pmap.c revision 1.100 1 /* $NetBSD: pmap.c,v 1.100 2002/07/30 16:07:23 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.100 2002/07/30 16:07:23 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_freestart;
297 extern paddr_t physical_end;
298 extern paddr_t physical_freeend;
299 extern unsigned int free_pages;
300 extern int max_processes;
301
302 vaddr_t virtual_avail;
303 vaddr_t virtual_end;
304 vaddr_t pmap_curmaxkvaddr;
305
306 vaddr_t avail_start;
307 vaddr_t avail_end;
308
309 extern pv_addr_t systempage;
310
311 /* Variables used by the L1 page table queue code */
312 SIMPLEQ_HEAD(l1pt_queue, l1pt);
313 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
314 static int l1pt_static_queue_count; /* items in the static l1 queue */
315 static int l1pt_static_create_count; /* static l1 items created */
316 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
317 static int l1pt_queue_count; /* items in the l1 queue */
318 static int l1pt_create_count; /* stat - L1's create count */
319 static int l1pt_reuse_count; /* stat - L1's reused count */
320
321 /* Local function prototypes (not used outside this file) */
322 void pmap_pinit __P((struct pmap *));
323 void pmap_freepagedir __P((struct pmap *));
324
325 /* Other function prototypes */
326 extern void bzero_page __P((vaddr_t));
327 extern void bcopy_page __P((vaddr_t, vaddr_t));
328
329 struct l1pt *pmap_alloc_l1pt __P((void));
330 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
331 vaddr_t l2pa, boolean_t));
332
333 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
334 static void pmap_unmap_ptes __P((struct pmap *));
335
336 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
341 pt_entry_t *, boolean_t));
342
343 /*
344 * real definition of pv_entry.
345 */
346
347 struct pv_entry {
348 struct pv_entry *pv_next; /* next pv_entry */
349 struct pmap *pv_pmap; /* pmap where mapping lies */
350 vaddr_t pv_va; /* virtual address for mapping */
351 int pv_flags; /* flags */
352 struct vm_page *pv_ptp; /* vm_page for the ptp */
353 };
354
355 /*
356 * pv_entrys are dynamically allocated in chunks from a single page.
357 * we keep track of how many pv_entrys are in use for each page and
358 * we can free pv_entry pages if needed. there is one lock for the
359 * entire allocation system.
360 */
361
362 struct pv_page_info {
363 TAILQ_ENTRY(pv_page) pvpi_list;
364 struct pv_entry *pvpi_pvfree;
365 int pvpi_nfree;
366 };
367
368 /*
369 * number of pv_entry's in a pv_page
370 * (note: won't work on systems where NPBG isn't a constant)
371 */
372
373 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
374 sizeof(struct pv_entry))
375
376 /*
377 * a pv_page: where pv_entrys are allocated from
378 */
379
380 struct pv_page {
381 struct pv_page_info pvinfo;
382 struct pv_entry pvents[PVE_PER_PVPAGE];
383 };
384
385 #ifdef MYCROFT_HACK
386 int mycroft_hack = 0;
387 #endif
388
389 /* Function to set the debug level of the pmap code */
390
391 #ifdef PMAP_DEBUG
392 void
393 pmap_debug(int level)
394 {
395 pmap_debug_level = level;
396 printf("pmap_debug: level=%d\n", pmap_debug_level);
397 }
398 #endif /* PMAP_DEBUG */
399
400 __inline static boolean_t
401 pmap_is_curpmap(struct pmap *pmap)
402 {
403
404 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
405 pmap == pmap_kernel())
406 return (TRUE);
407
408 return (FALSE);
409 }
410
411 #include "isadma.h"
412
413 #if NISADMA > 0
414 /*
415 * Used to protect memory for ISA DMA bounce buffers. If, when loading
416 * pages into the system, memory intersects with any of these ranges,
417 * the intersecting memory will be loaded into a lower-priority free list.
418 */
419 bus_dma_segment_t *pmap_isa_dma_ranges;
420 int pmap_isa_dma_nranges;
421
422 /*
423 * Check if a memory range intersects with an ISA DMA range, and
424 * return the page-rounded intersection if it does. The intersection
425 * will be placed on a lower-priority free list.
426 */
427 static boolean_t
428 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
429 psize_t *sizep)
430 {
431 bus_dma_segment_t *ds;
432 int i;
433
434 if (pmap_isa_dma_ranges == NULL)
435 return (FALSE);
436
437 for (i = 0, ds = pmap_isa_dma_ranges;
438 i < pmap_isa_dma_nranges; i++, ds++) {
439 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
440 /*
441 * Beginning of region intersects with this range.
442 */
443 *pap = trunc_page(pa);
444 *sizep = round_page(min(pa + size,
445 ds->ds_addr + ds->ds_len) - pa);
446 return (TRUE);
447 }
448 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
449 /*
450 * End of region intersects with this range.
451 */
452 *pap = trunc_page(ds->ds_addr);
453 *sizep = round_page(min((pa + size) - ds->ds_addr,
454 ds->ds_len));
455 return (TRUE);
456 }
457 }
458
459 /*
460 * No intersection found.
461 */
462 return (FALSE);
463 }
464 #endif /* NISADMA > 0 */
465
466 /*
467 * p v _ e n t r y f u n c t i o n s
468 */
469
470 /*
471 * pv_entry allocation functions:
472 * the main pv_entry allocation functions are:
473 * pmap_alloc_pv: allocate a pv_entry structure
474 * pmap_free_pv: free one pv_entry
475 * pmap_free_pvs: free a list of pv_entrys
476 *
477 * the rest are helper functions
478 */
479
480 /*
481 * pmap_alloc_pv: inline function to allocate a pv_entry structure
482 * => we lock pvalloc_lock
483 * => if we fail, we call out to pmap_alloc_pvpage
484 * => 3 modes:
485 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
486 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
487 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
488 * one now
489 *
490 * "try" is for optional functions like pmap_copy().
491 */
492
493 __inline static struct pv_entry *
494 pmap_alloc_pv(struct pmap *pmap, int mode)
495 {
496 struct pv_page *pvpage;
497 struct pv_entry *pv;
498
499 simple_lock(&pvalloc_lock);
500
501 pvpage = TAILQ_FIRST(&pv_freepages);
502
503 if (pvpage != NULL) {
504 pvpage->pvinfo.pvpi_nfree--;
505 if (pvpage->pvinfo.pvpi_nfree == 0) {
506 /* nothing left in this one? */
507 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
508 }
509 pv = pvpage->pvinfo.pvpi_pvfree;
510 KASSERT(pv);
511 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
512 pv_nfpvents--; /* took one from pool */
513 } else {
514 pv = NULL; /* need more of them */
515 }
516
517 /*
518 * if below low water mark or we didn't get a pv_entry we try and
519 * create more pv_entrys ...
520 */
521
522 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
523 if (pv == NULL)
524 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
525 mode : ALLOCPV_NEED);
526 else
527 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
528 }
529
530 simple_unlock(&pvalloc_lock);
531 return(pv);
532 }
533
534 /*
535 * pmap_alloc_pvpage: maybe allocate a new pvpage
536 *
537 * if need_entry is false: try and allocate a new pv_page
538 * if need_entry is true: try and allocate a new pv_page and return a
539 * new pv_entry from it. if we are unable to allocate a pv_page
540 * we make a last ditch effort to steal a pv_page from some other
541 * mapping. if that fails, we panic...
542 *
543 * => we assume that the caller holds pvalloc_lock
544 */
545
546 static struct pv_entry *
547 pmap_alloc_pvpage(struct pmap *pmap, int mode)
548 {
549 struct vm_page *pg;
550 struct pv_page *pvpage;
551 struct pv_entry *pv;
552 int s;
553
554 /*
555 * if we need_entry and we've got unused pv_pages, allocate from there
556 */
557
558 pvpage = TAILQ_FIRST(&pv_unusedpgs);
559 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
560
561 /* move it to pv_freepages list */
562 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
563 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
564
565 /* allocate a pv_entry */
566 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
567 pv = pvpage->pvinfo.pvpi_pvfree;
568 KASSERT(pv);
569 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
570
571 pv_nfpvents--; /* took one from pool */
572 return(pv);
573 }
574
575 /*
576 * see if we've got a cached unmapped VA that we can map a page in.
577 * if not, try to allocate one.
578 */
579
580
581 if (pv_cachedva == 0) {
582 s = splvm();
583 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
584 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
585 splx(s);
586 if (pv_cachedva == 0) {
587 return (NULL);
588 }
589 }
590
591 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
592 UVM_PGA_USERESERVE);
593
594 if (pg == NULL)
595 return (NULL);
596 pg->flags &= ~PG_BUSY; /* never busy */
597
598 /*
599 * add a mapping for our new pv_page and free its entrys (save one!)
600 *
601 * NOTE: If we are allocating a PV page for the kernel pmap, the
602 * pmap is already locked! (...but entering the mapping is safe...)
603 */
604
605 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
606 VM_PROT_READ|VM_PROT_WRITE);
607 pmap_update(pmap_kernel());
608 pvpage = (struct pv_page *) pv_cachedva;
609 pv_cachedva = 0;
610 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
611 }
612
613 /*
614 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
615 *
616 * => caller must hold pvalloc_lock
617 * => if need_entry is true, we allocate and return one pv_entry
618 */
619
620 static struct pv_entry *
621 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
622 {
623 int tofree, lcv;
624
625 /* do we need to return one? */
626 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
627
628 pvp->pvinfo.pvpi_pvfree = NULL;
629 pvp->pvinfo.pvpi_nfree = tofree;
630 for (lcv = 0 ; lcv < tofree ; lcv++) {
631 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
632 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
633 }
634 if (need_entry)
635 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
636 else
637 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
638 pv_nfpvents += tofree;
639 return((need_entry) ? &pvp->pvents[lcv] : NULL);
640 }
641
642 /*
643 * pmap_free_pv_doit: actually free a pv_entry
644 *
645 * => do not call this directly! instead use either
646 * 1. pmap_free_pv ==> free a single pv_entry
647 * 2. pmap_free_pvs => free a list of pv_entrys
648 * => we must be holding pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pv_doit(struct pv_entry *pv)
653 {
654 struct pv_page *pvp;
655
656 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
657 pv_nfpvents++;
658 pvp->pvinfo.pvpi_nfree++;
659
660 /* nfree == 1 => fully allocated page just became partly allocated */
661 if (pvp->pvinfo.pvpi_nfree == 1) {
662 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
663 }
664
665 /* free it */
666 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
667 pvp->pvinfo.pvpi_pvfree = pv;
668
669 /*
670 * are all pv_page's pv_entry's free? move it to unused queue.
671 */
672
673 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
674 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
675 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
676 }
677 }
678
679 /*
680 * pmap_free_pv: free a single pv_entry
681 *
682 * => we gain the pvalloc_lock
683 */
684
685 __inline static void
686 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
687 {
688 simple_lock(&pvalloc_lock);
689 pmap_free_pv_doit(pv);
690
691 /*
692 * Can't free the PV page if the PV entries were associated with
693 * the kernel pmap; the pmap is already locked.
694 */
695 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
696 pmap != pmap_kernel())
697 pmap_free_pvpage();
698
699 simple_unlock(&pvalloc_lock);
700 }
701
702 /*
703 * pmap_free_pvs: free a list of pv_entrys
704 *
705 * => we gain the pvalloc_lock
706 */
707
708 __inline static void
709 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
710 {
711 struct pv_entry *nextpv;
712
713 simple_lock(&pvalloc_lock);
714
715 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
716 nextpv = pvs->pv_next;
717 pmap_free_pv_doit(pvs);
718 }
719
720 /*
721 * Can't free the PV page if the PV entries were associated with
722 * the kernel pmap; the pmap is already locked.
723 */
724 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
725 pmap != pmap_kernel())
726 pmap_free_pvpage();
727
728 simple_unlock(&pvalloc_lock);
729 }
730
731
732 /*
733 * pmap_free_pvpage: try and free an unused pv_page structure
734 *
735 * => assume caller is holding the pvalloc_lock and that
736 * there is a page on the pv_unusedpgs list
737 * => if we can't get a lock on the kmem_map we try again later
738 */
739
740 static void
741 pmap_free_pvpage(void)
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = TAILQ_FIRST(&pv_unusedpgs);
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760 if (vm_map_lock_try(map)) {
761
762 /* remove pvp from pv_unusedpgs */
763 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
764
765 /* unmap the page */
766 dead_entries = NULL;
767 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
768 &dead_entries);
769 vm_map_unlock(map);
770
771 if (dead_entries != NULL)
772 uvm_unmap_detach(dead_entries, 0);
773
774 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
775 }
776 if (pvp == pv_initpage)
777 /* no more initpage, we've freed it */
778 pv_initpage = NULL;
779
780 splx(s);
781 }
782
783 /*
784 * main pv_entry manipulation functions:
785 * pmap_enter_pv: enter a mapping onto a vm_page list
786 * pmap_remove_pv: remove a mappiing from a vm_page list
787 *
788 * NOTE: pmap_enter_pv expects to lock the pvh itself
789 * pmap_remove_pv expects te caller to lock the pvh before calling
790 */
791
792 /*
793 * pmap_enter_pv: enter a mapping onto a vm_page lst
794 *
795 * => caller should hold the proper lock on pmap_main_lock
796 * => caller should have pmap locked
797 * => we will gain the lock on the vm_page and allocate the new pv_entry
798 * => caller should adjust ptp's wire_count before calling
799 * => caller should not adjust pmap's wire_count
800 */
801
802 __inline static void
803 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
804 vaddr_t va, struct vm_page *ptp, int flags)
805 {
806 pve->pv_pmap = pmap;
807 pve->pv_va = va;
808 pve->pv_ptp = ptp; /* NULL for kernel pmap */
809 pve->pv_flags = flags;
810 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
811 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
812 pg->mdpage.pvh_list = pve; /* ... locked list */
813 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
814 if (pve->pv_flags & PVF_WIRED)
815 ++pmap->pm_stats.wired_count;
816 }
817
818 /*
819 * pmap_remove_pv: try to remove a mapping from a pv_list
820 *
821 * => caller should hold proper lock on pmap_main_lock
822 * => pmap should be locked
823 * => caller should hold lock on vm_page [so that attrs can be adjusted]
824 * => caller should adjust ptp's wire_count and free PTP if needed
825 * => caller should NOT adjust pmap's wire_count
826 * => we return the removed pve
827 */
828
829 __inline static struct pv_entry *
830 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
831 {
832 struct pv_entry *pve, **prevptr;
833
834 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
835 pve = *prevptr;
836 while (pve) {
837 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
838 *prevptr = pve->pv_next; /* remove it! */
839 if (pve->pv_flags & PVF_WIRED)
840 --pmap->pm_stats.wired_count;
841 break;
842 }
843 prevptr = &pve->pv_next; /* previous pointer */
844 pve = pve->pv_next; /* advance */
845 }
846 return(pve); /* return removed pve */
847 }
848
849 /*
850 *
851 * pmap_modify_pv: Update pv flags
852 *
853 * => caller should hold lock on vm_page [so that attrs can be adjusted]
854 * => caller should NOT adjust pmap's wire_count
855 * => caller must call pmap_vac_me_harder() if writable status of a page
856 * may have changed.
857 * => we return the old flags
858 *
859 * Modify a physical-virtual mapping in the pv table
860 */
861
862 static /* __inline */ u_int
863 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
864 u_int bic_mask, u_int eor_mask)
865 {
866 struct pv_entry *npv;
867 u_int flags, oflags;
868
869 /*
870 * There is at least one VA mapping this page.
871 */
872
873 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
874 if (pmap == npv->pv_pmap && va == npv->pv_va) {
875 oflags = npv->pv_flags;
876 npv->pv_flags = flags =
877 ((oflags & ~bic_mask) ^ eor_mask);
878 if ((flags ^ oflags) & PVF_WIRED) {
879 if (flags & PVF_WIRED)
880 ++pmap->pm_stats.wired_count;
881 else
882 --pmap->pm_stats.wired_count;
883 }
884 return (oflags);
885 }
886 }
887 return (0);
888 }
889
890 /*
891 * Map the specified level 2 pagetable into the level 1 page table for
892 * the given pmap to cover a chunk of virtual address space starting from the
893 * address specified.
894 */
895 static __inline void
896 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
897 {
898 vaddr_t ptva;
899
900 /* Calculate the index into the L1 page table. */
901 ptva = (va >> L1_S_SHIFT) & ~3;
902
903 /* Map page table into the L1. */
904 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
905 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
906 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
907 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
908
909 /* Map the page table into the page table area. */
910 if (selfref)
911 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
912 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
913 }
914
915 #if 0
916 static __inline void
917 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
918 {
919 vaddr_t ptva;
920
921 /* Calculate the index into the L1 page table. */
922 ptva = (va >> L1_S_SHIFT) & ~3;
923
924 /* Unmap page table from the L1. */
925 pmap->pm_pdir[ptva + 0] = 0;
926 pmap->pm_pdir[ptva + 1] = 0;
927 pmap->pm_pdir[ptva + 2] = 0;
928 pmap->pm_pdir[ptva + 3] = 0;
929
930 /* Unmap the page table from the page table area. */
931 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
932 }
933 #endif
934
935 /*
936 * Used to map a range of physical addresses into kernel
937 * virtual address space.
938 *
939 * For now, VM is already on, we only need to map the
940 * specified memory.
941 *
942 * XXX This routine should eventually go away; it's only used
943 * XXX by machine-dependent crash dump code.
944 */
945 vaddr_t
946 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
947 {
948 pt_entry_t *pte;
949
950 while (spa < epa) {
951 pte = vtopte(va);
952
953 *pte = L2_S_PROTO | spa |
954 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
955 cpu_tlb_flushID_SE(va);
956 va += NBPG;
957 spa += NBPG;
958 }
959 pmap_update(pmap_kernel());
960 return(va);
961 }
962
963
964 /*
965 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
966 *
967 * bootstrap the pmap system. This is called from initarm and allows
968 * the pmap system to initailise any structures it requires.
969 *
970 * Currently this sets up the kernel_pmap that is statically allocated
971 * and also allocated virtual addresses for certain page hooks.
972 * Currently the only one page hook is allocated that is used
973 * to zero physical pages of memory.
974 * It also initialises the start and end address of the kernel data space.
975 */
976 extern paddr_t physical_freestart;
977 extern paddr_t physical_freeend;
978
979 char *boot_head;
980
981 void
982 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
983 {
984 pt_entry_t *pte;
985 int loop;
986 paddr_t start, end;
987 #if NISADMA > 0
988 paddr_t istart;
989 psize_t isize;
990 #endif
991
992 pmap_kernel()->pm_pdir = kernel_l1pt;
993 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
994 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
995 simple_lock_init(&pmap_kernel()->pm_lock);
996 pmap_kernel()->pm_obj.pgops = NULL;
997 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
998 pmap_kernel()->pm_obj.uo_npages = 0;
999 pmap_kernel()->pm_obj.uo_refs = 1;
1000
1001 /*
1002 * Initialize PAGE_SIZE-dependent variables.
1003 */
1004 uvm_setpagesize();
1005
1006 loop = 0;
1007 while (loop < bootconfig.dramblocks) {
1008 start = (paddr_t)bootconfig.dram[loop].address;
1009 end = start + (bootconfig.dram[loop].pages * NBPG);
1010 if (start < physical_freestart)
1011 start = physical_freestart;
1012 if (end > physical_freeend)
1013 end = physical_freeend;
1014 #if 0
1015 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1016 #endif
1017 #if NISADMA > 0
1018 if (pmap_isa_dma_range_intersect(start, end - start,
1019 &istart, &isize)) {
1020 /*
1021 * Place the pages that intersect with the
1022 * ISA DMA range onto the ISA DMA free list.
1023 */
1024 #if 0
1025 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1026 istart + isize - 1);
1027 #endif
1028 uvm_page_physload(atop(istart),
1029 atop(istart + isize), atop(istart),
1030 atop(istart + isize), VM_FREELIST_ISADMA);
1031
1032 /*
1033 * Load the pieces that come before
1034 * the intersection into the default
1035 * free list.
1036 */
1037 if (start < istart) {
1038 #if 0
1039 printf(" BEFORE 0x%lx -> 0x%lx\n",
1040 start, istart - 1);
1041 #endif
1042 uvm_page_physload(atop(start),
1043 atop(istart), atop(start),
1044 atop(istart), VM_FREELIST_DEFAULT);
1045 }
1046
1047 /*
1048 * Load the pieces that come after
1049 * the intersection into the default
1050 * free list.
1051 */
1052 if ((istart + isize) < end) {
1053 #if 0
1054 printf(" AFTER 0x%lx -> 0x%lx\n",
1055 (istart + isize), end - 1);
1056 #endif
1057 uvm_page_physload(atop(istart + isize),
1058 atop(end), atop(istart + isize),
1059 atop(end), VM_FREELIST_DEFAULT);
1060 }
1061 } else {
1062 uvm_page_physload(atop(start), atop(end),
1063 atop(start), atop(end), VM_FREELIST_DEFAULT);
1064 }
1065 #else /* NISADMA > 0 */
1066 uvm_page_physload(atop(start), atop(end),
1067 atop(start), atop(end), VM_FREELIST_DEFAULT);
1068 #endif /* NISADMA > 0 */
1069 ++loop;
1070 }
1071
1072 virtual_avail = KERNEL_VM_BASE;
1073 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1074
1075 /*
1076 * now we allocate the "special" VAs which are used for tmp mappings
1077 * by the pmap (and other modules). we allocate the VAs by advancing
1078 * virtual_avail (note that there are no pages mapped at these VAs).
1079 * we find the PTE that maps the allocated VA via the linear PTE
1080 * mapping.
1081 */
1082
1083 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1084
1085 csrcp = virtual_avail; csrc_pte = pte;
1086 virtual_avail += PAGE_SIZE; pte++;
1087
1088 cdstp = virtual_avail; cdst_pte = pte;
1089 virtual_avail += PAGE_SIZE; pte++;
1090
1091 memhook = (char *) virtual_avail; /* don't need pte */
1092 virtual_avail += PAGE_SIZE; pte++;
1093
1094 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1095 virtual_avail += round_page(MSGBUFSIZE);
1096 pte += atop(round_page(MSGBUFSIZE));
1097
1098 /*
1099 * init the static-global locks and global lists.
1100 */
1101 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1102 simple_lock_init(&pvalloc_lock);
1103 simple_lock_init(&pmaps_lock);
1104 LIST_INIT(&pmaps);
1105 TAILQ_INIT(&pv_freepages);
1106 TAILQ_INIT(&pv_unusedpgs);
1107
1108 /*
1109 * initialize the pmap pool.
1110 */
1111
1112 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1113 &pool_allocator_nointr);
1114
1115 cpu_dcache_wbinv_all();
1116 }
1117
1118 /*
1119 * void pmap_init(void)
1120 *
1121 * Initialize the pmap module.
1122 * Called by vm_init() in vm/vm_init.c in order to initialise
1123 * any structures that the pmap system needs to map virtual memory.
1124 */
1125
1126 extern int physmem;
1127
1128 void
1129 pmap_init(void)
1130 {
1131
1132 /*
1133 * Set the available memory vars - These do not map to real memory
1134 * addresses and cannot as the physical memory is fragmented.
1135 * They are used by ps for %mem calculations.
1136 * One could argue whether this should be the entire memory or just
1137 * the memory that is useable in a user process.
1138 */
1139 avail_start = 0;
1140 avail_end = physmem * NBPG;
1141
1142 /*
1143 * now we need to free enough pv_entry structures to allow us to get
1144 * the kmem_map/kmem_object allocated and inited (done after this
1145 * function is finished). to do this we allocate one bootstrap page out
1146 * of kernel_map and use it to provide an initial pool of pv_entry
1147 * structures. we never free this page.
1148 */
1149
1150 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1151 if (pv_initpage == NULL)
1152 panic("pmap_init: pv_initpage");
1153 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1154 pv_nfpvents = 0;
1155 (void) pmap_add_pvpage(pv_initpage, FALSE);
1156
1157 pmap_initialized = TRUE;
1158
1159 /* Initialise our L1 page table queues and counters */
1160 SIMPLEQ_INIT(&l1pt_static_queue);
1161 l1pt_static_queue_count = 0;
1162 l1pt_static_create_count = 0;
1163 SIMPLEQ_INIT(&l1pt_queue);
1164 l1pt_queue_count = 0;
1165 l1pt_create_count = 0;
1166 l1pt_reuse_count = 0;
1167 }
1168
1169 /*
1170 * pmap_postinit()
1171 *
1172 * This routine is called after the vm and kmem subsystems have been
1173 * initialised. This allows the pmap code to perform any initialisation
1174 * that can only be done one the memory allocation is in place.
1175 */
1176
1177 void
1178 pmap_postinit(void)
1179 {
1180 int loop;
1181 struct l1pt *pt;
1182
1183 #ifdef PMAP_STATIC_L1S
1184 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1185 #else /* PMAP_STATIC_L1S */
1186 for (loop = 0; loop < max_processes; ++loop) {
1187 #endif /* PMAP_STATIC_L1S */
1188 /* Allocate a L1 page table */
1189 pt = pmap_alloc_l1pt();
1190 if (!pt)
1191 panic("Cannot allocate static L1 page tables\n");
1192
1193 /* Clean it */
1194 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1195 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1196 /* Add the page table to the queue */
1197 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1198 ++l1pt_static_queue_count;
1199 ++l1pt_static_create_count;
1200 }
1201 }
1202
1203
1204 /*
1205 * Create and return a physical map.
1206 *
1207 * If the size specified for the map is zero, the map is an actual physical
1208 * map, and may be referenced by the hardware.
1209 *
1210 * If the size specified is non-zero, the map will be used in software only,
1211 * and is bounded by that size.
1212 */
1213
1214 pmap_t
1215 pmap_create(void)
1216 {
1217 struct pmap *pmap;
1218
1219 /*
1220 * Fetch pmap entry from the pool
1221 */
1222
1223 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1224 /* XXX is this really needed! */
1225 memset(pmap, 0, sizeof(*pmap));
1226
1227 simple_lock_init(&pmap->pm_obj.vmobjlock);
1228 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1229 TAILQ_INIT(&pmap->pm_obj.memq);
1230 pmap->pm_obj.uo_npages = 0;
1231 pmap->pm_obj.uo_refs = 1;
1232 pmap->pm_stats.wired_count = 0;
1233 pmap->pm_stats.resident_count = 1;
1234 pmap->pm_ptphint = NULL;
1235
1236 /* Now init the machine part of the pmap */
1237 pmap_pinit(pmap);
1238 return(pmap);
1239 }
1240
1241 /*
1242 * pmap_alloc_l1pt()
1243 *
1244 * This routine allocates physical and virtual memory for a L1 page table
1245 * and wires it.
1246 * A l1pt structure is returned to describe the allocated page table.
1247 *
1248 * This routine is allowed to fail if the required memory cannot be allocated.
1249 * In this case NULL is returned.
1250 */
1251
1252 struct l1pt *
1253 pmap_alloc_l1pt(void)
1254 {
1255 paddr_t pa;
1256 vaddr_t va;
1257 struct l1pt *pt;
1258 int error;
1259 struct vm_page *m;
1260 pt_entry_t *pte;
1261
1262 /* Allocate virtual address space for the L1 page table */
1263 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1264 if (va == 0) {
1265 #ifdef DIAGNOSTIC
1266 PDEBUG(0,
1267 printf("pmap: Cannot allocate pageable memory for L1\n"));
1268 #endif /* DIAGNOSTIC */
1269 return(NULL);
1270 }
1271
1272 /* Allocate memory for the l1pt structure */
1273 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1274
1275 /*
1276 * Allocate pages from the VM system.
1277 */
1278 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1279 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1280 if (error) {
1281 #ifdef DIAGNOSTIC
1282 PDEBUG(0,
1283 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1284 error));
1285 #endif /* DIAGNOSTIC */
1286 /* Release the resources we already have claimed */
1287 free(pt, M_VMPMAP);
1288 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1289 return(NULL);
1290 }
1291
1292 /* Map our physical pages into our virtual space */
1293 pt->pt_va = va;
1294 m = TAILQ_FIRST(&pt->pt_plist);
1295 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1296 pa = VM_PAGE_TO_PHYS(m);
1297
1298 pte = vtopte(va);
1299
1300 /*
1301 * Assert that the PTE is invalid. If it's invalid,
1302 * then we are guaranteed that there won't be an entry
1303 * for this VA in the TLB.
1304 */
1305 KDASSERT(pmap_pte_v(pte) == 0);
1306
1307 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1308 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1309
1310 va += NBPG;
1311 m = m->pageq.tqe_next;
1312 }
1313
1314 #ifdef DIAGNOSTIC
1315 if (m)
1316 panic("pmap_alloc_l1pt: pglist not empty\n");
1317 #endif /* DIAGNOSTIC */
1318
1319 pt->pt_flags = 0;
1320 return(pt);
1321 }
1322
1323 /*
1324 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1325 */
1326 static void
1327 pmap_free_l1pt(struct l1pt *pt)
1328 {
1329 /* Separate the physical memory for the virtual space */
1330 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1331 pmap_update(pmap_kernel());
1332
1333 /* Return the physical memory */
1334 uvm_pglistfree(&pt->pt_plist);
1335
1336 /* Free the virtual space */
1337 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1338
1339 /* Free the l1pt structure */
1340 free(pt, M_VMPMAP);
1341 }
1342
1343 /*
1344 * pmap_alloc_ptpt:
1345 *
1346 * Allocate the page table that maps the PTE array.
1347 */
1348 static int
1349 pmap_alloc_ptpt(struct pmap *pmap)
1350 {
1351 struct vm_page *pg;
1352 pt_entry_t *pte;
1353
1354 KASSERT(pmap->pm_vptpt == 0);
1355
1356 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1357 if (pmap->pm_vptpt == 0) {
1358 PDEBUG(0,
1359 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1360 return (ENOMEM);
1361 }
1362
1363 for (;;) {
1364 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1365 if (pg != NULL)
1366 break;
1367 uvm_wait("pmap_ptpt");
1368 }
1369
1370 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1371
1372 pte = vtopte(pmap->pm_vptpt);
1373
1374 KDASSERT(pmap_pte_v(pte) == 0);
1375
1376 *pte = L2_S_PROTO | pmap->pm_pptpt |
1377 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1378
1379 return (0);
1380 }
1381
1382 /*
1383 * pmap_free_ptpt:
1384 *
1385 * Free the page table that maps the PTE array.
1386 */
1387 static void
1388 pmap_free_ptpt(struct pmap *pmap)
1389 {
1390
1391 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1392 pmap_update(pmap_kernel());
1393
1394 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1395
1396 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1397 }
1398
1399 /*
1400 * Allocate a page directory.
1401 * This routine will either allocate a new page directory from the pool
1402 * of L1 page tables currently held by the kernel or it will allocate
1403 * a new one via pmap_alloc_l1pt().
1404 * It will then initialise the l1 page table for use.
1405 */
1406 static int
1407 pmap_allocpagedir(struct pmap *pmap)
1408 {
1409 paddr_t pa;
1410 struct l1pt *pt;
1411 int error;
1412
1413 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1414
1415 /* Do we have any spare L1's lying around ? */
1416 if (l1pt_static_queue_count) {
1417 --l1pt_static_queue_count;
1418 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1419 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1420 } else if (l1pt_queue_count) {
1421 --l1pt_queue_count;
1422 pt = SIMPLEQ_FIRST(&l1pt_queue);
1423 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1424 ++l1pt_reuse_count;
1425 } else {
1426 pt = pmap_alloc_l1pt();
1427 if (!pt)
1428 return(ENOMEM);
1429 ++l1pt_create_count;
1430 }
1431
1432 /* Store the pointer to the l1 descriptor in the pmap. */
1433 pmap->pm_l1pt = pt;
1434
1435 /* Get the physical address of the start of the l1 */
1436 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1437
1438 /* Store the virtual address of the l1 in the pmap. */
1439 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1440
1441 /* Clean the L1 if it is dirty */
1442 if (!(pt->pt_flags & PTFLAG_CLEAN))
1443 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1444
1445 /* Allocate a page table to map all the page tables for this pmap */
1446 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1447 pmap_freepagedir(pmap);
1448 return (error);
1449 }
1450
1451 /* need to lock this all up for growkernel */
1452 simple_lock(&pmaps_lock);
1453
1454 /* Duplicate the kernel mappings. */
1455 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1456 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1457 KERNEL_PD_SIZE);
1458
1459 /* Wire in this page table */
1460 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1461
1462 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1463
1464 /*
1465 * Map the kernel page tables into the new PT map.
1466 */
1467 bcopy((char *)(PTE_BASE
1468 + (PTE_BASE >> (PGSHIFT - 2))
1469 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1470 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1471 (KERNEL_PD_SIZE >> 2));
1472
1473 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1474 simple_unlock(&pmaps_lock);
1475
1476 return(0);
1477 }
1478
1479
1480 /*
1481 * Initialize a preallocated and zeroed pmap structure,
1482 * such as one in a vmspace structure.
1483 */
1484
1485 void
1486 pmap_pinit(struct pmap *pmap)
1487 {
1488 int backoff = 6;
1489 int retry = 10;
1490
1491 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1492
1493 /* Keep looping until we succeed in allocating a page directory */
1494 while (pmap_allocpagedir(pmap) != 0) {
1495 /*
1496 * Ok we failed to allocate a suitable block of memory for an
1497 * L1 page table. This means that either:
1498 * 1. 16KB of virtual address space could not be allocated
1499 * 2. 16KB of physically contiguous memory on a 16KB boundary
1500 * could not be allocated.
1501 *
1502 * Since we cannot fail we will sleep for a while and try
1503 * again.
1504 *
1505 * Searching for a suitable L1 PT is expensive:
1506 * to avoid hogging the system when memory is really
1507 * scarce, use an exponential back-off so that
1508 * eventually we won't retry more than once every 8
1509 * seconds. This should allow other processes to run
1510 * to completion and free up resources.
1511 */
1512 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1513 NULL);
1514 if (--retry == 0) {
1515 retry = 10;
1516 if (backoff)
1517 --backoff;
1518 }
1519 }
1520
1521 if (vector_page < KERNEL_BASE) {
1522 /*
1523 * Map the vector page. This will also allocate and map
1524 * an L2 table for it.
1525 */
1526 pmap_enter(pmap, vector_page, systempage.pv_pa,
1527 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1528 pmap_update(pmap);
1529 }
1530 }
1531
1532
1533 void
1534 pmap_freepagedir(struct pmap *pmap)
1535 {
1536 /* Free the memory used for the page table mapping */
1537 if (pmap->pm_vptpt != 0)
1538 pmap_free_ptpt(pmap);
1539
1540 /* junk the L1 page table */
1541 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1542 /* Add the page table to the queue */
1543 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1544 ++l1pt_static_queue_count;
1545 } else if (l1pt_queue_count < 8) {
1546 /* Add the page table to the queue */
1547 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1548 ++l1pt_queue_count;
1549 } else
1550 pmap_free_l1pt(pmap->pm_l1pt);
1551 }
1552
1553
1554 /*
1555 * Retire the given physical map from service.
1556 * Should only be called if the map contains no valid mappings.
1557 */
1558
1559 void
1560 pmap_destroy(struct pmap *pmap)
1561 {
1562 struct vm_page *page;
1563 int count;
1564
1565 if (pmap == NULL)
1566 return;
1567
1568 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1569
1570 /*
1571 * Drop reference count
1572 */
1573 simple_lock(&pmap->pm_obj.vmobjlock);
1574 count = --pmap->pm_obj.uo_refs;
1575 simple_unlock(&pmap->pm_obj.vmobjlock);
1576 if (count > 0) {
1577 return;
1578 }
1579
1580 /*
1581 * reference count is zero, free pmap resources and then free pmap.
1582 */
1583
1584 /*
1585 * remove it from global list of pmaps
1586 */
1587
1588 simple_lock(&pmaps_lock);
1589 LIST_REMOVE(pmap, pm_list);
1590 simple_unlock(&pmaps_lock);
1591
1592 if (vector_page < KERNEL_BASE) {
1593 /* Remove the vector page mapping */
1594 pmap_remove(pmap, vector_page, vector_page + NBPG);
1595 pmap_update(pmap);
1596 }
1597
1598 /*
1599 * Free any page tables still mapped
1600 * This is only temporay until pmap_enter can count the number
1601 * of mappings made in a page table. Then pmap_remove() can
1602 * reduce the count and free the pagetable when the count
1603 * reaches zero. Note that entries in this list should match the
1604 * contents of the ptpt, however this is faster than walking a 1024
1605 * entries looking for pt's
1606 * taken from i386 pmap.c
1607 */
1608 /*
1609 * vmobjlock must be held while freeing pages
1610 */
1611 simple_lock(&pmap->pm_obj.vmobjlock);
1612 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1613 KASSERT((page->flags & PG_BUSY) == 0);
1614 page->wire_count = 0;
1615 uvm_pagefree(page);
1616 }
1617 simple_unlock(&pmap->pm_obj.vmobjlock);
1618
1619 /* Free the page dir */
1620 pmap_freepagedir(pmap);
1621
1622 /* return the pmap to the pool */
1623 pool_put(&pmap_pmap_pool, pmap);
1624 }
1625
1626
1627 /*
1628 * void pmap_reference(struct pmap *pmap)
1629 *
1630 * Add a reference to the specified pmap.
1631 */
1632
1633 void
1634 pmap_reference(struct pmap *pmap)
1635 {
1636 if (pmap == NULL)
1637 return;
1638
1639 simple_lock(&pmap->pm_lock);
1640 pmap->pm_obj.uo_refs++;
1641 simple_unlock(&pmap->pm_lock);
1642 }
1643
1644 /*
1645 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1646 *
1647 * Return the start and end addresses of the kernel's virtual space.
1648 * These values are setup in pmap_bootstrap and are updated as pages
1649 * are allocated.
1650 */
1651
1652 void
1653 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1654 {
1655 *start = virtual_avail;
1656 *end = virtual_end;
1657 }
1658
1659 /*
1660 * Activate the address space for the specified process. If the process
1661 * is the current process, load the new MMU context.
1662 */
1663 void
1664 pmap_activate(struct proc *p)
1665 {
1666 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1667 struct pcb *pcb = &p->p_addr->u_pcb;
1668
1669 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1670 (paddr_t *)&pcb->pcb_pagedir);
1671
1672 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1673 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1674
1675 if (p == curproc) {
1676 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1677 setttb((u_int)pcb->pcb_pagedir);
1678 }
1679 }
1680
1681 /*
1682 * Deactivate the address space of the specified process.
1683 */
1684 void
1685 pmap_deactivate(struct proc *p)
1686 {
1687 }
1688
1689 /*
1690 * Perform any deferred pmap operations.
1691 */
1692 void
1693 pmap_update(struct pmap *pmap)
1694 {
1695
1696 /*
1697 * We haven't deferred any pmap operations, but we do need to
1698 * make sure TLB/cache operations have completed.
1699 */
1700 cpu_cpwait();
1701 }
1702
1703 /*
1704 * pmap_clean_page()
1705 *
1706 * This is a local function used to work out the best strategy to clean
1707 * a single page referenced by its entry in the PV table. It's used by
1708 * pmap_copy_page, pmap_zero page and maybe some others later on.
1709 *
1710 * Its policy is effectively:
1711 * o If there are no mappings, we don't bother doing anything with the cache.
1712 * o If there is one mapping, we clean just that page.
1713 * o If there are multiple mappings, we clean the entire cache.
1714 *
1715 * So that some functions can be further optimised, it returns 0 if it didn't
1716 * clean the entire cache, or 1 if it did.
1717 *
1718 * XXX One bug in this routine is that if the pv_entry has a single page
1719 * mapped at 0x00000000 a whole cache clean will be performed rather than
1720 * just the 1 page. Since this should not occur in everyday use and if it does
1721 * it will just result in not the most efficient clean for the page.
1722 */
1723 static int
1724 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1725 {
1726 struct pmap *pmap;
1727 struct pv_entry *npv;
1728 int cache_needs_cleaning = 0;
1729 vaddr_t page_to_clean = 0;
1730
1731 if (pv == NULL)
1732 /* nothing mapped in so nothing to flush */
1733 return (0);
1734
1735 /* Since we flush the cache each time we change curproc, we
1736 * only need to flush the page if it is in the current pmap.
1737 */
1738 if (curproc)
1739 pmap = curproc->p_vmspace->vm_map.pmap;
1740 else
1741 pmap = pmap_kernel();
1742
1743 for (npv = pv; npv; npv = npv->pv_next) {
1744 if (npv->pv_pmap == pmap) {
1745 /* The page is mapped non-cacheable in
1746 * this map. No need to flush the cache.
1747 */
1748 if (npv->pv_flags & PVF_NC) {
1749 #ifdef DIAGNOSTIC
1750 if (cache_needs_cleaning)
1751 panic("pmap_clean_page: "
1752 "cache inconsistency");
1753 #endif
1754 break;
1755 }
1756 #if 0
1757 /*
1758 * XXX Can't do this because pmap_protect doesn't
1759 * XXX clean the page when it does a write-protect.
1760 */
1761 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1762 continue;
1763 #endif
1764 if (cache_needs_cleaning){
1765 page_to_clean = 0;
1766 break;
1767 }
1768 else
1769 page_to_clean = npv->pv_va;
1770 cache_needs_cleaning = 1;
1771 }
1772 }
1773
1774 if (page_to_clean)
1775 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1776 else if (cache_needs_cleaning) {
1777 cpu_idcache_wbinv_all();
1778 return (1);
1779 }
1780 return (0);
1781 }
1782
1783 /*
1784 * pmap_zero_page()
1785 *
1786 * Zero a given physical page by mapping it at a page hook point.
1787 * In doing the zero page op, the page we zero is mapped cachable, as with
1788 * StrongARM accesses to non-cached pages are non-burst making writing
1789 * _any_ bulk data very slow.
1790 */
1791 #if ARM_MMU_GENERIC == 1
1792 void
1793 pmap_zero_page_generic(paddr_t phys)
1794 {
1795 #ifdef DEBUG
1796 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1797
1798 if (pg->mdpage.pvh_list != NULL)
1799 panic("pmap_zero_page: page has mappings");
1800 #endif
1801
1802 KDASSERT((phys & PGOFSET) == 0);
1803
1804 /*
1805 * Hook in the page, zero it, and purge the cache for that
1806 * zeroed page. Invalidate the TLB as needed.
1807 */
1808 *cdst_pte = L2_S_PROTO | phys |
1809 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1810 cpu_tlb_flushD_SE(cdstp);
1811 cpu_cpwait();
1812 bzero_page(cdstp);
1813 cpu_dcache_wbinv_range(cdstp, NBPG);
1814 }
1815 #endif /* ARM_MMU_GENERIC == 1 */
1816
1817 #if ARM_MMU_XSCALE == 1
1818 void
1819 pmap_zero_page_xscale(paddr_t phys)
1820 {
1821 #ifdef DEBUG
1822 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1823
1824 if (pg->mdpage.pvh_list != NULL)
1825 panic("pmap_zero_page: page has mappings");
1826 #endif
1827
1828 KDASSERT((phys & PGOFSET) == 0);
1829
1830 /*
1831 * Hook in the page, zero it, and purge the cache for that
1832 * zeroed page. Invalidate the TLB as needed.
1833 */
1834 *cdst_pte = L2_S_PROTO | phys |
1835 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1836 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1837 cpu_tlb_flushD_SE(cdstp);
1838 cpu_cpwait();
1839 bzero_page(cdstp);
1840 xscale_cache_clean_minidata();
1841 }
1842 #endif /* ARM_MMU_XSCALE == 1 */
1843
1844 /* pmap_pageidlezero()
1845 *
1846 * The same as above, except that we assume that the page is not
1847 * mapped. This means we never have to flush the cache first. Called
1848 * from the idle loop.
1849 */
1850 boolean_t
1851 pmap_pageidlezero(paddr_t phys)
1852 {
1853 int i, *ptr;
1854 boolean_t rv = TRUE;
1855 #ifdef DEBUG
1856 struct vm_page *pg;
1857
1858 pg = PHYS_TO_VM_PAGE(phys);
1859 if (pg->mdpage.pvh_list != NULL)
1860 panic("pmap_pageidlezero: page has mappings");
1861 #endif
1862
1863 KDASSERT((phys & PGOFSET) == 0);
1864
1865 /*
1866 * Hook in the page, zero it, and purge the cache for that
1867 * zeroed page. Invalidate the TLB as needed.
1868 */
1869 *cdst_pte = L2_S_PROTO | phys |
1870 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1871 cpu_tlb_flushD_SE(cdstp);
1872 cpu_cpwait();
1873
1874 for (i = 0, ptr = (int *)cdstp;
1875 i < (NBPG / sizeof(int)); i++) {
1876 if (sched_whichqs != 0) {
1877 /*
1878 * A process has become ready. Abort now,
1879 * so we don't keep it waiting while we
1880 * do slow memory access to finish this
1881 * page.
1882 */
1883 rv = FALSE;
1884 break;
1885 }
1886 *ptr++ = 0;
1887 }
1888
1889 if (rv)
1890 /*
1891 * if we aborted we'll rezero this page again later so don't
1892 * purge it unless we finished it
1893 */
1894 cpu_dcache_wbinv_range(cdstp, NBPG);
1895 return (rv);
1896 }
1897
1898 /*
1899 * pmap_copy_page()
1900 *
1901 * Copy one physical page into another, by mapping the pages into
1902 * hook points. The same comment regarding cachability as in
1903 * pmap_zero_page also applies here.
1904 */
1905 #if ARM_MMU_GENERIC == 1
1906 void
1907 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1908 {
1909 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1910 #ifdef DEBUG
1911 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1912
1913 if (dst_pg->mdpage.pvh_list != NULL)
1914 panic("pmap_copy_page: dst page has mappings");
1915 #endif
1916
1917 KDASSERT((src & PGOFSET) == 0);
1918 KDASSERT((dst & PGOFSET) == 0);
1919
1920 /*
1921 * Clean the source page. Hold the source page's lock for
1922 * the duration of the copy so that no other mappings can
1923 * be created while we have a potentially aliased mapping.
1924 */
1925 simple_lock(&src_pg->mdpage.pvh_slock);
1926 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1927
1928 /*
1929 * Map the pages into the page hook points, copy them, and purge
1930 * the cache for the appropriate page. Invalidate the TLB
1931 * as required.
1932 */
1933 *csrc_pte = L2_S_PROTO | src |
1934 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1935 *cdst_pte = L2_S_PROTO | dst |
1936 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1937 cpu_tlb_flushD_SE(csrcp);
1938 cpu_tlb_flushD_SE(cdstp);
1939 cpu_cpwait();
1940 bcopy_page(csrcp, cdstp);
1941 cpu_dcache_inv_range(csrcp, NBPG);
1942 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1943 cpu_dcache_wbinv_range(cdstp, NBPG);
1944 }
1945 #endif /* ARM_MMU_GENERIC == 1 */
1946
1947 #if ARM_MMU_XSCALE == 1
1948 void
1949 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1950 {
1951 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1952 #ifdef DEBUG
1953 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1954
1955 if (dst_pg->mdpage.pvh_list != NULL)
1956 panic("pmap_copy_page: dst page has mappings");
1957 #endif
1958
1959 KDASSERT((src & PGOFSET) == 0);
1960 KDASSERT((dst & PGOFSET) == 0);
1961
1962 /*
1963 * Clean the source page. Hold the source page's lock for
1964 * the duration of the copy so that no other mappings can
1965 * be created while we have a potentially aliased mapping.
1966 */
1967 simple_lock(&src_pg->mdpage.pvh_slock);
1968 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1969
1970 /*
1971 * Map the pages into the page hook points, copy them, and purge
1972 * the cache for the appropriate page. Invalidate the TLB
1973 * as required.
1974 */
1975 *csrc_pte = L2_S_PROTO | src |
1976 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1977 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1978 *cdst_pte = L2_S_PROTO | dst |
1979 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1980 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1981 cpu_tlb_flushD_SE(csrcp);
1982 cpu_tlb_flushD_SE(cdstp);
1983 cpu_cpwait();
1984 bcopy_page(csrcp, cdstp);
1985 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1986 xscale_cache_clean_minidata();
1987 }
1988 #endif /* ARM_MMU_XSCALE == 1 */
1989
1990 #if 0
1991 void
1992 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1993 {
1994 pd_entry_t *pde;
1995 paddr_t pa;
1996 struct vm_page *m;
1997
1998 if (pmap == pmap_kernel())
1999 return;
2000
2001 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2002 pa = pmap_pte_pa(pde);
2003 m = PHYS_TO_VM_PAGE(pa);
2004 ++m->wire_count;
2005 #ifdef MYCROFT_HACK
2006 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2007 pmap, va, pde, pa, m, m->wire_count);
2008 #endif
2009 }
2010
2011 void
2012 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2013 {
2014 pd_entry_t *pde;
2015 paddr_t pa;
2016 struct vm_page *m;
2017
2018 if (pmap == pmap_kernel())
2019 return;
2020
2021 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2022 pa = pmap_pte_pa(pde);
2023 m = PHYS_TO_VM_PAGE(pa);
2024 --m->wire_count;
2025 #ifdef MYCROFT_HACK
2026 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2027 pmap, va, pde, pa, m, m->wire_count);
2028 #endif
2029 if (m->wire_count == 0) {
2030 #ifdef MYCROFT_HACK
2031 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2032 pmap, va, pde, pa, m);
2033 #endif
2034 pmap_unmap_in_l1(pmap, va);
2035 uvm_pagefree(m);
2036 --pmap->pm_stats.resident_count;
2037 }
2038 }
2039 #else
2040 #define pmap_pte_addref(pmap, va)
2041 #define pmap_pte_delref(pmap, va)
2042 #endif
2043
2044 /*
2045 * Since we have a virtually indexed cache, we may need to inhibit caching if
2046 * there is more than one mapping and at least one of them is writable.
2047 * Since we purge the cache on every context switch, we only need to check for
2048 * other mappings within the same pmap, or kernel_pmap.
2049 * This function is also called when a page is unmapped, to possibly reenable
2050 * caching on any remaining mappings.
2051 *
2052 * The code implements the following logic, where:
2053 *
2054 * KW = # of kernel read/write pages
2055 * KR = # of kernel read only pages
2056 * UW = # of user read/write pages
2057 * UR = # of user read only pages
2058 * OW = # of user read/write pages in another pmap, then
2059 *
2060 * KC = kernel mapping is cacheable
2061 * UC = user mapping is cacheable
2062 *
2063 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2064 * +---------------------------------------------
2065 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2066 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2067 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2068 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2069 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2070 *
2071 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2072 */
2073 __inline static void
2074 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2075 boolean_t clear_cache)
2076 {
2077 if (pmap == pmap_kernel())
2078 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2079 else
2080 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2081 }
2082
2083 static void
2084 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2085 boolean_t clear_cache)
2086 {
2087 int user_entries = 0;
2088 int user_writable = 0;
2089 int user_cacheable = 0;
2090 int kernel_entries = 0;
2091 int kernel_writable = 0;
2092 int kernel_cacheable = 0;
2093 struct pv_entry *pv;
2094 struct pmap *last_pmap = pmap;
2095
2096 #ifdef DIAGNOSTIC
2097 if (pmap != pmap_kernel())
2098 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2099 #endif
2100
2101 /*
2102 * Pass one, see if there are both kernel and user pmaps for
2103 * this page. Calculate whether there are user-writable or
2104 * kernel-writable pages.
2105 */
2106 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2107 if (pv->pv_pmap != pmap) {
2108 user_entries++;
2109 if (pv->pv_flags & PVF_WRITE)
2110 user_writable++;
2111 if ((pv->pv_flags & PVF_NC) == 0)
2112 user_cacheable++;
2113 } else {
2114 kernel_entries++;
2115 if (pv->pv_flags & PVF_WRITE)
2116 kernel_writable++;
2117 if ((pv->pv_flags & PVF_NC) == 0)
2118 kernel_cacheable++;
2119 }
2120 }
2121
2122 /*
2123 * We know we have just been updating a kernel entry, so if
2124 * all user pages are already cacheable, then there is nothing
2125 * further to do.
2126 */
2127 if (kernel_entries == 0 &&
2128 user_cacheable == user_entries)
2129 return;
2130
2131 if (user_entries) {
2132 /*
2133 * Scan over the list again, for each entry, if it
2134 * might not be set correctly, call pmap_vac_me_user
2135 * to recalculate the settings.
2136 */
2137 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2138 /*
2139 * We know kernel mappings will get set
2140 * correctly in other calls. We also know
2141 * that if the pmap is the same as last_pmap
2142 * then we've just handled this entry.
2143 */
2144 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2145 continue;
2146 /*
2147 * If there are kernel entries and this page
2148 * is writable but non-cacheable, then we can
2149 * skip this entry also.
2150 */
2151 if (kernel_entries > 0 &&
2152 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2153 (PVF_NC | PVF_WRITE))
2154 continue;
2155 /*
2156 * Similarly if there are no kernel-writable
2157 * entries and the page is already
2158 * read-only/cacheable.
2159 */
2160 if (kernel_writable == 0 &&
2161 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2162 continue;
2163 /*
2164 * For some of the remaining cases, we know
2165 * that we must recalculate, but for others we
2166 * can't tell if they are correct or not, so
2167 * we recalculate anyway.
2168 */
2169 pmap_unmap_ptes(last_pmap);
2170 last_pmap = pv->pv_pmap;
2171 ptes = pmap_map_ptes(last_pmap);
2172 pmap_vac_me_user(last_pmap, pg, ptes,
2173 pmap_is_curpmap(last_pmap));
2174 }
2175 /* Restore the pte mapping that was passed to us. */
2176 if (last_pmap != pmap) {
2177 pmap_unmap_ptes(last_pmap);
2178 ptes = pmap_map_ptes(pmap);
2179 }
2180 if (kernel_entries == 0)
2181 return;
2182 }
2183
2184 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2185 return;
2186 }
2187
2188 static void
2189 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2190 boolean_t clear_cache)
2191 {
2192 struct pmap *kpmap = pmap_kernel();
2193 struct pv_entry *pv, *npv;
2194 int entries = 0;
2195 int writable = 0;
2196 int cacheable_entries = 0;
2197 int kern_cacheable = 0;
2198 int other_writable = 0;
2199
2200 pv = pg->mdpage.pvh_list;
2201 KASSERT(ptes != NULL);
2202
2203 /*
2204 * Count mappings and writable mappings in this pmap.
2205 * Include kernel mappings as part of our own.
2206 * Keep a pointer to the first one.
2207 */
2208 for (npv = pv; npv; npv = npv->pv_next) {
2209 /* Count mappings in the same pmap */
2210 if (pmap == npv->pv_pmap ||
2211 kpmap == npv->pv_pmap) {
2212 if (entries++ == 0)
2213 pv = npv;
2214 /* Cacheable mappings */
2215 if ((npv->pv_flags & PVF_NC) == 0) {
2216 cacheable_entries++;
2217 if (kpmap == npv->pv_pmap)
2218 kern_cacheable++;
2219 }
2220 /* Writable mappings */
2221 if (npv->pv_flags & PVF_WRITE)
2222 ++writable;
2223 } else if (npv->pv_flags & PVF_WRITE)
2224 other_writable = 1;
2225 }
2226
2227 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2228 "writable %d cacheable %d %s\n", pmap, entries, writable,
2229 cacheable_entries, clear_cache ? "clean" : "no clean"));
2230
2231 /*
2232 * Enable or disable caching as necessary.
2233 * Note: the first entry might be part of the kernel pmap,
2234 * so we can't assume this is indicative of the state of the
2235 * other (maybe non-kpmap) entries.
2236 */
2237 if ((entries > 1 && writable) ||
2238 (entries > 0 && pmap == kpmap && other_writable)) {
2239 if (cacheable_entries == 0)
2240 return;
2241 for (npv = pv; npv; npv = npv->pv_next) {
2242 if ((pmap == npv->pv_pmap
2243 || kpmap == npv->pv_pmap) &&
2244 (npv->pv_flags & PVF_NC) == 0) {
2245 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2246 npv->pv_flags |= PVF_NC;
2247 /*
2248 * If this page needs flushing from the
2249 * cache, and we aren't going to do it
2250 * below, do it now.
2251 */
2252 if ((cacheable_entries < 4 &&
2253 (clear_cache || npv->pv_pmap == kpmap)) ||
2254 (npv->pv_pmap == kpmap &&
2255 !clear_cache && kern_cacheable < 4)) {
2256 cpu_idcache_wbinv_range(npv->pv_va,
2257 NBPG);
2258 cpu_tlb_flushID_SE(npv->pv_va);
2259 }
2260 }
2261 }
2262 if ((clear_cache && cacheable_entries >= 4) ||
2263 kern_cacheable >= 4) {
2264 cpu_idcache_wbinv_all();
2265 cpu_tlb_flushID();
2266 }
2267 cpu_cpwait();
2268 } else if (entries > 0) {
2269 /*
2270 * Turn cacheing back on for some pages. If it is a kernel
2271 * page, only do so if there are no other writable pages.
2272 */
2273 for (npv = pv; npv; npv = npv->pv_next) {
2274 if ((pmap == npv->pv_pmap ||
2275 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2276 (npv->pv_flags & PVF_NC)) {
2277 ptes[arm_btop(npv->pv_va)] |=
2278 pte_l2_s_cache_mode;
2279 npv->pv_flags &= ~PVF_NC;
2280 }
2281 }
2282 }
2283 }
2284
2285 /*
2286 * pmap_remove()
2287 *
2288 * pmap_remove is responsible for nuking a number of mappings for a range
2289 * of virtual address space in the current pmap. To do this efficiently
2290 * is interesting, because in a number of cases a wide virtual address
2291 * range may be supplied that contains few actual mappings. So, the
2292 * optimisations are:
2293 * 1. Try and skip over hunks of address space for which an L1 entry
2294 * does not exist.
2295 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2296 * maybe do just a partial cache clean. This path of execution is
2297 * complicated by the fact that the cache must be flushed _before_
2298 * the PTE is nuked, being a VAC :-)
2299 * 3. Maybe later fast-case a single page, but I don't think this is
2300 * going to make _that_ much difference overall.
2301 */
2302
2303 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2304
2305 void
2306 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2307 {
2308 int cleanlist_idx = 0;
2309 struct pagelist {
2310 vaddr_t va;
2311 pt_entry_t *pte;
2312 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2313 pt_entry_t *pte = 0, *ptes;
2314 paddr_t pa;
2315 int pmap_active;
2316 struct vm_page *pg;
2317
2318 /* Exit quick if there is no pmap */
2319 if (!pmap)
2320 return;
2321
2322 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2323 pmap, sva, eva));
2324
2325 /*
2326 * we lock in the pmap => vm_page direction
2327 */
2328 PMAP_MAP_TO_HEAD_LOCK();
2329
2330 ptes = pmap_map_ptes(pmap);
2331 /* Get a page table pointer */
2332 while (sva < eva) {
2333 if (pmap_pde_page(pmap_pde(pmap, sva)))
2334 break;
2335 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2336 }
2337
2338 pte = &ptes[arm_btop(sva)];
2339 /* Note if the pmap is active thus require cache and tlb cleans */
2340 pmap_active = pmap_is_curpmap(pmap);
2341
2342 /* Now loop along */
2343 while (sva < eva) {
2344 /* Check if we can move to the next PDE (l1 chunk) */
2345 if (!(sva & L2_ADDR_BITS))
2346 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2347 sva += L1_S_SIZE;
2348 pte += arm_btop(L1_S_SIZE);
2349 continue;
2350 }
2351
2352 /* We've found a valid PTE, so this page of PTEs has to go. */
2353 if (pmap_pte_v(pte)) {
2354 /* Update statistics */
2355 --pmap->pm_stats.resident_count;
2356
2357 /*
2358 * Add this page to our cache remove list, if we can.
2359 * If, however the cache remove list is totally full,
2360 * then do a complete cache invalidation taking note
2361 * to backtrack the PTE table beforehand, and ignore
2362 * the lists in future because there's no longer any
2363 * point in bothering with them (we've paid the
2364 * penalty, so will carry on unhindered). Otherwise,
2365 * when we fall out, we just clean the list.
2366 */
2367 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2368 pa = pmap_pte_pa(pte);
2369
2370 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2371 /* Add to the clean list. */
2372 cleanlist[cleanlist_idx].pte = pte;
2373 cleanlist[cleanlist_idx].va = sva;
2374 cleanlist_idx++;
2375 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2376 int cnt;
2377
2378 /* Nuke everything if needed. */
2379 if (pmap_active) {
2380 cpu_idcache_wbinv_all();
2381 cpu_tlb_flushID();
2382 }
2383
2384 /*
2385 * Roll back the previous PTE list,
2386 * and zero out the current PTE.
2387 */
2388 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2389 *cleanlist[cnt].pte = 0;
2390 pmap_pte_delref(pmap, cleanlist[cnt].va);
2391 }
2392 *pte = 0;
2393 pmap_pte_delref(pmap, sva);
2394 cleanlist_idx++;
2395 } else {
2396 /*
2397 * We've already nuked the cache and
2398 * TLB, so just carry on regardless,
2399 * and we won't need to do it again
2400 */
2401 *pte = 0;
2402 pmap_pte_delref(pmap, sva);
2403 }
2404
2405 /*
2406 * Update flags. In a number of circumstances,
2407 * we could cluster a lot of these and do a
2408 * number of sequential pages in one go.
2409 */
2410 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2411 struct pv_entry *pve;
2412 simple_lock(&pg->mdpage.pvh_slock);
2413 pve = pmap_remove_pv(pg, pmap, sva);
2414 pmap_free_pv(pmap, pve);
2415 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2416 simple_unlock(&pg->mdpage.pvh_slock);
2417 }
2418 }
2419 sva += NBPG;
2420 pte++;
2421 }
2422
2423 pmap_unmap_ptes(pmap);
2424 /*
2425 * Now, if we've fallen through down to here, chances are that there
2426 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2427 */
2428 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2429 u_int cnt;
2430
2431 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2432 if (pmap_active) {
2433 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2434 NBPG);
2435 *cleanlist[cnt].pte = 0;
2436 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2437 } else
2438 *cleanlist[cnt].pte = 0;
2439 pmap_pte_delref(pmap, cleanlist[cnt].va);
2440 }
2441 }
2442 PMAP_MAP_TO_HEAD_UNLOCK();
2443 }
2444
2445 /*
2446 * Routine: pmap_remove_all
2447 * Function:
2448 * Removes this physical page from
2449 * all physical maps in which it resides.
2450 * Reflects back modify bits to the pager.
2451 */
2452
2453 static void
2454 pmap_remove_all(struct vm_page *pg)
2455 {
2456 struct pv_entry *pv, *npv;
2457 struct pmap *pmap;
2458 pt_entry_t *pte, *ptes;
2459
2460 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2461
2462 /* set vm_page => pmap locking */
2463 PMAP_HEAD_TO_MAP_LOCK();
2464
2465 simple_lock(&pg->mdpage.pvh_slock);
2466
2467 pv = pg->mdpage.pvh_list;
2468 if (pv == NULL) {
2469 PDEBUG(0, printf("free page\n"));
2470 simple_unlock(&pg->mdpage.pvh_slock);
2471 PMAP_HEAD_TO_MAP_UNLOCK();
2472 return;
2473 }
2474 pmap_clean_page(pv, FALSE);
2475
2476 while (pv) {
2477 pmap = pv->pv_pmap;
2478 ptes = pmap_map_ptes(pmap);
2479 pte = &ptes[arm_btop(pv->pv_va)];
2480
2481 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2482 pv->pv_va, pv->pv_flags));
2483 #ifdef DEBUG
2484 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2485 pmap_pte_v(pte) == 0 ||
2486 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2487 panic("pmap_remove_all: bad mapping");
2488 #endif /* DEBUG */
2489
2490 /*
2491 * Update statistics
2492 */
2493 --pmap->pm_stats.resident_count;
2494
2495 /* Wired bit */
2496 if (pv->pv_flags & PVF_WIRED)
2497 --pmap->pm_stats.wired_count;
2498
2499 /*
2500 * Invalidate the PTEs.
2501 * XXX: should cluster them up and invalidate as many
2502 * as possible at once.
2503 */
2504
2505 #ifdef needednotdone
2506 reduce wiring count on page table pages as references drop
2507 #endif
2508
2509 *pte = 0;
2510 pmap_pte_delref(pmap, pv->pv_va);
2511
2512 npv = pv->pv_next;
2513 pmap_free_pv(pmap, pv);
2514 pv = npv;
2515 pmap_unmap_ptes(pmap);
2516 }
2517 pg->mdpage.pvh_list = NULL;
2518 simple_unlock(&pg->mdpage.pvh_slock);
2519 PMAP_HEAD_TO_MAP_UNLOCK();
2520
2521 PDEBUG(0, printf("done\n"));
2522 cpu_tlb_flushID();
2523 cpu_cpwait();
2524 }
2525
2526
2527 /*
2528 * Set the physical protection on the specified range of this map as requested.
2529 */
2530
2531 void
2532 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2533 {
2534 pt_entry_t *pte = NULL, *ptes;
2535 struct vm_page *pg;
2536 int armprot;
2537 int flush = 0;
2538 paddr_t pa;
2539
2540 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2541 pmap, sva, eva, prot));
2542
2543 if (~prot & VM_PROT_READ) {
2544 /* Just remove the mappings. */
2545 pmap_remove(pmap, sva, eva);
2546 /* pmap_update not needed as it should be called by the caller
2547 * of pmap_protect */
2548 return;
2549 }
2550 if (prot & VM_PROT_WRITE) {
2551 /*
2552 * If this is a read->write transition, just ignore it and let
2553 * uvm_fault() take care of it later.
2554 */
2555 return;
2556 }
2557
2558 /* Need to lock map->head */
2559 PMAP_MAP_TO_HEAD_LOCK();
2560
2561 ptes = pmap_map_ptes(pmap);
2562
2563 /*
2564 * OK, at this point, we know we're doing write-protect operation.
2565 * If the pmap is active, write-back the range.
2566 */
2567 if (pmap_is_curpmap(pmap))
2568 cpu_dcache_wb_range(sva, eva - sva);
2569
2570 /*
2571 * We need to acquire a pointer to a page table page before entering
2572 * the following loop.
2573 */
2574 while (sva < eva) {
2575 if (pmap_pde_page(pmap_pde(pmap, sva)))
2576 break;
2577 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2578 }
2579
2580 pte = &ptes[arm_btop(sva)];
2581
2582 while (sva < eva) {
2583 /* only check once in a while */
2584 if ((sva & L2_ADDR_BITS) == 0) {
2585 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2586 /* We can race ahead here, to the next pde. */
2587 sva += L1_S_SIZE;
2588 pte += arm_btop(L1_S_SIZE);
2589 continue;
2590 }
2591 }
2592
2593 if (!pmap_pte_v(pte))
2594 goto next;
2595
2596 flush = 1;
2597
2598 armprot = 0;
2599 if (sva < VM_MAXUSER_ADDRESS)
2600 armprot |= L2_S_PROT_U;
2601 else if (sva < VM_MAX_ADDRESS)
2602 armprot |= L2_S_PROT_W; /* XXX Ekk what is this ? */
2603 *pte = (*pte & 0xfffff00f) | armprot;
2604
2605 pa = pmap_pte_pa(pte);
2606
2607 /* Get the physical page index */
2608
2609 /* Clear write flag */
2610 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2611 simple_lock(&pg->mdpage.pvh_slock);
2612 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2613 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2614 simple_unlock(&pg->mdpage.pvh_slock);
2615 }
2616
2617 next:
2618 sva += NBPG;
2619 pte++;
2620 }
2621 pmap_unmap_ptes(pmap);
2622 PMAP_MAP_TO_HEAD_UNLOCK();
2623 if (flush)
2624 cpu_tlb_flushID();
2625 }
2626
2627 /*
2628 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2629 * int flags)
2630 *
2631 * Insert the given physical page (p) at
2632 * the specified virtual address (v) in the
2633 * target physical map with the protection requested.
2634 *
2635 * If specified, the page will be wired down, meaning
2636 * that the related pte can not be reclaimed.
2637 *
2638 * NB: This is the only routine which MAY NOT lazy-evaluate
2639 * or lose information. That is, this routine must actually
2640 * insert this page into the given map NOW.
2641 */
2642
2643 int
2644 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2645 int flags)
2646 {
2647 pt_entry_t *ptes, opte, npte;
2648 paddr_t opa;
2649 boolean_t wired = (flags & PMAP_WIRED) != 0;
2650 struct vm_page *pg;
2651 struct pv_entry *pve;
2652 int error, nflags;
2653
2654 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2655 va, pa, pmap, prot, wired));
2656
2657 #ifdef DIAGNOSTIC
2658 /* Valid address ? */
2659 if (va >= (pmap_curmaxkvaddr))
2660 panic("pmap_enter: too big");
2661 if (pmap != pmap_kernel() && va != 0) {
2662 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2663 panic("pmap_enter: kernel page in user map");
2664 } else {
2665 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2666 panic("pmap_enter: user page in kernel map");
2667 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2668 panic("pmap_enter: entering PT page");
2669 }
2670 #endif
2671
2672 KDASSERT(((va | pa) & PGOFSET) == 0);
2673
2674 /*
2675 * Get a pointer to the page. Later on in this function, we
2676 * test for a managed page by checking pg != NULL.
2677 */
2678 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2679
2680 /* get lock */
2681 PMAP_MAP_TO_HEAD_LOCK();
2682
2683 /*
2684 * map the ptes. If there's not already an L2 table for this
2685 * address, allocate one.
2686 */
2687 ptes = pmap_map_ptes(pmap); /* locks pmap */
2688 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2689 struct vm_page *ptp;
2690
2691 /* kernel should be pre-grown */
2692 KASSERT(pmap != pmap_kernel());
2693
2694 /* if failure is allowed then don't try too hard */
2695 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2696 if (ptp == NULL) {
2697 if (flags & PMAP_CANFAIL) {
2698 error = ENOMEM;
2699 goto out;
2700 }
2701 panic("pmap_enter: get ptp failed");
2702 }
2703 }
2704 opte = ptes[arm_btop(va)];
2705
2706 nflags = 0;
2707 if (prot & VM_PROT_WRITE)
2708 nflags |= PVF_WRITE;
2709 if (wired)
2710 nflags |= PVF_WIRED;
2711
2712 /* Is the pte valid ? If so then this page is already mapped */
2713 if (l2pte_valid(opte)) {
2714 /* Get the physical address of the current page mapped */
2715 opa = l2pte_pa(opte);
2716
2717 /* Are we mapping the same page ? */
2718 if (opa == pa) {
2719 /* Has the wiring changed ? */
2720 if (pg != NULL) {
2721 simple_lock(&pg->mdpage.pvh_slock);
2722 (void) pmap_modify_pv(pmap, va, pg,
2723 PVF_WRITE | PVF_WIRED, nflags);
2724 simple_unlock(&pg->mdpage.pvh_slock);
2725 }
2726 } else {
2727 struct vm_page *opg;
2728
2729 /* We are replacing the page with a new one. */
2730 cpu_idcache_wbinv_range(va, NBPG);
2731
2732 /*
2733 * If it is part of our managed memory then we
2734 * must remove it from the PV list
2735 */
2736 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2737 simple_lock(&opg->mdpage.pvh_slock);
2738 pve = pmap_remove_pv(opg, pmap, va);
2739 simple_unlock(&opg->mdpage.pvh_slock);
2740 } else {
2741 pve = NULL;
2742 }
2743
2744 goto enter;
2745 }
2746 } else {
2747 opa = 0;
2748 pve = NULL;
2749 pmap_pte_addref(pmap, va);
2750
2751 /* pte is not valid so we must be hooking in a new page */
2752 ++pmap->pm_stats.resident_count;
2753
2754 enter:
2755 /*
2756 * Enter on the PV list if part of our managed memory
2757 */
2758 if (pg != NULL) {
2759 if (pve == NULL) {
2760 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2761 if (pve == NULL) {
2762 if (flags & PMAP_CANFAIL) {
2763 error = ENOMEM;
2764 goto out;
2765 }
2766 panic("pmap_enter: no pv entries "
2767 "available");
2768 }
2769 }
2770 /* enter_pv locks pvh when adding */
2771 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2772 } else {
2773 if (pve != NULL)
2774 pmap_free_pv(pmap, pve);
2775 }
2776 }
2777
2778 /* Construct the pte, giving the correct access. */
2779 npte = pa;
2780
2781 /* VA 0 is magic. */
2782 if (pmap != pmap_kernel() && va != vector_page)
2783 npte |= L2_S_PROT_U;
2784
2785 if (pg != NULL) {
2786 #ifdef DIAGNOSTIC
2787 if ((flags & VM_PROT_ALL) & ~prot)
2788 panic("pmap_enter: access_type exceeds prot");
2789 #endif
2790 npte |= pte_l2_s_cache_mode;
2791 if (flags & VM_PROT_WRITE) {
2792 npte |= L2_S_PROTO | L2_S_PROT_W;
2793 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2794 } else if (flags & VM_PROT_ALL) {
2795 npte |= L2_S_PROTO;
2796 pg->mdpage.pvh_attrs |= PVF_REF;
2797 } else
2798 npte |= L2_TYPE_INV;
2799 } else {
2800 if (prot & VM_PROT_WRITE)
2801 npte |= L2_S_PROTO | L2_S_PROT_W;
2802 else if (prot & VM_PROT_ALL)
2803 npte |= L2_S_PROTO;
2804 else
2805 npte |= L2_TYPE_INV;
2806 }
2807
2808 ptes[arm_btop(va)] = npte;
2809
2810 if (pg != NULL) {
2811 simple_lock(&pg->mdpage.pvh_slock);
2812 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2813 simple_unlock(&pg->mdpage.pvh_slock);
2814 }
2815
2816 /* Better flush the TLB ... */
2817 cpu_tlb_flushID_SE(va);
2818 error = 0;
2819 out:
2820 pmap_unmap_ptes(pmap); /* unlocks pmap */
2821 PMAP_MAP_TO_HEAD_UNLOCK();
2822
2823 return error;
2824 }
2825
2826 /*
2827 * pmap_kenter_pa: enter a kernel mapping
2828 *
2829 * => no need to lock anything assume va is already allocated
2830 * => should be faster than normal pmap enter function
2831 */
2832 void
2833 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2834 {
2835 pt_entry_t *pte;
2836
2837 pte = vtopte(va);
2838 KASSERT(!pmap_pte_v(pte));
2839
2840 *pte = L2_S_PROTO | pa |
2841 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2842 }
2843
2844 void
2845 pmap_kremove(vaddr_t va, vsize_t len)
2846 {
2847 pt_entry_t *pte;
2848
2849 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2850
2851 /*
2852 * We assume that we will only be called with small
2853 * regions of memory.
2854 */
2855
2856 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2857 pte = vtopte(va);
2858 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2859 *pte = 0;
2860 cpu_tlb_flushID_SE(va);
2861 }
2862 }
2863
2864 /*
2865 * pmap_page_protect:
2866 *
2867 * Lower the permission for all mappings to a given page.
2868 */
2869
2870 void
2871 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2872 {
2873
2874 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2875 VM_PAGE_TO_PHYS(pg), prot));
2876
2877 switch(prot) {
2878 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2879 case VM_PROT_READ|VM_PROT_WRITE:
2880 return;
2881
2882 case VM_PROT_READ:
2883 case VM_PROT_READ|VM_PROT_EXECUTE:
2884 pmap_clearbit(pg, PVF_WRITE);
2885 break;
2886
2887 default:
2888 pmap_remove_all(pg);
2889 break;
2890 }
2891 }
2892
2893
2894 /*
2895 * Routine: pmap_unwire
2896 * Function: Clear the wired attribute for a map/virtual-address
2897 * pair.
2898 * In/out conditions:
2899 * The mapping must already exist in the pmap.
2900 */
2901
2902 void
2903 pmap_unwire(struct pmap *pmap, vaddr_t va)
2904 {
2905 pt_entry_t *ptes;
2906 struct vm_page *pg;
2907 paddr_t pa;
2908
2909 PMAP_MAP_TO_HEAD_LOCK();
2910 ptes = pmap_map_ptes(pmap); /* locks pmap */
2911
2912 if (pmap_pde_v(pmap_pde(pmap, va))) {
2913 #ifdef DIAGNOSTIC
2914 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2915 panic("pmap_unwire: invalid L2 PTE");
2916 #endif
2917 /* Extract the physical address of the page */
2918 pa = l2pte_pa(ptes[arm_btop(va)]);
2919
2920 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2921 goto out;
2922
2923 /* Update the wired bit in the pv entry for this page. */
2924 simple_lock(&pg->mdpage.pvh_slock);
2925 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2926 simple_unlock(&pg->mdpage.pvh_slock);
2927 }
2928 #ifdef DIAGNOSTIC
2929 else {
2930 panic("pmap_unwire: invalid L1 PTE");
2931 }
2932 #endif
2933 out:
2934 pmap_unmap_ptes(pmap); /* unlocks pmap */
2935 PMAP_MAP_TO_HEAD_UNLOCK();
2936 }
2937
2938 /*
2939 * Routine: pmap_extract
2940 * Function:
2941 * Extract the physical page address associated
2942 * with the given map/virtual_address pair.
2943 */
2944 boolean_t
2945 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2946 {
2947 pd_entry_t *pde;
2948 pt_entry_t *pte, *ptes;
2949 paddr_t pa;
2950
2951 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2952
2953 ptes = pmap_map_ptes(pmap); /* locks pmap */
2954
2955 pde = pmap_pde(pmap, va);
2956 pte = &ptes[arm_btop(va)];
2957
2958 if (pmap_pde_section(pde)) {
2959 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2960 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2961 goto out;
2962 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2963 PDEBUG(5, printf("no mapping\n"));
2964 goto failed;
2965 }
2966
2967 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2968 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2969 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2970 goto out;
2971 }
2972
2973 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2974 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2975
2976 out:
2977 if (pap != NULL)
2978 *pap = pa;
2979
2980 pmap_unmap_ptes(pmap); /* unlocks pmap */
2981 return (TRUE);
2982
2983 failed:
2984 pmap_unmap_ptes(pmap); /* unlocks pmap */
2985 return (FALSE);
2986 }
2987
2988
2989 /*
2990 * pmap_copy:
2991 *
2992 * Copy the range specified by src_addr/len from the source map to the
2993 * range dst_addr/len in the destination map.
2994 *
2995 * This routine is only advisory and need not do anything.
2996 */
2997 /* Call deleted in <arm/arm32/pmap.h> */
2998
2999 #if defined(PMAP_DEBUG)
3000 void
3001 pmap_dump_pvlist(phys, m)
3002 vaddr_t phys;
3003 char *m;
3004 {
3005 struct vm_page *pg;
3006 struct pv_entry *pv;
3007
3008 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3009 printf("INVALID PA\n");
3010 return;
3011 }
3012 simple_lock(&pg->mdpage.pvh_slock);
3013 printf("%s %08lx:", m, phys);
3014 if (pg->mdpage.pvh_list == NULL) {
3015 simple_unlock(&pg->mdpage.pvh_slock);
3016 printf(" no mappings\n");
3017 return;
3018 }
3019
3020 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3021 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3022 pv->pv_va, pv->pv_flags);
3023
3024 printf("\n");
3025 simple_unlock(&pg->mdpage.pvh_slock);
3026 }
3027
3028 #endif /* PMAP_DEBUG */
3029
3030 static pt_entry_t *
3031 pmap_map_ptes(struct pmap *pmap)
3032 {
3033 struct proc *p;
3034
3035 /* the kernel's pmap is always accessible */
3036 if (pmap == pmap_kernel()) {
3037 return (pt_entry_t *)PTE_BASE;
3038 }
3039
3040 if (pmap_is_curpmap(pmap)) {
3041 simple_lock(&pmap->pm_obj.vmobjlock);
3042 return (pt_entry_t *)PTE_BASE;
3043 }
3044
3045 p = curproc;
3046 KDASSERT(p != NULL);
3047
3048 /* need to lock both curpmap and pmap: use ordered locking */
3049 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3050 simple_lock(&pmap->pm_obj.vmobjlock);
3051 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3052 } else {
3053 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3054 simple_lock(&pmap->pm_obj.vmobjlock);
3055 }
3056
3057 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3058 FALSE);
3059 cpu_tlb_flushD();
3060 cpu_cpwait();
3061 return (pt_entry_t *)APTE_BASE;
3062 }
3063
3064 /*
3065 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3066 */
3067
3068 static void
3069 pmap_unmap_ptes(struct pmap *pmap)
3070 {
3071
3072 if (pmap == pmap_kernel()) {
3073 return;
3074 }
3075 if (pmap_is_curpmap(pmap)) {
3076 simple_unlock(&pmap->pm_obj.vmobjlock);
3077 } else {
3078 KDASSERT(curproc != NULL);
3079 simple_unlock(&pmap->pm_obj.vmobjlock);
3080 simple_unlock(
3081 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3082 }
3083 }
3084
3085 /*
3086 * Modify pte bits for all ptes corresponding to the given physical address.
3087 * We use `maskbits' rather than `clearbits' because we're always passing
3088 * constants and the latter would require an extra inversion at run-time.
3089 */
3090
3091 static void
3092 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3093 {
3094 struct pv_entry *pv;
3095 pt_entry_t *ptes;
3096 vaddr_t va;
3097 int tlbentry;
3098
3099 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3100 VM_PAGE_TO_PHYS(pg), maskbits));
3101
3102 tlbentry = 0;
3103
3104 PMAP_HEAD_TO_MAP_LOCK();
3105 simple_lock(&pg->mdpage.pvh_slock);
3106
3107 /*
3108 * Clear saved attributes (modify, reference)
3109 */
3110 pg->mdpage.pvh_attrs &= ~maskbits;
3111
3112 if (pg->mdpage.pvh_list == NULL) {
3113 simple_unlock(&pg->mdpage.pvh_slock);
3114 PMAP_HEAD_TO_MAP_UNLOCK();
3115 return;
3116 }
3117
3118 /*
3119 * Loop over all current mappings setting/clearing as appropos
3120 */
3121 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3122 va = pv->pv_va;
3123 pv->pv_flags &= ~maskbits;
3124 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3125 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3126 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3127 if ((pv->pv_flags & PVF_NC)) {
3128 /*
3129 * Entry is not cacheable: reenable
3130 * the cache, nothing to flush
3131 *
3132 * Don't turn caching on again if this
3133 * is a modified emulation. This
3134 * would be inconsitent with the
3135 * settings created by
3136 * pmap_vac_me_harder().
3137 *
3138 * There's no need to call
3139 * pmap_vac_me_harder() here: all
3140 * pages are loosing their write
3141 * permission.
3142 *
3143 */
3144 if (maskbits & PVF_WRITE) {
3145 ptes[arm_btop(va)] |=
3146 pte_l2_s_cache_mode;
3147 pv->pv_flags &= ~PVF_NC;
3148 }
3149 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3150 /*
3151 * Entry is cacheable: check if pmap is
3152 * current if it is flush it,
3153 * otherwise it won't be in the cache
3154 */
3155 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3156 }
3157
3158 /* make the pte read only */
3159 ptes[arm_btop(va)] &= ~L2_S_PROT_W;
3160 }
3161
3162 if (maskbits & PVF_REF)
3163 ptes[arm_btop(va)] =
3164 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
3165
3166 if (pmap_is_curpmap(pv->pv_pmap)) {
3167 /*
3168 * if we had cacheable pte's we'd clean the
3169 * pte out to memory here
3170 *
3171 * flush tlb entry as it's in the current pmap
3172 */
3173 cpu_tlb_flushID_SE(pv->pv_va);
3174 }
3175 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3176 }
3177 cpu_cpwait();
3178
3179 simple_unlock(&pg->mdpage.pvh_slock);
3180 PMAP_HEAD_TO_MAP_UNLOCK();
3181 }
3182
3183 /*
3184 * pmap_clear_modify:
3185 *
3186 * Clear the "modified" attribute for a page.
3187 */
3188 boolean_t
3189 pmap_clear_modify(struct vm_page *pg)
3190 {
3191 boolean_t rv;
3192
3193 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3194 rv = TRUE;
3195 pmap_clearbit(pg, PVF_MOD);
3196 } else
3197 rv = FALSE;
3198
3199 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3200 VM_PAGE_TO_PHYS(pg), rv));
3201
3202 return (rv);
3203 }
3204
3205 /*
3206 * pmap_clear_reference:
3207 *
3208 * Clear the "referenced" attribute for a page.
3209 */
3210 boolean_t
3211 pmap_clear_reference(struct vm_page *pg)
3212 {
3213 boolean_t rv;
3214
3215 if (pg->mdpage.pvh_attrs & PVF_REF) {
3216 rv = TRUE;
3217 pmap_clearbit(pg, PVF_REF);
3218 } else
3219 rv = FALSE;
3220
3221 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3222 VM_PAGE_TO_PHYS(pg), rv));
3223
3224 return (rv);
3225 }
3226
3227 /*
3228 * pmap_is_modified:
3229 *
3230 * Test if a page has the "modified" attribute.
3231 */
3232 /* See <arm/arm32/pmap.h> */
3233
3234 /*
3235 * pmap_is_referenced:
3236 *
3237 * Test if a page has the "referenced" attribute.
3238 */
3239 /* See <arm/arm32/pmap.h> */
3240
3241 int
3242 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3243 {
3244 pt_entry_t *ptes;
3245 struct vm_page *pg;
3246 paddr_t pa;
3247 u_int flags;
3248 int rv = 0;
3249
3250 PDEBUG(2, printf("pmap_modified_emulation\n"));
3251
3252 PMAP_MAP_TO_HEAD_LOCK();
3253 ptes = pmap_map_ptes(pmap); /* locks pmap */
3254
3255 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3256 PDEBUG(2, printf("L1 PTE invalid\n"));
3257 goto out;
3258 }
3259
3260 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3261
3262 /* Check for a invalid pte */
3263 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3264 goto out;
3265
3266 /* This can happen if user code tries to access kernel memory. */
3267 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3268 goto out;
3269
3270 /* Extract the physical address of the page */
3271 pa = l2pte_pa(ptes[arm_btop(va)]);
3272 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3273 goto out;
3274
3275 /* Get the current flags for this page. */
3276 simple_lock(&pg->mdpage.pvh_slock);
3277
3278 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3279 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3280
3281 /*
3282 * Do the flags say this page is writable ? If not then it is a
3283 * genuine write fault. If yes then the write fault is our fault
3284 * as we did not reflect the write access in the PTE. Now we know
3285 * a write has occurred we can correct this and also set the
3286 * modified bit
3287 */
3288 if (~flags & PVF_WRITE) {
3289 simple_unlock(&pg->mdpage.pvh_slock);
3290 goto out;
3291 }
3292
3293 PDEBUG(0,
3294 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3295 va, ptes[arm_btop(va)]));
3296 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3297
3298 /*
3299 * Re-enable write permissions for the page. No need to call
3300 * pmap_vac_me_harder(), since this is just a
3301 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3302 * We've already set the cacheable bits based on the assumption
3303 * that we can write to this page.
3304 */
3305 ptes[arm_btop(va)] =
3306 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3307 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3308
3309 simple_unlock(&pg->mdpage.pvh_slock);
3310
3311 cpu_tlb_flushID_SE(va);
3312 cpu_cpwait();
3313 rv = 1;
3314 out:
3315 pmap_unmap_ptes(pmap); /* unlocks pmap */
3316 PMAP_MAP_TO_HEAD_UNLOCK();
3317 return (rv);
3318 }
3319
3320 int
3321 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3322 {
3323 pt_entry_t *ptes;
3324 struct vm_page *pg;
3325 paddr_t pa;
3326 int rv = 0;
3327
3328 PDEBUG(2, printf("pmap_handled_emulation\n"));
3329
3330 PMAP_MAP_TO_HEAD_LOCK();
3331 ptes = pmap_map_ptes(pmap); /* locks pmap */
3332
3333 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3334 PDEBUG(2, printf("L1 PTE invalid\n"));
3335 goto out;
3336 }
3337
3338 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3339
3340 /* Check for invalid pte */
3341 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3342 goto out;
3343
3344 /* This can happen if user code tries to access kernel memory. */
3345 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3346 goto out;
3347
3348 /* Extract the physical address of the page */
3349 pa = l2pte_pa(ptes[arm_btop(va)]);
3350 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3351 goto out;
3352
3353 simple_lock(&pg->mdpage.pvh_slock);
3354
3355 /*
3356 * Ok we just enable the pte and mark the attibs as handled
3357 * XXX Should we traverse the PV list and enable all PTEs?
3358 */
3359 PDEBUG(0,
3360 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3361 va, ptes[arm_btop(va)]));
3362 pg->mdpage.pvh_attrs |= PVF_REF;
3363
3364 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3365 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3366
3367 simple_unlock(&pg->mdpage.pvh_slock);
3368
3369 cpu_tlb_flushID_SE(va);
3370 cpu_cpwait();
3371 rv = 1;
3372 out:
3373 pmap_unmap_ptes(pmap); /* unlocks pmap */
3374 PMAP_MAP_TO_HEAD_UNLOCK();
3375 return (rv);
3376 }
3377
3378 /*
3379 * pmap_collect: free resources held by a pmap
3380 *
3381 * => optional function.
3382 * => called when a process is swapped out to free memory.
3383 */
3384
3385 void
3386 pmap_collect(struct pmap *pmap)
3387 {
3388 }
3389
3390 /*
3391 * Routine: pmap_procwr
3392 *
3393 * Function:
3394 * Synchronize caches corresponding to [addr, addr+len) in p.
3395 *
3396 */
3397 void
3398 pmap_procwr(struct proc *p, vaddr_t va, int len)
3399 {
3400 /* We only need to do anything if it is the current process. */
3401 if (p == curproc)
3402 cpu_icache_sync_range(va, len);
3403 }
3404 /*
3405 * PTP functions
3406 */
3407
3408 /*
3409 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3410 *
3411 * => pmap should NOT be pmap_kernel()
3412 * => pmap should be locked
3413 */
3414
3415 static struct vm_page *
3416 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3417 {
3418 struct vm_page *ptp;
3419
3420 if (pmap_pde_page(pmap_pde(pmap, va))) {
3421
3422 /* valid... check hint (saves us a PA->PG lookup) */
3423 if (pmap->pm_ptphint &&
3424 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3425 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3426 return (pmap->pm_ptphint);
3427 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3428 #ifdef DIAGNOSTIC
3429 if (ptp == NULL)
3430 panic("pmap_get_ptp: unmanaged user PTP");
3431 #endif
3432 pmap->pm_ptphint = ptp;
3433 return(ptp);
3434 }
3435
3436 /* allocate a new PTP (updates ptphint) */
3437 return(pmap_alloc_ptp(pmap, va));
3438 }
3439
3440 /*
3441 * pmap_alloc_ptp: allocate a PTP for a PMAP
3442 *
3443 * => pmap should already be locked by caller
3444 * => we use the ptp's wire_count to count the number of active mappings
3445 * in the PTP (we start it at one to prevent any chance this PTP
3446 * will ever leak onto the active/inactive queues)
3447 */
3448
3449 /*__inline */ static struct vm_page *
3450 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3451 {
3452 struct vm_page *ptp;
3453
3454 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3455 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3456 if (ptp == NULL)
3457 return (NULL);
3458
3459 /* got one! */
3460 ptp->flags &= ~PG_BUSY; /* never busy */
3461 ptp->wire_count = 1; /* no mappings yet */
3462 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3463 pmap->pm_stats.resident_count++; /* count PTP as resident */
3464 pmap->pm_ptphint = ptp;
3465 return (ptp);
3466 }
3467
3468 vaddr_t
3469 pmap_growkernel(vaddr_t maxkvaddr)
3470 {
3471 struct pmap *kpm = pmap_kernel(), *pm;
3472 int s;
3473 paddr_t ptaddr;
3474 struct vm_page *ptp;
3475
3476 if (maxkvaddr <= pmap_curmaxkvaddr)
3477 goto out; /* we are OK */
3478 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3479 pmap_curmaxkvaddr, maxkvaddr));
3480
3481 /*
3482 * whoops! we need to add kernel PTPs
3483 */
3484
3485 s = splhigh(); /* to be safe */
3486 simple_lock(&kpm->pm_obj.vmobjlock);
3487 /* due to the way the arm pmap works we map 4MB at a time */
3488 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3489 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3490
3491 if (uvm.page_init_done == FALSE) {
3492
3493 /*
3494 * we're growing the kernel pmap early (from
3495 * uvm_pageboot_alloc()). this case must be
3496 * handled a little differently.
3497 */
3498
3499 if (uvm_page_physget(&ptaddr) == FALSE)
3500 panic("pmap_growkernel: out of memory");
3501 pmap_zero_page(ptaddr);
3502
3503 /* map this page in */
3504 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3505
3506 /* count PTP as resident */
3507 kpm->pm_stats.resident_count++;
3508 continue;
3509 }
3510
3511 /*
3512 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3513 * pmap_initialized == FALSE CASE! WE MAY BE
3514 * INVOKED WHILE pmap_init() IS RUNNING!
3515 */
3516
3517 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3518 panic("pmap_growkernel: alloc ptp failed");
3519
3520 /* distribute new kernel PTP to all active pmaps */
3521 simple_lock(&pmaps_lock);
3522 LIST_FOREACH(pm, &pmaps, pm_list) {
3523 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3524 VM_PAGE_TO_PHYS(ptp), TRUE);
3525 }
3526
3527 simple_unlock(&pmaps_lock);
3528 }
3529
3530 /*
3531 * flush out the cache, expensive but growkernel will happen so
3532 * rarely
3533 */
3534 cpu_tlb_flushD();
3535 cpu_cpwait();
3536
3537 simple_unlock(&kpm->pm_obj.vmobjlock);
3538 splx(s);
3539
3540 out:
3541 return (pmap_curmaxkvaddr);
3542 }
3543
3544 /************************ Utility routines ****************************/
3545
3546 /*
3547 * vector_page_setprot:
3548 *
3549 * Manipulate the protection of the vector page.
3550 */
3551 void
3552 vector_page_setprot(int prot)
3553 {
3554 pt_entry_t *pte;
3555
3556 pte = vtopte(vector_page);
3557
3558 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3559 cpu_tlb_flushD_SE(vector_page);
3560 cpu_cpwait();
3561 }
3562
3563 /************************ Bootstrapping routines ****************************/
3564
3565 /*
3566 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3567 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3568 * find them as necessary.
3569 *
3570 * Note that the data on this list is not valid after initarm() returns.
3571 */
3572 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3573
3574 static vaddr_t
3575 kernel_pt_lookup(paddr_t pa)
3576 {
3577 pv_addr_t *pv;
3578
3579 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3580 if (pv->pv_pa == pa)
3581 return (pv->pv_va);
3582 }
3583 return (0);
3584 }
3585
3586 /*
3587 * pmap_map_section:
3588 *
3589 * Create a single section mapping.
3590 */
3591 void
3592 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3593 {
3594 pd_entry_t *pde = (pd_entry_t *) l1pt;
3595 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3596
3597 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3598
3599 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3600 L1_S_PROT(PTE_KERNEL, prot) | fl;
3601 }
3602
3603 /*
3604 * pmap_map_entry:
3605 *
3606 * Create a single page mapping.
3607 */
3608 void
3609 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3610 {
3611 pd_entry_t *pde = (pd_entry_t *) l1pt;
3612 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3613 pt_entry_t *pte;
3614
3615 KASSERT(((va | pa) & PGOFSET) == 0);
3616
3617 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3618 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3619
3620 pte = (pt_entry_t *)
3621 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3622 if (pte == NULL)
3623 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3624
3625 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3626 L2_S_PROT(PTE_KERNEL, prot) | fl;
3627 }
3628
3629 /*
3630 * pmap_link_l2pt:
3631 *
3632 * Link the L2 page table specified by "pa" into the L1
3633 * page table at the slot for "va".
3634 */
3635 void
3636 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3637 {
3638 pd_entry_t *pde = (pd_entry_t *) l1pt;
3639 u_int slot = va >> L1_S_SHIFT;
3640
3641 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3642
3643 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3644 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3645 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3646 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3647
3648 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3649 }
3650
3651 /*
3652 * pmap_map_chunk:
3653 *
3654 * Map a chunk of memory using the most efficient mappings
3655 * possible (section, large page, small page) into the
3656 * provided L1 and L2 tables at the specified virtual address.
3657 */
3658 vsize_t
3659 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3660 int prot, int cache)
3661 {
3662 pd_entry_t *pde = (pd_entry_t *) l1pt;
3663 pt_entry_t *pte, fl;
3664 vsize_t resid;
3665 int i;
3666
3667 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3668
3669 if (l1pt == 0)
3670 panic("pmap_map_chunk: no L1 table provided");
3671
3672 #ifdef VERBOSE_INIT_ARM
3673 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3674 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3675 #endif
3676
3677 size = resid;
3678
3679 while (resid > 0) {
3680 /* See if we can use a section mapping. */
3681 if (((pa | va) & L1_S_OFFSET) == 0 &&
3682 resid >= L1_S_SIZE) {
3683 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3684 #ifdef VERBOSE_INIT_ARM
3685 printf("S");
3686 #endif
3687 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3688 L1_S_PROT(PTE_KERNEL, prot) | fl;
3689 va += L1_S_SIZE;
3690 pa += L1_S_SIZE;
3691 resid -= L1_S_SIZE;
3692 continue;
3693 }
3694
3695 /*
3696 * Ok, we're going to use an L2 table. Make sure
3697 * one is actually in the corresponding L1 slot
3698 * for the current VA.
3699 */
3700 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3701 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3702
3703 pte = (pt_entry_t *)
3704 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3705 if (pte == NULL)
3706 panic("pmap_map_chunk: can't find L2 table for VA"
3707 "0x%08lx", va);
3708
3709 /* See if we can use a L2 large page mapping. */
3710 if (((pa | va) & L2_L_OFFSET) == 0 &&
3711 resid >= L2_L_SIZE) {
3712 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3713 #ifdef VERBOSE_INIT_ARM
3714 printf("L");
3715 #endif
3716 for (i = 0; i < 16; i++) {
3717 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3718 L2_L_PROTO | pa |
3719 L2_L_PROT(PTE_KERNEL, prot) | fl;
3720 }
3721 va += L2_L_SIZE;
3722 pa += L2_L_SIZE;
3723 resid -= L2_L_SIZE;
3724 continue;
3725 }
3726
3727 /* Use a small page mapping. */
3728 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3729 #ifdef VERBOSE_INIT_ARM
3730 printf("P");
3731 #endif
3732 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3733 L2_S_PROT(PTE_KERNEL, prot) | fl;
3734 va += NBPG;
3735 pa += NBPG;
3736 resid -= NBPG;
3737 }
3738 #ifdef VERBOSE_INIT_ARM
3739 printf("\n");
3740 #endif
3741 return (size);
3742 }
3743
3744 /********************** PTE initialization routines **************************/
3745
3746 /*
3747 * These routines are called when the CPU type is identified to set up
3748 * the PTE prototypes, cache modes, etc.
3749 *
3750 * The variables are always here, just in case LKMs need to reference
3751 * them (though, they shouldn't).
3752 */
3753
3754 pt_entry_t pte_l1_s_cache_mode;
3755 pt_entry_t pte_l1_s_cache_mask;
3756
3757 pt_entry_t pte_l2_l_cache_mode;
3758 pt_entry_t pte_l2_l_cache_mask;
3759
3760 pt_entry_t pte_l2_s_cache_mode;
3761 pt_entry_t pte_l2_s_cache_mask;
3762
3763 pt_entry_t pte_l2_s_prot_u;
3764 pt_entry_t pte_l2_s_prot_w;
3765 pt_entry_t pte_l2_s_prot_mask;
3766
3767 pt_entry_t pte_l1_s_proto;
3768 pt_entry_t pte_l1_c_proto;
3769 pt_entry_t pte_l2_s_proto;
3770
3771 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3772 void (*pmap_zero_page_func)(paddr_t);
3773
3774 #if ARM_MMU_GENERIC == 1
3775 void
3776 pmap_pte_init_generic(void)
3777 {
3778
3779 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3780 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3781
3782 pte_l2_l_cache_mode = L2_B|L2_C;
3783 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3784
3785 pte_l2_s_cache_mode = L2_B|L2_C;
3786 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3787
3788 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3789 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3790 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3791
3792 pte_l1_s_proto = L1_S_PROTO_generic;
3793 pte_l1_c_proto = L1_C_PROTO_generic;
3794 pte_l2_s_proto = L2_S_PROTO_generic;
3795
3796 pmap_copy_page_func = pmap_copy_page_generic;
3797 pmap_zero_page_func = pmap_zero_page_generic;
3798 }
3799
3800 #if defined(CPU_ARM9)
3801 void
3802 pmap_pte_init_arm9(void)
3803 {
3804
3805 /*
3806 * ARM9 is compatible with generic, but we want to use
3807 * write-through caching for now.
3808 */
3809 pmap_pte_init_generic();
3810
3811 pte_l1_s_cache_mode = L1_S_C;
3812 pte_l2_l_cache_mode = L2_C;
3813 pte_l2_s_cache_mode = L2_C;
3814 }
3815 #endif /* CPU_ARM9 */
3816 #endif /* ARM_MMU_GENERIC == 1 */
3817
3818 #if ARM_MMU_XSCALE == 1
3819 void
3820 pmap_pte_init_xscale(void)
3821 {
3822 uint32_t auxctl;
3823
3824 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3825 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3826
3827 pte_l2_l_cache_mode = L2_B|L2_C;
3828 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3829
3830 pte_l2_s_cache_mode = L2_B|L2_C;
3831 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3832
3833 #ifdef XSCALE_CACHE_WRITE_THROUGH
3834 /*
3835 * Some versions of the XScale core have various bugs in
3836 * their cache units, the work-around for which is to run
3837 * the cache in write-through mode. Unfortunately, this
3838 * has a major (negative) impact on performance. So, we
3839 * go ahead and run fast-and-loose, in the hopes that we
3840 * don't line up the planets in a way that will trip the
3841 * bugs.
3842 *
3843 * However, we give you the option to be slow-but-correct.
3844 */
3845 pte_l1_s_cache_mode = L1_S_C;
3846 pte_l2_l_cache_mode = L2_C;
3847 pte_l2_s_cache_mode = L2_C;
3848 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3849
3850 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3851 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3852 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3853
3854 pte_l1_s_proto = L1_S_PROTO_xscale;
3855 pte_l1_c_proto = L1_C_PROTO_xscale;
3856 pte_l2_s_proto = L2_S_PROTO_xscale;
3857
3858 pmap_copy_page_func = pmap_copy_page_xscale;
3859 pmap_zero_page_func = pmap_zero_page_xscale;
3860
3861 /*
3862 * Disable ECC protection of page table access, for now.
3863 */
3864 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3865 : "=r" (auxctl));
3866 auxctl &= ~XSCALE_AUXCTL_P;
3867 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3868 :
3869 : "r" (auxctl));
3870 }
3871
3872 /*
3873 * xscale_setup_minidata:
3874 *
3875 * Set up the mini-data cache clean area. We require the
3876 * caller to allocate the right amount of physically and
3877 * virtually contiguous space.
3878 */
3879 void
3880 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3881 {
3882 extern vaddr_t xscale_minidata_clean_addr;
3883 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3884 pd_entry_t *pde = (pd_entry_t *) l1pt;
3885 pt_entry_t *pte;
3886 vsize_t size;
3887 uint32_t auxctl;
3888
3889 xscale_minidata_clean_addr = va;
3890
3891 /* Round it to page size. */
3892 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3893
3894 for (; size != 0;
3895 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3896 pte = (pt_entry_t *)
3897 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3898 if (pte == NULL)
3899 panic("xscale_setup_minidata: can't find L2 table for "
3900 "VA 0x%08lx", va);
3901 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3902 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3903 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3904 }
3905
3906 /*
3907 * Configure the mini-data cache for write-back with
3908 * read/write-allocate.
3909 *
3910 * NOTE: In order to reconfigure the mini-data cache, we must
3911 * make sure it contains no valid data! In order to do that,
3912 * we must issue a global data cache invalidate command!
3913 *
3914 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
3915 * THIS IS VERY IMPORTANT!
3916 */
3917
3918 /* Invalidate data and mini-data. */
3919 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
3920 :
3921 : "r" (auxctl));
3922
3923
3924 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3925 : "=r" (auxctl));
3926 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
3927 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3928 :
3929 : "r" (auxctl));
3930 }
3931 #endif /* ARM_MMU_XSCALE == 1 */
3932