pmap.c revision 1.104 1 /* $NetBSD: pmap.c,v 1.104 2002/08/06 21:43:51 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.104 2002/08/06 21:43:51 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_end;
297 extern unsigned int free_pages;
298 extern int max_processes;
299
300 vaddr_t virtual_avail;
301 vaddr_t virtual_end;
302 vaddr_t pmap_curmaxkvaddr;
303
304 vaddr_t avail_start;
305 vaddr_t avail_end;
306
307 extern pv_addr_t systempage;
308
309 /* Variables used by the L1 page table queue code */
310 SIMPLEQ_HEAD(l1pt_queue, l1pt);
311 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
312 static int l1pt_static_queue_count; /* items in the static l1 queue */
313 static int l1pt_static_create_count; /* static l1 items created */
314 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
315 static int l1pt_queue_count; /* items in the l1 queue */
316 static int l1pt_create_count; /* stat - L1's create count */
317 static int l1pt_reuse_count; /* stat - L1's reused count */
318
319 /* Local function prototypes (not used outside this file) */
320 void pmap_pinit __P((struct pmap *));
321 void pmap_freepagedir __P((struct pmap *));
322
323 /* Other function prototypes */
324 extern void bzero_page __P((vaddr_t));
325 extern void bcopy_page __P((vaddr_t, vaddr_t));
326
327 struct l1pt *pmap_alloc_l1pt __P((void));
328 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
329 vaddr_t l2pa, boolean_t));
330
331 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
332 static void pmap_unmap_ptes __P((struct pmap *));
333
334 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
335 pt_entry_t *, boolean_t));
336 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340
341 /*
342 * real definition of pv_entry.
343 */
344
345 struct pv_entry {
346 struct pv_entry *pv_next; /* next pv_entry */
347 struct pmap *pv_pmap; /* pmap where mapping lies */
348 vaddr_t pv_va; /* virtual address for mapping */
349 int pv_flags; /* flags */
350 struct vm_page *pv_ptp; /* vm_page for the ptp */
351 };
352
353 /*
354 * pv_entrys are dynamically allocated in chunks from a single page.
355 * we keep track of how many pv_entrys are in use for each page and
356 * we can free pv_entry pages if needed. there is one lock for the
357 * entire allocation system.
358 */
359
360 struct pv_page_info {
361 TAILQ_ENTRY(pv_page) pvpi_list;
362 struct pv_entry *pvpi_pvfree;
363 int pvpi_nfree;
364 };
365
366 /*
367 * number of pv_entry's in a pv_page
368 * (note: won't work on systems where NPBG isn't a constant)
369 */
370
371 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
372 sizeof(struct pv_entry))
373
374 /*
375 * a pv_page: where pv_entrys are allocated from
376 */
377
378 struct pv_page {
379 struct pv_page_info pvinfo;
380 struct pv_entry pvents[PVE_PER_PVPAGE];
381 };
382
383 #ifdef MYCROFT_HACK
384 int mycroft_hack = 0;
385 #endif
386
387 /* Function to set the debug level of the pmap code */
388
389 #ifdef PMAP_DEBUG
390 void
391 pmap_debug(int level)
392 {
393 pmap_debug_level = level;
394 printf("pmap_debug: level=%d\n", pmap_debug_level);
395 }
396 #endif /* PMAP_DEBUG */
397
398 __inline static boolean_t
399 pmap_is_curpmap(struct pmap *pmap)
400 {
401
402 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
403 pmap == pmap_kernel())
404 return (TRUE);
405
406 return (FALSE);
407 }
408
409 /*
410 * p v _ e n t r y f u n c t i o n s
411 */
412
413 /*
414 * pv_entry allocation functions:
415 * the main pv_entry allocation functions are:
416 * pmap_alloc_pv: allocate a pv_entry structure
417 * pmap_free_pv: free one pv_entry
418 * pmap_free_pvs: free a list of pv_entrys
419 *
420 * the rest are helper functions
421 */
422
423 /*
424 * pmap_alloc_pv: inline function to allocate a pv_entry structure
425 * => we lock pvalloc_lock
426 * => if we fail, we call out to pmap_alloc_pvpage
427 * => 3 modes:
428 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
429 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
430 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
431 * one now
432 *
433 * "try" is for optional functions like pmap_copy().
434 */
435
436 __inline static struct pv_entry *
437 pmap_alloc_pv(struct pmap *pmap, int mode)
438 {
439 struct pv_page *pvpage;
440 struct pv_entry *pv;
441
442 simple_lock(&pvalloc_lock);
443
444 pvpage = TAILQ_FIRST(&pv_freepages);
445
446 if (pvpage != NULL) {
447 pvpage->pvinfo.pvpi_nfree--;
448 if (pvpage->pvinfo.pvpi_nfree == 0) {
449 /* nothing left in this one? */
450 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
451 }
452 pv = pvpage->pvinfo.pvpi_pvfree;
453 KASSERT(pv);
454 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
455 pv_nfpvents--; /* took one from pool */
456 } else {
457 pv = NULL; /* need more of them */
458 }
459
460 /*
461 * if below low water mark or we didn't get a pv_entry we try and
462 * create more pv_entrys ...
463 */
464
465 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
466 if (pv == NULL)
467 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
468 mode : ALLOCPV_NEED);
469 else
470 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
471 }
472
473 simple_unlock(&pvalloc_lock);
474 return(pv);
475 }
476
477 /*
478 * pmap_alloc_pvpage: maybe allocate a new pvpage
479 *
480 * if need_entry is false: try and allocate a new pv_page
481 * if need_entry is true: try and allocate a new pv_page and return a
482 * new pv_entry from it. if we are unable to allocate a pv_page
483 * we make a last ditch effort to steal a pv_page from some other
484 * mapping. if that fails, we panic...
485 *
486 * => we assume that the caller holds pvalloc_lock
487 */
488
489 static struct pv_entry *
490 pmap_alloc_pvpage(struct pmap *pmap, int mode)
491 {
492 struct vm_page *pg;
493 struct pv_page *pvpage;
494 struct pv_entry *pv;
495 int s;
496
497 /*
498 * if we need_entry and we've got unused pv_pages, allocate from there
499 */
500
501 pvpage = TAILQ_FIRST(&pv_unusedpgs);
502 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
503
504 /* move it to pv_freepages list */
505 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
506 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
507
508 /* allocate a pv_entry */
509 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
510 pv = pvpage->pvinfo.pvpi_pvfree;
511 KASSERT(pv);
512 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
513
514 pv_nfpvents--; /* took one from pool */
515 return(pv);
516 }
517
518 /*
519 * see if we've got a cached unmapped VA that we can map a page in.
520 * if not, try to allocate one.
521 */
522
523
524 if (pv_cachedva == 0) {
525 s = splvm();
526 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
527 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
528 splx(s);
529 if (pv_cachedva == 0) {
530 return (NULL);
531 }
532 }
533
534 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
535 UVM_PGA_USERESERVE);
536
537 if (pg == NULL)
538 return (NULL);
539 pg->flags &= ~PG_BUSY; /* never busy */
540
541 /*
542 * add a mapping for our new pv_page and free its entrys (save one!)
543 *
544 * NOTE: If we are allocating a PV page for the kernel pmap, the
545 * pmap is already locked! (...but entering the mapping is safe...)
546 */
547
548 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
549 VM_PROT_READ|VM_PROT_WRITE);
550 pmap_update(pmap_kernel());
551 pvpage = (struct pv_page *) pv_cachedva;
552 pv_cachedva = 0;
553 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
554 }
555
556 /*
557 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
558 *
559 * => caller must hold pvalloc_lock
560 * => if need_entry is true, we allocate and return one pv_entry
561 */
562
563 static struct pv_entry *
564 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
565 {
566 int tofree, lcv;
567
568 /* do we need to return one? */
569 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
570
571 pvp->pvinfo.pvpi_pvfree = NULL;
572 pvp->pvinfo.pvpi_nfree = tofree;
573 for (lcv = 0 ; lcv < tofree ; lcv++) {
574 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
575 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
576 }
577 if (need_entry)
578 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
579 else
580 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
581 pv_nfpvents += tofree;
582 return((need_entry) ? &pvp->pvents[lcv] : NULL);
583 }
584
585 /*
586 * pmap_free_pv_doit: actually free a pv_entry
587 *
588 * => do not call this directly! instead use either
589 * 1. pmap_free_pv ==> free a single pv_entry
590 * 2. pmap_free_pvs => free a list of pv_entrys
591 * => we must be holding pvalloc_lock
592 */
593
594 __inline static void
595 pmap_free_pv_doit(struct pv_entry *pv)
596 {
597 struct pv_page *pvp;
598
599 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
600 pv_nfpvents++;
601 pvp->pvinfo.pvpi_nfree++;
602
603 /* nfree == 1 => fully allocated page just became partly allocated */
604 if (pvp->pvinfo.pvpi_nfree == 1) {
605 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
606 }
607
608 /* free it */
609 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
610 pvp->pvinfo.pvpi_pvfree = pv;
611
612 /*
613 * are all pv_page's pv_entry's free? move it to unused queue.
614 */
615
616 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
617 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
618 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
619 }
620 }
621
622 /*
623 * pmap_free_pv: free a single pv_entry
624 *
625 * => we gain the pvalloc_lock
626 */
627
628 __inline static void
629 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
630 {
631 simple_lock(&pvalloc_lock);
632 pmap_free_pv_doit(pv);
633
634 /*
635 * Can't free the PV page if the PV entries were associated with
636 * the kernel pmap; the pmap is already locked.
637 */
638 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
639 pmap != pmap_kernel())
640 pmap_free_pvpage();
641
642 simple_unlock(&pvalloc_lock);
643 }
644
645 /*
646 * pmap_free_pvs: free a list of pv_entrys
647 *
648 * => we gain the pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
653 {
654 struct pv_entry *nextpv;
655
656 simple_lock(&pvalloc_lock);
657
658 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
659 nextpv = pvs->pv_next;
660 pmap_free_pv_doit(pvs);
661 }
662
663 /*
664 * Can't free the PV page if the PV entries were associated with
665 * the kernel pmap; the pmap is already locked.
666 */
667 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
668 pmap != pmap_kernel())
669 pmap_free_pvpage();
670
671 simple_unlock(&pvalloc_lock);
672 }
673
674
675 /*
676 * pmap_free_pvpage: try and free an unused pv_page structure
677 *
678 * => assume caller is holding the pvalloc_lock and that
679 * there is a page on the pv_unusedpgs list
680 * => if we can't get a lock on the kmem_map we try again later
681 */
682
683 static void
684 pmap_free_pvpage(void)
685 {
686 int s;
687 struct vm_map *map;
688 struct vm_map_entry *dead_entries;
689 struct pv_page *pvp;
690
691 s = splvm(); /* protect kmem_map */
692
693 pvp = TAILQ_FIRST(&pv_unusedpgs);
694
695 /*
696 * note: watch out for pv_initpage which is allocated out of
697 * kernel_map rather than kmem_map.
698 */
699 if (pvp == pv_initpage)
700 map = kernel_map;
701 else
702 map = kmem_map;
703 if (vm_map_lock_try(map)) {
704
705 /* remove pvp from pv_unusedpgs */
706 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
707
708 /* unmap the page */
709 dead_entries = NULL;
710 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
711 &dead_entries);
712 vm_map_unlock(map);
713
714 if (dead_entries != NULL)
715 uvm_unmap_detach(dead_entries, 0);
716
717 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
718 }
719 if (pvp == pv_initpage)
720 /* no more initpage, we've freed it */
721 pv_initpage = NULL;
722
723 splx(s);
724 }
725
726 /*
727 * main pv_entry manipulation functions:
728 * pmap_enter_pv: enter a mapping onto a vm_page list
729 * pmap_remove_pv: remove a mappiing from a vm_page list
730 *
731 * NOTE: pmap_enter_pv expects to lock the pvh itself
732 * pmap_remove_pv expects te caller to lock the pvh before calling
733 */
734
735 /*
736 * pmap_enter_pv: enter a mapping onto a vm_page lst
737 *
738 * => caller should hold the proper lock on pmap_main_lock
739 * => caller should have pmap locked
740 * => we will gain the lock on the vm_page and allocate the new pv_entry
741 * => caller should adjust ptp's wire_count before calling
742 * => caller should not adjust pmap's wire_count
743 */
744
745 __inline static void
746 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
747 vaddr_t va, struct vm_page *ptp, int flags)
748 {
749 pve->pv_pmap = pmap;
750 pve->pv_va = va;
751 pve->pv_ptp = ptp; /* NULL for kernel pmap */
752 pve->pv_flags = flags;
753 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
754 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
755 pg->mdpage.pvh_list = pve; /* ... locked list */
756 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
757 if (pve->pv_flags & PVF_WIRED)
758 ++pmap->pm_stats.wired_count;
759 }
760
761 /*
762 * pmap_remove_pv: try to remove a mapping from a pv_list
763 *
764 * => caller should hold proper lock on pmap_main_lock
765 * => pmap should be locked
766 * => caller should hold lock on vm_page [so that attrs can be adjusted]
767 * => caller should adjust ptp's wire_count and free PTP if needed
768 * => caller should NOT adjust pmap's wire_count
769 * => we return the removed pve
770 */
771
772 __inline static struct pv_entry *
773 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
774 {
775 struct pv_entry *pve, **prevptr;
776
777 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
778 pve = *prevptr;
779 while (pve) {
780 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
781 *prevptr = pve->pv_next; /* remove it! */
782 if (pve->pv_flags & PVF_WIRED)
783 --pmap->pm_stats.wired_count;
784 break;
785 }
786 prevptr = &pve->pv_next; /* previous pointer */
787 pve = pve->pv_next; /* advance */
788 }
789 return(pve); /* return removed pve */
790 }
791
792 /*
793 *
794 * pmap_modify_pv: Update pv flags
795 *
796 * => caller should hold lock on vm_page [so that attrs can be adjusted]
797 * => caller should NOT adjust pmap's wire_count
798 * => caller must call pmap_vac_me_harder() if writable status of a page
799 * may have changed.
800 * => we return the old flags
801 *
802 * Modify a physical-virtual mapping in the pv table
803 */
804
805 static /* __inline */ u_int
806 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
807 u_int bic_mask, u_int eor_mask)
808 {
809 struct pv_entry *npv;
810 u_int flags, oflags;
811
812 /*
813 * There is at least one VA mapping this page.
814 */
815
816 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
817 if (pmap == npv->pv_pmap && va == npv->pv_va) {
818 oflags = npv->pv_flags;
819 npv->pv_flags = flags =
820 ((oflags & ~bic_mask) ^ eor_mask);
821 if ((flags ^ oflags) & PVF_WIRED) {
822 if (flags & PVF_WIRED)
823 ++pmap->pm_stats.wired_count;
824 else
825 --pmap->pm_stats.wired_count;
826 }
827 return (oflags);
828 }
829 }
830 return (0);
831 }
832
833 /*
834 * Map the specified level 2 pagetable into the level 1 page table for
835 * the given pmap to cover a chunk of virtual address space starting from the
836 * address specified.
837 */
838 static __inline void
839 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
840 {
841 vaddr_t ptva;
842
843 /* Calculate the index into the L1 page table. */
844 ptva = (va >> L1_S_SHIFT) & ~3;
845
846 /* Map page table into the L1. */
847 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
848 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
849 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
850 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
851
852 /* Map the page table into the page table area. */
853 if (selfref)
854 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
855 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
856 }
857
858 #if 0
859 static __inline void
860 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
861 {
862 vaddr_t ptva;
863
864 /* Calculate the index into the L1 page table. */
865 ptva = (va >> L1_S_SHIFT) & ~3;
866
867 /* Unmap page table from the L1. */
868 pmap->pm_pdir[ptva + 0] = 0;
869 pmap->pm_pdir[ptva + 1] = 0;
870 pmap->pm_pdir[ptva + 2] = 0;
871 pmap->pm_pdir[ptva + 3] = 0;
872
873 /* Unmap the page table from the page table area. */
874 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
875 }
876 #endif
877
878 /*
879 * Used to map a range of physical addresses into kernel
880 * virtual address space.
881 *
882 * For now, VM is already on, we only need to map the
883 * specified memory.
884 *
885 * XXX This routine should eventually go away; it's only used
886 * XXX by machine-dependent crash dump code.
887 */
888 vaddr_t
889 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
890 {
891 pt_entry_t *pte;
892
893 while (spa < epa) {
894 pte = vtopte(va);
895
896 *pte = L2_S_PROTO | spa |
897 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
898 cpu_tlb_flushID_SE(va);
899 va += NBPG;
900 spa += NBPG;
901 }
902 pmap_update(pmap_kernel());
903 return(va);
904 }
905
906
907 /*
908 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
909 *
910 * bootstrap the pmap system. This is called from initarm and allows
911 * the pmap system to initailise any structures it requires.
912 *
913 * Currently this sets up the kernel_pmap that is statically allocated
914 * and also allocated virtual addresses for certain page hooks.
915 * Currently the only one page hook is allocated that is used
916 * to zero physical pages of memory.
917 * It also initialises the start and end address of the kernel data space.
918 */
919
920 char *boot_head;
921
922 void
923 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
924 {
925 pt_entry_t *pte;
926
927 pmap_kernel()->pm_pdir = kernel_l1pt;
928 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
929 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
930 simple_lock_init(&pmap_kernel()->pm_lock);
931 pmap_kernel()->pm_obj.pgops = NULL;
932 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
933 pmap_kernel()->pm_obj.uo_npages = 0;
934 pmap_kernel()->pm_obj.uo_refs = 1;
935
936 virtual_avail = KERNEL_VM_BASE;
937 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
938
939 /*
940 * now we allocate the "special" VAs which are used for tmp mappings
941 * by the pmap (and other modules). we allocate the VAs by advancing
942 * virtual_avail (note that there are no pages mapped at these VAs).
943 * we find the PTE that maps the allocated VA via the linear PTE
944 * mapping.
945 */
946
947 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
948
949 csrcp = virtual_avail; csrc_pte = pte;
950 virtual_avail += PAGE_SIZE; pte++;
951
952 cdstp = virtual_avail; cdst_pte = pte;
953 virtual_avail += PAGE_SIZE; pte++;
954
955 memhook = (char *) virtual_avail; /* don't need pte */
956 virtual_avail += PAGE_SIZE; pte++;
957
958 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
959 virtual_avail += round_page(MSGBUFSIZE);
960 pte += atop(round_page(MSGBUFSIZE));
961
962 /*
963 * init the static-global locks and global lists.
964 */
965 spinlockinit(&pmap_main_lock, "pmaplk", 0);
966 simple_lock_init(&pvalloc_lock);
967 simple_lock_init(&pmaps_lock);
968 LIST_INIT(&pmaps);
969 TAILQ_INIT(&pv_freepages);
970 TAILQ_INIT(&pv_unusedpgs);
971
972 /*
973 * initialize the pmap pool.
974 */
975
976 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
977 &pool_allocator_nointr);
978
979 cpu_dcache_wbinv_all();
980 }
981
982 /*
983 * void pmap_init(void)
984 *
985 * Initialize the pmap module.
986 * Called by vm_init() in vm/vm_init.c in order to initialise
987 * any structures that the pmap system needs to map virtual memory.
988 */
989
990 extern int physmem;
991
992 void
993 pmap_init(void)
994 {
995
996 /*
997 * Set the available memory vars - These do not map to real memory
998 * addresses and cannot as the physical memory is fragmented.
999 * They are used by ps for %mem calculations.
1000 * One could argue whether this should be the entire memory or just
1001 * the memory that is useable in a user process.
1002 */
1003 avail_start = 0;
1004 avail_end = physmem * NBPG;
1005
1006 /*
1007 * now we need to free enough pv_entry structures to allow us to get
1008 * the kmem_map/kmem_object allocated and inited (done after this
1009 * function is finished). to do this we allocate one bootstrap page out
1010 * of kernel_map and use it to provide an initial pool of pv_entry
1011 * structures. we never free this page.
1012 */
1013
1014 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1015 if (pv_initpage == NULL)
1016 panic("pmap_init: pv_initpage");
1017 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1018 pv_nfpvents = 0;
1019 (void) pmap_add_pvpage(pv_initpage, FALSE);
1020
1021 pmap_initialized = TRUE;
1022
1023 /* Initialise our L1 page table queues and counters */
1024 SIMPLEQ_INIT(&l1pt_static_queue);
1025 l1pt_static_queue_count = 0;
1026 l1pt_static_create_count = 0;
1027 SIMPLEQ_INIT(&l1pt_queue);
1028 l1pt_queue_count = 0;
1029 l1pt_create_count = 0;
1030 l1pt_reuse_count = 0;
1031 }
1032
1033 /*
1034 * pmap_postinit()
1035 *
1036 * This routine is called after the vm and kmem subsystems have been
1037 * initialised. This allows the pmap code to perform any initialisation
1038 * that can only be done one the memory allocation is in place.
1039 */
1040
1041 void
1042 pmap_postinit(void)
1043 {
1044 int loop;
1045 struct l1pt *pt;
1046
1047 #ifdef PMAP_STATIC_L1S
1048 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1049 #else /* PMAP_STATIC_L1S */
1050 for (loop = 0; loop < max_processes; ++loop) {
1051 #endif /* PMAP_STATIC_L1S */
1052 /* Allocate a L1 page table */
1053 pt = pmap_alloc_l1pt();
1054 if (!pt)
1055 panic("Cannot allocate static L1 page tables\n");
1056
1057 /* Clean it */
1058 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1059 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1060 /* Add the page table to the queue */
1061 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1062 ++l1pt_static_queue_count;
1063 ++l1pt_static_create_count;
1064 }
1065 }
1066
1067
1068 /*
1069 * Create and return a physical map.
1070 *
1071 * If the size specified for the map is zero, the map is an actual physical
1072 * map, and may be referenced by the hardware.
1073 *
1074 * If the size specified is non-zero, the map will be used in software only,
1075 * and is bounded by that size.
1076 */
1077
1078 pmap_t
1079 pmap_create(void)
1080 {
1081 struct pmap *pmap;
1082
1083 /*
1084 * Fetch pmap entry from the pool
1085 */
1086
1087 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1088 /* XXX is this really needed! */
1089 memset(pmap, 0, sizeof(*pmap));
1090
1091 simple_lock_init(&pmap->pm_obj.vmobjlock);
1092 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1093 TAILQ_INIT(&pmap->pm_obj.memq);
1094 pmap->pm_obj.uo_npages = 0;
1095 pmap->pm_obj.uo_refs = 1;
1096 pmap->pm_stats.wired_count = 0;
1097 pmap->pm_stats.resident_count = 1;
1098 pmap->pm_ptphint = NULL;
1099
1100 /* Now init the machine part of the pmap */
1101 pmap_pinit(pmap);
1102 return(pmap);
1103 }
1104
1105 /*
1106 * pmap_alloc_l1pt()
1107 *
1108 * This routine allocates physical and virtual memory for a L1 page table
1109 * and wires it.
1110 * A l1pt structure is returned to describe the allocated page table.
1111 *
1112 * This routine is allowed to fail if the required memory cannot be allocated.
1113 * In this case NULL is returned.
1114 */
1115
1116 struct l1pt *
1117 pmap_alloc_l1pt(void)
1118 {
1119 paddr_t pa;
1120 vaddr_t va;
1121 struct l1pt *pt;
1122 int error;
1123 struct vm_page *m;
1124 pt_entry_t *pte;
1125
1126 /* Allocate virtual address space for the L1 page table */
1127 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1128 if (va == 0) {
1129 #ifdef DIAGNOSTIC
1130 PDEBUG(0,
1131 printf("pmap: Cannot allocate pageable memory for L1\n"));
1132 #endif /* DIAGNOSTIC */
1133 return(NULL);
1134 }
1135
1136 /* Allocate memory for the l1pt structure */
1137 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1138
1139 /*
1140 * Allocate pages from the VM system.
1141 */
1142 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1143 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1144 if (error) {
1145 #ifdef DIAGNOSTIC
1146 PDEBUG(0,
1147 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1148 error));
1149 #endif /* DIAGNOSTIC */
1150 /* Release the resources we already have claimed */
1151 free(pt, M_VMPMAP);
1152 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1153 return(NULL);
1154 }
1155
1156 /* Map our physical pages into our virtual space */
1157 pt->pt_va = va;
1158 m = TAILQ_FIRST(&pt->pt_plist);
1159 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1160 pa = VM_PAGE_TO_PHYS(m);
1161
1162 pte = vtopte(va);
1163
1164 /*
1165 * Assert that the PTE is invalid. If it's invalid,
1166 * then we are guaranteed that there won't be an entry
1167 * for this VA in the TLB.
1168 */
1169 KDASSERT(pmap_pte_v(pte) == 0);
1170
1171 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1172 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1173
1174 va += NBPG;
1175 m = m->pageq.tqe_next;
1176 }
1177
1178 #ifdef DIAGNOSTIC
1179 if (m)
1180 panic("pmap_alloc_l1pt: pglist not empty\n");
1181 #endif /* DIAGNOSTIC */
1182
1183 pt->pt_flags = 0;
1184 return(pt);
1185 }
1186
1187 /*
1188 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1189 */
1190 static void
1191 pmap_free_l1pt(struct l1pt *pt)
1192 {
1193 /* Separate the physical memory for the virtual space */
1194 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1195 pmap_update(pmap_kernel());
1196
1197 /* Return the physical memory */
1198 uvm_pglistfree(&pt->pt_plist);
1199
1200 /* Free the virtual space */
1201 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1202
1203 /* Free the l1pt structure */
1204 free(pt, M_VMPMAP);
1205 }
1206
1207 /*
1208 * pmap_alloc_ptpt:
1209 *
1210 * Allocate the page table that maps the PTE array.
1211 */
1212 static int
1213 pmap_alloc_ptpt(struct pmap *pmap)
1214 {
1215 struct vm_page *pg;
1216 pt_entry_t *pte;
1217
1218 KASSERT(pmap->pm_vptpt == 0);
1219
1220 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1221 if (pmap->pm_vptpt == 0) {
1222 PDEBUG(0,
1223 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1224 return (ENOMEM);
1225 }
1226
1227 for (;;) {
1228 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1229 if (pg != NULL)
1230 break;
1231 uvm_wait("pmap_ptpt");
1232 }
1233
1234 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1235
1236 pte = vtopte(pmap->pm_vptpt);
1237
1238 KDASSERT(pmap_pte_v(pte) == 0);
1239
1240 *pte = L2_S_PROTO | pmap->pm_pptpt |
1241 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1242
1243 return (0);
1244 }
1245
1246 /*
1247 * pmap_free_ptpt:
1248 *
1249 * Free the page table that maps the PTE array.
1250 */
1251 static void
1252 pmap_free_ptpt(struct pmap *pmap)
1253 {
1254
1255 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1256 pmap_update(pmap_kernel());
1257
1258 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1259
1260 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1261 }
1262
1263 /*
1264 * Allocate a page directory.
1265 * This routine will either allocate a new page directory from the pool
1266 * of L1 page tables currently held by the kernel or it will allocate
1267 * a new one via pmap_alloc_l1pt().
1268 * It will then initialise the l1 page table for use.
1269 */
1270 static int
1271 pmap_allocpagedir(struct pmap *pmap)
1272 {
1273 paddr_t pa;
1274 struct l1pt *pt;
1275 int error;
1276
1277 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1278
1279 /* Do we have any spare L1's lying around ? */
1280 if (l1pt_static_queue_count) {
1281 --l1pt_static_queue_count;
1282 pt = SIMPLEQ_FIRST(&l1pt_static_queue);
1283 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt_queue);
1284 } else if (l1pt_queue_count) {
1285 --l1pt_queue_count;
1286 pt = SIMPLEQ_FIRST(&l1pt_queue);
1287 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt_queue);
1288 ++l1pt_reuse_count;
1289 } else {
1290 pt = pmap_alloc_l1pt();
1291 if (!pt)
1292 return(ENOMEM);
1293 ++l1pt_create_count;
1294 }
1295
1296 /* Store the pointer to the l1 descriptor in the pmap. */
1297 pmap->pm_l1pt = pt;
1298
1299 /* Get the physical address of the start of the l1 */
1300 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1301
1302 /* Store the virtual address of the l1 in the pmap. */
1303 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1304
1305 /* Clean the L1 if it is dirty */
1306 if (!(pt->pt_flags & PTFLAG_CLEAN))
1307 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1308
1309 /* Allocate a page table to map all the page tables for this pmap */
1310 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1311 pmap_freepagedir(pmap);
1312 return (error);
1313 }
1314
1315 /* need to lock this all up for growkernel */
1316 simple_lock(&pmaps_lock);
1317
1318 /* Duplicate the kernel mappings. */
1319 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1320 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1321 KERNEL_PD_SIZE);
1322
1323 /* Wire in this page table */
1324 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1325
1326 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1327
1328 /*
1329 * Map the kernel page tables into the new PT map.
1330 */
1331 bcopy((char *)(PTE_BASE
1332 + (PTE_BASE >> (PGSHIFT - 2))
1333 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1334 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1335 (KERNEL_PD_SIZE >> 2));
1336
1337 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1338 simple_unlock(&pmaps_lock);
1339
1340 return(0);
1341 }
1342
1343
1344 /*
1345 * Initialize a preallocated and zeroed pmap structure,
1346 * such as one in a vmspace structure.
1347 */
1348
1349 void
1350 pmap_pinit(struct pmap *pmap)
1351 {
1352 int backoff = 6;
1353 int retry = 10;
1354
1355 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1356
1357 /* Keep looping until we succeed in allocating a page directory */
1358 while (pmap_allocpagedir(pmap) != 0) {
1359 /*
1360 * Ok we failed to allocate a suitable block of memory for an
1361 * L1 page table. This means that either:
1362 * 1. 16KB of virtual address space could not be allocated
1363 * 2. 16KB of physically contiguous memory on a 16KB boundary
1364 * could not be allocated.
1365 *
1366 * Since we cannot fail we will sleep for a while and try
1367 * again.
1368 *
1369 * Searching for a suitable L1 PT is expensive:
1370 * to avoid hogging the system when memory is really
1371 * scarce, use an exponential back-off so that
1372 * eventually we won't retry more than once every 8
1373 * seconds. This should allow other processes to run
1374 * to completion and free up resources.
1375 */
1376 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1377 NULL);
1378 if (--retry == 0) {
1379 retry = 10;
1380 if (backoff)
1381 --backoff;
1382 }
1383 }
1384
1385 if (vector_page < KERNEL_BASE) {
1386 /*
1387 * Map the vector page. This will also allocate and map
1388 * an L2 table for it.
1389 */
1390 pmap_enter(pmap, vector_page, systempage.pv_pa,
1391 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1392 pmap_update(pmap);
1393 }
1394 }
1395
1396
1397 void
1398 pmap_freepagedir(struct pmap *pmap)
1399 {
1400 /* Free the memory used for the page table mapping */
1401 if (pmap->pm_vptpt != 0)
1402 pmap_free_ptpt(pmap);
1403
1404 /* junk the L1 page table */
1405 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1406 /* Add the page table to the queue */
1407 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1408 ++l1pt_static_queue_count;
1409 } else if (l1pt_queue_count < 8) {
1410 /* Add the page table to the queue */
1411 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1412 ++l1pt_queue_count;
1413 } else
1414 pmap_free_l1pt(pmap->pm_l1pt);
1415 }
1416
1417
1418 /*
1419 * Retire the given physical map from service.
1420 * Should only be called if the map contains no valid mappings.
1421 */
1422
1423 void
1424 pmap_destroy(struct pmap *pmap)
1425 {
1426 struct vm_page *page;
1427 int count;
1428
1429 if (pmap == NULL)
1430 return;
1431
1432 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1433
1434 /*
1435 * Drop reference count
1436 */
1437 simple_lock(&pmap->pm_obj.vmobjlock);
1438 count = --pmap->pm_obj.uo_refs;
1439 simple_unlock(&pmap->pm_obj.vmobjlock);
1440 if (count > 0) {
1441 return;
1442 }
1443
1444 /*
1445 * reference count is zero, free pmap resources and then free pmap.
1446 */
1447
1448 /*
1449 * remove it from global list of pmaps
1450 */
1451
1452 simple_lock(&pmaps_lock);
1453 LIST_REMOVE(pmap, pm_list);
1454 simple_unlock(&pmaps_lock);
1455
1456 if (vector_page < KERNEL_BASE) {
1457 /* Remove the vector page mapping */
1458 pmap_remove(pmap, vector_page, vector_page + NBPG);
1459 pmap_update(pmap);
1460 }
1461
1462 /*
1463 * Free any page tables still mapped
1464 * This is only temporay until pmap_enter can count the number
1465 * of mappings made in a page table. Then pmap_remove() can
1466 * reduce the count and free the pagetable when the count
1467 * reaches zero. Note that entries in this list should match the
1468 * contents of the ptpt, however this is faster than walking a 1024
1469 * entries looking for pt's
1470 * taken from i386 pmap.c
1471 */
1472 /*
1473 * vmobjlock must be held while freeing pages
1474 */
1475 simple_lock(&pmap->pm_obj.vmobjlock);
1476 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1477 KASSERT((page->flags & PG_BUSY) == 0);
1478 page->wire_count = 0;
1479 uvm_pagefree(page);
1480 }
1481 simple_unlock(&pmap->pm_obj.vmobjlock);
1482
1483 /* Free the page dir */
1484 pmap_freepagedir(pmap);
1485
1486 /* return the pmap to the pool */
1487 pool_put(&pmap_pmap_pool, pmap);
1488 }
1489
1490
1491 /*
1492 * void pmap_reference(struct pmap *pmap)
1493 *
1494 * Add a reference to the specified pmap.
1495 */
1496
1497 void
1498 pmap_reference(struct pmap *pmap)
1499 {
1500 if (pmap == NULL)
1501 return;
1502
1503 simple_lock(&pmap->pm_lock);
1504 pmap->pm_obj.uo_refs++;
1505 simple_unlock(&pmap->pm_lock);
1506 }
1507
1508 /*
1509 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1510 *
1511 * Return the start and end addresses of the kernel's virtual space.
1512 * These values are setup in pmap_bootstrap and are updated as pages
1513 * are allocated.
1514 */
1515
1516 void
1517 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1518 {
1519 *start = virtual_avail;
1520 *end = virtual_end;
1521 }
1522
1523 /*
1524 * Activate the address space for the specified process. If the process
1525 * is the current process, load the new MMU context.
1526 */
1527 void
1528 pmap_activate(struct proc *p)
1529 {
1530 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1531 struct pcb *pcb = &p->p_addr->u_pcb;
1532
1533 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1534 (paddr_t *)&pcb->pcb_pagedir);
1535
1536 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1537 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1538
1539 if (p == curproc) {
1540 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1541 setttb((u_int)pcb->pcb_pagedir);
1542 }
1543 }
1544
1545 /*
1546 * Deactivate the address space of the specified process.
1547 */
1548 void
1549 pmap_deactivate(struct proc *p)
1550 {
1551 }
1552
1553 /*
1554 * Perform any deferred pmap operations.
1555 */
1556 void
1557 pmap_update(struct pmap *pmap)
1558 {
1559
1560 /*
1561 * We haven't deferred any pmap operations, but we do need to
1562 * make sure TLB/cache operations have completed.
1563 */
1564 cpu_cpwait();
1565 }
1566
1567 /*
1568 * pmap_clean_page()
1569 *
1570 * This is a local function used to work out the best strategy to clean
1571 * a single page referenced by its entry in the PV table. It's used by
1572 * pmap_copy_page, pmap_zero page and maybe some others later on.
1573 *
1574 * Its policy is effectively:
1575 * o If there are no mappings, we don't bother doing anything with the cache.
1576 * o If there is one mapping, we clean just that page.
1577 * o If there are multiple mappings, we clean the entire cache.
1578 *
1579 * So that some functions can be further optimised, it returns 0 if it didn't
1580 * clean the entire cache, or 1 if it did.
1581 *
1582 * XXX One bug in this routine is that if the pv_entry has a single page
1583 * mapped at 0x00000000 a whole cache clean will be performed rather than
1584 * just the 1 page. Since this should not occur in everyday use and if it does
1585 * it will just result in not the most efficient clean for the page.
1586 */
1587 static int
1588 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1589 {
1590 struct pmap *pmap;
1591 struct pv_entry *npv;
1592 int cache_needs_cleaning = 0;
1593 vaddr_t page_to_clean = 0;
1594
1595 if (pv == NULL)
1596 /* nothing mapped in so nothing to flush */
1597 return (0);
1598
1599 /* Since we flush the cache each time we change curproc, we
1600 * only need to flush the page if it is in the current pmap.
1601 */
1602 if (curproc)
1603 pmap = curproc->p_vmspace->vm_map.pmap;
1604 else
1605 pmap = pmap_kernel();
1606
1607 for (npv = pv; npv; npv = npv->pv_next) {
1608 if (npv->pv_pmap == pmap) {
1609 /* The page is mapped non-cacheable in
1610 * this map. No need to flush the cache.
1611 */
1612 if (npv->pv_flags & PVF_NC) {
1613 #ifdef DIAGNOSTIC
1614 if (cache_needs_cleaning)
1615 panic("pmap_clean_page: "
1616 "cache inconsistency");
1617 #endif
1618 break;
1619 }
1620 #if 0
1621 /*
1622 * XXX Can't do this because pmap_protect doesn't
1623 * XXX clean the page when it does a write-protect.
1624 */
1625 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1626 continue;
1627 #endif
1628 if (cache_needs_cleaning){
1629 page_to_clean = 0;
1630 break;
1631 }
1632 else
1633 page_to_clean = npv->pv_va;
1634 cache_needs_cleaning = 1;
1635 }
1636 }
1637
1638 if (page_to_clean)
1639 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1640 else if (cache_needs_cleaning) {
1641 cpu_idcache_wbinv_all();
1642 return (1);
1643 }
1644 return (0);
1645 }
1646
1647 /*
1648 * pmap_zero_page()
1649 *
1650 * Zero a given physical page by mapping it at a page hook point.
1651 * In doing the zero page op, the page we zero is mapped cachable, as with
1652 * StrongARM accesses to non-cached pages are non-burst making writing
1653 * _any_ bulk data very slow.
1654 */
1655 #if ARM_MMU_GENERIC == 1
1656 void
1657 pmap_zero_page_generic(paddr_t phys)
1658 {
1659 #ifdef DEBUG
1660 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1661
1662 if (pg->mdpage.pvh_list != NULL)
1663 panic("pmap_zero_page: page has mappings");
1664 #endif
1665
1666 KDASSERT((phys & PGOFSET) == 0);
1667
1668 /*
1669 * Hook in the page, zero it, and purge the cache for that
1670 * zeroed page. Invalidate the TLB as needed.
1671 */
1672 *cdst_pte = L2_S_PROTO | phys |
1673 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1674 cpu_tlb_flushD_SE(cdstp);
1675 cpu_cpwait();
1676 bzero_page(cdstp);
1677 cpu_dcache_wbinv_range(cdstp, NBPG);
1678 }
1679 #endif /* ARM_MMU_GENERIC == 1 */
1680
1681 #if ARM_MMU_XSCALE == 1
1682 void
1683 pmap_zero_page_xscale(paddr_t phys)
1684 {
1685 #ifdef DEBUG
1686 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1687
1688 if (pg->mdpage.pvh_list != NULL)
1689 panic("pmap_zero_page: page has mappings");
1690 #endif
1691
1692 KDASSERT((phys & PGOFSET) == 0);
1693
1694 /*
1695 * Hook in the page, zero it, and purge the cache for that
1696 * zeroed page. Invalidate the TLB as needed.
1697 */
1698 *cdst_pte = L2_S_PROTO | phys |
1699 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1700 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1701 cpu_tlb_flushD_SE(cdstp);
1702 cpu_cpwait();
1703 bzero_page(cdstp);
1704 xscale_cache_clean_minidata();
1705 }
1706 #endif /* ARM_MMU_XSCALE == 1 */
1707
1708 /* pmap_pageidlezero()
1709 *
1710 * The same as above, except that we assume that the page is not
1711 * mapped. This means we never have to flush the cache first. Called
1712 * from the idle loop.
1713 */
1714 boolean_t
1715 pmap_pageidlezero(paddr_t phys)
1716 {
1717 int i, *ptr;
1718 boolean_t rv = TRUE;
1719 #ifdef DEBUG
1720 struct vm_page *pg;
1721
1722 pg = PHYS_TO_VM_PAGE(phys);
1723 if (pg->mdpage.pvh_list != NULL)
1724 panic("pmap_pageidlezero: page has mappings");
1725 #endif
1726
1727 KDASSERT((phys & PGOFSET) == 0);
1728
1729 /*
1730 * Hook in the page, zero it, and purge the cache for that
1731 * zeroed page. Invalidate the TLB as needed.
1732 */
1733 *cdst_pte = L2_S_PROTO | phys |
1734 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1735 cpu_tlb_flushD_SE(cdstp);
1736 cpu_cpwait();
1737
1738 for (i = 0, ptr = (int *)cdstp;
1739 i < (NBPG / sizeof(int)); i++) {
1740 if (sched_whichqs != 0) {
1741 /*
1742 * A process has become ready. Abort now,
1743 * so we don't keep it waiting while we
1744 * do slow memory access to finish this
1745 * page.
1746 */
1747 rv = FALSE;
1748 break;
1749 }
1750 *ptr++ = 0;
1751 }
1752
1753 if (rv)
1754 /*
1755 * if we aborted we'll rezero this page again later so don't
1756 * purge it unless we finished it
1757 */
1758 cpu_dcache_wbinv_range(cdstp, NBPG);
1759 return (rv);
1760 }
1761
1762 /*
1763 * pmap_copy_page()
1764 *
1765 * Copy one physical page into another, by mapping the pages into
1766 * hook points. The same comment regarding cachability as in
1767 * pmap_zero_page also applies here.
1768 */
1769 #if ARM_MMU_GENERIC == 1
1770 void
1771 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1772 {
1773 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1774 #ifdef DEBUG
1775 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1776
1777 if (dst_pg->mdpage.pvh_list != NULL)
1778 panic("pmap_copy_page: dst page has mappings");
1779 #endif
1780
1781 KDASSERT((src & PGOFSET) == 0);
1782 KDASSERT((dst & PGOFSET) == 0);
1783
1784 /*
1785 * Clean the source page. Hold the source page's lock for
1786 * the duration of the copy so that no other mappings can
1787 * be created while we have a potentially aliased mapping.
1788 */
1789 simple_lock(&src_pg->mdpage.pvh_slock);
1790 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1791
1792 /*
1793 * Map the pages into the page hook points, copy them, and purge
1794 * the cache for the appropriate page. Invalidate the TLB
1795 * as required.
1796 */
1797 *csrc_pte = L2_S_PROTO | src |
1798 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1799 *cdst_pte = L2_S_PROTO | dst |
1800 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1801 cpu_tlb_flushD_SE(csrcp);
1802 cpu_tlb_flushD_SE(cdstp);
1803 cpu_cpwait();
1804 bcopy_page(csrcp, cdstp);
1805 cpu_dcache_inv_range(csrcp, NBPG);
1806 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1807 cpu_dcache_wbinv_range(cdstp, NBPG);
1808 }
1809 #endif /* ARM_MMU_GENERIC == 1 */
1810
1811 #if ARM_MMU_XSCALE == 1
1812 void
1813 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1814 {
1815 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1816 #ifdef DEBUG
1817 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1818
1819 if (dst_pg->mdpage.pvh_list != NULL)
1820 panic("pmap_copy_page: dst page has mappings");
1821 #endif
1822
1823 KDASSERT((src & PGOFSET) == 0);
1824 KDASSERT((dst & PGOFSET) == 0);
1825
1826 /*
1827 * Clean the source page. Hold the source page's lock for
1828 * the duration of the copy so that no other mappings can
1829 * be created while we have a potentially aliased mapping.
1830 */
1831 simple_lock(&src_pg->mdpage.pvh_slock);
1832 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1833
1834 /*
1835 * Map the pages into the page hook points, copy them, and purge
1836 * the cache for the appropriate page. Invalidate the TLB
1837 * as required.
1838 */
1839 *csrc_pte = L2_S_PROTO | src |
1840 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1841 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1842 *cdst_pte = L2_S_PROTO | dst |
1843 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1844 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1845 cpu_tlb_flushD_SE(csrcp);
1846 cpu_tlb_flushD_SE(cdstp);
1847 cpu_cpwait();
1848 bcopy_page(csrcp, cdstp);
1849 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1850 xscale_cache_clean_minidata();
1851 }
1852 #endif /* ARM_MMU_XSCALE == 1 */
1853
1854 #if 0
1855 void
1856 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1857 {
1858 pd_entry_t *pde;
1859 paddr_t pa;
1860 struct vm_page *m;
1861
1862 if (pmap == pmap_kernel())
1863 return;
1864
1865 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1866 pa = pmap_pte_pa(pde);
1867 m = PHYS_TO_VM_PAGE(pa);
1868 ++m->wire_count;
1869 #ifdef MYCROFT_HACK
1870 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1871 pmap, va, pde, pa, m, m->wire_count);
1872 #endif
1873 }
1874
1875 void
1876 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
1877 {
1878 pd_entry_t *pde;
1879 paddr_t pa;
1880 struct vm_page *m;
1881
1882 if (pmap == pmap_kernel())
1883 return;
1884
1885 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1886 pa = pmap_pte_pa(pde);
1887 m = PHYS_TO_VM_PAGE(pa);
1888 --m->wire_count;
1889 #ifdef MYCROFT_HACK
1890 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1891 pmap, va, pde, pa, m, m->wire_count);
1892 #endif
1893 if (m->wire_count == 0) {
1894 #ifdef MYCROFT_HACK
1895 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
1896 pmap, va, pde, pa, m);
1897 #endif
1898 pmap_unmap_in_l1(pmap, va);
1899 uvm_pagefree(m);
1900 --pmap->pm_stats.resident_count;
1901 }
1902 }
1903 #else
1904 #define pmap_pte_addref(pmap, va)
1905 #define pmap_pte_delref(pmap, va)
1906 #endif
1907
1908 /*
1909 * Since we have a virtually indexed cache, we may need to inhibit caching if
1910 * there is more than one mapping and at least one of them is writable.
1911 * Since we purge the cache on every context switch, we only need to check for
1912 * other mappings within the same pmap, or kernel_pmap.
1913 * This function is also called when a page is unmapped, to possibly reenable
1914 * caching on any remaining mappings.
1915 *
1916 * The code implements the following logic, where:
1917 *
1918 * KW = # of kernel read/write pages
1919 * KR = # of kernel read only pages
1920 * UW = # of user read/write pages
1921 * UR = # of user read only pages
1922 * OW = # of user read/write pages in another pmap, then
1923 *
1924 * KC = kernel mapping is cacheable
1925 * UC = user mapping is cacheable
1926 *
1927 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1928 * +---------------------------------------------
1929 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
1930 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1931 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
1932 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1933 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1934 *
1935 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
1936 */
1937 __inline static void
1938 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1939 boolean_t clear_cache)
1940 {
1941 if (pmap == pmap_kernel())
1942 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
1943 else
1944 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
1945 }
1946
1947 static void
1948 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
1949 boolean_t clear_cache)
1950 {
1951 int user_entries = 0;
1952 int user_writable = 0;
1953 int user_cacheable = 0;
1954 int kernel_entries = 0;
1955 int kernel_writable = 0;
1956 int kernel_cacheable = 0;
1957 struct pv_entry *pv;
1958 struct pmap *last_pmap = pmap;
1959
1960 #ifdef DIAGNOSTIC
1961 if (pmap != pmap_kernel())
1962 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
1963 #endif
1964
1965 /*
1966 * Pass one, see if there are both kernel and user pmaps for
1967 * this page. Calculate whether there are user-writable or
1968 * kernel-writable pages.
1969 */
1970 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
1971 if (pv->pv_pmap != pmap) {
1972 user_entries++;
1973 if (pv->pv_flags & PVF_WRITE)
1974 user_writable++;
1975 if ((pv->pv_flags & PVF_NC) == 0)
1976 user_cacheable++;
1977 } else {
1978 kernel_entries++;
1979 if (pv->pv_flags & PVF_WRITE)
1980 kernel_writable++;
1981 if ((pv->pv_flags & PVF_NC) == 0)
1982 kernel_cacheable++;
1983 }
1984 }
1985
1986 /*
1987 * We know we have just been updating a kernel entry, so if
1988 * all user pages are already cacheable, then there is nothing
1989 * further to do.
1990 */
1991 if (kernel_entries == 0 &&
1992 user_cacheable == user_entries)
1993 return;
1994
1995 if (user_entries) {
1996 /*
1997 * Scan over the list again, for each entry, if it
1998 * might not be set correctly, call pmap_vac_me_user
1999 * to recalculate the settings.
2000 */
2001 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2002 /*
2003 * We know kernel mappings will get set
2004 * correctly in other calls. We also know
2005 * that if the pmap is the same as last_pmap
2006 * then we've just handled this entry.
2007 */
2008 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2009 continue;
2010 /*
2011 * If there are kernel entries and this page
2012 * is writable but non-cacheable, then we can
2013 * skip this entry also.
2014 */
2015 if (kernel_entries > 0 &&
2016 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2017 (PVF_NC | PVF_WRITE))
2018 continue;
2019 /*
2020 * Similarly if there are no kernel-writable
2021 * entries and the page is already
2022 * read-only/cacheable.
2023 */
2024 if (kernel_writable == 0 &&
2025 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2026 continue;
2027 /*
2028 * For some of the remaining cases, we know
2029 * that we must recalculate, but for others we
2030 * can't tell if they are correct or not, so
2031 * we recalculate anyway.
2032 */
2033 pmap_unmap_ptes(last_pmap);
2034 last_pmap = pv->pv_pmap;
2035 ptes = pmap_map_ptes(last_pmap);
2036 pmap_vac_me_user(last_pmap, pg, ptes,
2037 pmap_is_curpmap(last_pmap));
2038 }
2039 /* Restore the pte mapping that was passed to us. */
2040 if (last_pmap != pmap) {
2041 pmap_unmap_ptes(last_pmap);
2042 ptes = pmap_map_ptes(pmap);
2043 }
2044 if (kernel_entries == 0)
2045 return;
2046 }
2047
2048 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2049 return;
2050 }
2051
2052 static void
2053 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2054 boolean_t clear_cache)
2055 {
2056 struct pmap *kpmap = pmap_kernel();
2057 struct pv_entry *pv, *npv;
2058 int entries = 0;
2059 int writable = 0;
2060 int cacheable_entries = 0;
2061 int kern_cacheable = 0;
2062 int other_writable = 0;
2063
2064 pv = pg->mdpage.pvh_list;
2065 KASSERT(ptes != NULL);
2066
2067 /*
2068 * Count mappings and writable mappings in this pmap.
2069 * Include kernel mappings as part of our own.
2070 * Keep a pointer to the first one.
2071 */
2072 for (npv = pv; npv; npv = npv->pv_next) {
2073 /* Count mappings in the same pmap */
2074 if (pmap == npv->pv_pmap ||
2075 kpmap == npv->pv_pmap) {
2076 if (entries++ == 0)
2077 pv = npv;
2078 /* Cacheable mappings */
2079 if ((npv->pv_flags & PVF_NC) == 0) {
2080 cacheable_entries++;
2081 if (kpmap == npv->pv_pmap)
2082 kern_cacheable++;
2083 }
2084 /* Writable mappings */
2085 if (npv->pv_flags & PVF_WRITE)
2086 ++writable;
2087 } else if (npv->pv_flags & PVF_WRITE)
2088 other_writable = 1;
2089 }
2090
2091 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2092 "writable %d cacheable %d %s\n", pmap, entries, writable,
2093 cacheable_entries, clear_cache ? "clean" : "no clean"));
2094
2095 /*
2096 * Enable or disable caching as necessary.
2097 * Note: the first entry might be part of the kernel pmap,
2098 * so we can't assume this is indicative of the state of the
2099 * other (maybe non-kpmap) entries.
2100 */
2101 if ((entries > 1 && writable) ||
2102 (entries > 0 && pmap == kpmap && other_writable)) {
2103 if (cacheable_entries == 0)
2104 return;
2105 for (npv = pv; npv; npv = npv->pv_next) {
2106 if ((pmap == npv->pv_pmap
2107 || kpmap == npv->pv_pmap) &&
2108 (npv->pv_flags & PVF_NC) == 0) {
2109 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2110 npv->pv_flags |= PVF_NC;
2111 /*
2112 * If this page needs flushing from the
2113 * cache, and we aren't going to do it
2114 * below, do it now.
2115 */
2116 if ((cacheable_entries < 4 &&
2117 (clear_cache || npv->pv_pmap == kpmap)) ||
2118 (npv->pv_pmap == kpmap &&
2119 !clear_cache && kern_cacheable < 4)) {
2120 cpu_idcache_wbinv_range(npv->pv_va,
2121 NBPG);
2122 cpu_tlb_flushID_SE(npv->pv_va);
2123 }
2124 }
2125 }
2126 if ((clear_cache && cacheable_entries >= 4) ||
2127 kern_cacheable >= 4) {
2128 cpu_idcache_wbinv_all();
2129 cpu_tlb_flushID();
2130 }
2131 cpu_cpwait();
2132 } else if (entries > 0) {
2133 /*
2134 * Turn cacheing back on for some pages. If it is a kernel
2135 * page, only do so if there are no other writable pages.
2136 */
2137 for (npv = pv; npv; npv = npv->pv_next) {
2138 if ((pmap == npv->pv_pmap ||
2139 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2140 (npv->pv_flags & PVF_NC)) {
2141 ptes[arm_btop(npv->pv_va)] |=
2142 pte_l2_s_cache_mode;
2143 npv->pv_flags &= ~PVF_NC;
2144 }
2145 }
2146 }
2147 }
2148
2149 /*
2150 * pmap_remove()
2151 *
2152 * pmap_remove is responsible for nuking a number of mappings for a range
2153 * of virtual address space in the current pmap. To do this efficiently
2154 * is interesting, because in a number of cases a wide virtual address
2155 * range may be supplied that contains few actual mappings. So, the
2156 * optimisations are:
2157 * 1. Try and skip over hunks of address space for which an L1 entry
2158 * does not exist.
2159 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2160 * maybe do just a partial cache clean. This path of execution is
2161 * complicated by the fact that the cache must be flushed _before_
2162 * the PTE is nuked, being a VAC :-)
2163 * 3. Maybe later fast-case a single page, but I don't think this is
2164 * going to make _that_ much difference overall.
2165 */
2166
2167 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2168
2169 void
2170 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2171 {
2172 int cleanlist_idx = 0;
2173 struct pagelist {
2174 vaddr_t va;
2175 pt_entry_t *pte;
2176 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2177 pt_entry_t *pte = 0, *ptes;
2178 paddr_t pa;
2179 int pmap_active;
2180 struct vm_page *pg;
2181
2182 /* Exit quick if there is no pmap */
2183 if (!pmap)
2184 return;
2185
2186 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2187 pmap, sva, eva));
2188
2189 /*
2190 * we lock in the pmap => vm_page direction
2191 */
2192 PMAP_MAP_TO_HEAD_LOCK();
2193
2194 ptes = pmap_map_ptes(pmap);
2195 /* Get a page table pointer */
2196 while (sva < eva) {
2197 if (pmap_pde_page(pmap_pde(pmap, sva)))
2198 break;
2199 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2200 }
2201
2202 pte = &ptes[arm_btop(sva)];
2203 /* Note if the pmap is active thus require cache and tlb cleans */
2204 pmap_active = pmap_is_curpmap(pmap);
2205
2206 /* Now loop along */
2207 while (sva < eva) {
2208 /* Check if we can move to the next PDE (l1 chunk) */
2209 if (!(sva & L2_ADDR_BITS))
2210 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2211 sva += L1_S_SIZE;
2212 pte += arm_btop(L1_S_SIZE);
2213 continue;
2214 }
2215
2216 /* We've found a valid PTE, so this page of PTEs has to go. */
2217 if (pmap_pte_v(pte)) {
2218 /* Update statistics */
2219 --pmap->pm_stats.resident_count;
2220
2221 /*
2222 * Add this page to our cache remove list, if we can.
2223 * If, however the cache remove list is totally full,
2224 * then do a complete cache invalidation taking note
2225 * to backtrack the PTE table beforehand, and ignore
2226 * the lists in future because there's no longer any
2227 * point in bothering with them (we've paid the
2228 * penalty, so will carry on unhindered). Otherwise,
2229 * when we fall out, we just clean the list.
2230 */
2231 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2232 pa = pmap_pte_pa(pte);
2233
2234 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2235 /* Add to the clean list. */
2236 cleanlist[cleanlist_idx].pte = pte;
2237 cleanlist[cleanlist_idx].va = sva;
2238 cleanlist_idx++;
2239 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2240 int cnt;
2241
2242 /* Nuke everything if needed. */
2243 if (pmap_active) {
2244 cpu_idcache_wbinv_all();
2245 cpu_tlb_flushID();
2246 }
2247
2248 /*
2249 * Roll back the previous PTE list,
2250 * and zero out the current PTE.
2251 */
2252 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2253 *cleanlist[cnt].pte = 0;
2254 pmap_pte_delref(pmap, cleanlist[cnt].va);
2255 }
2256 *pte = 0;
2257 pmap_pte_delref(pmap, sva);
2258 cleanlist_idx++;
2259 } else {
2260 /*
2261 * We've already nuked the cache and
2262 * TLB, so just carry on regardless,
2263 * and we won't need to do it again
2264 */
2265 *pte = 0;
2266 pmap_pte_delref(pmap, sva);
2267 }
2268
2269 /*
2270 * Update flags. In a number of circumstances,
2271 * we could cluster a lot of these and do a
2272 * number of sequential pages in one go.
2273 */
2274 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2275 struct pv_entry *pve;
2276 simple_lock(&pg->mdpage.pvh_slock);
2277 pve = pmap_remove_pv(pg, pmap, sva);
2278 pmap_free_pv(pmap, pve);
2279 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2280 simple_unlock(&pg->mdpage.pvh_slock);
2281 }
2282 }
2283 sva += NBPG;
2284 pte++;
2285 }
2286
2287 /*
2288 * Now, if we've fallen through down to here, chances are that there
2289 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2290 */
2291 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2292 u_int cnt;
2293
2294 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2295 if (pmap_active) {
2296 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2297 NBPG);
2298 *cleanlist[cnt].pte = 0;
2299 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2300 } else
2301 *cleanlist[cnt].pte = 0;
2302 pmap_pte_delref(pmap, cleanlist[cnt].va);
2303 }
2304 }
2305
2306 pmap_unmap_ptes(pmap);
2307
2308 PMAP_MAP_TO_HEAD_UNLOCK();
2309 }
2310
2311 /*
2312 * Routine: pmap_remove_all
2313 * Function:
2314 * Removes this physical page from
2315 * all physical maps in which it resides.
2316 * Reflects back modify bits to the pager.
2317 */
2318
2319 static void
2320 pmap_remove_all(struct vm_page *pg)
2321 {
2322 struct pv_entry *pv, *npv;
2323 struct pmap *pmap;
2324 pt_entry_t *pte, *ptes;
2325
2326 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2327
2328 /* set vm_page => pmap locking */
2329 PMAP_HEAD_TO_MAP_LOCK();
2330
2331 simple_lock(&pg->mdpage.pvh_slock);
2332
2333 pv = pg->mdpage.pvh_list;
2334 if (pv == NULL) {
2335 PDEBUG(0, printf("free page\n"));
2336 simple_unlock(&pg->mdpage.pvh_slock);
2337 PMAP_HEAD_TO_MAP_UNLOCK();
2338 return;
2339 }
2340 pmap_clean_page(pv, FALSE);
2341
2342 while (pv) {
2343 pmap = pv->pv_pmap;
2344 ptes = pmap_map_ptes(pmap);
2345 pte = &ptes[arm_btop(pv->pv_va)];
2346
2347 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2348 pv->pv_va, pv->pv_flags));
2349 #ifdef DEBUG
2350 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2351 pmap_pte_v(pte) == 0 ||
2352 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2353 panic("pmap_remove_all: bad mapping");
2354 #endif /* DEBUG */
2355
2356 /*
2357 * Update statistics
2358 */
2359 --pmap->pm_stats.resident_count;
2360
2361 /* Wired bit */
2362 if (pv->pv_flags & PVF_WIRED)
2363 --pmap->pm_stats.wired_count;
2364
2365 /*
2366 * Invalidate the PTEs.
2367 * XXX: should cluster them up and invalidate as many
2368 * as possible at once.
2369 */
2370
2371 #ifdef needednotdone
2372 reduce wiring count on page table pages as references drop
2373 #endif
2374
2375 *pte = 0;
2376 pmap_pte_delref(pmap, pv->pv_va);
2377
2378 npv = pv->pv_next;
2379 pmap_free_pv(pmap, pv);
2380 pv = npv;
2381 pmap_unmap_ptes(pmap);
2382 }
2383 pg->mdpage.pvh_list = NULL;
2384 simple_unlock(&pg->mdpage.pvh_slock);
2385 PMAP_HEAD_TO_MAP_UNLOCK();
2386
2387 PDEBUG(0, printf("done\n"));
2388 cpu_tlb_flushID();
2389 cpu_cpwait();
2390 }
2391
2392
2393 /*
2394 * Set the physical protection on the specified range of this map as requested.
2395 */
2396
2397 void
2398 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2399 {
2400 pt_entry_t *pte = NULL, *ptes;
2401 struct vm_page *pg;
2402 int armprot;
2403 int flush = 0;
2404 paddr_t pa;
2405
2406 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2407 pmap, sva, eva, prot));
2408
2409 if (~prot & VM_PROT_READ) {
2410 /* Just remove the mappings. */
2411 pmap_remove(pmap, sva, eva);
2412 /* pmap_update not needed as it should be called by the caller
2413 * of pmap_protect */
2414 return;
2415 }
2416 if (prot & VM_PROT_WRITE) {
2417 /*
2418 * If this is a read->write transition, just ignore it and let
2419 * uvm_fault() take care of it later.
2420 */
2421 return;
2422 }
2423
2424 /* Need to lock map->head */
2425 PMAP_MAP_TO_HEAD_LOCK();
2426
2427 ptes = pmap_map_ptes(pmap);
2428
2429 /*
2430 * OK, at this point, we know we're doing write-protect operation.
2431 * If the pmap is active, write-back the range.
2432 */
2433 if (pmap_is_curpmap(pmap))
2434 cpu_dcache_wb_range(sva, eva - sva);
2435
2436 /*
2437 * We need to acquire a pointer to a page table page before entering
2438 * the following loop.
2439 */
2440 while (sva < eva) {
2441 if (pmap_pde_page(pmap_pde(pmap, sva)))
2442 break;
2443 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2444 }
2445
2446 pte = &ptes[arm_btop(sva)];
2447
2448 while (sva < eva) {
2449 /* only check once in a while */
2450 if ((sva & L2_ADDR_BITS) == 0) {
2451 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2452 /* We can race ahead here, to the next pde. */
2453 sva += L1_S_SIZE;
2454 pte += arm_btop(L1_S_SIZE);
2455 continue;
2456 }
2457 }
2458
2459 if (!pmap_pte_v(pte))
2460 goto next;
2461
2462 flush = 1;
2463
2464 armprot = 0;
2465 if (sva < VM_MAXUSER_ADDRESS)
2466 armprot |= L2_S_PROT_U;
2467 else if (sva < VM_MAX_ADDRESS)
2468 armprot |= L2_S_PROT_W; /* XXX Ekk what is this ? */
2469 *pte = (*pte & 0xfffff00f) | armprot;
2470
2471 pa = pmap_pte_pa(pte);
2472
2473 /* Get the physical page index */
2474
2475 /* Clear write flag */
2476 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2477 simple_lock(&pg->mdpage.pvh_slock);
2478 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2479 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2480 simple_unlock(&pg->mdpage.pvh_slock);
2481 }
2482
2483 next:
2484 sva += NBPG;
2485 pte++;
2486 }
2487 pmap_unmap_ptes(pmap);
2488 PMAP_MAP_TO_HEAD_UNLOCK();
2489 if (flush)
2490 cpu_tlb_flushID();
2491 }
2492
2493 /*
2494 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2495 * int flags)
2496 *
2497 * Insert the given physical page (p) at
2498 * the specified virtual address (v) in the
2499 * target physical map with the protection requested.
2500 *
2501 * If specified, the page will be wired down, meaning
2502 * that the related pte can not be reclaimed.
2503 *
2504 * NB: This is the only routine which MAY NOT lazy-evaluate
2505 * or lose information. That is, this routine must actually
2506 * insert this page into the given map NOW.
2507 */
2508
2509 int
2510 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2511 int flags)
2512 {
2513 pt_entry_t *ptes, opte, npte;
2514 paddr_t opa;
2515 boolean_t wired = (flags & PMAP_WIRED) != 0;
2516 struct vm_page *pg;
2517 struct pv_entry *pve;
2518 int error, nflags;
2519
2520 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2521 va, pa, pmap, prot, wired));
2522
2523 #ifdef DIAGNOSTIC
2524 /* Valid address ? */
2525 if (va >= (pmap_curmaxkvaddr))
2526 panic("pmap_enter: too big");
2527 if (pmap != pmap_kernel() && va != 0) {
2528 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2529 panic("pmap_enter: kernel page in user map");
2530 } else {
2531 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2532 panic("pmap_enter: user page in kernel map");
2533 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2534 panic("pmap_enter: entering PT page");
2535 }
2536 #endif
2537
2538 KDASSERT(((va | pa) & PGOFSET) == 0);
2539
2540 /*
2541 * Get a pointer to the page. Later on in this function, we
2542 * test for a managed page by checking pg != NULL.
2543 */
2544 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2545
2546 /* get lock */
2547 PMAP_MAP_TO_HEAD_LOCK();
2548
2549 /*
2550 * map the ptes. If there's not already an L2 table for this
2551 * address, allocate one.
2552 */
2553 ptes = pmap_map_ptes(pmap); /* locks pmap */
2554 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2555 struct vm_page *ptp;
2556
2557 /* kernel should be pre-grown */
2558 KASSERT(pmap != pmap_kernel());
2559
2560 /* if failure is allowed then don't try too hard */
2561 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2562 if (ptp == NULL) {
2563 if (flags & PMAP_CANFAIL) {
2564 error = ENOMEM;
2565 goto out;
2566 }
2567 panic("pmap_enter: get ptp failed");
2568 }
2569 }
2570 opte = ptes[arm_btop(va)];
2571
2572 nflags = 0;
2573 if (prot & VM_PROT_WRITE)
2574 nflags |= PVF_WRITE;
2575 if (wired)
2576 nflags |= PVF_WIRED;
2577
2578 /* Is the pte valid ? If so then this page is already mapped */
2579 if (l2pte_valid(opte)) {
2580 /* Get the physical address of the current page mapped */
2581 opa = l2pte_pa(opte);
2582
2583 /* Are we mapping the same page ? */
2584 if (opa == pa) {
2585 /* Check to see if we're doing rw->ro. */
2586 if ((opte & L2_S_PROT_W) != 0 &&
2587 (prot & VM_PROT_WRITE) == 0) {
2588 /* Yup, flush the cache if current pmap. */
2589 if (pmap_is_curpmap(pmap))
2590 cpu_dcache_wb_range(va, NBPG);
2591 }
2592
2593 /* Has the wiring changed ? */
2594 if (pg != NULL) {
2595 simple_lock(&pg->mdpage.pvh_slock);
2596 (void) pmap_modify_pv(pmap, va, pg,
2597 PVF_WRITE | PVF_WIRED, nflags);
2598 simple_unlock(&pg->mdpage.pvh_slock);
2599 }
2600 } else {
2601 struct vm_page *opg;
2602
2603 /* We are replacing the page with a new one. */
2604 cpu_idcache_wbinv_range(va, NBPG);
2605
2606 /*
2607 * If it is part of our managed memory then we
2608 * must remove it from the PV list
2609 */
2610 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2611 simple_lock(&opg->mdpage.pvh_slock);
2612 pve = pmap_remove_pv(opg, pmap, va);
2613 simple_unlock(&opg->mdpage.pvh_slock);
2614 } else {
2615 pve = NULL;
2616 }
2617
2618 goto enter;
2619 }
2620 } else {
2621 opa = 0;
2622 pve = NULL;
2623 pmap_pte_addref(pmap, va);
2624
2625 /* pte is not valid so we must be hooking in a new page */
2626 ++pmap->pm_stats.resident_count;
2627
2628 enter:
2629 /*
2630 * Enter on the PV list if part of our managed memory
2631 */
2632 if (pg != NULL) {
2633 if (pve == NULL) {
2634 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2635 if (pve == NULL) {
2636 if (flags & PMAP_CANFAIL) {
2637 error = ENOMEM;
2638 goto out;
2639 }
2640 panic("pmap_enter: no pv entries "
2641 "available");
2642 }
2643 }
2644 /* enter_pv locks pvh when adding */
2645 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2646 } else {
2647 if (pve != NULL)
2648 pmap_free_pv(pmap, pve);
2649 }
2650 }
2651
2652 /* Construct the pte, giving the correct access. */
2653 npte = pa;
2654
2655 /* VA 0 is magic. */
2656 if (pmap != pmap_kernel() && va != vector_page)
2657 npte |= L2_S_PROT_U;
2658
2659 if (pg != NULL) {
2660 #ifdef DIAGNOSTIC
2661 if ((flags & VM_PROT_ALL) & ~prot)
2662 panic("pmap_enter: access_type exceeds prot");
2663 #endif
2664 npte |= pte_l2_s_cache_mode;
2665 if (flags & VM_PROT_WRITE) {
2666 npte |= L2_S_PROTO | L2_S_PROT_W;
2667 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2668 } else if (flags & VM_PROT_ALL) {
2669 npte |= L2_S_PROTO;
2670 pg->mdpage.pvh_attrs |= PVF_REF;
2671 } else
2672 npte |= L2_TYPE_INV;
2673 } else {
2674 if (prot & VM_PROT_WRITE)
2675 npte |= L2_S_PROTO | L2_S_PROT_W;
2676 else if (prot & VM_PROT_ALL)
2677 npte |= L2_S_PROTO;
2678 else
2679 npte |= L2_TYPE_INV;
2680 }
2681
2682 ptes[arm_btop(va)] = npte;
2683
2684 if (pg != NULL) {
2685 simple_lock(&pg->mdpage.pvh_slock);
2686 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2687 simple_unlock(&pg->mdpage.pvh_slock);
2688 }
2689
2690 /* Better flush the TLB ... */
2691 cpu_tlb_flushID_SE(va);
2692 error = 0;
2693 out:
2694 pmap_unmap_ptes(pmap); /* unlocks pmap */
2695 PMAP_MAP_TO_HEAD_UNLOCK();
2696
2697 return error;
2698 }
2699
2700 /*
2701 * pmap_kenter_pa: enter a kernel mapping
2702 *
2703 * => no need to lock anything assume va is already allocated
2704 * => should be faster than normal pmap enter function
2705 */
2706 void
2707 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2708 {
2709 pt_entry_t *pte;
2710
2711 pte = vtopte(va);
2712 KASSERT(!pmap_pte_v(pte));
2713
2714 *pte = L2_S_PROTO | pa |
2715 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2716 }
2717
2718 void
2719 pmap_kremove(vaddr_t va, vsize_t len)
2720 {
2721 pt_entry_t *pte;
2722
2723 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2724
2725 /*
2726 * We assume that we will only be called with small
2727 * regions of memory.
2728 */
2729
2730 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2731 pte = vtopte(va);
2732 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2733 *pte = 0;
2734 cpu_tlb_flushID_SE(va);
2735 }
2736 }
2737
2738 /*
2739 * pmap_page_protect:
2740 *
2741 * Lower the permission for all mappings to a given page.
2742 */
2743
2744 void
2745 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2746 {
2747
2748 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2749 VM_PAGE_TO_PHYS(pg), prot));
2750
2751 switch(prot) {
2752 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2753 case VM_PROT_READ|VM_PROT_WRITE:
2754 return;
2755
2756 case VM_PROT_READ:
2757 case VM_PROT_READ|VM_PROT_EXECUTE:
2758 pmap_clearbit(pg, PVF_WRITE);
2759 break;
2760
2761 default:
2762 pmap_remove_all(pg);
2763 break;
2764 }
2765 }
2766
2767
2768 /*
2769 * Routine: pmap_unwire
2770 * Function: Clear the wired attribute for a map/virtual-address
2771 * pair.
2772 * In/out conditions:
2773 * The mapping must already exist in the pmap.
2774 */
2775
2776 void
2777 pmap_unwire(struct pmap *pmap, vaddr_t va)
2778 {
2779 pt_entry_t *ptes;
2780 struct vm_page *pg;
2781 paddr_t pa;
2782
2783 PMAP_MAP_TO_HEAD_LOCK();
2784 ptes = pmap_map_ptes(pmap); /* locks pmap */
2785
2786 if (pmap_pde_v(pmap_pde(pmap, va))) {
2787 #ifdef DIAGNOSTIC
2788 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2789 panic("pmap_unwire: invalid L2 PTE");
2790 #endif
2791 /* Extract the physical address of the page */
2792 pa = l2pte_pa(ptes[arm_btop(va)]);
2793
2794 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2795 goto out;
2796
2797 /* Update the wired bit in the pv entry for this page. */
2798 simple_lock(&pg->mdpage.pvh_slock);
2799 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2800 simple_unlock(&pg->mdpage.pvh_slock);
2801 }
2802 #ifdef DIAGNOSTIC
2803 else {
2804 panic("pmap_unwire: invalid L1 PTE");
2805 }
2806 #endif
2807 out:
2808 pmap_unmap_ptes(pmap); /* unlocks pmap */
2809 PMAP_MAP_TO_HEAD_UNLOCK();
2810 }
2811
2812 /*
2813 * Routine: pmap_extract
2814 * Function:
2815 * Extract the physical page address associated
2816 * with the given map/virtual_address pair.
2817 */
2818 boolean_t
2819 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2820 {
2821 pd_entry_t *pde;
2822 pt_entry_t *pte, *ptes;
2823 paddr_t pa;
2824
2825 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2826
2827 ptes = pmap_map_ptes(pmap); /* locks pmap */
2828
2829 pde = pmap_pde(pmap, va);
2830 pte = &ptes[arm_btop(va)];
2831
2832 if (pmap_pde_section(pde)) {
2833 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2834 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2835 goto out;
2836 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2837 PDEBUG(5, printf("no mapping\n"));
2838 goto failed;
2839 }
2840
2841 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2842 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2843 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2844 goto out;
2845 }
2846
2847 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2848 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2849
2850 out:
2851 if (pap != NULL)
2852 *pap = pa;
2853
2854 pmap_unmap_ptes(pmap); /* unlocks pmap */
2855 return (TRUE);
2856
2857 failed:
2858 pmap_unmap_ptes(pmap); /* unlocks pmap */
2859 return (FALSE);
2860 }
2861
2862
2863 /*
2864 * pmap_copy:
2865 *
2866 * Copy the range specified by src_addr/len from the source map to the
2867 * range dst_addr/len in the destination map.
2868 *
2869 * This routine is only advisory and need not do anything.
2870 */
2871 /* Call deleted in <arm/arm32/pmap.h> */
2872
2873 #if defined(PMAP_DEBUG)
2874 void
2875 pmap_dump_pvlist(phys, m)
2876 vaddr_t phys;
2877 char *m;
2878 {
2879 struct vm_page *pg;
2880 struct pv_entry *pv;
2881
2882 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2883 printf("INVALID PA\n");
2884 return;
2885 }
2886 simple_lock(&pg->mdpage.pvh_slock);
2887 printf("%s %08lx:", m, phys);
2888 if (pg->mdpage.pvh_list == NULL) {
2889 simple_unlock(&pg->mdpage.pvh_slock);
2890 printf(" no mappings\n");
2891 return;
2892 }
2893
2894 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
2895 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
2896 pv->pv_va, pv->pv_flags);
2897
2898 printf("\n");
2899 simple_unlock(&pg->mdpage.pvh_slock);
2900 }
2901
2902 #endif /* PMAP_DEBUG */
2903
2904 static pt_entry_t *
2905 pmap_map_ptes(struct pmap *pmap)
2906 {
2907 struct proc *p;
2908
2909 /* the kernel's pmap is always accessible */
2910 if (pmap == pmap_kernel()) {
2911 return (pt_entry_t *)PTE_BASE;
2912 }
2913
2914 if (pmap_is_curpmap(pmap)) {
2915 simple_lock(&pmap->pm_obj.vmobjlock);
2916 return (pt_entry_t *)PTE_BASE;
2917 }
2918
2919 p = curproc;
2920 KDASSERT(p != NULL);
2921
2922 /* need to lock both curpmap and pmap: use ordered locking */
2923 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
2924 simple_lock(&pmap->pm_obj.vmobjlock);
2925 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2926 } else {
2927 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2928 simple_lock(&pmap->pm_obj.vmobjlock);
2929 }
2930
2931 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
2932 FALSE);
2933 cpu_tlb_flushD();
2934 cpu_cpwait();
2935 return (pt_entry_t *)APTE_BASE;
2936 }
2937
2938 /*
2939 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
2940 */
2941
2942 static void
2943 pmap_unmap_ptes(struct pmap *pmap)
2944 {
2945
2946 if (pmap == pmap_kernel()) {
2947 return;
2948 }
2949 if (pmap_is_curpmap(pmap)) {
2950 simple_unlock(&pmap->pm_obj.vmobjlock);
2951 } else {
2952 KDASSERT(curproc != NULL);
2953 simple_unlock(&pmap->pm_obj.vmobjlock);
2954 simple_unlock(
2955 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
2956 }
2957 }
2958
2959 /*
2960 * Modify pte bits for all ptes corresponding to the given physical address.
2961 * We use `maskbits' rather than `clearbits' because we're always passing
2962 * constants and the latter would require an extra inversion at run-time.
2963 */
2964
2965 static void
2966 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2967 {
2968 struct pv_entry *pv;
2969 pt_entry_t *ptes, npte, opte;
2970 vaddr_t va;
2971 int tlbentry;
2972
2973 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
2974 VM_PAGE_TO_PHYS(pg), maskbits));
2975
2976 tlbentry = 0;
2977
2978 PMAP_HEAD_TO_MAP_LOCK();
2979 simple_lock(&pg->mdpage.pvh_slock);
2980
2981 /*
2982 * Clear saved attributes (modify, reference)
2983 */
2984 pg->mdpage.pvh_attrs &= ~maskbits;
2985
2986 if (pg->mdpage.pvh_list == NULL) {
2987 simple_unlock(&pg->mdpage.pvh_slock);
2988 PMAP_HEAD_TO_MAP_UNLOCK();
2989 return;
2990 }
2991
2992 /*
2993 * Loop over all current mappings setting/clearing as appropos
2994 */
2995 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2996 va = pv->pv_va;
2997 pv->pv_flags &= ~maskbits;
2998 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
2999 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3000 npte = opte = ptes[arm_btop(va)];
3001 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3002 if ((pv->pv_flags & PVF_NC)) {
3003 /*
3004 * Entry is not cacheable: reenable
3005 * the cache, nothing to flush
3006 *
3007 * Don't turn caching on again if this
3008 * is a modified emulation. This
3009 * would be inconsitent with the
3010 * settings created by
3011 * pmap_vac_me_harder().
3012 *
3013 * There's no need to call
3014 * pmap_vac_me_harder() here: all
3015 * pages are loosing their write
3016 * permission.
3017 *
3018 */
3019 if (maskbits & PVF_WRITE) {
3020 npte |= pte_l2_s_cache_mode;
3021 pv->pv_flags &= ~PVF_NC;
3022 }
3023 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3024 /*
3025 * Entry is cacheable: check if pmap is
3026 * current if it is flush it,
3027 * otherwise it won't be in the cache
3028 */
3029 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3030 }
3031
3032 /* make the pte read only */
3033 npte &= ~L2_S_PROT_W;
3034 }
3035
3036 if (maskbits & PVF_REF) {
3037 if (pmap_is_curpmap(pv->pv_pmap) &&
3038 (pv->pv_flags & PVF_NC) == 0) {
3039 /*
3040 * Check npte here; we may have already
3041 * done the wbinv above, and the validity
3042 * of the PTE is the same for opte and
3043 * npte.
3044 */
3045 if (npte & L2_S_PROT_W) {
3046 cpu_idcache_wbinv_range(pv->pv_va,
3047 NBPG);
3048 } else if ((npte & L2_TYPE_MASK)
3049 != L2_TYPE_INV) {
3050 /* XXXJRT need idcache_inv_range */
3051 cpu_idcache_wbinv_range(pv->pv_va,
3052 NBPG);
3053 }
3054 }
3055
3056 /* make the pte invalid */
3057 npte = (npte & ~L2_TYPE_MASK) | L2_TYPE_INV;
3058 }
3059
3060 if (npte != opte) {
3061 ptes[arm_btop(va)] = npte;
3062 /* Flush the TLB entry if a current pmap. */
3063 if (pmap_is_curpmap(pv->pv_pmap))
3064 cpu_tlb_flushID_SE(pv->pv_va);
3065 }
3066
3067 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3068 }
3069 cpu_cpwait();
3070
3071 simple_unlock(&pg->mdpage.pvh_slock);
3072 PMAP_HEAD_TO_MAP_UNLOCK();
3073 }
3074
3075 /*
3076 * pmap_clear_modify:
3077 *
3078 * Clear the "modified" attribute for a page.
3079 */
3080 boolean_t
3081 pmap_clear_modify(struct vm_page *pg)
3082 {
3083 boolean_t rv;
3084
3085 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3086 rv = TRUE;
3087 pmap_clearbit(pg, PVF_MOD);
3088 } else
3089 rv = FALSE;
3090
3091 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3092 VM_PAGE_TO_PHYS(pg), rv));
3093
3094 return (rv);
3095 }
3096
3097 /*
3098 * pmap_clear_reference:
3099 *
3100 * Clear the "referenced" attribute for a page.
3101 */
3102 boolean_t
3103 pmap_clear_reference(struct vm_page *pg)
3104 {
3105 boolean_t rv;
3106
3107 if (pg->mdpage.pvh_attrs & PVF_REF) {
3108 rv = TRUE;
3109 pmap_clearbit(pg, PVF_REF);
3110 } else
3111 rv = FALSE;
3112
3113 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3114 VM_PAGE_TO_PHYS(pg), rv));
3115
3116 return (rv);
3117 }
3118
3119 /*
3120 * pmap_is_modified:
3121 *
3122 * Test if a page has the "modified" attribute.
3123 */
3124 /* See <arm/arm32/pmap.h> */
3125
3126 /*
3127 * pmap_is_referenced:
3128 *
3129 * Test if a page has the "referenced" attribute.
3130 */
3131 /* See <arm/arm32/pmap.h> */
3132
3133 int
3134 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3135 {
3136 pt_entry_t *ptes;
3137 struct vm_page *pg;
3138 paddr_t pa;
3139 u_int flags;
3140 int rv = 0;
3141
3142 PDEBUG(2, printf("pmap_modified_emulation\n"));
3143
3144 PMAP_MAP_TO_HEAD_LOCK();
3145 ptes = pmap_map_ptes(pmap); /* locks pmap */
3146
3147 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3148 PDEBUG(2, printf("L1 PTE invalid\n"));
3149 goto out;
3150 }
3151
3152 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3153
3154 /* Check for a invalid pte */
3155 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3156 goto out;
3157
3158 /* This can happen if user code tries to access kernel memory. */
3159 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3160 goto out;
3161
3162 /* Extract the physical address of the page */
3163 pa = l2pte_pa(ptes[arm_btop(va)]);
3164 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3165 goto out;
3166
3167 /* Get the current flags for this page. */
3168 simple_lock(&pg->mdpage.pvh_slock);
3169
3170 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3171 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3172
3173 /*
3174 * Do the flags say this page is writable ? If not then it is a
3175 * genuine write fault. If yes then the write fault is our fault
3176 * as we did not reflect the write access in the PTE. Now we know
3177 * a write has occurred we can correct this and also set the
3178 * modified bit
3179 */
3180 if (~flags & PVF_WRITE) {
3181 simple_unlock(&pg->mdpage.pvh_slock);
3182 goto out;
3183 }
3184
3185 PDEBUG(0,
3186 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3187 va, ptes[arm_btop(va)]));
3188 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3189
3190 /*
3191 * Re-enable write permissions for the page. No need to call
3192 * pmap_vac_me_harder(), since this is just a
3193 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3194 * We've already set the cacheable bits based on the assumption
3195 * that we can write to this page.
3196 */
3197 ptes[arm_btop(va)] =
3198 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3199 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3200
3201 simple_unlock(&pg->mdpage.pvh_slock);
3202
3203 cpu_tlb_flushID_SE(va);
3204 cpu_cpwait();
3205 rv = 1;
3206 out:
3207 pmap_unmap_ptes(pmap); /* unlocks pmap */
3208 PMAP_MAP_TO_HEAD_UNLOCK();
3209 return (rv);
3210 }
3211
3212 int
3213 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3214 {
3215 pt_entry_t *ptes;
3216 struct vm_page *pg;
3217 paddr_t pa;
3218 int rv = 0;
3219
3220 PDEBUG(2, printf("pmap_handled_emulation\n"));
3221
3222 PMAP_MAP_TO_HEAD_LOCK();
3223 ptes = pmap_map_ptes(pmap); /* locks pmap */
3224
3225 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3226 PDEBUG(2, printf("L1 PTE invalid\n"));
3227 goto out;
3228 }
3229
3230 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3231
3232 /* Check for invalid pte */
3233 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3234 goto out;
3235
3236 /* This can happen if user code tries to access kernel memory. */
3237 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3238 goto out;
3239
3240 /* Extract the physical address of the page */
3241 pa = l2pte_pa(ptes[arm_btop(va)]);
3242 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3243 goto out;
3244
3245 simple_lock(&pg->mdpage.pvh_slock);
3246
3247 /*
3248 * Ok we just enable the pte and mark the attibs as handled
3249 * XXX Should we traverse the PV list and enable all PTEs?
3250 */
3251 PDEBUG(0,
3252 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3253 va, ptes[arm_btop(va)]));
3254 pg->mdpage.pvh_attrs |= PVF_REF;
3255
3256 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3257 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3258
3259 simple_unlock(&pg->mdpage.pvh_slock);
3260
3261 cpu_tlb_flushID_SE(va);
3262 cpu_cpwait();
3263 rv = 1;
3264 out:
3265 pmap_unmap_ptes(pmap); /* unlocks pmap */
3266 PMAP_MAP_TO_HEAD_UNLOCK();
3267 return (rv);
3268 }
3269
3270 /*
3271 * pmap_collect: free resources held by a pmap
3272 *
3273 * => optional function.
3274 * => called when a process is swapped out to free memory.
3275 */
3276
3277 void
3278 pmap_collect(struct pmap *pmap)
3279 {
3280 }
3281
3282 /*
3283 * Routine: pmap_procwr
3284 *
3285 * Function:
3286 * Synchronize caches corresponding to [addr, addr+len) in p.
3287 *
3288 */
3289 void
3290 pmap_procwr(struct proc *p, vaddr_t va, int len)
3291 {
3292 /* We only need to do anything if it is the current process. */
3293 if (p == curproc)
3294 cpu_icache_sync_range(va, len);
3295 }
3296 /*
3297 * PTP functions
3298 */
3299
3300 /*
3301 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3302 *
3303 * => pmap should NOT be pmap_kernel()
3304 * => pmap should be locked
3305 */
3306
3307 static struct vm_page *
3308 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3309 {
3310 struct vm_page *ptp;
3311
3312 if (pmap_pde_page(pmap_pde(pmap, va))) {
3313
3314 /* valid... check hint (saves us a PA->PG lookup) */
3315 if (pmap->pm_ptphint &&
3316 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3317 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3318 return (pmap->pm_ptphint);
3319 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3320 #ifdef DIAGNOSTIC
3321 if (ptp == NULL)
3322 panic("pmap_get_ptp: unmanaged user PTP");
3323 #endif
3324 pmap->pm_ptphint = ptp;
3325 return(ptp);
3326 }
3327
3328 /* allocate a new PTP (updates ptphint) */
3329 return(pmap_alloc_ptp(pmap, va));
3330 }
3331
3332 /*
3333 * pmap_alloc_ptp: allocate a PTP for a PMAP
3334 *
3335 * => pmap should already be locked by caller
3336 * => we use the ptp's wire_count to count the number of active mappings
3337 * in the PTP (we start it at one to prevent any chance this PTP
3338 * will ever leak onto the active/inactive queues)
3339 */
3340
3341 /*__inline */ static struct vm_page *
3342 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3343 {
3344 struct vm_page *ptp;
3345
3346 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3347 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3348 if (ptp == NULL)
3349 return (NULL);
3350
3351 /* got one! */
3352 ptp->flags &= ~PG_BUSY; /* never busy */
3353 ptp->wire_count = 1; /* no mappings yet */
3354 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3355 pmap->pm_stats.resident_count++; /* count PTP as resident */
3356 pmap->pm_ptphint = ptp;
3357 return (ptp);
3358 }
3359
3360 vaddr_t
3361 pmap_growkernel(vaddr_t maxkvaddr)
3362 {
3363 struct pmap *kpm = pmap_kernel(), *pm;
3364 int s;
3365 paddr_t ptaddr;
3366 struct vm_page *ptp;
3367
3368 if (maxkvaddr <= pmap_curmaxkvaddr)
3369 goto out; /* we are OK */
3370 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3371 pmap_curmaxkvaddr, maxkvaddr));
3372
3373 /*
3374 * whoops! we need to add kernel PTPs
3375 */
3376
3377 s = splhigh(); /* to be safe */
3378 simple_lock(&kpm->pm_obj.vmobjlock);
3379 /* due to the way the arm pmap works we map 4MB at a time */
3380 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3381 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3382
3383 if (uvm.page_init_done == FALSE) {
3384
3385 /*
3386 * we're growing the kernel pmap early (from
3387 * uvm_pageboot_alloc()). this case must be
3388 * handled a little differently.
3389 */
3390
3391 if (uvm_page_physget(&ptaddr) == FALSE)
3392 panic("pmap_growkernel: out of memory");
3393 pmap_zero_page(ptaddr);
3394
3395 /* map this page in */
3396 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3397
3398 /* count PTP as resident */
3399 kpm->pm_stats.resident_count++;
3400 continue;
3401 }
3402
3403 /*
3404 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3405 * pmap_initialized == FALSE CASE! WE MAY BE
3406 * INVOKED WHILE pmap_init() IS RUNNING!
3407 */
3408
3409 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3410 panic("pmap_growkernel: alloc ptp failed");
3411
3412 /* distribute new kernel PTP to all active pmaps */
3413 simple_lock(&pmaps_lock);
3414 LIST_FOREACH(pm, &pmaps, pm_list) {
3415 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3416 VM_PAGE_TO_PHYS(ptp), TRUE);
3417 }
3418
3419 simple_unlock(&pmaps_lock);
3420 }
3421
3422 /*
3423 * flush out the cache, expensive but growkernel will happen so
3424 * rarely
3425 */
3426 cpu_tlb_flushD();
3427 cpu_cpwait();
3428
3429 simple_unlock(&kpm->pm_obj.vmobjlock);
3430 splx(s);
3431
3432 out:
3433 return (pmap_curmaxkvaddr);
3434 }
3435
3436 /************************ Utility routines ****************************/
3437
3438 /*
3439 * vector_page_setprot:
3440 *
3441 * Manipulate the protection of the vector page.
3442 */
3443 void
3444 vector_page_setprot(int prot)
3445 {
3446 pt_entry_t *pte;
3447
3448 pte = vtopte(vector_page);
3449
3450 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3451 cpu_tlb_flushD_SE(vector_page);
3452 cpu_cpwait();
3453 }
3454
3455 /************************ Bootstrapping routines ****************************/
3456
3457 /*
3458 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3459 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3460 * find them as necessary.
3461 *
3462 * Note that the data on this list is not valid after initarm() returns.
3463 */
3464 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3465
3466 static vaddr_t
3467 kernel_pt_lookup(paddr_t pa)
3468 {
3469 pv_addr_t *pv;
3470
3471 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3472 if (pv->pv_pa == pa)
3473 return (pv->pv_va);
3474 }
3475 return (0);
3476 }
3477
3478 /*
3479 * pmap_map_section:
3480 *
3481 * Create a single section mapping.
3482 */
3483 void
3484 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3485 {
3486 pd_entry_t *pde = (pd_entry_t *) l1pt;
3487 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3488
3489 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3490
3491 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3492 L1_S_PROT(PTE_KERNEL, prot) | fl;
3493 }
3494
3495 /*
3496 * pmap_map_entry:
3497 *
3498 * Create a single page mapping.
3499 */
3500 void
3501 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3502 {
3503 pd_entry_t *pde = (pd_entry_t *) l1pt;
3504 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3505 pt_entry_t *pte;
3506
3507 KASSERT(((va | pa) & PGOFSET) == 0);
3508
3509 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3510 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3511
3512 pte = (pt_entry_t *)
3513 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3514 if (pte == NULL)
3515 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3516
3517 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3518 L2_S_PROT(PTE_KERNEL, prot) | fl;
3519 }
3520
3521 /*
3522 * pmap_link_l2pt:
3523 *
3524 * Link the L2 page table specified by "pa" into the L1
3525 * page table at the slot for "va".
3526 */
3527 void
3528 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3529 {
3530 pd_entry_t *pde = (pd_entry_t *) l1pt;
3531 u_int slot = va >> L1_S_SHIFT;
3532
3533 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3534
3535 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3536 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3537 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3538 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3539
3540 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3541 }
3542
3543 /*
3544 * pmap_map_chunk:
3545 *
3546 * Map a chunk of memory using the most efficient mappings
3547 * possible (section, large page, small page) into the
3548 * provided L1 and L2 tables at the specified virtual address.
3549 */
3550 vsize_t
3551 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3552 int prot, int cache)
3553 {
3554 pd_entry_t *pde = (pd_entry_t *) l1pt;
3555 pt_entry_t *pte, fl;
3556 vsize_t resid;
3557 int i;
3558
3559 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3560
3561 if (l1pt == 0)
3562 panic("pmap_map_chunk: no L1 table provided");
3563
3564 #ifdef VERBOSE_INIT_ARM
3565 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3566 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3567 #endif
3568
3569 size = resid;
3570
3571 while (resid > 0) {
3572 /* See if we can use a section mapping. */
3573 if (((pa | va) & L1_S_OFFSET) == 0 &&
3574 resid >= L1_S_SIZE) {
3575 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3576 #ifdef VERBOSE_INIT_ARM
3577 printf("S");
3578 #endif
3579 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3580 L1_S_PROT(PTE_KERNEL, prot) | fl;
3581 va += L1_S_SIZE;
3582 pa += L1_S_SIZE;
3583 resid -= L1_S_SIZE;
3584 continue;
3585 }
3586
3587 /*
3588 * Ok, we're going to use an L2 table. Make sure
3589 * one is actually in the corresponding L1 slot
3590 * for the current VA.
3591 */
3592 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3593 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3594
3595 pte = (pt_entry_t *)
3596 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3597 if (pte == NULL)
3598 panic("pmap_map_chunk: can't find L2 table for VA"
3599 "0x%08lx", va);
3600
3601 /* See if we can use a L2 large page mapping. */
3602 if (((pa | va) & L2_L_OFFSET) == 0 &&
3603 resid >= L2_L_SIZE) {
3604 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3605 #ifdef VERBOSE_INIT_ARM
3606 printf("L");
3607 #endif
3608 for (i = 0; i < 16; i++) {
3609 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3610 L2_L_PROTO | pa |
3611 L2_L_PROT(PTE_KERNEL, prot) | fl;
3612 }
3613 va += L2_L_SIZE;
3614 pa += L2_L_SIZE;
3615 resid -= L2_L_SIZE;
3616 continue;
3617 }
3618
3619 /* Use a small page mapping. */
3620 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3621 #ifdef VERBOSE_INIT_ARM
3622 printf("P");
3623 #endif
3624 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3625 L2_S_PROT(PTE_KERNEL, prot) | fl;
3626 va += NBPG;
3627 pa += NBPG;
3628 resid -= NBPG;
3629 }
3630 #ifdef VERBOSE_INIT_ARM
3631 printf("\n");
3632 #endif
3633 return (size);
3634 }
3635
3636 /********************** PTE initialization routines **************************/
3637
3638 /*
3639 * These routines are called when the CPU type is identified to set up
3640 * the PTE prototypes, cache modes, etc.
3641 *
3642 * The variables are always here, just in case LKMs need to reference
3643 * them (though, they shouldn't).
3644 */
3645
3646 pt_entry_t pte_l1_s_cache_mode;
3647 pt_entry_t pte_l1_s_cache_mask;
3648
3649 pt_entry_t pte_l2_l_cache_mode;
3650 pt_entry_t pte_l2_l_cache_mask;
3651
3652 pt_entry_t pte_l2_s_cache_mode;
3653 pt_entry_t pte_l2_s_cache_mask;
3654
3655 pt_entry_t pte_l2_s_prot_u;
3656 pt_entry_t pte_l2_s_prot_w;
3657 pt_entry_t pte_l2_s_prot_mask;
3658
3659 pt_entry_t pte_l1_s_proto;
3660 pt_entry_t pte_l1_c_proto;
3661 pt_entry_t pte_l2_s_proto;
3662
3663 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3664 void (*pmap_zero_page_func)(paddr_t);
3665
3666 #if ARM_MMU_GENERIC == 1
3667 void
3668 pmap_pte_init_generic(void)
3669 {
3670
3671 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3672 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3673
3674 pte_l2_l_cache_mode = L2_B|L2_C;
3675 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3676
3677 pte_l2_s_cache_mode = L2_B|L2_C;
3678 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3679
3680 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3681 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3682 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3683
3684 pte_l1_s_proto = L1_S_PROTO_generic;
3685 pte_l1_c_proto = L1_C_PROTO_generic;
3686 pte_l2_s_proto = L2_S_PROTO_generic;
3687
3688 pmap_copy_page_func = pmap_copy_page_generic;
3689 pmap_zero_page_func = pmap_zero_page_generic;
3690 }
3691
3692 #if defined(CPU_ARM9)
3693 void
3694 pmap_pte_init_arm9(void)
3695 {
3696
3697 /*
3698 * ARM9 is compatible with generic, but we want to use
3699 * write-through caching for now.
3700 */
3701 pmap_pte_init_generic();
3702
3703 pte_l1_s_cache_mode = L1_S_C;
3704 pte_l2_l_cache_mode = L2_C;
3705 pte_l2_s_cache_mode = L2_C;
3706 }
3707 #endif /* CPU_ARM9 */
3708 #endif /* ARM_MMU_GENERIC == 1 */
3709
3710 #if ARM_MMU_XSCALE == 1
3711 void
3712 pmap_pte_init_xscale(void)
3713 {
3714 uint32_t auxctl;
3715
3716 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3717 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3718
3719 pte_l2_l_cache_mode = L2_B|L2_C;
3720 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3721
3722 pte_l2_s_cache_mode = L2_B|L2_C;
3723 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3724
3725 #ifdef XSCALE_CACHE_WRITE_THROUGH
3726 /*
3727 * Some versions of the XScale core have various bugs in
3728 * their cache units, the work-around for which is to run
3729 * the cache in write-through mode. Unfortunately, this
3730 * has a major (negative) impact on performance. So, we
3731 * go ahead and run fast-and-loose, in the hopes that we
3732 * don't line up the planets in a way that will trip the
3733 * bugs.
3734 *
3735 * However, we give you the option to be slow-but-correct.
3736 */
3737 pte_l1_s_cache_mode = L1_S_C;
3738 pte_l2_l_cache_mode = L2_C;
3739 pte_l2_s_cache_mode = L2_C;
3740 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3741
3742 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3743 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3744 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3745
3746 pte_l1_s_proto = L1_S_PROTO_xscale;
3747 pte_l1_c_proto = L1_C_PROTO_xscale;
3748 pte_l2_s_proto = L2_S_PROTO_xscale;
3749
3750 pmap_copy_page_func = pmap_copy_page_xscale;
3751 pmap_zero_page_func = pmap_zero_page_xscale;
3752
3753 /*
3754 * Disable ECC protection of page table access, for now.
3755 */
3756 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3757 : "=r" (auxctl));
3758 auxctl &= ~XSCALE_AUXCTL_P;
3759 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3760 :
3761 : "r" (auxctl));
3762 }
3763
3764 /*
3765 * xscale_setup_minidata:
3766 *
3767 * Set up the mini-data cache clean area. We require the
3768 * caller to allocate the right amount of physically and
3769 * virtually contiguous space.
3770 */
3771 void
3772 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3773 {
3774 extern vaddr_t xscale_minidata_clean_addr;
3775 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3776 pd_entry_t *pde = (pd_entry_t *) l1pt;
3777 pt_entry_t *pte;
3778 vsize_t size;
3779 uint32_t auxctl;
3780
3781 xscale_minidata_clean_addr = va;
3782
3783 /* Round it to page size. */
3784 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3785
3786 for (; size != 0;
3787 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3788 pte = (pt_entry_t *)
3789 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3790 if (pte == NULL)
3791 panic("xscale_setup_minidata: can't find L2 table for "
3792 "VA 0x%08lx", va);
3793 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3794 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3795 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3796 }
3797
3798 /*
3799 * Configure the mini-data cache for write-back with
3800 * read/write-allocate.
3801 *
3802 * NOTE: In order to reconfigure the mini-data cache, we must
3803 * make sure it contains no valid data! In order to do that,
3804 * we must issue a global data cache invalidate command!
3805 *
3806 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
3807 * THIS IS VERY IMPORTANT!
3808 */
3809
3810 /* Invalidate data and mini-data. */
3811 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
3812 :
3813 : "r" (auxctl));
3814
3815
3816 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3817 : "=r" (auxctl));
3818 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
3819 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3820 :
3821 : "r" (auxctl));
3822 }
3823 #endif /* ARM_MMU_XSCALE == 1 */
3824