap, va)
1580 #define pmap_pte_delref(pmap, va)
1581 #endif
1582
1583 /*
1584 * Since we have a virtually indexed cache, we may need to inhibit caching if
1585 * there is more than one mapping and at least one of them is writable.
1586 * Since we purge the cache on every context switch, we only need to check for
1587 * other mappings within the same pmap, or kernel_pmap.
1588 * This function is also called when a page is unmapped, to possibly reenable
1589 * caching on any remaining mappings.
1590 */
1591 void
1592 pmap_vac_me_harder(pmap, pv)
1593 pmap_t pmap;
1594 struct pv_entry *pv;
1595 {
1596 struct pv_entry *npv;
1597 pt_entry_t *pte;
1598 int entries = 0;
1599 int writeable = 0;
1600
1601 if (pv->pv_pmap == NULL)
1602 return;
1603
1604 /*
1605 * Count mappings and writable mappings in this pmap.
1606 * Keep a pointer to the first one.
1607 */
1608 for (npv = pv; npv; npv = npv->pv_next) {
1609 /* Count mappings in the same pmap */
1610 if (pmap == npv->pv_pmap) {
1611 if (entries++ == 0)
1612 pv = npv;
1613 /* Writeable mappings */
1614 if (npv->pv_flags & PT_Wr)
1615 ++writeable;
1616 }
1617 }
1618
1619 /*
1620 * Enable or disable caching as necessary.
1621 * We do a quick check of the first PTE to avoid walking the list if
1622 * we're already in the right state.
1623 */
1624 if (entries > 1 && writeable) {
1625 pte = pmap_pte(pmap, pv->pv_va);
1626 if (~*pte & (PT_C | PT_B))
1627 return;
1628 *pte = *pte & ~(PT_C | PT_B);
1629 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1630 if (pmap == npv->pv_pmap) {
1631 pte = pmap_pte(pmap, npv->pv_va);
1632 *pte = *pte & ~(PT_C | PT_B);
1633 }
1634 }
1635 } else if (entries > 0) {
1636 pte = pmap_pte(pmap, pv->pv_va);
1637 if (*pte & (PT_C | PT_B))
1638 return;
1639 *pte = *pte | (PT_C | PT_B);
1640 for (npv = pv->pv_next; npv; npv = npv->pv_next) {
1641 if (pmap == npv->pv_pmap) {
1642 pte = pmap_pte(pmap, npv->pv_va);
1643 *pte = *pte | (PT_C | PT_B);
1644 }
1645 }
1646 }
1647 }
1648
1649 /*
1650 * pmap_remove()
1651 *
1652 * pmap_remove is responsible for nuking a number of mappings for a range
1653 * of virtual address space in the current pmap. To do this efficiently
1654 * is interesting, because in a number of cases a wide virtual address
1655 * range may be supplied that contains few actual mappings. So, the
1656 * optimisations are:
1657 * 1. Try and skip over hunks of address space for which an L1 entry
1658 * does not exist.
1659 * 2. Build up a list of pages we've hit, up to a maximum, so we can
1660 * maybe do just a partial cache clean. This path of execution is
1661 * complicated by the fact that the cache must be flushed _before_
1662 * the PTE is nuked, being a VAC :-)
1663 * 3. Maybe later fast-case a single page, but I don't think this is
1664 * going to make _that_ much difference overall.
1665 */
1666
1667 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
1668
1669 void
1670 pmap_remove(pmap, sva, eva)
1671 pmap_t pmap;
1672 vaddr_t sva;
1673 vaddr_t eva;
1674 {
1675 int cleanlist_idx = 0;
1676 struct pagelist {
1677 vaddr_t va;
1678 pt_entry_t *pte;
1679 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
1680 pt_entry_t *pte = 0;
1681 paddr_t pa;
1682 int pmap_active;
1683 struct pv_entry *pv;
1684
1685 /* Exit quick if there is no pmap */
1686 if (!pmap)
1687 return;
1688
1689 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
1690
1691 sva &= PG_FRAME;
1692 eva &= PG_FRAME;
1693
1694 /* Get a page table pointer */
1695 while (sva < eva) {
1696 pte = pmap_pte(pmap, sva);
1697 if (pte)
1698 break;
1699 sva = (sva & PD_MASK) + NBPD;
1700 }
1701
1702 /* Note if the pmap is active thus require cache and tlb cleans */
1703 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
1704 || (pmap == kernel_pmap))
1705 pmap_active = 1;
1706 else
1707 pmap_active = 0;
1708
1709 /* Now loop along */
1710 while (sva < eva) {
1711 /* Check if we can move to the next PDE (l1 chunk) */
1712 if (!(sva & PT_MASK))
1713 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
1714 sva += NBPD;
1715 pte += arm_byte_to_page(NBPD);
1716 continue;
1717 }
1718
1719 /* We've found a valid PTE, so this page of PTEs has to go. */
1720 if (pmap_pte_v(pte)) {
1721 int bank, off;
1722
1723 /* Update statistics */
1724 --pmap->pm_stats.resident_count;
1725
1726 /*
1727 * Add this page to our cache remove list, if we can.
1728 * If, however the cache remove list is totally full,
1729 * then do a complete cache invalidation taking note
1730 * to backtrack the PTE table beforehand, and ignore
1731 * the lists in future because there's no longer any
1732 * point in bothering with them (we've paid the
1733 * penalty, so will carry on unhindered). Otherwise,
1734 * when we fall out, we just clean the list.
1735 */
1736 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
1737 pa = pmap_pte_pa(pte);
1738
1739 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
1740 /* Add to the clean list. */
1741 cleanlist[cleanlist_idx].pte = pte;
1742 cleanlist[cleanlist_idx].va = sva;
1743 cleanlist_idx++;
1744 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
1745 int cnt;
1746
1747 /* Nuke everything if needed. */
1748 if (pmap_active) {
1749 cpu_cache_purgeID();
1750 cpu_tlb_flushID();
1751 }
1752
1753 /*
1754 * Roll back the previous PTE list,
1755 * and zero out the current PTE.
1756 */
1757 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
1758 *cleanlist[cnt].pte = 0;
1759 pmap_pte_delref(pmap, cleanlist[cnt].va);
1760 }
1761 *pte = 0;
1762 pmap_pte_delref(pmap, sva);
1763 cleanlist_idx++;
1764 } else {
1765 /*
1766 * We've already nuked the cache and
1767 * TLB, so just carry on regardless,
1768 * and we won't need to do it again
1769 */
1770 *pte = 0;
1771 pmap_pte_delref(pmap, sva);
1772 }
1773
1774 /*
1775 * Update flags. In a number of circumstances,
1776 * we could cluster a lot of these and do a
1777 * number of sequential pages in one go.
1778 */
1779 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
1780 pv = &vm_physmem[bank].pmseg.pvent[off];
1781 pmap_remove_pv(pmap, sva, pv);
1782 pmap_vac_me_harder(pmap, pv);
1783 }
1784 }
1785 sva += NBPG;
1786 pte++;
1787 }
1788
1789 /*
1790 * Now, if we've fallen through down to here, chances are that there
1791 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
1792 */
1793 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
1794 u_int cnt;
1795
1796 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
1797 if (pmap_active) {
1798 cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
1799 *cleanlist[cnt].pte = 0;
1800 cpu_tlb_flushID_SE(cleanlist[cnt].va);
1801 } else
1802 *cleanlist[cnt].pte = 0;
1803 pmap_pte_delref(pmap, cleanlist[cnt].va);
1804 }
1805 }
1806 }
1807
1808 /*
1809 * Routine: pmap_remove_all
1810 * Function:
1811 * Removes this physical page from
1812 * all physical maps in which it resides.
1813 * Reflects back modify bits to the pager.
1814 */
1815
1816 void
1817 pmap_remove_all(pa)
1818 paddr_t pa;
1819 {
1820 struct pv_entry *ph, *pv, *npv;
1821 pmap_t pmap;
1822 pt_entry_t *pte;
1823 int s;
1824
1825 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
1826
1827 pv = ph = pmap_find_pv(pa);
1828 pmap_clean_page(pv);
1829
1830 s = splvm();
1831
1832 if (ph->pv_pmap == NULL) {
1833 PDEBUG(0, printf("free page\n"));
1834 splx(s);
1835 return;
1836 }
1837
1838 while (pv) {
1839 pmap = pv->pv_pmap;
1840 pte = pmap_pte(pmap, pv->pv_va);
1841
1842 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
1843 pv->pv_va, pv->pv_flags));
1844 #ifdef DEBUG
1845 if (!pte || !pmap_pte_v(pte) || pmap_pte_pa(pte) != pa)
1846 panic("pmap_remove_all: bad mapping");
1847 #endif /* DEBUG */
1848
1849 /*
1850 * Update statistics
1851 */
1852 --pmap->pm_stats.resident_count;
1853
1854 /* Wired bit */
1855 if (pv->pv_flags & PT_W)
1856 --pmap->pm_stats.wired_count;
1857
1858 /*
1859 * Invalidate the PTEs.
1860 * XXX: should cluster them up and invalidate as many
1861 * as possible at once.
1862 */
1863
1864 #ifdef needednotdone
1865 reduce wiring count on page table pages as references drop
1866 #endif
1867
1868 *pte = 0;
1869 pmap_pte_delref(pmap, pv->pv_va);
1870
1871 npv = pv->pv_next;
1872 if (pv == ph)
1873 ph->pv_pmap = NULL;
1874 else
1875 pmap_free_pv(pv);
1876 pv = npv;
1877 }
1878
1879 splx(s);
1880
1881 PDEBUG(0, printf("done\n"));
1882 cpu_tlb_flushID();
1883 }
1884
1885
1886 /*
1887 * Set the physical protection on the specified range of this map as requested.
1888 */
1889
1890 void
1891 pmap_protect(pmap, sva, eva, prot)
1892 pmap_t pmap;
1893 vaddr_t sva;
1894 vaddr_t eva;
1895 vm_prot_t prot;
1896 {
1897 pt_entry_t *pte = NULL;
1898 int armprot;
1899 int flush = 0;
1900 paddr_t pa;
1901 int bank, off;
1902 struct pv_entry *pv;
1903
1904 /*
1905 * Make sure pmap is valid. -dct
1906 */
1907 if (pmap == NULL)
1908 return;
1909 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
1910 pmap, sva, eva, prot));
1911
1912 if (~prot & VM_PROT_READ) {
1913 /* Just remove the mappings. */
1914 pmap_remove(pmap, sva, eva);
1915 return;
1916 }
1917 if (prot & VM_PROT_WRITE) {
1918 /*
1919 * If this is a read->write transition, just ignore it and let
1920 * uvm_fault() take care of it later.
1921 */
1922 return;
1923 }
1924
1925 sva &= PG_FRAME;
1926 eva &= PG_FRAME;
1927
1928 /*
1929 * We need to acquire a pointer to a page table page before entering
1930 * the following loop.
1931 */
1932 while (sva < eva) {
1933 pte = pmap_pte(pmap, sva);
1934 if (pte)
1935 break;
1936 sva = (sva & PD_MASK) + NBPD;
1937 }
1938
1939 while (sva < eva) {
1940 /* only check once in a while */
1941 if ((sva & PT_MASK) == 0) {
1942 if (!pmap_pde_v(pmap_pde(pmap, sva))) {
1943 /* We can race ahead here, to the next pde. */
1944 sva += NBPD;
1945 pte += arm_byte_to_page(NBPD);
1946 continue;
1947 }
1948 }
1949
1950 if (!pmap_pte_v(pte))
1951 goto next;
1952
1953 flush = 1;
1954
1955 armprot = 0;
1956 if (sva < VM_MAXUSER_ADDRESS)
1957 armprot |= PT_AP(AP_U);
1958 else if (sva < VM_MAX_ADDRESS)
1959 armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
1960 *pte = (*pte & 0xfffff00f) | armprot;
1961
1962 pa = pmap_pte_pa(pte);
1963
1964 /* Get the physical page index */
1965
1966 /* Clear write flag */
1967 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
1968 pv = &vm_physmem[bank].pmseg.pvent[off];
1969 (void) pmap_modify_pv(pmap, sva, pv, PT_Wr, 0);
1970 pmap_vac_me_harder(pmap, pv);
1971 }
1972
1973 next:
1974 sva += NBPG;
1975 pte++;
1976 }
1977
1978 if (flush)
1979 cpu_tlb_flushID();
1980 }
1981
1982 /*
1983 * void pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
1984 * int flags)
1985 *
1986 * Insert the given physical page (p) at
1987 * the specified virtual address (v) in the
1988 * target physical map with the protection requested.
1989 *
1990 * If specified, the page will be wired down, meaning
1991 * that the related pte can not be reclaimed.
1992 *
1993 * NB: This is the only routine which MAY NOT lazy-evaluate
1994 * or lose information. That is, this routine must actually
1995 * insert this page into the given map NOW.
1996 */
1997
1998 int
1999 pmap_enter(pmap, va, pa, prot, flags)
2000 pmap_t pmap;
2001 vaddr_t va;
2002 paddr_t pa;
2003 vm_prot_t prot;
2004 int flags;
2005 {
2006 pt_entry_t *pte;
2007 u_int npte;
2008 int bank, off;
2009 struct pv_entry *pv = NULL;
2010 paddr_t opa;
2011 int nflags;
2012 boolean_t wired = (flags & PMAP_WIRED) != 0;
2013
2014 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2015 va, pa, pmap, prot, wired));
2016
2017 #ifdef DIAGNOSTIC
2018 /* Valid address ? */
2019 if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
2020 panic("pmap_enter: too big");
2021 if (pmap != pmap_kernel() && va != 0) {
2022 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2023 panic("pmap_enter: kernel page in user map");
2024 } else {
2025 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2026 panic("pmap_enter: user page in kernel map");
2027 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2028 panic("pmap_enter: entering PT page");
2029 }
2030 #endif
2031
2032 /*
2033 * Get a pointer to the pte for this virtual address. If the
2034 * pte pointer is NULL then we are missing the L2 page table
2035 * so we need to create one.
2036 */
2037 pte = pmap_pte(pmap, va);
2038 if (!pte) {
2039 paddr_t l2pa;
2040 struct vm_page *m;
2041
2042 /* Allocate a page table */
2043 for (;;) {
2044 m = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
2045 if (m != NULL)
2046 break;
2047
2048 /*
2049 * No page available. If we're the kernel
2050 * pmap, we die, since we might not have
2051 * a valid thread context. For user pmaps,
2052 * we assume that we _do_ have a valid thread
2053 * context, so we wait here for the pagedaemon
2054 * to free up some pages.
2055 *
2056 * XXX THE VM CODE IS PROBABLY HOLDING LOCKS
2057 * XXX RIGHT NOW, BUT ONLY ON OUR PARENT VM_MAP
2058 * XXX SO THIS IS PROBABLY SAFE. In any case,
2059 * XXX other pmap modules claim it is safe to
2060 * XXX sleep here if it's a user pmap.
2061 */
2062 if (pmap == pmap_kernel())
2063 panic("pmap_enter: no free pages");
2064 else
2065 uvm_wait("pmap_enter");
2066 }
2067
2068 /* Wire this page table into the L1. */
2069 l2pa = VM_PAGE_TO_PHYS(m);
2070 pmap_zero_page(l2pa);
2071 pmap_map_in_l1(pmap, va, l2pa);
2072 ++pmap->pm_stats.resident_count;
2073
2074 pte = pmap_pte(pmap, va);
2075 #ifdef DIAGNOSTIC
2076 if (!pte)
2077 panic("pmap_enter: no pte");
2078 #endif
2079 }
2080
2081 nflags = 0;
2082 if (prot & VM_PROT_WRITE)
2083 nflags |= PT_Wr;
2084 if (wired)
2085 nflags |= PT_W;
2086
2087 /* More debugging info */
2088 PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
2089 *pte));
2090
2091 /* Is the pte valid ? If so then this page is already mapped */
2092 if (pmap_pte_v(pte)) {
2093 /* Get the physical address of the current page mapped */
2094 opa = pmap_pte_pa(pte);
2095
2096 #ifdef MYCROFT_HACK
2097 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
2098 #endif
2099
2100 /* Are we mapping the same page ? */
2101 if (opa == pa) {
2102 /* All we must be doing is changing the protection */
2103 PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
2104 va, pa));
2105
2106 /* Has the wiring changed ? */
2107 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2108 pv = &vm_physmem[bank].pmseg.pvent[off];
2109 (void) pmap_modify_pv(pmap, va, pv,
2110 PT_Wr | PT_W, nflags);
2111 }
2112 } else {
2113 /* We are replacing the page with a new one. */
2114 cpu_cache_purgeID_rng(va, NBPG);
2115
2116 PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
2117 va, pa, opa));
2118
2119 /*
2120 * If it is part of our managed memory then we
2121 * must remove it from the PV list
2122 */
2123 if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
2124 pv = &vm_physmem[bank].pmseg.pvent[off];
2125 pmap_remove_pv(pmap, va, pv);
2126 }
2127
2128 goto enter;
2129 }
2130 } else {
2131 opa = 0;
2132 pmap_pte_addref(pmap, va);
2133
2134 /* pte is not valid so we must be hooking in a new page */
2135 ++pmap->pm_stats.resident_count;
2136
2137 enter:
2138 /*
2139 * Enter on the PV list if part of our managed memory
2140 */
2141 if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
2142 pv = &vm_physmem[bank].pmseg.pvent[off];
2143 pmap_enter_pv(pmap, va, pv, nflags);
2144 }
2145 }
2146
2147 #ifdef MYCROFT_HACK
2148 if (mycroft_hack)
2149 printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
2150 #endif
2151
2152 /* Construct the pte, giving the correct access. */
2153 npte = (pa & PG_FRAME);
2154
2155 /* VA 0 is magic. */
2156 if (pmap != pmap_kernel() && va != 0)
2157 npte |= PT_AP(AP_U);
2158
2159 if (bank != -1) {
2160 #ifdef DIAGNOSTIC
2161 if ((flags & VM_PROT_ALL) & ~prot)
2162 panic("pmap_enter: access_type exceeds prot");
2163 #endif
2164 npte |= PT_C | PT_B;
2165 if (flags & VM_PROT_WRITE) {
2166 npte |= L2_SPAGE | PT_AP(AP_W);
2167 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2168 } else if (flags & VM_PROT_ALL) {
2169 npte |= L2_SPAGE;
2170 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2171 } else
2172 npte |= L2_INVAL;
2173 } else {
2174 if (prot & VM_PROT_WRITE)
2175 npte |= L2_SPAGE | PT_AP(AP_W);
2176 else if (prot & VM_PROT_ALL)
2177 npte |= L2_SPAGE;
2178 else
2179 npte |= L2_INVAL;
2180 }
2181
2182 #ifdef MYCROFT_HACK
2183 if (mycroft_hack)
2184 printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
2185 #endif
2186
2187 *pte = npte;
2188
2189 if (bank != -1)
2190 pmap_vac_me_harder(pmap, pv);
2191
2192 /* Better flush the TLB ... */
2193 cpu_tlb_flushID_SE(va);
2194
2195 PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
2196
2197 return 0;
2198 }
2199
2200 void
2201 pmap_kenter_pa(va, pa, prot)
2202 vaddr_t va;
2203 paddr_t pa;
2204 vm_prot_t prot;
2205 {
2206 pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
2207 }
2208
2209 void
2210 pmap_kremove(va, len)
2211 vaddr_t va;
2212 vsize_t len;
2213 {
2214 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2215 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2216 }
2217 }
2218
2219 /*
2220 * pmap_page_protect:
2221 *
2222 * Lower the permission for all mappings to a given page.
2223 */
2224
2225 void
2226 pmap_page_protect(pg, prot)
2227 struct vm_page *pg;
2228 vm_prot_t prot;
2229 {
2230 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2231
2232 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
2233
2234 switch(prot) {
2235 case VM_PROT_READ:
2236 case VM_PROT_READ|VM_PROT_EXECUTE:
2237 pmap_copy_on_write(pa);
2238 break;
2239
2240 case VM_PROT_ALL:
2241 break;
2242
2243 default:
2244 pmap_remove_all(pa);
2245 break;
2246 }
2247 }
2248
2249
2250 /*
2251 * Routine: pmap_unwire
2252 * Function: Clear the wired attribute for a map/virtual-address
2253 * pair.
2254 * In/out conditions:
2255 * The mapping must already exist in the pmap.
2256 */
2257
2258 void
2259 pmap_unwire(pmap, va)
2260 pmap_t pmap;
2261 vaddr_t va;
2262 {
2263 pt_entry_t *pte;
2264 paddr_t pa;
2265 int bank, off;
2266 struct pv_entry *pv;
2267
2268 /*
2269 * Make sure pmap is valid. -dct
2270 */
2271 if (pmap == NULL)
2272 return;
2273
2274 /* Get the pte */
2275 pte = pmap_pte(pmap, va);
2276 if (!pte)
2277 return;
2278
2279 /* Extract the physical address of the page */
2280 pa = pmap_pte_pa(pte);
2281
2282 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2283 return;
2284 pv = &vm_physmem[bank].pmseg.pvent[off];
2285 /* Update the wired bit in the pv entry for this page. */
2286 (void) pmap_modify_pv(pmap, va, pv, PT_W, 0);
2287 }
2288
2289 /*
2290 * pt_entry_t *pmap_pte(pmap_t pmap, vaddr_t va)
2291 *
2292 * Return the pointer to a page table entry corresponding to the supplied
2293 * virtual address.
2294 *
2295 * The page directory is first checked to make sure that a page table
2296 * for the address in question exists and if it does a pointer to the
2297 * entry is returned.
2298 *
2299 * The way this works is that that the kernel page tables are mapped
2300 * into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
2301 * This allows page tables to be located quickly.
2302 */
2303 pt_entry_t *
2304 pmap_pte(pmap, va)
2305 pmap_t pmap;
2306 vaddr_t va;
2307 {
2308 pt_entry_t *ptp;
2309 pt_entry_t *result;
2310
2311 /* The pmap must be valid */
2312 if (!pmap)
2313 return(NULL);
2314
2315 /* Return the address of the pte */
2316 PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
2317 pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
2318
2319 /* Do we have a valid pde ? If not we don't have a page table */
2320 if (!pmap_pde_v(pmap_pde(pmap, va))) {
2321 PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
2322 pmap_pde(pmap, va)));
2323 return(NULL);
2324 }
2325
2326 PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
2327 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2328 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2329 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
2330
2331 /*
2332 * If the pmap is the kernel pmap or the pmap is the active one
2333 * then we can just return a pointer to entry relative to
2334 * PROCESS_PAGE_TBLS_BASE.
2335 * Otherwise we need to map the page tables to an alternative
2336 * address and reference them there.
2337 */
2338 if (pmap == kernel_pmap || pmap->pm_pptpt
2339 == (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2340 + ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
2341 ~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2342 ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
2343 } else {
2344 struct proc *p = curproc;
2345
2346 /* If we don't have a valid curproc use proc0 */
2347 /* Perhaps we should just use kernel_pmap instead */
2348 if (p == NULL)
2349 p = &proc0;
2350 #ifdef DIAGNOSTIC
2351 /*
2352 * The pmap should always be valid for the process so
2353 * panic if it is not.
2354 */
2355 if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
2356 printf("pmap_pte: va=%08lx p=%p vm=%p\n",
2357 va, p, p->p_vmspace);
2358 console_debugger();
2359 }
2360 /*
2361 * The pmap for the current process should be mapped. If it
2362 * is not then we have a problem.
2363 */
2364 if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
2365 (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2366 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2367 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
2368 printf("pmap pagetable = P%08lx current = P%08x ",
2369 pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
2370 + (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
2371 (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
2372 PG_FRAME));
2373 printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
2374 panic("pmap_pte: current and pmap mismatch\n");
2375 }
2376 #endif
2377
2378 ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
2379 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
2380 pmap->pm_pptpt);
2381 cpu_tlb_flushD();
2382 }
2383 PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
2384 ((va >> (PGSHIFT-2)) & ~3)));
2385 result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
2386 return(result);
2387 }
2388
2389 /*
2390 * Routine: pmap_extract
2391 * Function:
2392 * Extract the physical page address associated
2393 * with the given map/virtual_address pair.
2394 */
2395 boolean_t
2396 pmap_extract(pmap, va, pap)
2397 pmap_t pmap;
2398 vaddr_t va;
2399 paddr_t *pap;
2400 {
2401 pt_entry_t *pte;
2402 paddr_t pa;
2403
2404 PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
2405
2406 /*
2407 * Get the pte for this virtual address. If there is no pte
2408 * then there is no page table etc.
2409 */
2410
2411 pte = pmap_pte(pmap, va);
2412 if (!pte)
2413 return(FALSE);
2414
2415 /* Is the pte valid ? If not then no paged is actually mapped here */
2416 if (!pmap_pte_v(pte))
2417 return(FALSE);
2418
2419 /* Return the physical address depending on the PTE type */
2420 /* XXX What about L1 section mappings ? */
2421 if ((*(pte) & L2_MASK) == L2_LPAGE) {
2422 /* Extract the physical address from the pte */
2423 pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
2424
2425 PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
2426 (pa | (va & (L2_LPAGE_SIZE - 1)))));
2427
2428 if (pap != NULL)
2429 *pap = pa | (va & (L2_LPAGE_SIZE - 1));
2430 return (TRUE);
2431 } else {
2432 /* Extract the physical address from the pte */
2433 pa = pmap_pte_pa(pte);
2434
2435 PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
2436 (pa | (va & ~PG_FRAME))));
2437
2438 if (pap != NULL)
2439 *pap = pa | (va & ~PG_FRAME);
2440 return (TRUE);
2441 }
2442 }
2443
2444
2445 /*
2446 * Copy the range specified by src_addr/len from the source map to the
2447 * range dst_addr/len in the destination map.
2448 *
2449 * This routine is only advisory and need not do anything.
2450 */
2451
2452 void
2453 pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2454 pmap_t dst_pmap;
2455 pmap_t src_pmap;
2456 vaddr_t dst_addr;
2457 vsize_t len;
2458 vaddr_t src_addr;
2459 {
2460 PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
2461 dst_pmap, src_pmap, dst_addr, len, src_addr));
2462 }
2463
2464 #if defined(PMAP_DEBUG)
2465 void
2466 pmap_dump_pvlist(phys, m)
2467 vaddr_t phys;
2468 char *m;
2469 {
2470 struct pv_entry *pv;
2471 int bank, off;
2472
2473 if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
2474 printf("INVALID PA\n");
2475 return;
2476 }
2477 pv = &vm_physmem[bank].pmseg.pvent[off];
2478 printf("%s %08lx:", m, phys);
2479 if (pv->pv_pmap == NULL) {
2480 printf(" no mappings\n");
2481 return;
2482 }
2483
2484 for (; pv; pv = pv->pv_next)
2485 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2486 pv->pv_va, pv->pv_flags);
2487
2488 printf("\n");
2489 }
2490
2491 #endif /* PMAP_DEBUG */
2492
2493 boolean_t
2494 pmap_testbit(pa, setbits)
2495 paddr_t pa;
2496 int setbits;
2497 {
2498 int bank, off;
2499
2500 PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
2501
2502 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2503 return(FALSE);
2504
2505 /*
2506 * Check saved info only
2507 */
2508 if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
2509 PDEBUG(0, printf("pmap_attributes = %02x\n",
2510 vm_physmem[bank].pmseg.attrs[off]));
2511 return(TRUE);
2512 }
2513
2514 return(FALSE);
2515 }
2516
2517
2518 /*
2519 * Modify pte bits for all ptes corresponding to the given physical address.
2520 * We use `maskbits' rather than `clearbits' because we're always passing
2521 * constants and the latter would require an extra inversion at run-time.
2522 */
2523
2524 void
2525 pmap_clearbit(pa, maskbits)
2526 paddr_t pa;
2527 int maskbits;
2528 {
2529 struct pv_entry *pv;
2530 pt_entry_t *pte;
2531 vaddr_t va;
2532 int bank, off;
2533 int s;
2534
2535 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2536 pa, maskbits));
2537 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2538 return;
2539 pv = &vm_physmem[bank].pmseg.pvent[off];
2540 s = splvm();
2541
2542 /*
2543 * Clear saved attributes (modify, reference)
2544 */
2545 vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
2546
2547 if (pv->pv_pmap == NULL) {
2548 splx(s);
2549 return;
2550 }
2551
2552 /*
2553 * Loop over all current mappings setting/clearing as appropos
2554 */
2555 for (; pv; pv = pv->pv_next) {
2556 va = pv->pv_va;
2557
2558 /*
2559 * XXX don't write protect pager mappings
2560 */
2561 if (va >= uvm.pager_sva && va < uvm.pager_eva) {
2562 printf("pmap_clearbit: bogon alpha\n");
2563 continue;
2564 }
2565
2566 pv->pv_flags &= ~maskbits;
2567 pte = pmap_pte(pv->pv_pmap, va);
2568 if (maskbits & (PT_Wr|PT_M))
2569 *pte = *pte & ~PT_AP(AP_W);
2570 if (maskbits & PT_H)
2571 *pte = (*pte & ~L2_MASK) | L2_INVAL;
2572 }
2573 cpu_tlb_flushID();
2574
2575 splx(s);
2576 }
2577
2578
2579 boolean_t
2580 pmap_clear_modify(pg)
2581 struct vm_page *pg;
2582 {
2583 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2584 boolean_t rv;
2585
2586 PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
2587 rv = pmap_testbit(pa, PT_M);
2588 pmap_clearbit(pa, PT_M);
2589 return rv;
2590 }
2591
2592
2593 boolean_t
2594 pmap_clear_reference(pg)
2595 struct vm_page *pg;
2596 {
2597 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2598 boolean_t rv;
2599
2600 PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
2601 rv = pmap_testbit(pa, PT_H);
2602 pmap_clearbit(pa, PT_H);
2603 return rv;
2604 }
2605
2606
2607 void
2608 pmap_copy_on_write(pa)
2609 paddr_t pa;
2610 {
2611 PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
2612 pmap_clearbit(pa, PT_Wr);
2613 }
2614
2615
2616 boolean_t
2617 pmap_is_modified(pg)
2618 struct vm_page *pg;
2619 {
2620 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2621 boolean_t result;
2622
2623 result = pmap_testbit(pa, PT_M);
2624 PDEBUG(0, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
2625 return (result);
2626 }
2627
2628
2629 boolean_t
2630 pmap_is_referenced(pg)
2631 struct vm_page *pg;
2632 {
2633 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2634 boolean_t result;
2635
2636 result = pmap_testbit(pa, PT_H);
2637 PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
2638 return (result);
2639 }
2640
2641
2642 int
2643 pmap_modified_emulation(pmap, va)
2644 pmap_t pmap;
2645 vaddr_t va;
2646 {
2647 pt_entry_t *pte;
2648 paddr_t pa;
2649 int bank, off;
2650 struct pv_entry *pv;
2651 u_int flags;
2652
2653 PDEBUG(2, printf("pmap_modified_emulation\n"));
2654
2655 /* Get the pte */
2656 pte = pmap_pte(pmap, va);
2657 if (!pte) {
2658 PDEBUG(2, printf("no pte\n"));
2659 return(0);
2660 }
2661
2662 PDEBUG(1, printf("*pte=%08x\n", *pte));
2663
2664 /* Check for a zero pte */
2665 if (*pte == 0)
2666 return(0);
2667
2668 /* This can happen if user code tries to access kernel memory. */
2669 if ((*pte & PT_AP(AP_W)) != 0)
2670 return (0);
2671
2672 /* Extract the physical address of the page */
2673 pa = pmap_pte_pa(pte);
2674 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2675 return(0);
2676
2677 /* Get the current flags for this page. */
2678 pv = &vm_physmem[bank].pmseg.pvent[off];
2679 flags = pmap_modify_pv(pmap, va, pv, 0, 0);
2680 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
2681
2682 /*
2683 * Do the flags say this page is writable ? If not then it is a
2684 * genuine write fault. If yes then the write fault is our fault
2685 * as we did not reflect the write access in the PTE. Now we know
2686 * a write has occurred we can correct this and also set the
2687 * modified bit
2688 */
2689 if (~flags & PT_Wr)
2690 return(0);
2691
2692 PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
2693 va, pte, *pte));
2694 vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
2695 *pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
2696 PDEBUG(0, printf("->(%08x)\n", *pte));
2697
2698 /* Return, indicating the problem has been dealt with */
2699 cpu_tlb_flushID_SE(va);
2700 return(1);
2701 }
2702
2703
2704 int
2705 pmap_handled_emulation(pmap, va)
2706 pmap_t pmap;
2707 vaddr_t va;
2708 {
2709 pt_entry_t *pte;
2710 paddr_t pa;
2711 int bank, off;
2712
2713 PDEBUG(2, printf("pmap_handled_emulation\n"));
2714
2715 /* Get the pte */
2716 pte = pmap_pte(pmap, va);
2717 if (!pte) {
2718 PDEBUG(2, printf("no pte\n"));
2719 return(0);
2720 }
2721
2722 PDEBUG(1, printf("*pte=%08x\n", *pte));
2723
2724 /* Check for a zero pte */
2725 if (*pte == 0)
2726 return(0);
2727
2728 /* This can happen if user code tries to access kernel memory. */
2729 if ((*pte & L2_MASK) != L2_INVAL)
2730 return (0);
2731
2732 /* Extract the physical address of the page */
2733 pa = pmap_pte_pa(pte);
2734 if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
2735 return(0);
2736
2737 /*
2738 * Ok we just enable the pte and mark the attibs as handled
2739 */
2740 PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
2741 va, pte, *pte));
2742 vm_physmem[bank].pmseg.attrs[off] |= PT_H;
2743 *pte = (*pte & ~L2_MASK) | L2_SPAGE;
2744 PDEBUG(0, printf("->(%08x)\n", *pte));
2745
2746 /* Return, indicating the problem has been dealt with */
2747 cpu_tlb_flushID_SE(va);
2748 return(1);
2749 }
2750
2751 /*
2752 * pmap_collect: free resources held by a pmap
2753 *
2754 * => optional function.
2755 * => called when a process is swapped out to free memory.
2756 */
2757
2758 void
2759 pmap_collect(pmap)
2760 pmap_t pmap;
2761 {
2762 }
2763
2764 /*
2765 * Routine: pmap_procwr
2766 *
2767 * Function:
2768 * Synchronize caches corresponding to [addr, addr+len) in p.
2769 *
2770 */
2771 void
2772 pmap_procwr(p, va, len)
2773 struct proc *p;
2774 vaddr_t va;
2775 int len;
2776 {
2777 /* We only need to do anything if it is the current process. */
2778 if (p == curproc)
2779 cpu_cache_syncI_rng(va, len);
2780 }
2781
2782 /* End of pmap.c */
2783